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Abstract: Here we report a resonant x-ray diffraction (RXD) study at the Cu L3 edge on the 

multi-chiral system CsCuCl3, exhibiting helical magnetic order in a chiral crystal structure. 

RXD is a powerful technique to disentangle electronic degrees of freedom due to its 

sensitivity to electric monopoles (charge), magnetic dipoles (spin), and electric quadrupoles 

(orbital). We characterize electric quadrupole moments around Cu ascribed to the unoccupied 

Cu 3d orbital, whose quantization axis is off the basal plane. Detailed investigation of 

magnetic reflections reveals additional sinusoidal modulations along the principal axis 

superimposed on the reported helical structure, i.e., a longitudinal conical (helical-butterfly) 

structure. The out-of-plane modulations imply significant spin-orbit interaction despite S = 

1/2 of Cu2+.  

† Present address: SwissFEL, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.  

* To whom correspondence should be addressed: hiroki.ueda@psi.ch and urs.staub@psi.ch  

 

Magnetism and associated functionalities in non-centrosymmetric materials have 

attracted significant interest in the field of condensed matter physics. These interests lie, for 

example, in symmetry-protected spin textures, such as skyrmion lattices [Mühlbauer1] and 

chiral soliton lattices [Togawa1], and in non-reciprocal responses of quantum 

(quasi-)particles [Tokura1]. The low crystal symmetry is essential to stabilize a complex 

magnetic ground state with enriched properties due to additional interactions absent in 

centrosymmetric materials [Dzyaloshinsky1,Moriya1]. On the other hand, the low symmetry 

adds complexity in solving the magnetic ground state.  

Resonant x-ray diffraction (RXD) has been used to explore complex electronic 

ordered states, e.g., charge, magnetic, or orbital modulations, of which some show chiral 

orders [Gibbs1,Murakami1,Lang1,Tanaka1]. RXD is based on the anisotropic scattering of x-

rays at an atomic resonance, with contributions that are described by tensors up to the second-

rank multipole moments 〈𝑇𝑄
𝐾〉 (–K ≤ Q ≤ K), electric monopole (K = 0), magnetic dipole (K = 

1), and electric quadrupole (K = 2) [Matteo1]. Here we restrict our interpretation to the 

electric dipole-electric dipole channel of scatterings, generally most relevant in RXD. An 

electric monopole corresponds to a charge (spherical electron density), a magnetic dipole 

corresponds to a magnetic moment, and an electric quadrupole corresponds to an aspheric 

electron density due to partial electron occupancy of orbital(s) and/or covalency. Therefore, 
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RXD is a powerful technique for investigating an electronic ordered state of charges, spins, 

and/or orbitals. Furthermore, the magnetic scattering cross-section can be significant even for 

materials with small magnetic moments.  

Through direct measurements of orbitals and magnetic moments by RXD, we 

investigated the correlation between the two electronic degrees of freedom in a hexagonal 

chiral crystal CsCuCl3 with S = 1/2. We observed an out-of-plane component of spins in 

addition to the reported in-plane spin-spiral structure by neutron diffraction [Adachi1], 

indicating magnetic anisotropy via spin-orbit interaction. Although S = 1/2 systems have 

basically negligible magnetic anisotropy via spin-orbit coupling to their ground state 

[Moriya2], a recent theoretical study revealed the importance of single-ion anisotropy in 

some Cu2+ based compounds [Liu1]. The here obtained magnetic structure is consistent with 

those allowed by a symmetry analysis based on group theory. Our results show the powerful 

potential of RXD for non-centrosymmetric materials with a complex electronic order and a 

strong correlation between magnetic moments and orbitals even in S = 1/2 systems.  

CsCuCl3 possesses a distorted hexagonal perovskite structure because of the 

cooperative Jahn-Teller effect. The room-temperature structure belongs to a chiral space 

group, either P6522 [left-handed, Fig. 1(a)] or P6122 [right-handed, Fig. 1(b)], that appears 

below a phase transition temperature of ~423 K [Hirotsu1]. Cu2+ with S = 1/2 and the 

Wyckoff position 6a form a chiral chain along the principal axis and a triangular lattice in the 

basal plane, stabilizing a 120° antiferromagnetic (AFM) structure below TN (= 10.7 K). Intra-

chain ferromagnetic exchange interaction and antisymmetric exchange (Dzyaloshinskii-

Moriya) interaction, allowed by the low-symmetry, twist the 120° AFM structure along [001] 

with a periodicity of ~21 nm. The magnetic propagation vector k of the helical structure is 

(1/3, 1/3, δ), where δ ≈ 0.085. This magnetic structure reported by neutron diffraction 

[Adachi1] resembles those of chiral langasite Ba3(Nb,Ta)Fe3Si2O14 [Marty1] and double 

molybdate RbFe(MoO4)2 [Kenzelmann1]. The former possesses additional sinusoidal 

modulations of spins along [001], a so-called longitudinal conical (or helical-butterfly) 

structure [Scagnoli1].  
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Fig. 1 Crystal structures of CsCuCl3 [(a) left-handed (P6522) and (b) right-handed (P6122)] 

and (e) its longitudinal conical (or helical-butterfly) magnetic structure with two 

components, (c) a helical one parallel to the basal plane and (d) a sinusoidal one parallel to 

the principal axis. Red and green helices are guides to the eyes for the chiral arrangements 

of Cu2+ along the [001] axis.  

 

As a result of the two-fold (C2) symmetry breaking along <110> reflected by the 

small z component of k, two propagation vectors of k1 = (1/3, 1/3, δ) and k2 = (1/3, 1/3, –δ) 

do not coexist in a single magnetic domain, shown in Fig. 2. Such domains characterized by 

the star of k are called configuration domains [Brown1]. Since the helical component gives 

chirality domains, there are four possible magnetic domains in the reported magnetic 

structure of CsCuCl3, as shown in Fig. 2.  



