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Behavior of the Poincaré constant along the Polchinski
renormalization flow

Jordan Serres*

July 29, 2022

Abstract

We control the behavior of the Poincaré constant along the Polchinski renor-
malization flow using a dynamic version of Γ-calculus. Our method generalizes a
method introduced by B. Klartag and E. Putterman to analyze the evolution of
log-concave distributions along the heat flow. Furthermore, we apply it to general
ϕ4-measures and discuss the interpretation in terms of transport maps.

1 Introduction

A probability measure µ on Rd is said to satisfy a Poincaré inequality when there exists a
positive finite constant C such that for all functions f in the Sobolev space H1(µ),

Varµ(f) ≤ C

∫
|∇f |2dµ.

We denote by CP (µ) the smallest constant for which the above inequality holds. Poincaré
inequalities have many applications (see for instance [1]), and are in particular related to the
Kannan-Lovasz-Simonovits conjecture which states that all isotropic log-concave distributions
have dimension-independent Poincaré constants (see [13] for a survey).
A classical method to obtain bounds on the Poincaré constant CP (µ) of a distribution µ is the
perturbative approach: if CP (µ) is known, we want to compare it with the Poincaré constant
CP (δµ) of a small perturbation δµ. Some results exist when δµ is a bounded perturbation of µ,
i.e. when δµ has a bounded density with respect to µ (see [2, Proposition 4.2.7]). Another result
is that if γ denotes the standard Normal distribution on Rd (then CP (γ) = 1) and ∗ denotes
the convolution, then for all probability distributions µ we have CP (µ) ≥ CP (µ ∗ γ) − CP (γ).
This is a consequence of [3, Proposition 1]. The reverse inequality

(1) CP (µ) ≤ CP (µ ∗ γ) + CP (γ)

is more informative and was proved under a log-concavity assumption on the measure µ (see
[8, Theorem 9.4.3]). In [12], B. Klartag and E. Putterman interpretates the convolution with
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the Gaussian distribution as the action of the heat flow on µ. This interpretation together with
the preservation of the log-concavity by the heat flow, allowed them to strengthen (1) and to
prove by Γ-calculus that the Poincaré constant is non-decreasing along the heat flow acting on
a log-concave distribution.

Theorem. [12, Theorem 1.1] If µ is log-concave, then for all 0 ≤ s ≤ t,

(2) CP (µ ∗ γs) ≤ CP (µ ∗ γt),

where γs denotes the Normal distribution with covariance matrix sId.

They also proved (2) by constructing contractive transport maps, see Section 3 for a dis-
cussion of this method. Let us mention that, following this, the analysis of the evolution of a
log-concave distribution along the heat flow allowed B. Klartag and J. Lehec to obtain the best
result currently known towards the KLS conjecture (see [11]).
In this paper, we study the behavior of the Poincaré constant along the Polchinski flow. The
origins of this flow go back to the work of J. Polchinski [18] on the Renormalization Group
method. It was introduced in its current formulation with the multiscale Bakry-Emery cri-
terion by R. Bauerschmidt and T. Bodineau in [4] in order to derive Logarithmic-Sobolev
inequality for the continuum sine-Gordon model. Subsequently, this flow has also been used to
derive Logarithmic-Sobolev inequalities for other models from Quantum Fields Theory, such as
the ϕ4 models [7] or the Ising models [6].
Let ν0 = e−V0(x)γC∞ be a probability distribution with density e−V0 with respect to the Gaussian
distribution γC∞ with covariance (positive definite) matrix C∞. A family (Ct)t≥0 of semidefi-
nite matrices on Rd increasing continuously as quadratic forms from C0 = 0 to C∞ is called a
covariance decomposition. Given a covariance decomposition, we can define the renormalized
potential

Vt := − log
(
γCt ∗ e−V0

)
.

The polchinski flow is then defined as

νt := eV∞(0)−Vt(x)γC∞−Ct .

By definition, γ0 := δ0 is the Dirac delta function, hence ν∞ = δ0 and the Polchinski flow
interpolates between ν0 and δ0. We prove the following theorem.

Theorem. If the Polchinski flow (νt)t of a probability distribution ν0 satisfies the multiscale
Bakry-Emery criterion, then the Poincaré constant along the flow satisfies

∀0 < s ≤ t, CP (νs) ≤ e(αt−αs)−2(λt−λs)CP (νt),

where λt are the multiscale curvatures, and αt are corrective terms due to the fact that the
Polchinski flow admits the Dirac delta function as ergodic distribution (see Definition 1).

