
HAL Id: hal-03740320
https://hal.science/hal-03740320v3

Submitted on 5 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-order lifting for polynomial Sylvester matrices
Clément Pernet, Hippolyte Signargout, Gilles Villard

To cite this version:
Clément Pernet, Hippolyte Signargout, Gilles Villard. High-order lifting for polynomial Sylvester
matrices. Journal of Complexity, 2024, 80, pp.101803. �10.1016/j.jco.2023.101803�. �hal-03740320v3�

https://hal.science/hal-03740320v3
https://hal.archives-ouvertes.fr

High-order lifting for polynomial Sylvester matrices

Clément Pernetb, Hippolyte Signargouta,b, Gilles Villarda

aUniv. Lyon, CNRS, ENS de Lyon, Inria, UCBL, LIP UMR 5668 Lyon, France
bUniv. Grenoble Alpes, CNRS, LJK UMR 5224 Grenoble, France

Abstract

A new algorithm is presented for computing the resultant of two “sufficiently generic” bivariate polynomials over an
arbitrary field. For such p and q in K[x, y] of degree d in x and n in y, the resultant with respect to y is computed
using O(n1.458d) arithmetic operations as long as d = O(n1/3). For d = 1, the complexity estimate is therefore essentially
reconciled with the best known estimates of Neiger et al. 2021 for the related problems of modular composition and
characteristic polynomial in a univariate quotient algebra. This allows to cross the 3/2 barrier in the exponent of n for
the first time in the case of the resultant. More generally, our algorithm improves on best previous algebraic ones as
long as d = O(n0.47).

The resultant is the determinant of the associated univariate polynomial Sylvester matrix of degree d, the problem is
therefore intimately related to that of computing determinants of structured polynomial matrices. We first identify new
advanced aspects of structure specific to the polynomial Sylvester matrix. This enables to compute the determinant by
successfully mixing the block baby steps/giant steps approach of Kaltofen and Villard 2005, until then restricted to the
case d = 1 for characteristic polynomials, and the high-order lifting strategy of Storjohann 2003 usually reserved for
dense polynomial matrices.

Keywords: complexity, algorithm, computer algebra, resultant, polynomial structured matrix, displacement rank.

1. Introduction

In this paper, we propose a new algorithm for computing the resultant of two generic bivariate polyno-
mials over a commutative field K. For two polynomials p, q ∈ K[x, y], the resultant Resy(p, q) with respect
to y is the determinant of the Sylvester matrix associated to p and q over K[x] (see Eq. (2)). The reader may
refer to the books [2, 10], and to [11, 31] and references therein on the whole subject.

As well as for many fundamental operations on univariate polynomials over K (multiplication, division
with remainder, multipoint evaluation, greatest common divisor, etc.), the resultant of two polynomials of
degree at most n in K[x] can be computed using Õ(n) arithmetic operations in K [10, Chap. 11]. (The soft-O
notation is used to omit logarithmic factors: c′ = Õ(c) if there exists k ∈ N for which c′ = O(c logk c).) In
the bivariate case, and since the early 1970’s, the best known complexity bound for the computation of the
resultant in the general case is Õ(n2d) for p, q of degree bounded by d in x and n in y [10, Chap. 11]. The
resultant with respect to y is a polynomial of degree at most 2nd in K[x], we therefore see that the latter
bound is within a factor of the order of n from the input/output size.

Usual solutions for the resultant of two polynomials are most often based on the extended Euclidean
algorithm and polynomial remainder sequences [11, 31].

By going beyond this path, complementary reductions of the complexity gap with respect to the in-
put/output size were recently obtained [40, 16, 41]. These approaches exploit the properties of appropriate

2 C. Pernet, H. Signargout, G. Villard (2023) 1–31

families of polynomials in the ideal I = ⟨p, q⟩ in K[x, y] or structured matrix operations (see Section 1.3),
and rely on genericity assumptions on p and q in the Zariski sense. Throughout the paper, a property is
generic if it holds except on a hypersurface of the corresponding parameter space.

Given bivariate polynomials p, q of degree d in x and n in y, it is shown in [40] that the resultant
Resy(p, q) can be computed generically with respect to p and q using Õ(n2−1/ωd) arithmetic operations,
where ω ≤ 3 is a feasible exponent for the cost of square matrix multiplication (two n × n matrices over
a ring can be multiplied using O(nω) arithmetic operations). For example in the case d = n this gives the
first subcubic complexity estimate for the problem. The algorithm is mainly based on polynomial matrix
operations and our work builds upon it (see Section 1.1.1).

On the other hand, using a bit complexity model and in the specific case of a finite field F, consider p
and q of respective total degrees n1 ≥ n2. If p and q are sufficiently generic then Resy(p, q) can be computed
in expected time O((n1n2 log |F|)1+ϵ) + Õ(n2

1 log |F|) using a randomized Las Vegas algorithm [16] (a few
more details are given in Section 1.3). Even if limited to certain fields, the latter bound is a major milestone
since it is quasi-linear in the input/output size. It has been extended in [41] to the case of degree conditions
on x and y individually (other situations than the one with the total degree). However, it is unclear to us
whether these approaches, which use a bit complexity model, could be exploited for general fields.

Despite these recent advances, we see that the algebraic complexity question of lowering the exponent
of the complexity estimate for the resultant over a general field K remains a long-standing open problem.

The starting point of our progress is to notice that, at least for d = 1 and p and q with a particular
shape, the approach of [40] can be improved, and a better complexity bound can be obtained. Indeed if
p = x − a and q = f for a, f univariate in K[y], then the resultant can be obtained from the characteristic
polynomial χa of the multiplication by a modulo f . For such a and f of degree n, let c = (−1)nen where e
is the leading coefficient of f , then we have (see for instance [2, Thms 4.26 (resultant from the roots of p
and q) & 4.69 (Stickelberger)]:

Resy(p, q) = c χa. (1)

It follows that the resultant can be computed generically with respect to a using Õ(n(ω+2)/3) arithmetic
operations from the characteristic polynomial algorithm of [34, Sec. 10.1]. In this special case, the latter
algorithm is the first one that allows to break the barrier 3/2 in the exponent of n. The cost bound can be
sligthly improved using rectangular matrix multiplication [34].

A key ingredient for obtaining the better estimate Õ(n(ω+2)/3) compared to Õ(n2−1/ω) in [40] for d = 1,
is the possibility of setting up a baby steps/giant steps strategy from the powers of a modulo f [37]. One of
the main difficulties that we overcome is the development of such a strategy for polynomials p and q having
degree d and no special shape.

When d is not too large in relation to n our new algorithm also allows to cross the 3/2 barrier in the
exponent of n for the general resultant. As long as d = O(n1/3), what we get is reconciled with the
case d = 1, indeed we establish that the resultant of two sufficiently generic polynomials can be com-
puted using Õ(n(ω+2)/3d) arithmetic operations. One might also expect a slight improvement by using fast
rectangular matrix multiplication [30, 29, 42]. This would require technical developments for adapting the
core arithmetic on structured matrices on which we rely [6].

More precisely, we prove the following (Section 8):

Theorem 1.1. Let p, q ∈ K[x, y] be of degree d in x and n in y. Except if the coefficients of p and q are on a
certain hypersurface of K2(n+1)(d+1), Algorithm StructuredResultant computes the resultant of p and q with
respect to y using:

• Õ(n(ω+2)/3d) arithmetic operations in K if d = O(n1/3);

• Õ(nθdτ) arithmetic operations with θ = ω
2−2

3ω−4 and τ = 5ω−6
3ω−4 , otherwise.

With the known bound ω < 2.372 [1, 9, 42] and d = O(n1/3), the cost of the algorithm is O(n1.458d). In
particular, as long as d = O(n0.47) our complexity estimate improves on the best previous one for generic
polynomials over an arbitrary field, namely Õ(n2−1/ωd) [40] (see Fig. 1 in Section 8).

C. Pernet, H. Signargout, G. Villard (2023)1–31 3

1.1. Tools from previous works
We elaborate our algorithm from three complementary points of view. In this section we present the

algorithmic ideas they each bring and that we combine.

1.1.1. Minor of the inverse and matrix fraction reconstruction
From this point on, we will rather use n to denote the dimension of the Sylvester matrix, which corre-

sponds, in the context of Theorem 1.1, to polynomials p and q of y-degree n/2. In a more general way, let p,
q ∈ K[x, y] be polynomials of x-degree bounded by d, and respective y-degrees np and nq, with n = np + nq.
Given a polynomial t ∈ K[y], we denote by t(j) its coefficient in y j (and by t j the coefficient in x j of a
polynomial t ∈ K[x]). The Sylvester matrix

S =

p(np) q(nq)

p(np−1) . . . q(nq−1) . . .
... p(np)

... q(nq)

p(0) p(np−1) q(0) q(nq−1)

. . .
...

. . .
...

p(0) q(0)

∈ K[x]n×n (2)

associated to p and q is formed by two adjacent Toeplitz matrices such that with i = 1, . . . , n, S i, j = p(np+ j−i)

for j = 1, . . . , nq, S i, j+nq = q(nq+ j−i) for j = 1, . . . , np, and the remaining entries are zero. The resultant
Resy(p, q) ∈ K[x] of p and q is the determinant of S . In the same vein as [40] our algorithm reduces the
computation of this determinant to the computation of the determinant of a smaller matrix, while controlling
the x-degree of the latter. The Sylvester matrix is assumed to be invertible for x = 0.

Given a parameter m ≪ n, chosen at the end for optimizing the overall cost, consider the projections
X = [Im 0]T and Y = [0 Im]T in Kn×m where Im ∈ Km×m is the identity matrix (its dimension will be omitted
when clear from context). The first step of the algorithm of [40] consists in computing sufficiently many
terms of the power series expansion of XTS −1Y . Coprime matrices N,D ∈ K[x]m×m, with D nonsingular,
such that

XTS −1Y = ND−1 (3)

are then deduced in a second step using matrix fraction reconstruction [3, 12]. For np = nq = n/2, let λ =
4⌈n/(2m)⌉. Generically in p and q, λd terms of the expansion of XTS −1Y are sufficient for the computation of
an m×m denominator matrix D of degree λd/2 (Section 8.1). The total size of D is therefore O(mnd), which
for m ≪ n is below the previously known complexity bound Õ(n2d) for the resultant. The computation of the
truncated expansion of XTS −1Y can be obtained from four solutions of Sylvester linear systems modulo xλd,
using Õ(n × λd) = Õ(n2d/m) arithmetic operations [40]. By looking at the determinants of the denominator
matrices in Eq. (3), exploiting genericity, and by involving appropriate properties of irreducible fractions [20,
Lem. 6.5-9, p. 446], the desired resultant is then obtained from

Resy(p, q) = det S = c det D

for some nonzero c ∈ K (a scalar obtained separately at a negligible cost). The determinant of D is com-
puted using a fast algorithm on polynomial matrices [38, 28]. This general strategy is suitable for handling
more general structures than that of the Sylvester matrix, such as that of Toeplitz-like and Hankel-like ma-
trices [25].

1.1.2. Characteristic polynomials and baby steps/giant steps approach
Equations of the type of Eq. (3) are at the heart of block Krylov-Wiedemann schemes for the computation

of minimal or characteristic polynomials of scalar matrices, see [23] and references therein. For A ∈ Kn×n

and projections U,V ∈ Kn×m (1 ≤ m ≤ n), the central core of these schemes is the computation of coprime
matrices N,D ∈ K[x]m×m, with D nonsingular, such that

UT(xI − A)−1V =
∑
k≥0

UTAkV x−k−1 = ND−1. (4)

4 C. Pernet, H. Signargout, G. Villard (2023) 1–31

The matrix fraction ND−1 is obtained from a truncated expansion using fraction reconstruction as mentioned
previously, or by computing minimal polynomials of matrix sequences [23, 24]. The invariant factors of
the denominator matrix D then provide information on those of xI − A [23, Thm 2.12]. In particular, for
generic U and V , the characteristic polynomial det(xI − A) can be recovered from the determinant of D as
soon as it coincides with the minimal polynomial.

An advantage here is given by the shape of xI − A compared to the situation of Eq. (3) where the entries
of S are general polynomials. Using the explicit form of the expansion of (xI−A)−1, a baby steps/giant steps
strategy can be used from the powers of A to compute sufficiently many UTAkV terms. For λ = 2⌈n/m⌉
terms, consider r = ⌈λ1/2⌉, s = ⌈λ/r⌉ and the precomputation of Ar. The UTAi+r jV terms for 0 ≤ i < r
and 0 ≤ j < s can be computed by [23]:

- getting UTAi for i = 0, 1, . . . , r − 1 by repeated multiplications by AT (baby steps); (5a)

- getting A jrV for j = 0, 1, . . . , s − 1 by repeated multiplications by Ar (giant steps); (5b)

- multiplying (UTAi)(A jrV) for i = 0, 1, . . . , r − 1 and j = 0, 1, . . . , s − 1. (5c)

In relation with the special resultant case with d = 1 seen at Eq. (1), let a, f ∈ K[y] with deg f = n,
and let A ∈ Kn×n be the matrix of multiplication by a modulo f in the basis (1, y, . . . , yn−1). The above baby
steps/giants steps approach can be made efficient using modular polynomial operations. Generically in a (A
is invertible, and its minimal polynomial and characteristic polynomial coincide), and using for technical
reasons an expansion

UT(xI − A)−1V =
∑
k≥0

−UTA−k−1V xk = ND−1 (6)

at zero rather than at infinity, this leads to a fast algorithm for computing the characteristic polynomial of a
modulo f [34, Sec. 10.1]. It can be shown that λ terms of the expansion in Eq. (6) are sufficient for the re-
construction of a suitable description ND−1. Further, these terms can be computed using Õ(m(1−ω)/2n(ω+1)/2)
arithmetic operations, which is less than the estimate Õ(n2/m) of Section 1.1.1 for d = 1 as soon as ω < 3.

1.1.3. Series solutions of polynomial linear systems
Consider M ∈ K[x]n×n, V ∈ K[x]n×m (1 ≤ m ≤ n) and z ∈ K[x] such that gcd(det M, z) = 1. For any

given integer λ ≥ 0, the high-order lifting method of [38] allows to compute the truncated z-adic expansion
of M−1V modulo zλ. For an integer k ≥ 0, the z-adic expansion of M−1V is written in the form

M−1V = lower order terms + zk M−1Rk (7)

where Rk is a polynomial matrix called residue of V at order k. Noticing that computing the z-adic expansion
of M−1Rk is a problem of the same type as computing that of M−1V , the idea is to compute the expansion of
M−1V recursively using residues of V at various orders.

We denote by K[x]<d the set of polynomials in K[x] and degree less than d. If deg M ≤ deg z = d
and V ∈ K[x]n×m

<d , then the K-linear map

ρ : K[x]n×m
<d → K[x]n×m

<d

that sends V to ρ(V) = R1 is well defined, and Rk is obtained from the functional power ρk as ρk(V) (Lem-
mas 2.2 and 2.3).