This paper is organized as follows. In Section 2, we introduce the general Γ-calculus method
to study the behavior of the Poincaré constant along a flow of probability distribution driven
by a diffusion semigroup. In Section 3, we discuss the transport map method, and in particular
why it cannot currently be applied to the Polchinski flow. In Section 4, we rigorously define
the Polchinski flow, the multiscale Bakry-Emery criterion, the renormalized Poincaré constant
along the flow, and then present a proof of the main theorem of this paper. Finally, in Section
5, we illustrate our theorem on the example of general ϕ4 measures.
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2 A general Γ-calculus approach

Let L be the generator of a Markov diffusion semigroup Pt with carré du champ operator Γ
and reversible measure µ on a manifold M . Let µ0 be a probability distribution on M with
density ρ with respect to µ. If we draw randomly X0 with distribution µ0 and let the semigroup
evolve, then we obtain a Markov process Xt, whose laws µt interpolate between µ0 and µ∞ = µ.
In this section, we describe a general method for obtaining bounds on the Poincaré constant
along the flow µt of the form

(3) ∀0 ≤ s ≤ t, CP (µs) ≤ e
∫ t
s k
′
s dsCP (µt),

where k′t are curvature terms that will be described later. This monotonicity-type result for the
Poincaré constant can be captured from the point of view of Γ-calculus. The measure µt has
density Pt(ρ) with respect to µ, and allows us to define the dual semigroup

Qt(φ) :=
Pt(φρ)

Pt(ρ)
.

This dual semigroup evolves in such a way that there exist a flow of diffusion operators (Lt)t
satisfying

∂tQt = LtQt.

We can see from a straightforward computation that

(4) Ltu = L u+ 2 Γ (logPt(ρ), u) .

We denote by Γt(f) := 1
2
(Lt(f

2)−2fLtf) and Γ2,t := 1
2

(LtΓt(f)− 2Γt(f, Ltf)) its iterated first
and second Γ-operators. It is immediate to see that Γt = Γ does not depend on time. We
also consider the operators Λt as the diffusion generators with reversible distribution µt, and
denote by ΓΛ

t (f) := 1
2
(Λ(f 2) − 2fΛtf) and ΓΛ

2,t = 1
2

(
ΛtΓ

Λ
t (f)− 2ΓΛ

t (f,Λtf)
)

its iterated first
and second Γ-operators. An easy computation shows that

(5) Λtu = 2L + 2 Γ (logPt(ρ), u) ,

and moreover, ΓΛ
t = 2 Γ does not depend on time. Although in this case none of the operators

Γt and ΓΛ
t are time dependent, we still retain the notation in order to better understand the

method we will use for the Polchinski flow where the operators will indeed be time dependent.
The key strategy to obtain (3) is then to show the quasi-decay of the Raylegh quotient

Rφ(t) :=
Eµt
[
ΓΛ
t (Qtφ)

]
Eµt [(Qtφ)2]

,

when φ : M → R is a smooth and compactly supported function. For this purpose, using that
ΓΛ
t = 2 Γt, we can compute that

∂tEµt
[
(Qtφ)2

]
= −2Eµt [Γt(Qtφ)] = −Eµt

[
ΓΛ
t (Qtφ)

]
and ∂tEµt

[
ΓΛ
t (Qtφ)

]
= 4Eνt [Γ2,t(Qtφ)] ,

and therefore

R′φ(t) =

(
Eµt

[
dΓΛ

t

dt
(Qtφ)

]
− 4Eµt [Γ2,t(Qtφ)]

)
Eµt [(Qtφ)2] + Eµt

[
ΓΛ
t (Qtφ)

]2
Eµt [(Qtφ)2]2

=
Eµt
[
ΓΛ
t (Qtφ)

]2 − Eµt
[
ΓΛ

2,t(Qtφ)
]
Eµt [(Qtφ)2]

Eµt [(Qtφ)2]2
+
Eµt

[
dΓΛ

t

dt
(Qtφ)

]
+ Eµt

[(
ΓΛ

2,t − 4 Γ2,t

)
(Qtφ)

]
Eµt [(Qtφ)2]

.
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We can easily see that the term Eµt
[
ΓΛ
t (Qtφ)

]2 − Eµt
[
ΓΛ

2,t(Qtφ)
]
Eµt [(Qtφ)2] is non positive.

Indeed, we have by integrating by parts and using the Cauchy-Schwarz inequality

Eµt
[
ΓΛ
t (Qtφ)

]
= −Eµt [Qtφ(ΛtQtφ)]

≤
√
Eµt [(Qtφ)2]Eµt [(ΛtQtφ)2]

=
√

Eµt [(Qtφ)2]Eµt
[
ΓΛ

2,t(Qtφ)
]
.

It appears therefore that under the dynamical curvature assumption

(6)
dΓΛ

t

dt
+
(
ΓΛ

2,t − 4 Γ2,t

)
≤ k′tΓt,

the Gronwall lemma gives us that the Raylegh quotient satisfies Rφ(t) ≤ e
∫ t
0 k
′
sdsRφ(0) and this

is enough to show (3).

When the operator L is of the form ∆−∇Φ · ∇, then Ltu = ∆u+∇ (2 logPtρ− Φ) · ∇u,
Λtu = 2 ∆u + 2∇ (logPtρ− Φ) · ∇u, Γt(u) = |∇u|2, ΓΛ

t (u) = 2 |∇u|2, and ΓΛ
2,t = 4 Γ2,t +

∇2 logPt(ρ). Consequently, the condition (6) becomes the classical Bakry-Emery condition
∇2 logPt(ρ) ≤ k′Id.

In [12], B. Klartag and E. Putterman take the operator L as (half of) the Laplacian on
Rd. Therefore the reversible distribution µ is the Lebesgue measure on Rd and the semigroup
Pt is the heat semigroup. They start from a log-concave distribution µ0 with Lebesgue den-
sity ρ, and by stopping the flow at time t = 1, they obtain an interpolation between µ0 and
µ1 = P1(ρ)dx = µ0 ∗ γ where γ denotes the normalized Gaussian distribution on Rd and ∗ de-
notes the convolution. The dynamical curvature assumption ∇2 logPt(ρ) ≤ 0 is then satisfied
because the heat flow preserves the log-concavity. Hence k′t can be chosen to be zero and (3)
becomes an exact monotonicity result.

If we take the Ornstein-Ulhenbeck generator L = ∆−Aϕ · ∇, then the reversible distribu-
tion is the Normal distribution γA−1 with covariance matrix A−1, and the semigroup is given
by Pt(f)(ϕ) = EγC2t

[f (Q2tϕ+ ζ)] where Ct = A−1 − A−1e−tA and Qt = e
t
2
A. Consider then a

probability distribution µ0 which is absolutely continuous with respect to γA−1 and with density
e−V0 . Then (µt)t is the Langevin flow which interpolates between µ0 and the Gaussian γA−1 ,
and the density of µt with respect to γA−1 is given by P t

2

(
e−V0

)
(ϕ) = e−Vt(Qtϕ), where Vt is

the renormalized potential which we will define in Section 4.1 (see [20, Lemma 2.1]). Therefore
∇2 logP t

2

(
e−V0

)
= Qt∇2VtQt, and the dynamical curvature assumption ∇2 logPt(ρ) ≤ k′tId

is no other than the multiscale Bakry-Emery criterion (11). We have then showed that if
µ0 = e−V0dγA−1 satisfies the multiscale Bakry-Emery criterion (11), then the Poincaré constant
along the Langevin flow satisfies (3). This result can be also proved from [20, Theorem 2.2],
where Y. Shenfeld shows that under the multiscale Bakry-Emery criterion (11), the Langevin
transport map constructed as we will see in Section 3 is Lipschitz.

In the case of the Polchinski flow (νt)t (see Section 4.1), the previous framework does not
apply. Indeed, this framework would apply to the flow (µt)t where dµt(x) = eV∞(x)−Vt(x)dx,

however the distributions νt have in addition the Gaussian term e−
1
2
<x, (C∞−Ct)−1x>. Therefore,
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in order to study the behavior of the Poincaré constant along the flow, we have to introduce
in addition to Lt and Λt, the diffusion generators Lt defined in (9). As a result, we can derive
a monotonicity-type formula such as (3), but only at the cost of an additional term e(αt−αs)

depending on the Gaussian factor e−
1
2
<x, (C∞−Ct)−1x> (see Theorem 2).

3 A transport map interpretation

When a probability measure ν is the pushforward by a Lipschitz function f of a probability
distribution µ which satisfies some functional inequalities (such as the Poincaré inequality or
the Logarithmic-Sobolev inequality), then these functional inequalities are transfered to ν via
the map f (see [9, 16]). Consequently, a powerful way to derive functional inequalities for a
probability distribution is to construct a transport map from a classic probability distribution
satisfying those functional inequalities. These are generally log-concave distributions (see [10]),
the Normal distribution (see e.g [15, 17]), or the Wiener measure (see [14]). Put in a general
and informal way, the conditions on the measure ν to be realized as a transport of one of the
previous measures, are a compromise between the smallness of its support and the magnitude
of its curvature (as the convexity of its potential). The Bakry-Emery multiscale criterion (11)
has recently been used as a sufficient condition for a measure ν to be the pushforward by a
Lipschitz function of a Normal distribution, and this has been applied in particular to the case
of the sine-Gordon model (see [20]). Let us briefly describe a classic method to construct such
a Lipschitz transport map.