A central point of the high-order lifting method is that the order of a residue can be efficiently increased
from k to k+ i, for an integer i ≥ 0, using only two consecutive terms of the z-adic expansion of M−1. These
two terms, whose orders depend on i only, form a matrix E(i) ∈ K[x]n×n

<2d called high-order component of M−1

that can be computed using Õ(nωd) arithmetic operations if i ∈ O(n) [38, Prop. 12]. For two polynomials
f , g ∈ K[x] with deg f ≤ 2d, deg g ≤ d and f g =

∑3d
k=0 hk xk (recall we write indices for coefficients in x of

polynomials, as a distinction with superscripts for coefficients in y), let us denote by

f ⊙ g = hd + hd+1x + . . . + h2d−1xd−1 (8)

C. Pernet, H. Signargout, G. Villard (2023)1–31 5

the middle product operation. For univariate polynomial matrices F and G with appropriate dimensions and
degrees at most 2d and d respectively, the middle product F ⊙ G is defined to be the matrix obtained by
extracting the middle coefficients of the entries of FG. Then we have (Lemma 2.5):

ρi(ρk(V)) = ρk+i(V) ≡ M(E(i) ⊙ ρk(V)) mod z. (9)

The ability to increase the residue orders thanks to high-order components leads to the following iteration
[38, Sec. 8], in the style of the one of Keller-Gehrig for Krylov subspaces [27, Sec. 3]:

ρ2i
([V, ρ(V), ρ2(V), . . . , ρ2i−1(V)]) = [ρ2i

(V), ρ2i+1(V), ρ2i+2(V), . . . , ρ2·2i−1(V)], i = 0, 1, . . . (10)

By considering i = 0, 1, . . . ⌈log λ⌉ − 1, this iteration allows to compute the residues Rk = ρ
k(V) of V at all

orders up to λ − 1. According to Eq. (9) only ⌈log λ⌉ high-order components of M−1 are required. Finally,
we see from Eq. (7) that the coefficients of the z-adic expansion of M−1V modulo zλ are obtained from the
residues as M−1Rk mod z for k = 0, 1, . . . , λ − 1. All the ingredients of the lifting needed for our algorithm
are recalled in Section 2.

1.2. Overview of the contribution
Our resultant algorithm follows the line of Section 1.1.1 and is completely described and analyzed

in Section 8. For technical reasons (simplification of the giant steps) we slightly modify the projections and
rather consider the fraction YTS −1X. The different aspects of our contribution are about the reduction of the
cost of the first step that computes λd = 4⌈n/(2m)⌉d terms of the x-adic expansion of YTS −1X. The other
steps are treated in the same way as in [40] and are not discussed in this section.

Assuming that det S (0) , 0 (see Section 8), we use the high-order lifting tools with z = xd and compute
the z-adic expansion of YTS −1X modulo zλ. For M = S and V = X, the high-order lifting method focuses
on an expansion of S −1X. If we consider that each coefficient of a power of x in the expansion has size Ω(n)
elements in K, then the output has sizeΩ(n2d/m) and this lower bound will also apply to the time complexity
of this approach. This lower bound on complexity is reached by the algorithm of [40], up to logarithmic
factors. In order to get a better complexity estimate, we design a baby steps/giant steps version of the lifting
which takes into consideration the left projection by Y . Based on the role played by A in Section 1.1.2, we
introduce the high-order component E(r) of S −1 for r = ⌈λ1/2⌉. Rather than handling all the residues up to
order λ − 1 as in Section 1.1.3, we consider s = ⌈λ/r⌉ of them. We first implement giant steps and compute
the residues

ρr(X), ρ2r(X), . . . , ρ(s−1)r(X) (11)

using a Keller-Gehrig iteration of the type of the one of Eq. (10) (Lemma 2.7). From Eq. (7) and for 0 ≤ j ≤
s − 1, these residues satisfy

YTS −1X = lower order terms + z jrYTS −1ρ jr(X), (12)

where we have taken ρ0(X) = X. Our algorithm then obtain the target z-adic expansion of YTS −1X in
the form of s successive pieces of length r. Following Eq. (12), the piece that gives the coefficients of
z jr, z jr+1, . . . , z(j+1)r−1 in the expansion of YTS −1X is indeed the result of the multiplication modulo zr, of
the projection YTS −1 by the residue ρ jr(X). For taking advantage of fast polynomial matrix multiplication,
these multiplications for 0 ≤ j ≤ s−1 are performed by cutting YTS −1 mod zr itself into r pieces. Obtaining
these pieces corresponds to the baby steps.

This approach is detailed in Section 2, by highlighting the relations between block-Krylov and high-
order lifting points of view. We give a template of the final expansion algorithm which at this stage does not
take into account the structure of the matrices that are manipulated (Algorithm ProjectedExpansion).

Next, a main contribution is to exploit the fact that S is a polynomial Sylvester matrix and its conse-
quences on the other matrices involved. The class of structure that we are facing is the one of Toeplitz-like
polynomial matrices, we recall all necessary tools around this class in Section 3. Toeplitz-like matrices over
a field are commonly handled using the notion of displacement rank [21]. The notion allows to have a con-
cise matrix representation through which matrix arithmetic can be implemented efficiently [36]. Typically,

6 C. Pernet, H. Signargout, G. Villard (2023) 1–31

by extending the ΣLU form defined over fields [22], a polynomial Toeplitz-like matrix T ∈ K[x]n×n can be
represented as

T (x) =
α∑

i=1

Li(x)Ui(x) (13)

for a parameter α “small” compared to n, and where the Li’s and the Ui’s are respectively lower and upper
triangular polynomial Toeplitz matrices (Section 3). If α is minimal then α is precisely what is called
displacement rank of T , and corresponds to the displacement rank over the field of rational fractions. We
show in Section 4 that under genericity conditions on p and q (assumptions (A1) to (A3) in Section 8.2),
the polynomial matrices involved in the high-order lifting with S are Toeplitz-like (the residues and the
high-order components). They further have displacement rank at most d + 2 with a ΣLU representation as
in Eq. (13) of degree at most d. Since these matrices have dimension n, using the structure is cost-effective
when d = o(n). This leads us to consider that d < n for what follows.

The ΣLU form with factored terms in Eq. (13) is however not fully appropriate for the reduction mod-
ulo xd (remember that z = xd) and middle product operations as in Eq. (9). For example, deriving the ΣLU
representation of T modulo xd from the one of T may necessitate explicit matrix products to reconstitute the
summands in Eq. (13). We show that a stronger representation can actually be used in our case, especially
for the high-order components of S −1 (Section 4.2) and the residues (Section 4.3). Truncations and middle
products are facilitated by the fact that for every i in Eq. (13), either Li ot Ui can be chosen as a scalar
matrix. Under the genericity conditions we have mentioned above, this representation is defined uniquely
and is qualified as canonical. Moreover, a Toeplitz-like by Toeplitz-like matrix product generally leads to
an increase in displacement rank (see Lemma 3.1). In contrast, the matrices involved in the lifting maintain
the same structure and displacement rank. Canonical representations can thus be either computed directly
or recovered by compressing results of products, thereby allowing to keep the costs contained. We describe
in Section 5 how we can rely on canonical representations for all matrix operations involved.

Once efficient matrix arithmetic is available, we implement the giant steps for the computation of the
residues of Eq. (11) in Section 6, then the expansion algorithm in Section 7.

From there, the complexity estimate for the whole resultant algorithm is established in Section 8, where
we also specify the genericity hypotheses. The displacement rank that quantifies the structure on which
we rely and from which we can benefit, is a function of the degree bound d. This is what determines the
range d = O(n0.471) for which our complexity estimate improves over previous ones.

1.3. Related questions: resultants, characteristic polynomials and bivariate ideals

As seen in a special case with Eq. (1), the resultant problem is related to the problem of computing char-
acteristic polynomials in quotient algebras. This relation has been used in particular for the diamond product
in [5], and for the resultant algorithms in [16, 41] which have already been quoted in the introduction.

The algorithm in [16] resulted in the first quasi-linear complexity bound over finite fields F for suffi-
ciently generic p and q, with respect to the total degree. It relies on the concise representation of a Gröbner
basis of the bivariate ideal I = ⟨p, q⟩ [15]. Such a representation has size Õ(n2) elements in F, and al-
lows multiplication in K[x, y]/I in quasi-linear time [15]. This fast multiplication then leads to an efficient
reduction of the resultant problem to a bivariate modular composition problem, in turn reduced to a multi-
variate multipoint evaluation problem [16]. Thanks to efficient multipoint evaluation algorithms over finite
fields [26, 4], a quasi-linear bit complexity bound is established for the resultant. This work has been ex-
tended to the case of generic polynomials of degree d in x and n in y in [41], by developing a method of
multiplication in K[x, y]/I which uses polynomial matrix division.

Our improvement for a general field K is based on a structured polynomial matrix formalism. We note
however that the general approach we follow, as well as the characteristic polynomial algorithm of the
case d = 1, can be interpreted in terms of operations on bivariate polynomials, see [40, Sec. 7] and [34,
Sec. 1.6.2]. The denominator matrices D in Eqs. (3), (4) and (6) indeed give sets of m small degree polyno-
mials in the corresponding ideals I.

C. Pernet, H. Signargout, G. Villard (2023)1–31 7

1.4. Model of computation and notations

Throughout this paper, K is an effective field. We analyze our algorithms by bounding the number
of arithmetic operations from K required for large enough inputs. Addition, subtraction, multiplication and
nonzero division are considered as unit cost operations. Our complexity bounds are often given as a function
of ω, which is a feasible exponent for square matrix multiplication [1, 9, 42].

Given a bivariate polynomial t ∈ K[x, y], we can either view it as a polynomial in y, t =
∑

j t(j)y j with
t(j) ∈ K[x] or as a polynomial in x, t =

∑
i tixi where ti ∈ K[y]. In what follows, t(j)

i denotes the constant
coefficient for monomial xiy j. As we will sometimes use simultaneously x-adic and xd-adic representations,
we introduce in such situations a dot over the coefficient variable when it refers to the x-adic representation
(Sections 4.2 and 4.3). If t is a power series in K[[x]] then the notation t mod xk for k ≥ 0 indicates that the
terms of degree k or higher are ignored.

The m-th canonical vector will be denoted by em, as its dimension is always clear from the context. For
a matrix M ∈ Km×n, and two sets of row and column indices I ⊆ {1 . . .m}, J ⊆ {1 . . . n}, we denote by MI,J

the submatrix of M formed by the rows of indices in I and columns of indices in J. Similarly, Mi,k..l will
denote the submatrix of M formed by row i and columns comprised between k and l.

2. Baby steps/giant steps for high-order lifting

A key ingredient of our resultant algorithm is the high-order lifting method of Storjohann [38]. Through-
out this section, M is a nonsingular matrix in K[x]n×n, and z ∈ K[x] is of degree d > 0 such that gcd(z, det M) =
1 (the resultant algorithm uses z = xd).

For a given V ∈ K[x]n×m, the aim of the lifting is the efficient computation of parts of the z-adic expansion

M−1V = B0 + B1z + B2z2 +

Two types of matrices play a central role for this computation: the residue terms (Definition 2.1) and the
high-order components of the inverse (Eq. (20)). These notions, as well as all the elements which are the
basis of the approach and that we need later on, are detailed in Section 2.1 where we essentially follow [38].
We however propose an adaptation of the definition of the residues, based on a linear map (Lemma 2.3),
which allows us to highlight the relations between high-order lifting and Krylov iteration points of view.

For efficiency reasons we then also consider a left projection U ∈ Kn×m, and focus on computing parts
of the expansion

UTM−1V = H0 + H1z + H2z2 +

In section Section 2.2 we introduce Algorithm ProjectedExpansion for computing this expansion up to an
arbitrary order, by using a baby steps/giant steps strategy. Our approach somewhat interpolates between
the power series expansion algorithms of [38], and the block Krylov-Wiedemann approaches mentioned in
Section 1.1.2.

At this stage we do not take into account the structure of the matrices that are manipulated. Algorithm
ProjectedExpansion should be seen as a template of which our structured expansion algorithm of Section 7 is
a specialization. We therefore delay the complexity analyses of the algorithms presented here to Sections 5, 6
and 7 where the structure of the matrices is detailed.

2.1. High-order lifting

Given any h ∈ K(x) whose denominator is coprime with z, we consider its z-adic expansion h = h0 +

h1z + h2z2 + . . . and define two operations. For an integer k ≥ 0,

⌈h⌉k = h0 + h1z + . . . + hk−1zk−1

corresponds to the truncation operation, and

⌊h⌋k = hk + hk+1z + hk+2z2

8 C. Pernet, H. Signargout, G. Villard (2023) 1–31

denotes the quotient of the division of h by zk. These notations are extended to matrices entry-wise. The
core of high-order lifting is to compute the expansion of M−1V recursively from intermediate terms called
residues (the residues play a role analogous to the one of residual terms in e.g. numerical iterative refine-
ment [14, Chap. 12]).

Definition 2.1. ([38, Dfn. 5]) For V ∈ K[x]n×m and an integer k ≥ 0, the matrix Rk ∈ K[x]n×m such that

M−1V = ⌈M−1V⌉k + zk M−1Rk (14)

is called the residue of V at order k.

With appropriate degree conditions, obtaining the residue at order k = 1 may be viewed as the application
of a linear map ρ.

Lemma 2.2. If d = deg z and deg M ≤ d then the residue at order 1 induces the K-linear map

ρ : K[x]n×m
<d → K[x]n×m

<d
V 7→ ⌊V − M⌈M−1V⌉1⌋1.

(15)

Proof. From Definition 2.1, ρ(V) is the residue of V at order 1. The map is well defined since from [38,
Cor. 10] we know that with the assumptions the residue has degree less than d; ρ is a K-linear map by
linearity of the operations ⌈·⌉1 and ⌊·⌋1.

Then, the residue at order k is obtained from the functional power ρk.

Lemma 2.3. Assume deg M ≤ deg z = d. If k ≥ 0 and V ∈ K[x]n×m
<d then ρk(V) is the residue of V at order k.

Proof. We have ρ0(V) = V and ρ(V) is the residue at order 1. We proceed by induction and assume that ρk

is the residue at order k. For k + 1 we get M−1ρk+1(V) = M−1ρ(ρk(V)) = ⌊M−1ρk(V)⌋1, where the second
equality is from Eq. (14) (which can be written ⌊M−1V⌋k = M−1Rk) with k = 1. The induction hypothesis and
Eq. (14) at order k then leads to M−1ρk+1(V) = ⌊⌊M−1V⌋k⌋1 = ⌊M−1V⌋k+1, which proves the assertion.

If M(x) = xI − A with A nonsingular in Kn×n, z = x, and V ∈ Kn×m, then the residue of V is ρ(V) = A−1V
and ρk(V) = A−kV . The expansion (see Eq. (6) in Section 1.1.2)

(xI − A)−1V =
∑
k≥0

−A−k−1V xk

is generalized as follows. Taking C0 = ⌈M−1⌉1, for V ∈ K[x]n×m
<d the z-adic expansion of M−1V is

M−1V =
∑
k≥0

⌈C0ρ
k(V)⌉1zk. (16)

Since ρk(V) is the residue at order k, we indeed know from Eq. (14) that ⌈C0ρ
k(V)⌉1 = ⌈M−1ρk(V)⌉1 is the

coefficient of zk in the z-adic expansion of M−1V .
We see from Eq. (16) that the role of the matrix powers in Krylov type methods can now be assigned to

the powers of ρ, hence we now focus on how to increase the order of a given residue. Using the notation

M−1V =
∑
k≥0

Bkzk

for the z-adic expansion of M−1V , from Eq. (16) we obtain

ρk(V) = ⌈MBk⌉1, (17)

which reduces the computation of ρk+i(V) for a given i ≥ 0, to the computation of Bk+i. Note that another
formulation of Eq. (17) could be [38, Thm. 9]:

ρk(V) = ⌊−MBk−1⌋1. (18)

C. Pernet, H. Signargout, G. Villard (2023)1–31 9

Using Eq. (14) for writing the z-adic expansion of M−1ρk(V) at order k + i we further have that Bk+i satisfies

M−1ρk(V) = ⌈M−1ρk(V)⌉k+i + zk+iBk+i + (19)

Then the ingredient given by Lemma 2.4 below is that, knowing ρk(V), only a few terms of the expansion
of M−1 are sufficient in Eq. (19) for computing Bk+i, and therefore then ρk+i(V). These few terms form what
is called a high-order component of M−1 [38, Sec. 6]. A high-order component is a piece of length 2 of the
z-adic expansion of M−1 defined as follows. Writing M−1 =

∑
i≥0 Cizi, we let E(0) = zC0 and for i ≥ 1 we

take
E(i) = Ci−1 +Ciz ∈ K[x]n×n

<2d. (20)

For two polynomial matrices F and G with appropriate dimensions, remember also the definition of the
middle product operation F ⊙ G = ⌈⌊FG⌋1⌉1 (see Eq. (8)). Then, using E(i), Bk+i is computed as follows
from ρk(V).