Let L be a generator of a Markov diffusion semigroup Pt with reversible measure µ on a
manifold M . If we draw randomly X0 with distribution µ0 and let the semigroup evolve, then
we obtain a Markov process Xt, whose laws µt interpolate between µ0 and µ∞ = µ. If we find
the vector field (ξt)t driving the flow µt, i.e. such that the continuity equation

∂tµt +∇ · (ξt µt) = 0

holds (where ∇· denotes the divergence operator), then we can compute the integral curves
(Tt : M →M)t of the velocity field by solving

∂tTt(x) = ξ(t, Tt(x)).

If all goes well (see [19, Chapter 4] for rigorous details), then for all t ≥ 0, µt is the pushforward
of µ0 by Tt and has density Pt(ρ)dµ, where ρ denotes the density of µ0 with respect to µ.
Moreover, for all t ≥ 0, Tt are bijective with inverse functions St, and therefore S := lim

t→+∞
St

is a transport map from µ∞ = µ to µ0. It was shown that this transport map is different than
the Brenier optimal transport map (see [21]). The curvature type assumptions on µ0 are then
used to show that S is Lipschitz via a control of the driving vector field ξt.

If the transport maps St : µ → µt are e
∫ t
0 k
′
s ds-Lipschitz for some function k′ : R+ → R,

then the transport map S : µ→ µ0 is e
∫∞
0 k′s ds-Lipschitz (see [15, Lemma 1]). In particular, by

taking the composition Tt ◦ Ss for s < t, we obtain a e
∫ t
s k
′
s ds-Lipschitz transport map from µs

to µt. In term of Poincaré constants, it implies the following control along the flow:

(7) CP (µs) ≤ e
∫ t
s k
′
s dsCP (µt).

We recognize the same result as (3) in Section 2.
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In the case of the Polchinski flow (νt)t defined in Section 4.1, the distributions νt interpolate
between ν0 given in (8) and ν∞ = δ0 the Dirac delta function. Therefore, this dynamic cannot
give a transport map, since ν0 cannot be realized as the pushforward of the Dirac delta function.
However, a natural question is to find a rescaling of the Polchinski semigroup such that the
ergodic distribution ν∞ is no longer the Dirac delta function, so a transport map between ν0

and ν∞ could be constructed. The theorem 2, linked to the monotonicity result (7) valid when
the transport maps exist and are Lipschitz, strongly suggests that such a rescaling is possible.
Moreover, this rescaling must remove the term e(αt−αs) in (16), and thus the largest eigenvalue

α′t of the matrix (C ′t)
1
2 (∇2Vt + (C∞ − Ct)−1) (C ′t)

1
2 should characterize the order of magnitude

of the rescaling. However, the problem of finding exactly such a rescaling is still open.

4 The Poincaré constant along the Polchinski flow

4.1 The Polchinski renormalization semigroup

In this section, we introduce the Polchinski renormalization semigroup. Let (Ct)t≥0 be a fam-
ily of semidefinite matrices on Rd. We assume that the Ct matrices increase continuously as
quadratic forms from C0 = 0 to a matrix C∞. We also assume the family to be twice differen-
tiable with respect to the parameter t, and moreover that its first derivative t 7→ C ′t is bounded.
We denote by γCt the (possibly degenerate) Gaussian measure with covariance Ct and mean
zero. Let

(8) ν0 = e−
1
2
<x,C−1

∞ x>−V0(x)dx

be a probability distribution on Rd, where V0 : Rd → R is a smooth function. The part
e−<x,C

−1
∞ x> represents the log-concave part of the measure, while e−V0 represents the non log-

concave part of ν0. We define

Vt := − log
(
γCt ∗ e−V0

)
Ps,tf := eVt γCt−Cs ∗ fe−Vs

νt := eV∞(0)−Vt(x)γC∞−Ct = e−
1
2
<x, (C∞−Ct)−1x>−Vt(x)+V∞(0)dx

where ∗ denotes the convolution. By definition, γ0 := δ0, hence ν∞ = δ0. As in [4, Section 2.1],
we assume that Eνtg (P0,tf) is continuous in t, so that

Eνtg (P0,tf) →
t→∞

g (Eν0(f)) .

The renormalized potential Vt satisfies the Polchinski equation (see [4, Proposition 2.1])

∂tVt =
1

2

(
1

2
∆C′t

+ Lt

)
Vt,

where

Lt :=
1

2
∆C′t
− < ∇Vt,∇ >C′t

,

and the index C ′t in the Laplacian or the dot product denotes that these operations are computed
with respect to C ′t on Rd, i.e.