Lemma 2.4. Assume deg M ≤ deg z = d, and deg V < d. Let M−1V =
∑

k≥0 Bkzk. For k, i ≥ 0 we have
E(i) ⊙ ρk(V) = Bk+i.

Proof. We first claim that E(i) ⊙ ρk(V) is the coefficient of zi in the z-adic expansion of M−1ρk(V). For i = 0,
E(0) ⊙ ρk(V) = ⌈C0ρ

k(V)⌉1 is the coefficient of z0. For i ≥ 1, the claim follows from [38, Thm. 8]. Then we
conclude using Eq. (14) since indeed, the coefficient of zi in the expansion of M−1ρk(V) is the coefficient
of zk+i in the expansion of M−1V .

In the way we have anticipated we can now compute ρk+i(V) from ρk(V), this operation is a main brick
in [38, Algo. 3] for computing selected parts of the expansion of M−1V . Note that from Lemma 2.4 we
could write Bk+i = E(0) ⊙ ρk+i(V), hence the effect of the multiplication by M at Step 2 of Algorithm 2.1 is
to “discard” E(0) from Bk+i.

Algorithm 2.1 FurtherResidue
Input: The high-order component E(i) of M−1 and the residue ρk(V) for some V ∈ K[x]n×m

<d , with k, i ≥ 0
Output: The residue ρk+i(V)

1: B← E(i) ⊙ ρk(V)
2: return ⌈MB⌉1

Lemma 2.5. Assume deg M ≤ deg z = d, and deg V < d. Given the residue ρk(V) of order k ≥ 0, i ≥ 0, and
the high-order component E(i) of M−1, Algorithm FurtherResidue computes the residue ρk+i(V) of order k+i.

Proof. From Lemma 2.4 we know that B is the coefficient of zk+i in the z-adic expansion of M−1V , and we
conclude using Eq. (17).

For computing the expansion of M−1V efficiently as in [38, Algo. 3] as well as in our baby steps/giant
steps approach, the application of Lemma 2.5 relies on the availability of high-order components of few
selected orders (an amount logarithmic in the length of the expansion). The high-order component at some
order can be computed by a sort of binary powering from components at lower orders [38, Algo. 1]. Consider
indeed two high-order components E(i) and E(j). The residue ρi of the identity matrix involved in E(i) =

(E(0) ⊙ ρi−1(I)) + (E(0) ⊙ ρi(I)) (Lemma 2.4), combined with ρ j−1, ρ j that are found in E(j) (after having
discarded E(0)), allows to construct the high-order component at order i + j.

Lemma 2.6. Assume deg M ≤ deg z = d. Given the high-order components E(i) and E(j) of M−1, with i ≥ 0
and j ≥ 1, Algorithm ComponentProduct computes the high-order component E(i+ j) of M−1.

Proof. From Eq. (17) we have R j−1 = ρ
j−1(I) and R j = ρ

j(I), then Lemma 2.4 allows to conclude.

It can be noticed that Algorithm 2.2 is slightly different from the procedure of Storjohann in [38, Algo. 1].
The application of Eq. (18) rather than Eq. (17) at Step 1 could be used in order to compute E(i+ j+1) from E(i)

and E(j).

10 C. Pernet, H. Signargout, G. Villard (2023) 1–31

Algorithm 2.2 ComponentProduct
Input: Two high-order components E(i) and E(j) = C j−1 +C jz of M−1, with i ≥ 0 and j ≥ 1
Output: The high-order component E(i+ j) of M−1

1: R j−1 ← ⌈MC j−1⌉1
2: R j ← ⌈MC j⌉1
3: return (E(i) ⊙ R j−1) + (E(i) ⊙ R j)z

2.2. Baby steps/giant steps
We now apply the tools of Section 2.1 for computing parts of the z-adic expansion UTM−1V = H0 +

H1z + H2z2 + . . . , where the left projection U is in Kn×m. Algorithm ProjectedExpansion is designed as an
extension to the lifting context of the three phases (5a)-(5c) of the block Krylov approach.

First we focus on the giant steps, that is on the extension of step (5b). For some given r, s ≥ 0, the
purpose is to compute the residues ρ jr(V) for j = 0, 1, . . . s − 1. Following Storjohann [38, Sec. 8], the
combination of Algorithm FurtherResidue and Algorithm ComponentProduct allows to compute such a
sequence of residues à la Keller-Gehrig for the computation of Krylov subspaces [27, Sec. 3]. This is what
Algorithm FurtherResidues does, computing s residues in ⌈log2 s⌉ recursive steps. Taking ϱ = ρr, we
proceed with an iteration of the type:

ϱ2i
([V, ϱ(V), ϱ2(V), . . . , ϱ2i−1(V)]) = [ϱ2i

(V), ϱ2i+1(V), ϱ2i+2(V), . . . , ϱ2·2i−1(V)], i = 0, . . . , l − 1, (21)

which generalizes the Krylov iteration

A2i
[v, Av, A2v, . . . , A2i−1v] = [A2i

v, A2i+1v, A2i+2v, . . . , A2·2i−1v]

for A ∈ Kn×n and v ∈ Kn.

Algorithm 2.3 FurtherResidues
Input: The high-order component E(r) of order r, V ∈ K[x]n×m

<d , and s ∈ N>0

Output: R = [V ρr(V) ρ2r(V) . . . ρ(s−1)r(V)] ∈ K[x]n×(sm)
<d

1: E ← E(r)

2: for i = 0, . . . , ⌈log2 s⌉ − 1 do
3: k ← 2i

4: ▷ New coefficients of the z-adic expansion of M−1V, Lemma 2.4
B ← E ⊙ [V ρr(V) ρ2r(V) . . . , ρ(k−1)r(V)]

5: ▷ New residues, Eq. (17)
[ρkr(V) ρ(k+1)r(V) ρ(k+2)r(V) . . . ρ(2k−1)r(V)]← ⌈MB⌉1

6: ▷ Obtaining E(2i+1r)

if 2k < s then E ← ComponentProduct(E, E)
7: return [V ρr(V) ρ2r(V) . . . ρ(s−1)r(V)]

Lemma 2.7. Assume deg M ≤ deg z = d. Algorithm FurtherResidues is correct.

Proof. From Lemma 2.6, for any given 0 ≤ i ≤ ⌈log2 s⌉ − 1, at Step 4 we have that E is the high-order
component computed at Step 6 for i−1, hence E = E(2(i−1)r+2(i−1)r) = E(kr). Then from Lemma 2.5, considering
Bkr+ jr = E ⊙ ρ jr(V) for 0 ≤ j ≤ k − 1, we know that ⌈MBkr+ jr⌉1 is ρkr+ jr(V), which shows that the residues
of orders kr, kr+ r, . . . , kr+ (k−1)r are computed from those of orders 0, r, . . . , (k−1)r at Step 5. This gives
the residues ρ jr(V) for every 0 ≤ j ≤ (s − 1) as soon as k ≥ s/2.

With r = 1, the iteration of Eq. (21) is dual to the one used by Storjohann for computing a truncated
expansion of M−1V [38, Sec. 8]. As soon as ρ j(V) is known for every 0 ≤ j ≤ (s − 1), then the truncated
expansion M−1V mod zs can be deduced using Eq. (16).

C. Pernet, H. Signargout, G. Villard (2023)1–31 11

Algorithm 2.4 ProjectedExpansion
Input: M ∈ K[x]n×n, z ∈ K[x] with deg M ≤ deg z = d and gcd(z, det M) = 1,

U ∈ Kn×m, V ∈ K[x]n×m
<d , r, s ∈ N>0

Output: ⌈UTM−1(x)V⌉rs

1: for i = 0, . . . , r − 1 do ▷ Baby steps, compare to (5a)
2: D(i) ← UTE(i)

3: Compute E(r)

4: [P(0), . . . , P(s−1)]← FurtherResidues(E(r),V, s) ▷ Giant steps, compare to (5b)
5: for i = 0, . . . , r − 1 do ▷ Final products, compare to (5c)
6: for j = 0, . . . , s − 1 do
7: Hi+r j ← D(i) ⊙ P(j)

8: return H0 + zH1 + z2H2 + . . . + zrs−1Hrs−1

By relying on Algorithm FurtherResidues for the giant steps, we now have all the necessary ingredients
for combining the approach of [23] for Krylov sequences with lifting techniques.

Proposition 2.8. Let M be a nonsingular matrix in K[x]n×n, and z ∈ K[x] be of degree d such that deg M ≤ d
and gcd(z, det M) = 1. Given block projections U ∈ Kn×m,V ∈ K[x]n×m

<d , and positive integers r, s, Algorithm
ProjectedExpansion computes the expansion of UTM−1(x)V truncated at order rs.

Proof. From P(0) = V = ρ0(V) and using Lemma 2.5, arriving at Step 5 the algorithm has computed
D(i) = UTE(i) for 0 ≤ i ≤ r − 1, and P(j) = ρr j(V) for 0 ≤ j ≤ s − 1. Since U has scalar coefficients
we have (UTE(i)) ⊙ ρr j(V) = UT(E(i) ⊙ ρr j(V)), hence from Lemma 2.4 we know that Hi+r j = UTBi+r j.
With 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ s − 1 the output gives therefore the rs appropriate terms of the expansion
of UTM−1V .

Algorithm 2.4 mimics for a general M ∈ K[x]n×n what has been seen in Section 1.1.2 for M = xI − A.
Every step will be detailed in next sections and optimized by taking into considerations the specific structure
and properties of Sylvester matrices.

3. Matrices with a displacement structure

We characterize the structure of the matrices which we handle using the customary notion of displace-
ment rank [21]; the reader may refer e.g. to [13] and [36] for comprehensive overviews of the domain, and
detailed introductions to the tools we use. We especially rely on [6] for the integration of asymptotically
fast matrix multiplication in the algorithms.

In this paper we define the displacement rank of a matrix from the specific Stein operator

∆m,n : A ∈ Km×n 7→ A − ZmAZT
n (22)

where Zm ∈ Km×m is the lower shift matrix (δi, j+1)1≤i, j≤m (δa,b is 1 if a = b and 0 otherwise), and ZT
n is the

transpose of Zn ∈ Kn×n (we will simply write ∆ and Z when the dimensions are clear from the context). The
displacement rank of A is defined as the rank of ∆(A), and A is called Toeplitz-like if its displacement rank
is “small” compared to m and n. In particular, Toeplitz and Sylvester matrices are Toeplitz-like matrices of
displacement rank at most 2 (see Section 4 for the Sylvester case).

If A has displacement rank α (or bounded by α), then a pair of matrices G ∈ Km×α and H ∈ Kn×α such
that

∆m,n(A) = GHT (23)

is called a generator of length α for A, and G and H are respectively called left and right generator. As soon
as α is small enough, such generators (G,H) with size (m + n)α ≪ mn are used as concise representations
of Toeplitz-like matrices. Our central procedures for matrix operations take generators as input and return

12 C. Pernet, H. Signargout, G. Villard (2023) 1–31

generators, in place of the corresponding matrices (Sections 5 and 6). When needed, matrices can be explic-
itly and uniquely recovered from their generator based representation. Indeed, the displacement operator ∆
is invertible [36, Thm. 4.3.2], which means that for given G and H, Eq. (23) viewed as an equation in A has
a unique solution

A =
α∑

i=1

L(G∗,i)U(H∗,i) (24)

where for u ∈ Km and v ∈ Kn, L(u) ∈ Km×m is the lower triangular Toeplitz matrix whose first column is u,
andU(v) ∈ Km×n is the upper triangular Toeplitz matrix whose first row is vT. The expression in Eq. (24) is
called a ΣLU representation of A [22].

The multiplication of a Toeplitz matrix in Kn×n by a vector in Kn reduces to univariate polynomial
multiplication [36, Sec. 2.4], and polynomial multiplication is computed in softly linear time over any al-
gebra [7]. From the ΣLU representation in Eq. (24) we therefore deduce that the multiplication of A or AT

by a scalar vector may be computed from 2α products of Toeplitz matrices by vectors. The resulting cost
is Õ(max(m, n)α).

An important property of Toeplitz-like matrices that we use for our algorithm is the fact that their product
remains Toeplitz-like. As shown by the following, if A and B have respective displacement ranks bounded
by α and β then AB has displacement rank at most α + β + 1.

Lemma 3.1 ([36, Thm 1.5.4]). For A ∈ Kl×m and B ∈ Km×n the product AB satisfies

∆(AB) = ∆(A)B + ZlAZT
m∆(B) − ZlAemem

TBZT
n .

Proof. From the second item in [36, Thm 1.5.4] we have ∆l,n(AB) = ∆l,m(A)B + ZlA∇(B) where ∇(B) =
ZT

mB − BZT
n . The assertion of the lemma follows by noticing that ∇(B) = ZT

m∆(B) − emeT
mBZT

n .

Lemma 3.1 may not lead to a generator of minimal length for AB. When AB is known to have dis-
placement rank less than α + β + 1, a shorter generator can be recovered by a compression mechanism [36,
Sec. 4.6]. This will be the case in Section 5 where the compression method we use on polynomial generators
also guarantees specific properties for the resulting shorter generator.

We rely on the following complexity bound for the cost of applying a Toeplitz-like matrix to a dense
matrix.

Theorem 3.2 ([6, Theorem 1.2]). Let A ∈ Kl×m be Toeplitz-like given by a generator of length α ≤ min(l,m)
and B ∈ Km×β. The product AB ∈ Km×β can be computed using Õ(max(l,m) max(α, β) min(α, β)ω−2) arith-
metic operations in K.

The following corollary expands the scope of Theorem 3.2 to the cases of structured matrix by dense
matrix products when the structured matrix is applied on the right and/or when the generator representation
is larger than the size of the matrix (which may happen in our algorithms for extreme choices of parameters).

Corollary 3.3. Let A ∈ Kl×m be Toeplitz-like given by a generator of length α = O(max(l,m)), B ∈ Km×β

and C ∈ Kβ×l. The products AB ∈ Kl×β and CA ∈ Kβ×m can be computed using

Õ
(
max(l,m) max(α, β) min(α, β)ω−2

)
arithmetic operations in K.

Proof. The conditions of Theorem 3.2 are recovered by padding the generators to appropriate dimensions.
Let A be represented by (G,H) such that GHT = ∆ (A) as in Eq. (23), and γ = max (l,m, α). Construct
G′ = [GT 0]T

∈ Kγ×α,H′ = [HT 0]T
∈ Kγ×α, B′ = [BT 0]T

∈ Kγ×β and consider A′ ∈ Kγ×γ such that
∆ (A′) = G′(H′)T. Then since γ = O(max(l,m)), AB = (A′B′)1..l,∗ can be computed from G′,H′ and B′ in
Õ(max(l,m) max(α, β) minα, β)ω−2) by Theorem 3.2. Note that G′, H′, and B′ are free to construct, and that
there is no need to explicitly have A′.

If A is Toeplitz-like with generator (G,H), then AT has a similar structure with generator (H,G), hence
the product CA can be performed in a similar way.

C. Pernet, H. Signargout, G. Villard (2023)1–31 13

Note that by taking β = 1 in Corollary 3.3 we find the cost given earlier for the matrix-vector multipli-
cation.

The previous definitions and properties are valid for any commutative field and can thus be applied to
polynomial matrices, if seen over the field K(x). Note that in this case, generators of minimal length can
always be taken as polynomial matrices themselves. Indeed, if T ∈ K[x]m×n of degree has displacement
rank α (over the field of rational functions), then there exists a unimodular matrix U ∈ K[x]n×n such that
∆(T)U = [G 0] with G ∈ K[x]m×α (consider for example the Hermite normal form of ∆(T), see e.g. [35,
Ch. II, Sec. 6]). Hence a polynomial generator of minimal length for T is given by ∆(T) = G(U−1)1..α,∗.