< U, V >C′t
:=
∑
i,j

(C ′t)i,jUiVj and ∆C′t
f :=

∑
i,j

(C ′t)i,j
∂2f

∂xi,j
.
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The diffusion operator Λt := 1
2
∆C′t

+Lt admits e−Vt(x)dx as reversible distribution. Let us define
the diffusion operator

(9) Lt := ∆C′t
− < ∇Vt + (C∞ − Ct)−1X,∇ >C′t

,

which admits νt as reversible measure. The two operators Λt and Lt have the same carré du
champ operator |∇ · |2C′t , but different Γ2-operators. We will denote by Γ2,t the Γ2-operator

associated with Lt and by ΓLt
2 the one associated with Lt. These operators will be used in the

proof of Lemma 3.

4.2 The multiscale Bakry-Emery criterion

The multiscale Bakri-Emery criterion has been introduced in [4] in order to derive logarithmic
Sobolev inequalities for certain non-log-concave probability distributions from Quantum Field
Theory on which the classical Bakry-Emery criterion is unusable. One of these examples (the
ϕ4 model) is treated in Section 5. There is several differents multiscale Bakry-Emery conditions,
depending on the choice of the covariance decomposition (Ct)t in the Polchinski renormalization.
We will consider the following one, which is the most general.

Assumption 1. (Multiscale Bakry-Emery criterion) For all t ≥ 0, there exists λ′t ∈ R (possibly
negative) such that

(10) ∀x ∈ Rd, C ′t∇2VtC
′
t ≥

1

2
C ′′t + λ′tC

′
t,

in the sense of quadratic forms.

The criterion (10) is satisfied for example by the ϕ4 models under the Pauli-Villar decom-

position (see Section 5). When V0 = 0, then Vt = 0, and one takes Ct = C∞ − C∞e
−tC−1

∞ .
Then C ′′t = −C−1

∞ C ′t is negative semi definite, and then Assumption 1 is satisfied with λ′t ≤ λ
2

where λ is the smallest eigenvalue of C∞. When ∇2V0 ≥ 0, then ∇2Vt ≥ 0 for all t ≥ 0 (see [4,

Example 1.3]). Hence by taking again Ct = C∞−C∞e−tC
−1
∞ as in the case V0 = 0, Assumption

1 is satisfied again with λ′t ≤ λ
2
. The second and most classic multiscale Bakry-Emery criterion

requires that

(11) (C ′t)
1
2 HessVt(C

′
t)

1
2 ≥ µ′t Id

and is more adapted to the heat kernel decomposition C ′t = e−tC
−1
∞ , where in that case it implies

(10). This criterion is satisfied for example by the sine-Gordon model.

4.3 The Poincaré inequality under renormalization

Under the multiscale Bakry-Emery criterion, the probability distribution ν0 satisfies a Poincaré
inequality with sharp constant

(12) CP (ν0) ≤ |C ′0|
∫ ∞

0

e−2λtdt,
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where |C ′0| denotes the spectral radius of the matrix C ′0. Let us sketch the proof of this fact.
First, we decompose the variance under ν0 along the renormalization flow νt:

(13) Varν0(F ) = −
∫ ∞

0

∂

∂t
Eνt
[
(P0tF )2

]
dt =

∫ ∞
0

Eνt |∇P0tF |2C′t dt.

Next, it is possible to show that the multiscale Bakry-Emery criterion implies, as in the classical
case, the following intertwining relation between the Polchinski semigroup and the gradient
operator:

(14) |∇P0tF |2C′t ≤ |C
′
0|e−2λtP0t

(
|∇F |2

)
.

Then (13) and (14) together give (12). The proof of (14) is based on classic semigroup calcu-

lations. Let t > 0 and let us define ψ(s) = e−2(λt−λs)Ps,t

[
|∇P0,sF |2C′s

]
for all s ∈ [0, t]. One can

compute that (see [4, Lemma 2.8])

ψ′(s) = e−2(λt−λs)Ps,t

[
2λ′s |∇P0,sF |2C′s − (Ls − ∂s)

(
|∇P0,sF |2C′s

)]
≤ 0.

Therefore ψ(t) ≤ ψ(0), which is exactly (14).
We are interested in the behavior of the Poincaré constant along the Polchinski flow. The
Poincaré constant CP (νt) of νt is defined as the smaller constant Kt such that for all νt-centered
and compactly supported φ, ∫

Rd

φ2dνt ≤ Kt

∫
Rd

|∇φ|2C′tdνt.