Throughout the paper, the Toeplitz-like polynomial matrices we handle are represented using polynomial
generators. When the degree of the matrix is less than d, the generator we use will also be of degree less
than d (see Sections 4.2 and 4.3). By extending Eqs. (23) and (24) we thus consider matrices T ∈ K[x]m×n

<d
such that

∆m,n(T) = G(x)H(x)T,

where G ∈ K[x]m×α
<d and H ∈ K[x]n×α

<d , whose ΣLU representation is

T =
α∑

i=1

L(G∗,i(x))U(H∗,i(x)).

The products involving such matrices are treated from Theorem 3.2 and Corollary 3.3 as follows.

Theorem 3.4. Let T ∈ K[x]l×m
<d be Toeplitz-like represented by a generator of degree less than d and length

α = O(n) with n = max(l,m). For matrices V ∈ K[x]m×β
<d and W ∈ K[x]β×l

<d , the products TV and WT can be
computed using Õ(MMn,d(α, β)) arithmetic operation in K with

MMn,d(α, β) = nd max(α, β) min(α, β)ω−2. (25)

Proof. The matrix products can be computed by running the algorithm which underpins Corollary 3.3
over K[x]/(x2d−1). In our case, [6, Thm. 1.2] relies on the algorithm mul of [6, Section 5.2], followed
by the polynomial products in [6, Thm. 3.1, Cor. 3.2]. The only arithmetic operations performed in the case
of the displacement operator ∆l,m from Eq. (22) are additions, subtractions, multiplications, and possibly
tests to zero, which can be handled in K[x]/(x2d−1) using Õ(d) operations in K [7].

In particular, taking β = 1 in Eq. (25), we consider that the product of T or T T by a vector with entries
in K[x]<d has cost Õ(MMn,d(α, 1)) = Õ(nαd). We will keep using the notation MM in the complexity analyses
when computing structured matrix products. Beyond the product, the class of nonsingular Toeplitz-like
matrices is closed under inversion [21], [36, Thm. 1.5.3]. Our approach exploits this property in the special
case of Sylvester matrices that are studied in detail in Section 4.

4. Displacement structure of Sylvester matrices and its residues and high-order components

For p, q ∈ K[x, y] the resultant is Resy(p, q) = det(S) where S is the associated Sylvester matrix with
entries in K[x]. By taking z = xd, the first step of our resultant algorithm proceeds to do high-order lifting
by implementing Algorithm ProjectedExpansion of Section 2 with M = S and z-adic expansions. The
algorithms in Section 2 are given for general polynomial matrices. In this section we show that in the
case of a polynomial Sylvester matrix of degree at most d, the residues (Definition 2.1) and high-order
components (Eq. (20)) involved are Toeplitz-like with displacement rank at most d + 2. This allows later in
the paper to represent these matrices by their generators, as we explained in Section 3. Since matrices have
dimension n, the bound on the displacement rank is useful when d is relatively smaller than n; the content
of this section remains however correct for arbitrary degrees.

The polynomial case relies on properties of scalar Sylvester matrices and their inverses that are given in
Section 4.1. However, operations such as truncation and middle product need a special attention. Especially
consider the question of truncating a matrix given by its generator. Let typically A ∈ K[x]n×n be of degree 2d

14 C. Pernet, H. Signargout, G. Villard (2023) 1–31

and represented by a generator (G,H), with G and H of degree d in K[x]n×α such that ∆ (A) = GHT.
Without additional assumptions, we are not aware of a way to compute a generator for the truncation ⌈A⌉1
of A modulo xd which does not involve the reconstruction of a dense n × n matrix, and/or an expensive
compression mechanism.

Our solution is obtained thanks to the fact that, in the Sylvester case, high-order components and residues
can be represented by generators with a specific shape that makes the operations much easier. Indeed, it turns
out that we can use a variation of the simple fact that if e.g. G (resp. H) is scalar, then a generator for ⌈A⌉1 is
(G, ⌈H⌉1) (resp. (⌈G⌉1,H)). These specific generators which we call canonical are introduced in Section 4.2
for the coefficients of the z-adic expansion of S −1 and the high-order components, and in Section 4.3 for the
residues.

4.1. Sylvester matrices over K

Here we detail the structure properties we need for Sylvester matrices and their inverses over K, the
polynomial matrix case is treated using this in next sections. We consider polynomials p, q ∈ K[y] of
respective degrees np and nq, with n = np + nq. The entries of the Sylvester matrix S ∈ Kn×n associated to p
and q are, in row 1 ≤ i ≤ n: S i, j = p(np+ j−i) for j = 1, . . . , nq, S i, j+nq = q(nq+ j−i) for j = 1, . . . , np, and zero
otherwise (see Eq. (2)).

We study the structure of S by noticing that it can be viewed as a matrix of multiplication in a quotient
algebra (we do not know whether this remark has been used previously). We omit the elementary proof of
the following.

Lemma 4.1. Consider the reverse polynomials a = ynp p(1/y) and b = ynq q(1/y), and define f = b− ynq a. If
p(0) , 0 then deg f = n and S is the matrix of multiplication by a modulo f in the basis (1, y, . . . , yn−1).

This characterization of Sylvester matrices allows us to highlight what makes these matrices special in
the class of Toeplitz-like matrices. The fact that their displacement rank does not increase by raising to
power makes the connection with the algorithm in [34] for d = 1 (see Eq. (1)), and gives an intuition about
the displacement structure of high-order components and residues in the next sections. The characterization
also allows us to directly deduce the structure of the inverse matrix, and more easily write the generators
of Propositions 4.4 and 4.7 in terms of polynomial coefficients.

Matrices of modular multiplication are in particular Toeplitz-like matrices, the following recalls re-
currence relations on its rows and columns, and the form of their generators (see Eq. (23) in Section 3).
For t ∈ K[y], we let v(t) = [t(0) t(1) . . . t(n−1)]T

∈ Kn be the vector of the coefficients of t mod yn in the
basis (1, y, . . . , yn−1).

If T is the matrix of multiplication by t modulo f then the j-th column of T is v(y j−1t rem f) (the rem
operation returns the remainder of the Euclidean division). Further, if f (0) , 0 then for any integer i one has

(t rem f)(i) = (yt rem f)(i+1) − c(f (i+1)/ f (0)) (26)

where c is the coefficient of degree 0 of yt rem f . We can first deduce by replacing t with y jt for j =
0, . . . , n − 2 in Eq. (26) that the rows of T follow the recursion

eT
i T − eT

n Ti,n = eT
i+1TZ −

f (i)

f (0) eT
1 TZ. (27)

This recursion is used in Section 7 for reconstructing a whole submatrix of a multiplication matrix from
only two of its rows. On other hand, we have a similar relation between the columns of T :

Te j+1 = ZTe j −
Tn, j

f (n) v(f) , j = 1, . . . , n − 1. (28)

From there we deduce a generator expression for T [36, Sec. 2.7], which can therefore also be applied to S
with a and f as in Lemma 4.1.

C. Pernet, H. Signargout, G. Villard (2023)1–31 15

Lemma 4.2. Given f ∈ K[y] of degree n and t ∈ K[y]<n, the matrix T ∈ Kn×n of multiplication by t modulo f
satisfies

∆(T) = v(t) eT
1 − v(f) wT

t , (29)

where wt = ZT Ten/ f (n).

Proof. The first column of ∆ (T) is equal to the first column of T , that is v(t). By definition, wT
t is the last

row of T , shifted to the right and divided by f (n); its first entry is thus 0, which ensures that the first column
of v(t) eT

1 − v(f) wT
t is v(t). For j = 1, . . . , n − 1, the (j + 1)-th column of ∆ (T) is such that ∆(T)e j+1 =

Te j+1 − ZTe j, hence from Eq. (28) we have ∆(T)e j+1 = −Tn, jv(f) / f (n) and Tn, j/ f (n) is precisely the (j + 1)-
th entry of wt.

Since S is a multiplication matrix, we know that it is invertible if and only if a is invertible modulo f ,
and in that case S −1 is the matrix of multiplication by g ∈ K[y]<n such that ag ≡ 1 mod f . The following
then gives useful relations between the rows 1, nq + 1 and n of S −1.

Lemma 4.3. Assume that S is invertible with p(0) , 0, and note that q(nq) , 0 by degree hypothesis.
Viewing S as the matrix of multiplication by a modulo f , let g ∈ K[y]<n be such that ag ≡ 1 mod f . We have

eT
1 S −1 = g(0)eT

1 − f (0)wT (30)

eT
nq+1S −1 =

1 − a(0)g(0)

f (0) eT
1 + a(0)wT (31)

eT
n S −1ZT = f (n)wT, (32)

where w = ZS −Ten/ f (n) with the notation S −T for the transpose of S −1.

Proof. Since f (0) = q(nq) and f (n) = −p(0), all the quantities are well defined. As the first row of ∆(S −1)
is the first row of S −1, Eq. (30) is a consequence of Lemma 4.2, and Eq. (32) is the definition of w in the
same lemma. For Eq. (31) we use the fact that S is a Sylvester matrix. Considering eT

1 S S −1 = eT
1 we have

a(0)eT
1 S −1 + b(0)eT

nq+1S −1 = eT
1 , then we note that b(0) = f (0) and conclude using Eq. (30).

4.2. Structure of high-order components
We move to the structured polynomial matrix case. Let now p, q ∈ K[x, y] be of degree at most d > 0

in x and respective degrees nq and np in y, with n = nq + np. The associated Sylvester matrix S is in K[x]n×n
≤d .

Taking z = xd and assuming that gcd(det S , z) = 1, we write S −1 =
∑

k≥0 Ckzk with Ck ∈ K[x]n×n
<d . We

thereafter also use the name slices for the coefficients of the z-adic expansion. From Eq. (20), the high-order
components are formed by two consecutive slices. This section is devoted to the description of the slices,
and in doing so, the one of the high-order components.

Whenever an ambiguity between x-adic and z-adic expansions may appear, we distinguish them by
denoting with a dot the x-adic coefficients of a series (hence of a polynomial). In particular we have S −1 =∑

i≥0 Ċixi with Ċi ∈ Kn×n and Ck =
∑d−1

i=0 Ċkd+ixi. Further, we use a bar notation for the scalar matrices
involved in the generators to mark their difference from general polynomial matrices.

Rather than polynomials of K[y] as in Lemma 4.1 we now have bivariate polynomials

a = ynp p(1/y), b = ynq q(1/y), f = b − ynq a, (33)

and we write e.g. f =
∑d

j=0 ḟ jx j with ḟ j ∈ K[y]≤n. Recall that for bivariate polynomials, indices name
coefficients in x while superscripts are used for coefficients in y. Assuming that p(0) is nonzero, S is the
matrix of multiplication by a modulo f . Then the identities of Lemma 4.3 are considered on power series,
assuming f (0) is invertible. Using that S is invertible we know there exists g ∈ K(x)[y]<n such that

ag ≡ 1 mod f .

Since gcd(det S , z) = 1, the x-adic and z-adic expansions of g can be considered in the form g =
∑

k≥0 gkzk =∑
i≥0 ġixi where the gk’s in K[x, y] have respective degrees less than d in x and n in y, and the ġi are in K[y]<n.

16 C. Pernet, H. Signargout, G. Villard (2023) 1–31

We also assume that the constant terms q(nq)
0 and p(0)

0 , of q(nq) and p(0) respectively, are nonzero. Hence the
expansions of f (0) and f (n) are well defined and we write

w = ZS −Ten/ f (n) =
∑
k≥0

wkzk =
∑
i≥0

ẇixi ∈ K[[x]]n (ẇi = 0 for i < 0). (34)

The following proposition describes the displacement structure of S −1 and the specific representation we
take for its z-adic slices. We keep the notation previously used by associating with a polynomial t in y over
an arbitrary domain of coefficients, the vector v(t) of the coefficients of t mod yn in the basis (1, y, . . . , yn−1).

Proposition 4.4. Assume that the constant terms of det S , p(0) and q(nq) in K[x] are nonzero. Let F̄ ∈ Kn×(d+1)

be the matrix whose j-th column is v(ḟ j). For any k ≥ 0, the slice Ck of S −1 is Toeplitz-like (over the field
K(x)) with displacement rank at most d + 2 and one of its generators is given by

∆(Ck) = v(gk) eT
1 − F̄ WT

k ∈ K[x]n×n
<d , (35)

where the j-th column of Wk ∈ K[x]n×(d+1)
<d is

∑d−1
i=0 ẇkd−(j−1)+ixi. A generator in this form is called canonical.

The matrix Wk can be fully constructed in O(nd2) operations from its first and last column, which are the
coefficients wk and wk−1 of the z-adic expansion of w.

Proof. Since S −1 is the matrix of multiplication by g modulo f , Eq. (29) gives ∆(S −1) = v(g) eT
1 − v(f) wT,

hence for i ≥ 0 we get ∆(Ċi) = v(ġi)eT
1 − F̄[ẇi ẇi−1 · · · ẇi−d]T. Combining the Ċ j’s into slices of size d,

we obtain the z-adic coefficient in Eq. (35). We can check that Wk is fully determined by its first and last
column. Indeed, every column of Wk is a sum of d vectors among the ẇ(k−1)d+i for 0 ≤ i ≤ 2d − 1, each
multiplied by a distinct power of x. All these vectors appear as coefficient vectors either in the first column
of Wk which is the coefficient wk of the z-adic expansion of w, or in the last column which is wk−1; the cost
bound is given by the size of Wk.

High-order components have generators directly given by those of the slices. For k ≥ 0, the high-order
component E(k) of S −1 for z = xd is indeed a sum of two slices (Eq. (20)). From Proposition 4.4 we can
write

∆(E(k)) = v(gk−1 + gk xd)eT
1 − F̄ (WT

k−1 +WT
k xd) ∈ K[x]n×n

<2d, (36)

which gives a generator in canonical form for E. Generators in canonical form are uniquely defined and
have properties that will be useful for lowering the computational cost. We remark that the first entry of w
is zero (see Eq. (34)) and the first column of a canonical generator is the first column of the matrix itself.
This will be exploited by separating the computation of first columns from the computation of the remaining
parts of the generators. The fact that generators are polynomials only on one side allows to directly represent
a truncated matrix using truncations of parts of its generator. Further, we are going to take advantage of the
structure of the Wk’s by restricting computations to only two of their columns.

Remark 4.5. Note that F̄ and Wk in Eq. (35) do not necessarily have full rank, which means that the slice
may have displacement rank less than d+2. Genericity assumptions on p and q ensure that F̄ has rank d+1
(see Section 8), which is used in Section 5 for the efficient computation of canonical generators for matrix
middle products.

4.3. Structure of residues

We work under the same assumptions as in Section 4.2 and study the displacement structure of residues
(Definition 2.1). Since we apply high-order lifting for an expansion of YTS −1X, where Y = [0 Im]T, X =
[Im 0]T and 1 ≤ m ≤ n (see Section 7), only residues of the type ρk(I) as in Algorithm ComponentProduct
and ρk(V) = ρk(X) as in Algorithm FurtherResidues are involved for integers k ≥ 0. From Definition 2.1 we
also see that ρk(X) = ρk(I)X, therefore noticing that any n×n matrix M satisfies ∆(MX) = ∆(M)X (Eq. (22))
we deduce that

∆(ρk(X)) = ∆(ρk(I))X.

C. Pernet, H. Signargout, G. Villard (2023)1–31 17

This allows us to limit ourselves in this section, to the description of canonical generators for residues ρk(I)
of the identity matrix. From Eq. (17), these matrices are obtained as truncated products of S and slices
of S −1: ρk(I) = ⌈S Ck⌉1. The following describes the displacement structure for the scalar summands of this
product. We use the notation of Section 4.2 for a, b ∈ K[x, y] as in Eq. (33) and w as in Eq. (34), as well as
the dot convention for the x-adic coefficients of expansions and polynomials.