Contrary to the usual case of study of the Poincaré constant along a flow presented in Section
2, the metric used in the definition of the Poincaré constant now depends on time. This is
because the Polchinski flow gets smaller and smaller until it reaches the Dirac delta function,
so in order to be able to see anything at all, we need to expand the metric by an adequate factor.
The adequate factor is C ′−1

t . In the case of the heat kernel decomposition, C ′−1
t = etC

−1
∞ and in

the case of the Pauli-Villars decomposition, C ′−1
t = t2

(
A+ 1

t

)2
, which both tend towards +∞

when t goes to +∞. By starting the Polchinski flow from time s instead of time zero, we can
see by imitating the argument for ν0 that the measure νs satisfies a Poincaré inequality with a
sharp constant

(15) CP (νs) ≤ |C ′s|
∫ ∞
s

e−2λtdt.

In particular, this implies that

CP (νs) −→
s→+∞

CP (ν∞) = CP (δ0) = 0.

To better understand the decay of the Poincaré constant along the flow (νt)t, we need to define
the following quantity.

Definition 1. For all t ≥ 0, we define α′t as the biggest eigenvalue of the matrix

(C ′t)
1
2

(
∇2Vt + (C∞ − Ct)−1

)
(C ′t)

1
2 ,

where (C ′t)
1
2 denotes the positive semidefinite square root of the positive semidefinite matrix C ′t.
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The quantity α′t is defined in order to have the following inequality:

(C ′t)
1
2

(
∇2Vt + (C∞ − Ct)−1

)
(C ′t)

1
2 ≤ α′t Id,

where Id is the identity matrix on Rd. Since Ct increases from zero to C∞, the α′t will be
positive as soon as ∇2Vt is not too negative. In particular, this is so under the Bakry-Emery
multiscale criterion when the λ′t are not too often negative. But this is a necessary condition
for the Bakry-Emery multiscale criterion to give a non-trivial Poincaré inequality, because of
the necessity of the integrability of e−2λt at +∞ (see Formula (12)). In the log-concave case,

i.e. when ∇V0 ≥ 0, then with the heat-kernel covariance decomposition Ct = C∞ − C∞e−tC
−1
∞ ,

we get that α′t ≥ λmax(C−1
∞ ) > 0.

4.4 Main result

We can now state the main theorem of this paper.

Theorem 2. If the distribution ν0 given in (8) is such that its Polchinski flow (νt)t satisfies
the multiscale Bakry-Emery criterion (10), then for all 0 ≤ s ≤ t, we have

(16) CP (νs) ≤ e(αt−αs)−2(λt−λs)CP (νt),

where λt :=
∫ t

0
λ′sds is defined from the multiscale curvatures λ′t, and αt :=

∫ t
0
α′sds are given in

Definition 1.

Let us underline the following.

1. When ν0 = γ (i.e. C∞ = Id and V0 = 0), then νt = γe−tId , so Cp(νt) = e−t, λt = αt = t
and (16) is trivially true.

2. When ν0 = γC∞ (i.e. V0 = 0), then νt = γ
C∞e−tC−1

∞
, so Cp(νt) = λmax(C∞e

−tC−1
∞ ),

λt = λmin(C∞)
2

t, αt = λmax(C∞)t and (16) becomes

λmax(C∞e
−sC−1

∞ ) ≤ e(t−s)(λmax(C∞)−λmin(C∞))λmax(C∞e
−tC−1

∞ ).

3. When ν0 is log-concave, then (16) is a monotonicity type result of the Poincaré constant
along a flow of log-concave measures. Contrary to [12, Theorem 1.1] which shows the
monotonicity along the heat flow, here it is not an exact monotonicity, and moreover the
Polchinski semigroup (P0t)t never coincides with the heat semigroup. However, Theorem
2 has a broader range of application since it applies to probability distributions which are
not log-concave, for instance the ϕ4 measures (see Section 5).

The sequel is devoted to the proof of Theorem 2. This proof is inspired by the corresponding
proof of [12, Theorem 1.1] by B. Klartag and E. Putterman. We begin with the following
lemma.

Lemma 3. Let φ : Rd → R be smooth and compactly supported. We denote by φt := P0,tφ.
Then the Raylegh quotient

Rφ(t) :=
Eνt|∇φt|2C′t

Eνtφ2
t

9



satisfies for all t > s,

Rφ(t) ≤ Rφ(s) exp ((αt − αs)− 2(λt − λs)) ,

where the λt are given by Assumption 1, and α′t is the largest eigenvalue of the symmetric
matrix C ′t (∇2Vt + (C∞ − Ct)−1).

Proof First, let us underline that Eνtφt = 0, justifying that Eνtφ2
t is the νt-variance of φt.

We can compute that (see [4, Proposition 2.1])

∂

∂t
Eνt|∇φt|2C′t = Eνt

[
2 < ∇Ltφt,∇φt >C′t

−Lt|∇φt|2C′t + |∇φt|2C′′t
]

and
∂

∂t
Eνtφ2

t = −Eνt |∇φt|2C′t .

Hence(
Eνtφ2

t

)2
R′(t) = Eνtφ2

tEνt
[
2 < ∇Ltφt,∇φt >C′t

−Lt|∇φt|2C′t + |∇φt|2C′′t
]

+
(
Eνt|∇φt|2C′t

)2

.

But the Bochner-type formula for the operator Γ2,t associated to the diffusion operator Lt gives

−2 Γ2,t(φt) = 2 < ∇Ltφt,∇φt >C′t
−Lt|∇φt|2C′t = −||∇2φt||2C′t − 2 < ∇2VtC

′
t∇φt,∇φt >C′t

.

So using following multiscale Bakry-Emery condition (10) (see Assumption 1),

C ′t∇2 VtC
′
t ≥

1

2
C ′′t + λ′tC

′
t,

one gets
−2 < ∇2VtC

′
t∇φt,∇φt >C′t

+|∇φt|2C′′t ≤ −2λ′t|∇φt|2C′t .

Therefore we obtain

R′(t) ≤
Eνt (φ2

t )Eνt

[
−||∇2φt||2C′t − 2λ′t|∇φt|2C′t

]
+
(
Eνt |∇φt|2C′t

)2

(Eνtφ2
t )

2

=

(
Eνt |∇φt|2C′t

)2

− Eνt (φ2
t )Eνt

(
||∇2φt||2C′t

)
(Eνtφ2

t )
2 − 2λ′tRφ(t)

Moreover, by denoting by ΓLt
2 the Γ2-operator of Lt, we have

Eνt|∇φt|2C′t = −Eνt (φtLtφt)

≤
(
Eνtφ2

t

) 1
2
(
Eνt
(
(−L φt)

2
)) 1

2

=
(
Eνtφ2

t

) 1
2
(
EνtΓLt

2 (φt)
) 1

2

=
(
Eνtφ2

t

) 1
2

(
Eνt

(
||∇2φt||2C′t

)
+ Eνt

(
<
(
∇2Vt + (C∞ − Ct)−1

)
C ′t∇φt,∇φt >C′t

)) 1
2
.
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Since by definition we have C ′t (∇2Vt + (C∞ − Ct)−1)C ′t ≤ α′tC
′
t, we obtain(

Eνt|∇φt|2C′t
)2

− Eνt
(
φ2
t

)
Eνt

(
||∇2φt||2C′t

)
≤ Eνt

(
φ2
t

)
Eνt
(
<
(
∇2Vt + (C∞ − Ct)−1

)
C ′t∇φt,∇φt >C′t

)
≤ α′t Eνt

(
φ2
t

)
Eνt |∇φt|2C′t ,

where αt :=
∫ t

0
α′sds. Finally, the derivative of Rφ satisfies

R′φ(t) ≤ (α′t − 2λ′t)Rφ(t),

and the Gronwall lemma gives

Rφ(t) ≤ Rφ(s) exp ((αt − αs)− 2(λt − λs)) ,

where αt :=
∫ t

0
α′sds. The proof is complete.

The Cauchy-Schwarz type inequality

∀u ∈ C2
c (Rd),

(
Eνt |∇u|2C′t

)2

≤ Eνt
(
u2
)
Eνt

(
||∇2u||2C′t

)
never holds true. Indeed, coupled with the Poincaré inequality, it implies

Eνt
(
u2
)
≤ CP (νt)Eνt

(
||∇2u||2C′t

)
,

which is easily seen to be false by taking u as an affine function. However, one can see in
the proof of Lemma 3 that the Raylegh quotient satisfies the following non linear differential
inequation

R′φ(t) ≤ Rφ(t)2 − λ′tRφ(t).

But it is not clear that this inequation gives more information about Rφ than we got in the
proof. We can now prove Theorem 2.
Proof of Theorem 2 By definition of the spectral gap, one has

1

CP (ν0)
= inf{Rφ(0) |φ ∈ C∞c (Rd)},

where C∞c (Rd) denotes the set of all smooth compactly supported functions on Rd. Let then
t ≥ 0. For all ε > 0, there exists φ ∈ C∞c (Rd) such that

Rφ(0) <
1

CP (ν0)
+ ε.