Lemma 4.6. Assume that the constant terms of det S , p(0) and q(nq) in K[x] are nonzero. For i, j ∈ N the
product ṠjĊi ∈ Kn×n is Toeplitz-like with displacement rank at most d + 1. One of its generators is given by

∆(ṠjĊi) =
(
ṠjĊie1

)
eT

1 +

d∑
l=0
l, j

v(l, j)ẇT
i−l (37)

where v(l, j) = v(ȧlḃ j − ȧ jḃl) ∈ Kn for l ∈ N.

Proof. We describe the generator for the product using Lemma 3.1:

∆(ṠjĊi) = ∆(Ṡj)Ċi + ZṠj

(
ZT∆(Ċi) − eneT

nĊiZT
)
. (38)

From Lemma 4.2 we have that ∆(S) = v(a) eT
1+v(f) eT

nq+1 and hence ∆(Ṡj) = v(ȧ j)eT
1+v(ḟ j)eT

nq+1. Since S −1 is
the matrix of multiplication by g modulo f , one can derive the x-adic coefficients eT

1Ċi and eT
nq+1Ċi, of eT

1 S −1

and eT
nq+1S −1, by applying Lemma 4.2 on power series. Here we have used the assumptions for having

nonzero coefficients at x = 0 hence the existence of the expansions. From Eqs. (30) and (31) and for some
v̄ ∈ Kn, the first term of the sum in Eq. (38) can be written as

∆(Ṡj)Ċi = v̄eT
1 − v(ȧ j)

d∑
l=0

ḟ (0)
l ẇT

i−l + v(ḟ j)
d∑

l=0

ȧ(0)
l ẇT

i−l.

On other hand, Lemma 4.2 on power series gives ∆(Ċi) = v(ġi) eT
1 +
∑d

l=0 v(ḟl)ẇT
i−l. Therefore from Eq. (32),

the term being multiplied by ZṠj in Eq. (38) is

ZT∆(Ċi) − eneT
nĊiZT = ZTv(ġi) eT

1 −

d∑
l=0

ZTv(ḟl)ẇT
i−l −

d∑
l=0

ḟ (n)
l enẇT

i−l,

and Eq. (38) becomes
∆(ṠjĊi) = Ḡ [e1 ẇi ẇi−1 . . . ẇi−d]T

with a matrix Ḡ ∈ Kn×(d+2) that we now study. The first column of Ḡ is the first column of ∆(ṠjĊi), that is
ṠjĊie1. For l = 0, . . . d, the remaining columns of Ḡ can be expressed as

Ḡel+2 = − ḟ (0)
l v(ȧ j) + ȧ(0)

l v(ḟ j) − ZṠj

(
ZTv(ḟl) + ḟ (n)

l en

)
.

From
ZṠjZT = Ṡj −

(
v(ȧ j)eT

1 + v(ḟ j)eT
nq+1

)
,

we get
Ḡel+2 = − ḟ (0)

l v(ȧ j) + ȧ(0)
l v(ḟ j) − Ṡjv(ḟl) + v(ȧ j) f (0)

l + v(ḟ j)eT
nq+1v(ḟl) − ḟ (n)

l ZṠjen,

and since eT
nq+1v(ḟl) = ḃl

(nq)
− ȧl

(0) (one has f = b − ynq a), we arrive at

Ḡel+2 = ḃ(nq)
l v(ḟ j) − Ṡjv(ḟl) − ḟ (n)

l ZṠjen. (39)

18 C. Pernet, H. Signargout, G. Villard (2023) 1–31

Then consider each of the three summand vectors in this equation from the corresponding polynomials
modulo yn:

ḃ(nq)
l v(ḟ j) = v

(
ḃ(nq)

l

(
ḃ j − ynq (ȧ j mod ynp)

))
,

Ṡjv(ḟl) = v
(
ȧ j

(
ḃl mod ynq

)
+ ḃ j

(
ḃ(nq)

l − (ȧl mod ynp)
))
,

ḟ (n)
l ZṠjen = v

(
−ȧ(np)

l ynp (ḃ j mod ynq)
)
.

By viewing Eq. (39) on polynomials modulo yn this allows to assert that Ḡel+2 = v(ȧlḃ j − ȧ jḃl). Hence
Ḡ = [ṠjĊie1 v(0, j) v(1, j) · · · v(d, j)], which by noticing that v(j, j) = 0 concludes the proof.

Lemma 4.6 reveals a structure similar to the one of the slices in Proposition 4.4: the first column can
be separated from the remaining ones; the left remaining part of the generator does not depend on the
considered order in the expansion of S −1; the right part of the generator is given by the z-adic coefficient wk

of w. From there we define a canonical representation for the residues which retains these properties.

Proposition 4.7. Assume that the constant terms of det S , p(0) and q(nq) in K[x] are nonzero, and for indices
i, j ∈ N consider the v(i, j)’s as in Lemma 4.6. For any k ≥ 0 and z = xd, the residue ρk(I) = ⌈S Ck⌉1 (see
Eq. (17)) is Toeplitz-like (over the field K(x)) with displacement rank at most d + 1. One of its generators is
given by

∆(ρk (I)) = ⌈S Ck⌉1e1eT
1 + LW̄T

k−1 ∈ K[x]n×n
<d , (40)

where the l-th column of L ∈ K[x]n×d
<d is

∑d−1
i=0 xi∑i

j=0 v(i+l− j, j) and the l-th column of W̄k−1 ∈ Kn×d is ẇkd−l. A
generator in this form is called canonical. The left part L of the generator does not depend on k and can be
computed using Õ(nd2) operations.

Proof. By looking at the x-adic coefficients of ⌈S Ck⌉1 we can write

∆(ρk(I)) =
d−1∑
i=0

xi
i∑

j=0

∆
(
ṠjĊkd+i− j

)
.

From Lemma 4.6 and since w has its first entry zero we have

∆(ρk(I)) = ρk(I)e1eT
1 + δ,

where δ = ∆(ρk(I))ZZT has first column zero. Hence it remains to study the structure of δ which gives the
last n−1 columns of ∆(ρk(I)). From Lemma 4.6 (omitting to write l , j since v(j, j) = 0) and by substituting l
by i − j − l we obtain

δ =

d−1∑
i=0

xi
i∑

j=0

d∑
l=0

v(l, j)ẇT
kd+i− j−l =

d−1∑
i=0

xi
i∑

j=0

i− j∑
l=i− j−d

v(i− j−l, j)ẇT
kd+l,

then by swapping the sums the contribution of w can be factored out:

δ =

d−2∑
l=−d

d−1∑
i=0

xi
i∑

j=0
j≤i−l, j≥i−l−d

v(i− j−l, j)

 ẇT
kd+l. (41)

This sum can be divided into two parts, for l < 0 and l ≥ 0. We show that the latter sum is zero. It is indeed
given by

d−2∑
l=0

d−1∑
i=0

xi
i∑

j=0
j≤i−l, j≥i−l−d

v(i− j−l, j)

 ẇT
kd+l =

d−2∑
l=0

d−1∑
i=l

xi
i−l∑
j=0

v(i− j−l, j)

 ẇT
kd+l. (42)

C. Pernet, H. Signargout, G. Villard (2023)1–31 19

Now notice that v(i,i) = 0 and v(i, j) + v(j,i) = 0. It follows that for all l and i the summands of
∑i−l

j=0 v(i− j−l, j)

cancel each other out (one summand is zero for even values of i − l), and the sum in Eq. (42) is zero.
By substituting l by −l, the nonzero terms in Eq. (41) then give δ = LW̄T

k−1 where for l = 1, . . . , d the l-th
column of L ∈ K[x]n×d

<d is
d−1∑
i=0

xi
i∑

j=0, j≥i+l−d

v(i+l− j, j),

and W̄k−1 is as asserted (the constraints in the sum over j have vanished as v(i+l− j, j) = 0 for i+ l− j > d). The
matrix L can then be computed in time Õ(nd2) from O(d2) products of the ȧi’s by the ḃ j’s modulo yn.

Remark 4.8. The columns of W̄k−1 in Proposition 4.7 are the scalar coefficient vectors of the z-adic coeffi-
cient wk−1. It follows from Proposition 4.4 that the last d columns (the first one is e1) of the right generator
for ρk(I) are the linearization of the last column of the right generator for the slice Ck. As L can be pre-
computed once and used for all residues (Section 6.2), the computation of the canonical generator for ρk (I)
from the one for Ck is essentially the computation of its first column.

5. Structured middle and truncated products

Our specialization of high-order lifting to the Sylvester case represents all high-order components of S −1

and residues by their canonical generators as in Sections 4.2 and 4.3. In this section we show that these
representations allow to lower the cost of the two central matrix operations on which we rely: middle and
truncated products. We work with z = xd under the assumptions of Propositions 4.4 and 4.7, and consider
that 0 < d < n (the displacement rank structure does not directly enable faster operations for degrees that
reach the dimension). We keep using a bar notation for the scalar matrices involved in the generators.

Typically, consider a high-order component E of S −1 at some arbitrary order. From Eq. (36) we know
that E satisfies

∆(E) = vEeT
1 + F̄ WT

E ∈ K[x]n×n
<2d, (43)

with vE ∈ K[x]n, F̄ ∈ Kn×(d+1) and WE ∈ K[x]n×(d+1). Consider also a residue R = ρk(I) at some other
arbitrary order k, from Eq. (40) we have

∆(R) = vReT
1 + L W̄T

R ∈ K[x]n×n
<d , (44)

where vR ∈ K[x]n, L ∈ K[x]n×d, and W̄R ∈ Kn×d. Then a central brick of the high-order lifting approach is
the computation of the middle product

C = E ⊙ R ∈ K[x]n×n
<d ,

where, according to Lemma 2.4, C is a coefficient of the z-adic expansion of S −1. Hence using the canonical
form Eq. (35) again, we know there exists a matrix WC ∈ K[x]n×(d+1)

<d such that

∆(C) = vCeT
1 + F̄WT

C ∈ K[x]n×n
<d , (45)

with vC ∈ K[x]n
<d. For the computation of C, we exploit the fact that the generator parts F̄ and W̄T

R are scalar
matrices, which allows us to perform the middle product without resorting to a change of representation
(Lemma 5.2). Further, several middle products will follow one another. We therefore ensure that the result-
ing C is itself represented by its canonical generator, which by the way also avoids the increase of the sizes
of the representations (inherent, in general, to the product of structured matrices, see Section 3).

We note that the first column of a left canonical generator (e.g. vE , vR, vC) is the first column of the
matrix itself. In addition, the last n− 1 columns of the displaced matrices of Eqs. (43) to (45) are associated
with the “W” parts WE , W̄R,WC of the generators (whose first rows are zero). This leads us to separate
the computation of first columns of generators from the computation of their W parts. In Section 5.1 we
start by focusing on the computation of the right generator part WC of the middle product as in Eq. (45);

20 C. Pernet, H. Signargout, G. Villard (2023) 1–31

Lemma 5.1 actually deals with a slightly more general situation that is required later for the concatenation
of several products. An additional advantage is that, according to Proposition 4.4, the right generator for
a slice is determined by its first and last column. This allows us to further decrease the exponent of d in
the complexity bound, and compute these two columns of WC using Õ(MMn,d(d, 1)) operations with MMn,d

from Eq. (25). This is essentially the cost of multiplying a matrix of displacement rank d in K[x]n×n
<d by a

vector in K[x]n
<d. Here the left part F̄ of the generator for the slices will be assumed to have rank d + 1,

which corresponds to generic situations (see Remark 4.5).
The whole generator for C is deduced in Section 5.2, also in time Õ(MMn,d(d, 1)) (Lemma 5.2). We

will use for that (computation of the first column), and in some other places, the fact that for a vector b, the
middle product E ⊙ b does not cause any difficulty compared to the matrix middle product. Indeed, E ⊙ b
can simply be computed from the regular product Eb, by extracting the middle coefficients.

Besides the middle product, high-order lifting involves the truncated product operation as for instance at
Step 5 of Algorithm FurtherResidues or Steps 1 and 2 of Algorithm ComponentProduct. These truncated
products are used for the computation of residues. From Remark 4.8 the right generator for a residue ⌈S C⌉1
is directly known from that of C, and in the same way as for a slice of the inverse, the first column
can be computed separately. Combining this with the middle product, in Section 5.2 we derive the cost
bound Õ(MMn,d(d, 1)) for high-order components handling (Lemma 5.3).

5.1. Middle product: computation of the right generator
Given a high-order component E ∈ K[x]n×n

<2d of S −1, we consider the computation of a right generator for
a middle product E ⊙ R, for R ∈ K[x]n×c

<d a residue or a concatenation or several residues. The latter case is
addressed for performing the giant steps which we will discuss in Section 6.

We let E be a matrix in Kc×s whose columns are s distinct canonical vectors ei1 , . . . , eis such that 1 ≤
i1, . . . is ≤ c, and W̄R be a matrix in Kc×d whose submatrix (W̄R)I,∗ ∈ Ks×d is zero for I = {i1, . . . , is}. Then
generalizing Eq. (44), we consider R such that

∆(R) = VRET + LW̄T
R ∈ K[x]n×c

<d , (46)

with VR ∈ K[x]n×s
<d . For c = n and s = 1 we are in the case of a unique residue as in Eq. (44). We assume

that the middle product B = E ⊙ R satisfies

∆(E ⊙ R) = VBET + F̄WT
B (47)

with VB ∈ K[x]n×s
<d andWB ∈ K[x]c×(d+1)

<d , and focus on the computation of the first and last column ofWB.
Note that assuming the generator form as in Eq. (47) is appropriate for covering the case s = 1. This indeed
generalizes the canonical form for a single slice as in Eq. (45). Focusing on the first and last column of the
generator part is to be put in correspondence with the last assertion of Proposition 4.4.

From Lemma 3.1, for the product ER we have

∆(ER) = ∆(E)R + ZEZT∆(R) − ZEeneT
nRZT,

which can also be decomposed according to

∆(ER) = vE(eT
1R) + F̄(WT

ER) + (ZEZTVR)ET + (ZEZTL)W̄T
R − (ZEen)(eT

nRZT), (48)

where we have kept the notation ∆(E) = vEeT
1 + F̄ WT

E introduced in Eq. (43).
We then focus on the c− s columns of ∆(E ⊙R) with indices in Ī = {1, . . . , c} \ I. Since F̄ and W̄R have

entries in K, and using that ∆(E ⊙ R) = ⌈⌊∆(ER)⌋1⌉1, these columns can be deduced from Eq. (48) in the
following form:

∆(E ⊙ R)∗,Ī = vE ⊙ (eT
1R)Ī + F̄ · (WT

E ⊙ R∗,Ī) + (ZEZT ⊙ L) · (W̄T
R)∗,Ī − (ZEen) ⊙ (eT

nRZT)Ī . (49)

The right hand side of Eq. (49) can be rewritten as a generator. For the second term we simply let Ḡ1 =

F̄ ∈ Kn×(d+1) and HT
1 = ⌈⌊W

T
ER∗,Ī⌋1⌉1 ∈ K[x](d+1)×(c−s). Then the first and last terms in Eq. (49) are partially

C. Pernet, H. Signargout, G. Villard (2023)1–31 21

linearized. For a polynomial vector r =
∑2d−1

i=0 rixi ∈ K[x]n
<2d, we denote by Mr the matrix in K[x]n×d

<d whose
j-th column is

∑d−1
i=0 rd+i− j+1xi. Likewise, for t =

∑d−1
i=0 tixi ∈ K[x]c−s

<d we denote by M̄t the matrix in K(c−s)×d

whose j-th column is t j−1. We these notations we have

r ⊙ tT = Mr · M̄T
t . (50)

Applying Eq. (50) allows to write the last c− s columns of vE ⊙ (eT
1R) and −(ZEen)⊙ (eT

nRZT) as G2H̄T
2 and

G3H̄3
T, with G2,G3 ∈ K[x]n×d

<d and H̄2, H̄3 ∈ K(c−s)×d. Finally, we let G4 = ⌈⌊ZEZTL⌋1⌉1 ∈ K[x]n×d
<d and take

H̄T
4 = (W̄T

R
)∗,Ī . The construction leads to the generator expression:

∆(E ⊙ R)∗,Ī =

 Ḡ1 G2 G3 G4

H1
T

H̄T
2

H̄T
3

H̄T
4

 ∈ K[x]n×(c−s)
<d . (51)

Now, WB as in Eq. (47) can be obtained by compression of above right-hand side matrices. Let G =
[G2,G3,G4] ∈ K[x]n×3d

<d and H̄ = [H̄2, H̄3, H̄4]T
∈ K(c−s)×3d. From Eq. (51) we indeed have

F̄ (WT
B)∗,Ī = F̄ HT

1 +G H̄T,

hence
(WT

B)∗,Ī = HT
1 + Ū−1GJ,∗ H̄T, (52)

where we assume that F̄ has rank d + 1 and Ū is a (d + 1) × (d + 1) nonsingular submatrix of F̄ constructed
from row indices forming the set J. Since the rows ofWB whose indices are in I are zero, the first and last
columns ofWB can be fully obtained from Eq. (52), the nonzero rows of these columns are given by:

eT
i (WT

B)∗,Ī = eT
i HT

1 + eT
i Ū−1GJ,∗ H̄T ∈ K[x]c−s

<d , for i ∈ {1, d + 1}. (53)

Lemma 5.1. For 0 < d < n, assume that the inverse of a (d+1)×(d+1) submatrix of F̄ as in Proposition 4.4 is
given, with the corresponding set of row indices J. From a high-order component E of S −1 and R ∈ K[x]n×c

<d
with c = O(n), respectively given by their generators as in Eq. (43) and Eq. (46), one can compute the first
and the last column ofWB for E ⊙ R as in Eq. (47) using Õ(MMn,d(s + d, 1)) = Õ (nd(s + d)) operations.

Proof. For i = 1, the first term eT
1 HT

1 in Eq. (53) is computed from eT
1 WT

E ∈ K[x]n by multiplication by R,
then extraction of the middle coefficients. From Eq. (46), R is seen as a Toeplitz-like matrix of degree less
than d and displacement rank bounded by s + d, which from Theorem 3.4 gives a cost Õ(MMn,d(s + d, 1))
for those first computations.

The target cost bound is valid for obtaining the generators G2, H̄2,G3 and H̄3 from E and R. This is
indeed equivalent to having the first (vE is part of the generators) and last column of E, and the first and
last row of R. The required products involving canonical vectors and E and R can be computed in time
Õ(MMn,d(s + d, 1)).

Then, let u ∈ Kd+1 be the first row of Ū−1. From uT(G2)J,∗ and uT(G3)J,∗ in K[x]d, uT(G2)J,∗H̄T
2 and

uT(G3)J,∗H̄T
3 are deduced in time O(nd2) by matrix times vector products using that H̄T

2 and H̄T
3 are matrices

in Kd×(c−s) and c = O(n). Here, recall that MMn,d(d, 1) = nd2. It thus remains to verify the cost bound for
the computation of uT(G4)J,∗H̄T

4 . Since u has scalar entries we can first compute uT(ZEZT)J,∗ ∈ K[x]n, then
multiply the result by L ∈ K[x]n×d

<d , and multiply the middle coefficients of the latter by H̄4 using a total
of Õ(nd2) operations. What we have just said with e1 is also valid with ed+1, which concludes the proof.

The inversion of an appropriate submatrix of F̄ that is required for Lemma 5.1 will be done only once
for all products in Section 6.2.

22 C. Pernet, H. Signargout, G. Villard (2023) 1–31

5.2. High-order components

By combining Lemma 5.1 in the case s = 1 and a direct computation of the first column we can perform
the middle product of a high-order component by a residue as shown by next lemma.

Lemma 5.2. Under the assumptions of Lemma 5.1 for F̄, consider a high-order component E of S −1 and
a residue R = ρk(I) for some k ≥ 0, both represented by their generators as in Eq. (43) and Eq. (44). A
generator for E ⊙ R as in Eq. (45) can be computed using Õ(MMn,d(d, 1)) = Õ(nd2) operations.

Proof. The first column vC = ⌈⌊EvR⌋1⌉1 of C can be computed by applying E to vR in Õ(MMn,d(d, 1)) oper-
ations, and by extracting the middle coefficients. The assertion of the lemma then follows from Lemma 5.1
with s = 1 and i1 = 1 for the computation of the first and last column of WC , and from Proposition 4.4 for
the whole generator.

Given a slice C of S −1, the right generator for the residue at the same order is obtained using Remark 4.8
and allows to manipulate high-order components in the following way.

Lemma 5.3. Under the assumptions of Lemma 5.1 for F̄, we consider further that L as in Proposition 4.7
is given. For two high-order components E(i) and E(j) with i ≥ 0 and j ≥ 1, both represented by their
generators as in Eq. (43), Algorithm ComponentProduct computes generators having the same shape for
the high-order component E(i+ j) using Õ(MMn,d(d, 1)) = Õ(nd2) operations.

Proof. We keep the notation used for Algorithm ComponentProduct. Since F̄ is a scalar matrix, the gen-
erators for E(j) directly give generators for C j−1 and C j, which from Proposition 4.4 give in particular w j−2
and w j−1. Therefore from Remark 4.8 we have right generators for R j−1 and R j, which are residues of or-
der j−1 and j, respectively. The first columns of C j−1 and C j are available from the generators, by truncated
multiplication by S these two columns give the first columns of R j−1 and R j. Hence the whole generators
for R j−1 and R j are known and we finally apply Lemma 5.2 twice.

6. Giant steps

In order to perform the giant steps (Step 4 in Algorithm ProjectedExpansion) we specialize Algorithm
FurtherResidues to the Sylvester case. The successive products that involve high-order components and
concatenated residues as in Eq. (21) are implemented thanks to middle and truncated products. As before,
high-order components and residues are represented by their generators as those in Sections 4.2 and 4.3.
Their respective orders do not matter in this section. We work under the assumptions of Propositions 4.4
and 4.7, and following Section 5 we take 0 < d < n. The representation for concatenated matrices, which
for technical reasons is a little bit different, is specified in Section 6.1.

Taking advantage of the special shape of the generators we can split up the middle products into regular
matrix products for obtaining their left parts, and apply the strategy of Section 5.1 for computing their right
parts. Then, truncated products are used for the computation of residues from slices of the inverse according
to Eq. (17). Remark 4.8 actually implies that the right generator parts for residues are directly deduced from
those of the slices; in the same way as for middle products we compute their left generator parts by regular
matrix product.

We proceed to high-order lifting with the projection V = X = [Im 0]T, where 1 ≤ m ≤ n. Considering a
number s of giant steps, our purpose in this section is to bound the cost of a call to FurtherResidues with
input the high-order component E of order r of S −1, which computes the matrix

R =
[
X ρr(X) ρ2r(X) . . . ρ(s−1)r(X)

]
∈ K[x]n×(sm)

<d . (54)

We first study in Section 6.1 the two central products at Steps 4 and 5 of Algorithm FurtherResidues, and
then bound the overall cost in Section 6.2.

C. Pernet, H. Signargout, G. Villard (2023)1–31 23

6.1. Concatenated middle and truncated products

Let us first specify the representation we use for the block residue matrices involved. Noting that the
residue map satisfies ρk(X) = ρk(I)X, for k = 1, 2, 3, . . . , 2l−1 the right operand at Step 4 of Algorithm
FurtherResidues is of the type

P =
[
P(0)X P(1)X · · · P(k−1)X

]
∈ K[x]n×km

<d , (55)

where for j ≥ 0 each P(j) ∈ K[x]n×n is some residue of the identity. The displacement operator applied to
such a P gives

∆(P) = P − ZnPZT
km = P −

[
(ZnP(0)XZT

m) . . . (ZnP(k−1)XZT
m)
]
−

k−1∑
j=1

ZnP(j−1)emϵ
T
1+ jm, (56)

here, in order to avoid confusion, we have em ∈ Kn and we use ϵ1+ jm for the canonical vectors in Kkm. On
the other hand, from Eq. (40) we can write

∆(P(j)X) = ∆(P(j))X = p jeT
1 + LW̄T

P(j) , (57)

where p j is the first column of P(j), L ∈ K[x]n×d
<d , and W̄P(j) ∈ Km×d. Equations (56) and (57) then give

∆(P) = VPET + LW̄T
P, (58)

such that: VP ∈ K[x]n×k has first column p0 and column j being p j−1 − ZnP(j−2)em for 2 ≤ j ≤ k; E ∈ Kkm×k

has column j being ϵ1+(j−1)m; W̄P ∈ Kkm×d has k blocks of rows with j-th block being W̄P(j) .
For a high-order component E of S −1, let B = E ⊙ P. Then the resulting matrix Q = ⌈SB⌉1 at Step 5 of

Algorithm FurtherResidues involves residues Q j at further orders for j = 0, . . . , k − 1 such that

∆(Q(j)X) = q jeT
1 + LW̄T

Q(j) , (59)

where q j is the first column of Q(j) and W̄Q(j) ∈ Km×d. In accordance with Eq. (58) we have

∆(Q) = VQET + LW̄T
Q
, (60)

with: VQ ∈ K[x]n×k has first column q0 and column j being q j−1 − ZnQ(j−2)em for 2 ≤ j ≤ k; W̄Q ∈ Kkm×d

has k blocks of rows with j-th block being W̄Q(j) .
Equations (58) and (60) lead us to representP andQ as follows. To ensure that a canonical representation

is maintained throughout the algorithm, hence following our approach in Section 5, we separate out left and
right generator parts. The right parts are given by W̄P and W̄Q. Besides L and from the characterizations
of VP and VQ, we slightly modify the representation of the left generator parts. They are represented by
the first and m-th columns of the P(j)’s and Q(j)’s. This is temporarily slightly different from the canonical
representation with VP and VQ in order to simplify the following statement.

Lemma 6.1. For d < n, assume that the inverse of a (d + 1) × (d + 1) submatrix of F̄ is given, with the
corresponding row indices set J, also assume that L and the canonical generator for E is given. Consider
P represented by {P(j)e1} j=0,...k−1, {P(j)em} j=0,...k−2 and W̄P as in Eq. (58). If P has km = O(n) columns,
then Steps 4 and 5 of Algorithm FurtherResidues compute {Q(j)e1} j=0,...k−1, {Q(j)em} j=0,...k−2 and W̄Q us-
ing Õ(MMn,d(d, k)) operations.

Proof. The specification of the output is from Lemma 2.7, we have to prove the cost bound. The matrix
B = E ⊙ P has k blocks of columns E ⊙ P(j)X, each of which is the projection of a slice C(j) = E ⊙ P(j)

of S −1 (Lemma 2.4). From Eq. (35) we can thus write:

∆(E ⊙ P(j)X) = ∆(C(j)X) = c jeT
1 + F̄WT

C(j) , (61)

24 C. Pernet, H. Signargout, G. Villard (2023) 1–31

where c j is the first column of C(j), and WC(j) ∈ K[x]m×(d+1)
<d . Hence by doing the same manipulation as for P

and Q, we arrive at
∆(B) = VBET + F̄WT

B, (62)

involving matrices such that: VB ∈ K[x]n×k has first column c0 and column j being c j−1 − ZnC(j−2)em for
2 ≤ j ≤ m;W ∈ Kkm×(d+1) has k blocks of rows with j-th block being WC(j) .

Using that Q = ⌈SB⌉1, we first detail the whole computation of the first and m-th columns of the Q(j)’s
from the representations of P and E. We then conclude with the right generator part for Q.

For j = 0, . . . k−1 and i = 1,m we have C(j)ei = E⊙ (P(j)ei). All these middle products can be computed
from the regular product E · [P(0)ei . . . P(k−1)ei] by extraction of the middle coefficients. From Theorem 3.4
this can be performed using Õ(MMn,d(d, k)) operations. For all j we then have Q(j)ei = ⌈S C(j)ei⌉1, products
which can computed by extraction of the coefficients of S · [C(0)ei . . . C(k−1)ei] within the same cost bound.

We now deduce the right generator part W̄Q as in Eq. (60) from the corresponding WB of Eq. (62).
The last column ofWB can indeed be computed using Lemma 5.1: the generator for P given by Eq. (58)
has the shape of the one for R as in Eq. (46); the generator for B in Eq. (62) corresponds to the one for
E ⊙ R in Eq. (47). Remark that the application of Lemma 5.1 explicitly requires the generator part VP
for P as in Eq. (58): VP can be reconstructed from {P(j)e1} j=0,...,k−1 and {P(j)em} j=0,...,k−2 in time O(nkd).
Taking c = km in Lemma 5.1, the last column of WB is therefore obtained in time Õ(MMn,d(k + d, 1)),
which is Õ(MMn,d(d, k)).

By definition ofWB, we now know for j = 0, . . . , k − 1 the last column of WC(j) given by Eq. (61) for
the projected slice C(j)X of S −1. For any fixed j let κ be the z-adic order of C(j)X, and remark that WC(j)

must be the projection of the full right generator part for C(j). It follows from Proposition 4.4 that the last
column of WC(j) provides us with the z-adic coefficient XTwκ−1 of the first m entries XTw of w. We conclude
using Remark 4.8. Indeed, from Eq. (17), Q(j) = ⌈S C(j)⌉1 is the residue ρκ(I), hence its right generator part
is directly deduced from wκ−1. Equivalently, by projection using X, W̄Q(j) as in Eq. (59) is deduced from
XTwκ−1 in O(md2) operations. Finally, since we have been working for an arbitrary 0 ≤ j ≤ k − 1, all the
blocks of rows for W̄Q as in Eq. (60) are obtained in O(kmd2), which does not dominate the cost.

6.2. Cost bound for the giant steps
We can now bound the cost of Algorithm FurtherResidues in the case of the Sylvester matrix, with

input some high-order component E of the inverse and V = X.

Lemma 6.2. Let E be the high-order component E of order r of S −1 represented by its canonical generator,
and assume that F̄ has rank d+1 ≤ n. With input E and the projection X = [Im 0]T for 1 ≤ m ≤ n, Algorithm
FurtherResidues computes a generator as in Eq. (46) for the matrix R = [X ρr(X) ρ2r(X) . . . ρ(s−1)r(X)] ∈
K[x]n×(sm)

<d . If sm = O(n) the cost of the computation is Õ
(
MMn,d(d, s)

)
.

Proof. From Lemma 2.7 we know that the algorithm correctly computesR. The cost bound comes from log s
applications of Lemma 6.1 for the representations of the new residues at Steps 4 and 5 with k ≤ s and
(log s) − 1 applications of Lemma 5.3 for the generators for the new high-order components at Step 6. For
the first application of Lemma 6.1, P(0) = X is represented using ∆(X) = e1ϵ1

T (here ϵ1 is the canonical
vector in Km). Both Lemma 6.1 and Lemma 5.3 require the preliminary computation of L whose cost is
Õ(nd2) operations from Proposition 4.7. They also rely on the inverse of a (d + 1) × (d + 1) submatrix of F̄;
such an inverse can be computed in O(ndω−1) operations [17, 19], which does not dominate since for d < n
and s ≥ 1 we have MMn,d(d, s) ∈ Ω(nd2).

Lemma 6.1 uses a representation of the matrices slightly different from here. The left generator part VR
of Eq. (46) still needs to be recovered from {ρ jr(e1)} j=0,...s−1, {ρ jr(em)} j=0,...s−2 and the right generator. From
the shape of the left generator given by Eq. (58), we deduce that the latter can be reconstructed from O(s)
polynomial vector additions with cost O(nsd).