By Lemma 3, it follows that

e2λt−αtRφ(t) <
1

CP (ν0)
+ ε.

But by the definition of the Poincaré constant, 1
CP (νt)

≤ Rφ(t), so we get

∀ε > 0,
e2λt−αt

CP (νt)
<

1

CP (ν0)
+ ε,

from which we get
CP (νt) ≥ e2λt−αtCP (ν0)

by let ε go to zero. Theorem 2 is therefore proven thanks to the semigroup property: the idea
is to start the flow from the time s instead of 0, and with the same reasoning, we obtain exactly
Formula (16).
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5 Application to the ϕ4 models

In this section, we illustrate Theorem 2 on the general ϕ4 models (see [5, Chapter 1]) for a
more detailed introduction to this model from Quantum Field Theory). Let Λ be a finite set,
A = (Ax,y)x,y∈Λ be a symmetric positive definite matrix, and let g > 0, ν ∈ R and h ∈ RΛ

be constants. The ϕ4 general measure is a probability distribution on RΛ and is given by the
density

(17) dµΛ,h
A,g,ν(ϕ) =

1

Z
exp

(
−1

2
(ϕ,Aϕ)− V0(ϕ) + (h, ϕ)

)
dϕ

where Z is a normalization constant, (·, ·) denotes the dot product on RΛ, and

V0(ϕ) =
∑

Λ

(
1

4
gϕ4

x +
1

2
νϕ2

x

)
.

The probability distribution µΛ,h
A,g,ν is of the form (8) with C∞ = A−1. We use the Pauli-Villars

covariance regularization C0 = 0 and Ct =
(
A+ 1

t

)−1
, t > 0. Then the multiscale Bakry-Emery

criterion (10) is satisfied with

(18) λ′t =
1

t
− χt
t2
, t > 0,

where the quantity χt is the susceptibility, and is defined as the maximum over Λ of the
correlations between two points:

χt := max
x∈Λ

∑
y∈Λ

∫
RΛ

ϕxϕy dµ
Λ,0

A,g,ν+ 1
t

(ϕ).

This was proved in [7, Proposition 2.5] and used to show that the ϕ4 measures satisfy a
Logarithmic-Sobolev inequality. Therefore, Theorem 2 applies to the measure µΛ,h

A,g,ν , and we
obtain the following.

Proposition 4. Let νt be the Polchinski flow associated to the distribution µΛ,h
A,g,ν. Then the

Poincaré constant along this flow satisfies

(19) ∀0 ≤ s < t, CP (νs) ≤ e(αt−αs)−2(λt−λs)CP (νt),

with λt :=
∫ t

0

(
1
s
− χs

s2

)
ds, and αt :=

∫ t
0
α′sds where

(20) α′t =
1

t
− 1

t2
inf
ϕ∈RΛ

λmin(Σt(ϕ)) + λmax(A)(tλmax(A) + 1),

where Σt(ϕ) denotes the covariance matrix of the probability distribution µ
Λ,C−1

t ϕ

A,g,ν+ 1
t

.

Proof It only remains to prove the bound for α′t. On the one hand, we compute (C∞ −
Ct)
−1 = A(tA+Id) and moreover (C ′t)

1
2 = Ct

t
decreases in t, so (C ′t)

1
2 ≤ (C ′0)

1
2 = Id. On the other

hand, by using the same calculation as in [7, Section 2], we have∇2Vt(ϕ) = C−1
t −C−1

t Σt(ϕ)C−1
t ,
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where Σt(ϕ) denotes the covariance matrix of the probability distribution µ
Λ,C−1

t ϕ

A,g,ν+ 1
t

. Therefore

we obtain that for all ϕ ∈ RΛ,

(C ′t)
1
2

(
∇2Vt(ϕ) + (C∞ − Ct)−1

)
(C ′t)

1
2 = (C ′t)

1
2

(
C−1
t − C−1

t Σt(ϕ)C−1
t + (C∞ − Ct)−1

)
(C ′t)

1
2

≤ 1

t
− λmin(Σt(ϕ))

t2
+ λmax(A)(tλmax(A) + 1),

where inequations are taken in the sense of quadratic forms.

In Formula (20), the term 1
t
− 1

t2
inf
ϕ∈RΛ

λmin(Σt(ϕ)) controls the variation of CP (νt) when t is

small, and the term λmax(A)(tλmax(A) + 1) controls the variation of CP (νt) when t is large. If
we take s = 0 and if we let t go to infinity in (19), according to (15), we have that CP (νt) tends
towards zero. However, the exponential term then behaves as its dominant term etλmax(A)2

and
thus counterbalances the decrease of CP (νt).
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