7. Complete expansion algorithm

From the preceding sections we have all the ingredients for giving the cost of the specialization of
Algorithm ProjectedExpansion to the Sylvester case. For X = [Im 0]T and Y = [0 Im]T in Kn×m, Algorithm

C. Pernet, H. Signargout, G. Villard (2023)1–31 25

StructuredExpansion computes the truncated expansion of YTS −1X at the z-adic order rs, following the
three main phases of the general approach of Section 2.2.

First, the baby steps are performed based on two linear system solutions computed using the seminal
lifting methods of [32, 8]. (The high-order lifting as in Section 2 is not required for this step.) The loop at
Step 1 of Algorithm ProjectedExpansion can indeed be implemented by computing the expansion of YTS −1

at the order r, of which coefficients give the projections of the high-order components. We actually compute
only truncations of eT

1 S −1 (at order r+1 as it will also be used to compute a high-order component at order r)
and of eT

n S −1, since by using the recursion of Eq. (27), these two rows are sufficient to recover the expansion
of YTS −1X at the end. These polynomial vectors of degree rd are linearized as r vectors of degree d in order
to take advantage of fast structured matrix multiplication.

The special structures we have identified for the high-order components and the residues are then used
in the giant steps as well as in the third phase which computes the final product. This product is applied
on the linearized rows of the baby steps, which are combined together in the following step. In anticipation
of the reconstruction of the expansion of YTS −1X, the two latter phases actually use a modified projection
X′ = [I2m−1 0]T on the right, and give the first and last row of the expansion of S −1X′ (this trick is taken
from [34, Sec. 3.4.3]). Finally, the whole target expansion of YTS −1X is reconstructed using Eq. (27) as
mentioned above.

Algorithm 7.1 StructuredExpansion
Input: p, q ∈ K[x, y] of respective y-degrees np and nq and of x-degree at most d < n = np + nq, m ≤

(n + 1)/2, r, s ∈ N∗
Assumptions: the constant terms of p(0), q(nq) and det S in K[x] are nonzero, where S ∈ K[x]n×n

≤d is the
Sylvester matrix associated to p and q, and F̄ ∈ Kn×(d+1) as defined in Proposition 4.4 has rank d + 1.

Output: ⌈YTS −1X⌉rs where Y = [0 Im]T and X = [Im 0]T

1: ▷ Baby steps
z← xd; a← eT

1 S −1 mod zr+1 ; b← eT
n S −1 mod zr

A← [aT
0 aT

1 . . . aT
r−1]T; B← [bT

0 bT
1 . . . bT

r−1]T
▷ Both in K[x]r×n

<d

2: ▷ Generator for E = E(r) ∈ K[x]r×n
<2d of length d + 2: ∆(E) = veT

1 + F̄ WT

f ← ynq q(1/y) − ynq ynp p(1/y) ▷ f =
∑d

j=0
∑n

i=0 ḟ (i)
j x jyi

F̄ ← [ḟ (i−1)
j−1]1..n,1..d+1 ▷ In Kn×(d+1)

v← S −1e1 mod zr+1 ; v← ⌊v⌋r−1
w← −a/ f (0) mod zr+1 ; w← [0 w2..n] ▷ See Eq. (30)
Construct W from wr−2 + zwr−1 and wr−1 + zwr ▷ See Proposition 4.4 and Eq. (36)

3: ▷ Giant steps
m′ ← 2m − 1 ; X′ ← [Im′ 0]T

R ← (FurtherResidues(E, X′, s))∗,1..sm′ ▷ In K[x]n×(sm′)
<d , see Lemma 6.2

4: ▷ Final products
A′ ← A · R ; A′r,∗ ← A′r,∗ mod z ▷ Matrices in K[x]r×sm′

<2d

B′ ← B · R ; B′r,∗ ← B′r,∗ mod z
5: ▷ Reconstruction of the first and last row of ⌈S −1X′⌉rs ∈ K[x]n×m′

H′ ← 0 ∈ K[x]m′ ; H ← 0 ∈ K[x]m×m′

for i = 0, . . . , r − 1 ▷ See Proposition 7.1 and proof thereof
for j = 0, . . . , s − 1

H′1..m′ ← H′1..m′ + zi+r jA′i+1,(jm′+1)..(jm′+m′)

Hm,1..m′ ← Hm,1..m′ + zi+r jB′i+1,(jm′+1)..(jm′+m′) ▷ Remaining rows left to 0
6: ▷ Obtaining ⌈YTS −1X⌉rs ∈ K[x]m×m using truncated power series operations

for i = m − 1, . . . , 1 ▷ See Proposition 7.1 and proof thereof
c← m + i − 1
Hi,1..c ← Hi+1,2..c+1 − f (i)(H′2..c+1/ f (0)) mod zrs ▷ See Eq. (63)

7: return H1..m,1..m

26 C. Pernet, H. Signargout, G. Villard (2023) 1–31

Proposition 7.1. Let p and q in K[x, y] be of respective y-degrees np and nq, and of x-degree at most d <
n = np + nq. Assume that the constant terms of p(0), q(nq) and det S in K[x] are nonzero, where S ∈ K[x]n×n

≤d
is the Sylvester matrix associated to p and q, and also that F̄ ∈ Kn×(d+1) as defined in Proposition 4.4 has
rank d + 1. For X = [Im 0]T and Y = [0 Im]T with 2m − 1 ≤ n, z = xd, and positive integers r, s, Algorithm
StructuredExpansion computes the expansion of YTS −1X modulo zrs. If s = O(r) and mr = O(n), then it
uses Õ(MMn,d(r + d, r) + m2rsd) arithmetic operations in K.

Proof. Step 1 computes truncated expansions of eT
1 S −1 and eT

n S −1 which are used for constructing the gen-
erators for E(r) and for the final products. This can be done by x-adic lifting using that S (0) is nonsin-
gular [32, 8]. We follow the description of the method in [8], carried over to the case K[x]. The cost is
essentially that of O(rd) multiplications of the transpose inverse S (0)−T by a vector. Using a displacement
rank-based representation of S (0)−T— see e.g. [40, Sec. 5] and references therein, such a multiplication
costs Õ(n); this gives a total of Õ(nrd) operations for Step 1. The rows of A and B are the z-adic coefficients
of the computed expansions.

Step 2 computes the canonical generator for E(r) ≡ ⌊S −1⌋r−1 mod z2. The first column v is computed
in the same way as in Step 1. (Note that the multiplication of S (0)−1 by a vector could also be computed
by using the extended Euclidean algorithm in K[x] [10, Sec. 4.5].) Then according to Eq. (36), the left
generator part F̄ is given by f , and the right generator requires wr−2,wr−1 and wr. The first entry of w is zero
and from Eq. (30) the remaining ones modulo zr+1 are deduced as (eT

1 S −1)2...n/ f (0) using the first row of S −1

obtained at previous step (the inverse of f (0) exists from f (0, 0) = q(nq)(0) , 0). From Proposition 4.4, this
leads to the wanted z-adic coefficients of w and the generator for E(r) in time Õ(nrd) + O(nd2).

We then deduce from Lemma 6.2 that a generator for R = [X′ ρr(X′) ρ2r(X′) . . . ρ(s−1)r(X′)] with X′ =
[Im′ 0]T is correctly computed in allotted time at Step 3 as s = O(r). This generator is as in Eq. (46), hence
of length at most s + d. Using the bounds s = O(r) and thus sm′ = O(n) in Theorem 3.4, the matrix
products A · R and B · R are computed using Õ(MMn,d(r + d, r)) operations.

Then let a′i, j be the (i + 1)-th row of A′
∗,(jm′+1)..(jm′+m′) at Step 4. From the product with the block of

columns corresponding to ρr j(X′) in R and Definition 2.1 we have

r−1∑
i=0

a′i, jz
i+r j ≡ (

r−1∑
i=0

aizi) ρr j(X′) mod zr ≡ (eT
1 S −1 mod zr) ρr j(X′) mod zr ≡ ⌊eT

1 S −1X′⌋r j mod zr,

hence the sums at Step 5 give H′1..m′ ≡ eT
1 S −1X′ mod zrs; in an equivalent manner, with B′ we get that the

last row of H is Hm,1..m′ ≡ eT
n S −1X′ mod zrs. The cost is bounded by the one of rs additions of polynomial

vectors of dimension m′ and degree d, which is dominated by the previous step.
We conclude at Step 6 by following the trick in [34, Sec. 3.4.3], which consists in using the recursion

given by Eq. (27) for reconstructing the whole expansion of YTS −1X from those of eT
1 S −1X′ and eT

n S −1X′.
For the inverse C of S which is a matrix of multiplication and 1 ≤ i, c < n, Eq. (27) indeed leads to:

Ci,1..c = Ci+1,2..c+1 − f (i)(C1,2..c+1/ f (0)). (63)

From C1,2..2m−1 and Cm,1..2m−1, given by eT
1 S −1X′ and eT

n S −1X′, the application of Eq. (63) for i = m −
1,m− 2, . . . 1 on truncated power series modulo zrs provides with the m2 entries of YTS −1X using Õ(m2rsd)
operations.

8. Resultant algorithm

Following the previous works in Section 1.1.1 and Section 1.1.2, once sufficiently many terms of the
expansion of YTS −1X ∈ K(x)m×m are known then a matrix fraction description ND−1 with coprime matrices
N,D ∈ K[x]m×m is computed. For generic polynomials p and q of degree d in x and np = nq = n/2 in y,
we recall in Section 8.1 how such a fraction description can be reconstructed from only O(n/m) terms of
the xd-adic expansion of YS −1X. Furthermore, the denominator matrix D that is obtained is such that its
determinant is the resultant of p and q up to a scalar factor. Together with Algorithm StructuredExpansion
this leads us to the resultant algorithm given in Section 8.2, and to the proof of Theorem 1.1.

C. Pernet, H. Signargout, G. Villard (2023)1–31 27

8.1. Matrix fraction reconstruction

The number of terms sufficient for reconstructing a matrix fraction depends on the degrees of its possible
descriptions. First, let us recall a few notions on matrix fractions (the reader may refer to the comprehensive
material in [20, Chap. 6] and its applications in [40], [34, Sec. 5]). For a matrix F ∈ K(x)m×m, a descrip-
tion F = ND−1 with N,D ∈ K[x]m×m is said to be minimal if N and D are right coprime (have unimodular
right matrix gcd’s), and D has minimal column degrees among all possible denominators. The fraction F
is said to be describable in degree δ if it admits both a left description F = D−1

L NL and a right description
F = ND−1 with denominators DL and D of degree at most δ [34, Sec. 5.1.1]. Generically, we have the
following for the fraction YTS −1X we are interested in. This is an adaptation of [40, Prop. 4.1] which used
slightly different projections. Indeed we chose to switch the role of the projections X and Y , in order to
make the giant steps simpler.

Proposition 8.1. For any even n and integers d,m ∈ {1, . . . , n} there exists a nonzero polynomial Φ
in 2(n/2 + 1)(d + 1) variables over K and of degree O(n3d2) such that for p =

∑
0≤i≤d,0≤ j≤n/2 p(j)

i xiy j and
q =
∑

0≤i≤d,0≤ j≤n/2 q(j)
i xiy j of y-degree n/2 in K[x, y], if Φ(p(0)

0 , . . . , p
(n/2)
d , q(0)

0 , . . . , q
(n/2)
d) , 0 then:

i) S is invertible and S −1 is strictly proper (each entry has its numerator degree less than its denomina-
tor degree);

ii) YTS −1X is describable in degree δ = 2⌈n/(2m)⌉d;

iii) if YTS −1X = ND−1 is a minimal description then det D = c Resy(p, q) for some nonzero c ∈ K.

Proof. Consider q̂ = yn/2q(1/y), p̂ = yn/2 p(1/y), and the associated Sylvester matrix Ŝ ∈ K[x]n×n. From [40,
Sec. 4], there exists a nonzero polynomial Φ̂ in 2(n/2 + 1)(d + 1) variables and of degree O(n3d2), such that
if the coefficients of q̂ and p̂ do not form a zero of Φ̂, then: q̂ and p̂ have degree n/2; Ŝ is invertible and Ŝ −1

is strictly proper; XTŜ −1Y is describable in degree δ; a minimal description

XTŜ −1Y = N̂D̂−1 (64)

has a denominator that satisfies det D̂ = ĉ Resy(q̂, p̂) for some ĉ ∈ K∗.
Let Φ be the polynomial obtained from Φ̂ by swapping variables so that evaluating Φ at the coefficients

of p and q is evaluating Φ̂ at the coefficients of q̂ and p̂. We show that Φ is appropriate.
Assume that the coefficients of p and q do not form a zero of Φ. We have Ŝ = JnS Jn, where Jn is the

reversal matrix of dimension n. Since i) is satisfied with Ŝ as q̂ and p̂ do not form a zero of Φ̂, we have
that i) is also satisfied with S .

We then show that if XTŜ −1Y is describable in degree δ, then YTS −1X is also describable in degree δ.
From Eq. (64) and using Ŝ −1 = JnS −1Jn we get

YTS −1X = JmN̂(JmD̂)−1, (65)

which shows the existence of an appropriate right description for YTS −1X. Indeed, deg D̂ ≤ δ since D̂ is a
minimal denominator of XTŜ −1Y . In a similar way, a left denominator of degree at most δ for YTS −1X is
obtained from a left denominator of degree at most δ for XTŜ −1Y .

Item iii) is finally proved by noticing that JmD̂ is minimal in Eq. (65) if and only if D̂ is minimal in
Eq. (64). A minimal denominator D for YTS −1X hence gives a minimal denominator D̂ = JmD for XTŜ −1Y ,
and det D = ± det D̂ = ±ĉ Resy(q̂, p̂) = cResy(p, q).

If YTS −1X satisfies the first two items in Proposition 8.1, then a minimal description ND−1 can be
computed from 2δ terms of its expansion. We follow [12, 34], and perform the reconstruction of the fraction
using minimal approximant bases [3, 39]. We especially refer to [34, Sec. 5.2, 5.3] for a detailed treatment
of the reconstruction, which we do not repeat here, Algorithm FractionReconstruction being exactly Step 2
of [34, Algorithm 5.1]. Note that the latter algorithm is applied to a fraction that is constructed in a different
way than YTS −1X but this does not intervene for the reconstruction itself.

28 C. Pernet, H. Signargout, G. Villard (2023) 1–31

Algorithm 8.1 FractionReconstruction
Input: δ ∈ N,H ∈ K[x]m×m

<2δ
Output: (N,D) ∈ K[x]m×m

≤δ such that ND−1 ≡ H mod x2δ

1: F ← [H − Im] ∈ K[x]m×2m

2: ▷ Computation of a minimal approximant basis P ∈ K[x]2m×2m
≤2δ , see [12, Thm. 2.4], [18, Prop. 3.2]

P← PM-Basis(FT, 2δ, 0), with P in weak Popov Form; P← PT ▷ PM-Basis from [12]
3: return

(
Pm+1..2m,1..m, P1..m,1..m

)
Lemma 8.2. Assume that YTS −1X satisfies i) and ii) in Proposition 8.1. Given H = ⌈YTS −1X⌉2δ/d (xd-adic
notation here), Algorithm FractionReconstruction computes a minimal description YTS −1X = ND−1 using
Õ(mωδ) arithmetic operations in K .

Proof. Item (iii) of [34, Proposition 5.4] proves the correctness as soon as a correct approximant basis
is computed at Step 2. This basis is obtained using Õ(mωδ) operations [12, Thm. 2.4], [18, Prop. 3.2].
Following [34], transposes are used at Step 2 because in [12, 18] approximant bases are considered row-
wise rather than column-wise.

8.2. Resultant algorithm

We now present our Algorithm StructuredResultant that computes the resultant of two generic poly-
nomials p and q whose Sylvester matrix is S . Once sufficiently many terms of the expansion of YTS −1X are
computed with Algorithm StructuredExpansion, Algorithm FractionReconstruction is called to compute a
fraction description YTS −1X = ND−1 whose denominator’s determinant is the resultant up to a constant fac-
tor. This determinant is obtained using dense polynomial linear algebra [28], and the multiplicative constant
is retrieved by comparing the determinant with the resultant at x = 0.

Our improved complexity bound is proved for generic p and q of degree d < n in x and np = nq = n/2
in y. More precisely, the resultant algorithm is correct with the prescribed cost if the following assumptions
are satisfied.

(A1) det S (0) , 0. This allows to choose x = 0 as expansion point. (Note that a truncated resultant algo-
rithm which avoids this hypothesis is studied in [33].)

(A2) p(0)(0) , 0 and q(nq)(0) , 0. These conditions are introduced in Section 4 in order to identify the
structure of the high-order components and residues.

(A3) F̄ ∈ Kn×(d+1) as defined in Proposition 4.4 has rank d + 1. This is assumed in Lemma 5.1 in order to
compress the results of middle products into canonical generators.

(A4) The coefficients of p and q do not form a zero of the polynomialΦ of Proposition 8.1. This assumption
ensures that an appropriate description of YTS −1X can be recovered from a small number of terms in
the expansion of the matrix fraction.

Algorithm 8.2 StructuredResultant
Input: p, q ∈ K[x, y] of degree d < n in x and degree n/2 in y (n even), and S ∈ K[x]n×n

≤d their associated
Sylvester matrix; m ≤ n/2, r, s ∈ N∗ such that rs ≥ 4⌈n/(2m)⌉

Genericity assumptions: (A1) to (A4)
Output: Resy(p, q) ∈ K[x]≤nd

1: H ← StructuredExpansion(p, q,m, r, s) ▷ H = ⌈YTS −1X⌉rs

2: (N,D)← FractionReconstruction(rsd,H) ▷ ND−1 = YTS −1X
3: t ← det D ∈ K[x]≤nd ▷ Determinant computation from [28, Thm. 1.1]

c← det(S (0))/t(0) ∈ K∗ ▷ Nonzero scalar to obtain the resultant
4: return ct

C. Pernet, H. Signargout, G. Villard (2023)1–31 29

Lemma 8.3. Let p, q ∈ K[x, y] of degree d < n in x and degree n/2 in y (n even) and m ≤ n/2, r, s ∈ N∗. If the
assumptions (A1) to (A4) hold and rs ≥ 4⌈n/(2m)⌉ then Algorithm StructuredResultant computes the resul-
tant of p and q with respect to y. With s = O(r), mr = O(n) the algorithm uses Õ

(
MMn,d(r + d, r) + mωrsd

)
arithmetic operations in K.

Proof. The truncated expansion H = ⌈YTS −1X⌉rs is computed at Step 1 in Õ(MMn,d(r + d, r) +m2rsd) from
Proposition 7.1, here we have used assumptions (A1) to (A3). Assumption (A4) ensures that Proposition 8.1
can be applied. Items i) and ii) of the latter proposition and Lemma 8.2 ensure that Step 2 is performed in
time Õ(mωrsd) since rs ≥ 4⌈n/(2m)⌉ = 2δ/d. Items iii) of the same proposition shows that Resy(p, q) = ct
for some nonzero c ∈ K, which is computed by considering the constant terms of both polynomials at
negligible cost. Note that by (A1) we know that det(S (0)) , 0, hence t(0) = det(D(0)) , 0. From ii)
in Proposition 8.1, the degree of D ∈ K[x]m×m is bounded by δ, its determinant is also computed in time
Õ(mωrsd) [28, Thm. 1.1].

The input parameters m, r and s of Algorithm StructuredResultant can be optimized with respect to n
and d, which allows us to prove Theorem 1.1.

Proof of Theorem 1.1. Now taking p and q of y-degree n, for every m ∈ {1, . . . , n} we can associate to each
of the assumptions (A1) to (A4) a non identically zero polynomial in 2(n + 1)(d + 1) variables over K,
whose zeros are the inputs which do not meet the conditions. An appropriate hypersurface is defined by
the product of these polynomials for a well chosen value of m. Consider s = r and m such that mr2 ∼ 2n.
From Lemma 8.3 and Eq. (25), the resultant can be computed generically using Õ(nd(mω−1 + rω−1 + drω−2))
operations. When d ≤ r the optimal choice for the parameters leads to m = r, and we arrive to the announced
bound in the case d = O(n1/3). For greater values of d, we consider m = n

ω−2
3ω−4 d

2
3ω−4 and keep the same

relations between r, s and m.

Figure 1. Comparison of known asymptotic cost bounds for the resultant of generic polynomials. Exponents
in n with d = nγ and ω = 2.372.

0 1
0

1

2

3

0.33 0.471

1

1.46
1.58
1.79

22.05

γ

E
xp

on
en

ti
n

n

Generic block resultant [40]
Algorithm StructuredResultant
Modular composition (d = 1) [34]
Finite field resultant (d = n) [16]

Finite field resultant [41]
Õ(n2d) resultant [10, Chap. 11]

On Fig. 1 we compare the asymptotic exponent of Algorithm StructuredResultant to the exponents
of existing algorithms for d varying in comparison to n. Note that the genericity conditions (in the Zariski
sense) differ for each algorithm.

30 C. Pernet, H. Signargout, G. Villard (2023) 1–31

When d = O(n1/3), our algorithm has an exponent in n that coincides with the one of [34] (without fast
rectangular matrix multiplication), and allows to be essentially linear in the degree. In that case, Algorithm
StructuredResultant compares favorably to [40] as soon as ω < 3: the cost is Õ(n1.458d) with ω < 2.372 [1,
9, 42]. Our new estimate breaks Õ(n1.5d), which is the cost estimate for [40] in the best possible case whereω
would be 2. The cost bound in the second item of Theorem 1.1 has a stronger dependence in d, hence our
new algorithm is not better for large values of d compared to n. However, it remains faster as long as
d = O(n(ω−1)(4−ω)/(2ω)), hence d = O(n0.47) for ω = 2.372.

Algorithm StructuredResultant may be viewed as a generalization of [34, Sec. 10.1] for structured
polynomial matrices with arbitrary degrees. On the other hand it also generalizes the resultant algorithm
of [40] (up to a minor technical change in projections), which can be revealed by taking s = 1. With this
parameter choice we have no more giant steps, neither application of high-order lifting. The computation
of the expansion is essentially done in the baby steps at Step 1, this may be compared to the use of [40,
Prop. 5.1] with truncated power series. For s = 1, the displacement rank of R at Step 3 is constant, and our
bound s+d for this rank (proof of Proposition 7.1) leads to an overestimation of the cost of the reconstruction
from Step 4 to Step 6. Nevertheless, by taking into account the displacement rank simplification in this
degenerate case, the resultant algorithm in [40] is recovered.

Acknowledgments

We thank the anonymous reviewers for detailed lists of comments and useful suggestions that helped us
improve the quality of the manuscript.

References

[1] J. Alman and V. V. Williams. A Refined Laser Method and Faster Matrix Multiplication. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 522–539. SIAM, 2021.

[2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer, 1rst edition, 2003.
[3] B. Beckermann and G. Labahn. A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants. SIAM J.

Matrix Analysis and Applications, 15(3):804–823, 1994.
[4] V. Bhargava, S. Ghosh, Z. Guo, M. Kumar, and C. Umans. Fast multivariate multipoint evaluation over all finite fields. In 2022

IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 221–232, 2022.
[5] A. Bostan, P. Flajolet, B. Salvy, and E. Schost. Fast computation of special resultants. J. Symb. Comput., 41(1):1–29, 2006.
[6] A. Bostan, C.-P. Jeannerod, C. Mouilleron, and E. Schost. On Matrices With Displacement Structure: Generalized Operators and

Faster Algorithms. SIAM J. Matrix Anal. Appl., 38(3):733–775, 2017.
[7] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Informatica, 28(7):693–701,

1991.
[8] J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numer. Math., 40(1):137–141, 1982.
[9] R. Duan, H. Wu, and R. Zhou. Faster Matrix Multiplication via Asymmetric Hashing. arXiv:2210.10173, 2022.

[10] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999. Third edition 2013.
[11] J. von zur Gathen and T. Lücking. Subresultants revisited. Theoretical Computer Science, 297(1-3):199–239, 2003.
[12] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix computations. In International Symposium

on Symbolic and Algebraic Computation (ISSAC), pages 135–142. ACM Press, 2003.
[13] G. Heinig and K. Rost. Algebraic Methods for Toeplitz-like Matrices and Operator. Springer, 1984.
[14] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.
[15] J. van der Hoeven and R. Larrieu. Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals. Appl.

Algebr. Eng. Comm., 30(6):509–539, 2019.
[16] J. van der Hoeven and G. Lecerf. Fast computation of generic bivariate resultants. J. of Complexity, 62, 2021.
[17] O. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decomposition algorithm and applications. Journal of

Algorithms, 3(1):45–56, 1982.
[18] C.-P. Jeannerod, V. Neiger, and G. Villard. Fast computation of approximant bases in canonical form. J. Symb. Comput., 98:192–

224, 2020.
[19] C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank-profile revealing Gaussian elimination and the CUP matrix decomposition.

J. Symb. Comput., 56:46–68, 2013.
[20] T. Kailath. Linear Systems. Prentice-Hall, 1980.
[21] T. Kailath, S. Y. Kung, and M. Morf. Displacement ranks of matrices and linear equations. J. Math. Anal. Appl., 68(2):395–407,

1979.
[22] E. Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear systems. In International Symposium on Symbolic and

Algebraic Computation (ISSAC), pages 297–304. ACM Press, 1994.
[23] E. Kaltofen and G. Villard. On the complexity of computing determinants. Comput. Complex., 13(3):91–130, 2005.

http://dx.doi.org/10.1137/1.9781611976465.32
http://dx.doi.org/10.1007/978-3-662-05355-3
http://dx.doi.org/10.1137/S0895479892230031
http://dx.doi.org/10.1109/FOCS54457.2022.00028
http://dx.doi.org/10.1016/j.jsc.2005.07.001
http://dx.doi.org/10.1137/16M1062855
http://dx.doi.org/10.1137/16M1062855
http://dx.doi.org/10.1007%2FBF01178683
http://dx.doi.org/10.1007/BF01459082
https://arxiv.org/abs/2210.10173
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1016/S0304-3975(02)00639-4
http://dx.doi.org/10.1145/860854.860889
http://dx.doi.org/10.1007%2F978-3-0348-6241-7
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1007/s00200-019-00389-9
http://dx.doi.org/10.1016/j.jco.2020.101499
http://dx.doi.org/10.1016/0196-6774(82)90007-4
http://dx.doi.org/10.1016/j.jsc.2019.07.011
http://dx.doi.org/10.1016/j.jsc.2013.04.004
http://dx.doi.org/10.1016/0022-247X(79)90124-0
http://dx.doi.org/10.1145/190347.190431
http://dx.doi.org/10.1007/s00037-004-0185-3

C. Pernet, H. Signargout, G. Villard (2023)1–31 31

[24] E. Kaltofen and G. Yuhasz. On the matrix Berlekamp-Massey algorithm. ACM Trans. Algorithms, 9(4):33:1–33:24, 2013.
[25] P. Karpman, C. Pernet, H. Signargout, and G. Villard. Computing the Characteristic Polynomial of Generic Toeplitz-like and

Hankel-like Matrices. In International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 249–256. ACM
Press, 2021.

[26] K. S. Kedlaya and C. Umans. Fast Polynomial Factorization and Modular Composition. SIAM J. on Computing, 40(6):1767–
1802, 2011.

[27] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theoretical computer science, 36:309–317, 1985.
[28] G. Labahn, V. Neiger, and W. Zhou. Fast, deterministic computation of the Hermite normal form and determinant of a polynomial

matrix. J. Complexity, 42:44–71, 2017.
[29] F. Le Gall. Faster Rectangular Matrix Multiplication by Combination Loss Analysis. arXiv:2307.06535, 2023.
[30] F. Le Gall and F. Urrutia. Improved Rectangular Matrix Multiplication using Powers of the Coppersmith-Winograd Tensor. In

Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1029–1046. SIAM, 2018.
[31] G. Lecerf. On the complexity of the Lickteig-Roy subresultant algorithm. J. Symb. Comput., 92:243–268, 2019.
[32] R. T. Moenck and J. H. Carter. Approximate algorithms to derive exact solutions to systems of linear equations. In International

Symposium on Symbolic and Algebraic Manipulation (Eurosam), LNCS 72, pages 65–73, 1979.
[33] G. Moroz and E. Schost. A Fast Algorithm for Computing the Truncated Resultant. In International Symposium on Symbolic

and Algebraic Computation (ISSAC), pages 341–348. ACM Press, 2016.
[34] V. Neiger, B. Salvy, É. Schost, and G. Villard. Faster Modular Composition. arXiv:2110.08354, to appear in J. ACM, 2021.
[35] M. Newman. Integral Matrices. Academic Press, 1972. First edition.
[36] V. Y. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms. Springer, 2001.
[37] M. Paterson and L. J. Stockmeyer. On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM J.

Comput., 2(1):60–66, 1973.
[38] A. Storjohann. High-order lifting and integrality certification. J. Symb. Comput., 36(3-4):613–648, 2003.
[39] M. Van Barel and A. Bultheel. A general module theoretic framework for vector M-Padé and matrix rational interpolation.

Numer. Algorithms, 3:451–462, 1992.
[40] G. Villard. On Computing the Resultant of Generic Bivariate Polynomials. In International Symposium on Symbolic and

Algebraic Computation (ISSAC), pages 391–398. ACM Press, 2018.
[41] G. Villard. Elimination ideal and bivariate resultant over finite fields. In International Symposium on Symbolic and Algebraic

Computation (ISSAC), pages 526–534. ACM Press, 2023.
[42] V. V. Williams, Y. Xu, Z. Xu, and R. Zhou. New Bounds for Matrix Multiplication: from Alpha to Omega. arXiv:2307.07970,

2023.

http://dx.doi.org/10.1145/2500122
http://dx.doi.org/10.1145/3452143.3465542
http://dx.doi.org/10.1145/3452143.3465542
http://dx.doi.org/10.1137/08073408X
http://dx.doi.org/https://doi.org/10.1016/0304-3975(85)90049-0
http://dx.doi.org/10.1016/j.jco.2017.03.003
http://dx.doi.org/10.1016/j.jco.2017.03.003
https://arxiv.org/abs/2307.06535
http://dx.doi.org/10.1137/1.9781611975031.67
http://dx.doi.org/10.1016/j.jsc.2018.04.017
http://dx.doi.org/10.1007/3-540-09519-5_60
http://dx.doi.org/10.1145/2930889.2930931
https://arxiv.org/abs/2110.08354
http://dx.doi.org/10.1007/978-1-4612-0129-8
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1016/S0747-7171(03)00097-X
http://dx.doi.org/10.1007/BF02141952
http://dx.doi.org/10.1145/3208976.3209020
http://dx.doi.org/10.1145/3597066.3597100
https://arxiv.org/abs/2307.07970

	Introduction
	Tools from previous works
	Minor of the inverse and matrix fraction reconstruction
	Characteristic polynomials and baby steps/giant steps approach
	Series solutions of polynomial linear systems

	Overview of the contribution
	Related questions: resultants, characteristic polynomials and bivariate ideals
	Model of computation and notations

	Baby steps/giant steps for high-order lifting
	High-order lifting
	Baby steps/giant steps

	Matrices with a displacement structure
	Displacement structure of Sylvester matrices and its residues and high-order components
	Sylvester matrices over K
	Structure of high-order components
	Structure of residues

	Structured middle and truncated products
	Middle product: computation of the right generator
	High-order components

	Giant steps
	Concatenated middle and truncated products
	Cost bound for the giant steps

	Complete expansion algorithm
	Resultant algorithm
	Matrix fraction reconstruction
	Resultant algorithm