4 
 

 

Fig. 2 The reported magnetic structure of CsCuCl3, and possible four domains. A blue 

sphere, red arrow, and orange arrow represent Cu2+, spin moment, and magnetic 

propagation vector k, respectively. There are six equivalent k for respective domains, the 

star of k1 (1/3, 1/3, +δ) or k2 (1/3, 1/3, –δ). A gray plane represents the pseudo lattice plane 

normal to [001] at a different height (z).  

 

RXD on CsCuCl3 was previously performed at the Cu K edge (1s → 4p), and the 

chiral crystal structure was characterized through the observation of electric quadrupole 

moments of Cu 4p [Kousaka1]. As a result of RXD combined with polarized neutron 

diffraction, a strong correlation between crystal chirality and magnetic chirality was reported 

[Kousaka2]. However, RXD at the Cu L3 edge (2p → 3d) is directly sensitive to 3d states, the 

fundamental orbitals that closely relate to the electronic degrees of freedom of the material, 

i.e., both magnetism and unoccupied Cu 3d orbital (3𝑑𝑥2−𝑦2), namely, a hole [Laiho1]. Here 

the quantization axis z is along the elongated direction of CuCl6 octahedron [see Fig. 3(d)]. 

Such an experiment enables us to investigate the two different orders simultaneously and 

directly with similar penetration depths, providing ideal comparison conditions.  

Our RXD experiments were performed on mono-chiral single crystals probing 

different surfaces, sample#1: parallel to (001), sample#2: parallel to (119), and sample#3: 

parallel to (110). These samples were grown from aqueous solution by a method slightly 

different from Ref. [Kousaka3]. To insure mono-chirality, crystallization was finely 

controlled, not by evaporation but by a slow temperature lowering of the solution from 40 ℃ 

to about 25 ℃. We mounted the samples on a diffractometer installed at the RESOXS end-

station [Staub1]. The photon energy was chosen around the Cu L3 edge (~930 eV), and the 
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polarization of x-ray beams, linear π and circular C+/C–, was set by the twin Apple II type 

undulators of the X11MA beamline at the Swiss Light Source (Switzerland) [Flechsig1]. 

Here C+ (C–) is defined by the Stokes parameter P2 = +1 (–1) [Landau1].  

Let us first formulate RXD structure factors to obtain the intensities of the (001) and 

(002) forbidden reflections, I(001) and I(002), using electric quadrupole moments, 𝑄𝜉𝜂, 𝑄𝜂𝜁, 𝑄𝜁𝜉, 

𝑄𝜉2−𝜂2, and 𝑄3𝜁2−𝑟2 (see Appendix A for detailed calculation). Here we use a local Cartesian 

coordinate system ξηζ shown in Fig. 3(d). Because of the C2 symmetry along ξ, 𝑄𝜉𝜂 and 𝑄𝜁𝜉 

are constrained to be zero. 𝑄3𝜁2−𝑟2 contributes to allowed Bragg reflections, however, none 

of which are accessible at the Cu L3 edge. Then I(001) and I(002) are obtained as  

𝐼(001)
π = 𝐼(001)

C+ = 𝐼(001)
C− =

27

4
|𝑄𝜂𝜁|

2
cos2𝜃,  (1)  

𝐼(002)(𝜒, 𝑃2) =
27

8
|𝑄𝜉2−𝜂2|

2
(1 + sin2𝜃)(1 − 𝜒𝑃2 sin 𝜃)

2,  (2)  

where θ is the Bragg angle [~21.7° for (001) and ~47.8° for (002)] and χ is the crystal 

chirality [–1 (+1) for left- (right-)handed structure]. Hence, we expect that the (002) 

reflection exhibits circular dichroism corresponding to the handedness of the crystal structure, 

whereas the (001) reflection does not. These two reflections probe different quadrupole 

moments shown in Fig. 3(d), in contrast to trigonal chiral crystals [Lovesey1,Usui1], where 

two quadrupole moments contribute to a forbidden reflection.  

Figures 3(a)-3(c) show the RXD profiles taken around the two reflections at the Cu L3 

edge, nicely matching with Eqs. (1) and (2). Their resonant enhancement is confirmed by 

photon-energy scans while fixing the reflection condition, as seen in Figs. 4(a) and 4(b). Here 

a dip structure significant for (001) around 930.3 eV is due to self-absorption 

[Scagnoli2,Joly1]. A minor effect is observed for the (002) reflection implying that the “self-

absorption” is more significant close to the surface as the (001) is more surface sensitive due 

to the shallower incident and exit angles than for the (002) reflection. There is enormous 

circular dichroism on (002) with an intensity ratio of ~50, close to the expected ratio of ~45 

obtained by evaluating Eq. (2). The dichroism is indeed negligible on (001), as expected. The 

relative magnitude of 𝑄𝜉2−𝜂2 and 𝑄𝜂𝜁 is derived by fitting the experimental results using Eqs. 

(1) and (2). The self-absorption effect was thereby accounted for and determined by fitting 

the photon-energy scan. The obtained ratio is |𝑄𝜉2−𝜂2|:|𝑄𝜂𝜁| ≈ 0.8:1.0. A linear combination 

of 𝑄𝜉2−𝜂2 and 𝑄𝜂𝜁 with the obtained ratio provides the exact aspheric electron density due to 

the presence of a hole in 3𝑑𝑥2−𝑦2 as reported in Ref. [Laiho1]. Since left-handed and right-

handed structures are connected by a mirror operation in the ξζ plane, 𝑄𝜂𝜁 flips its sign while 

𝑄𝜉2−𝜂2 does not, as sketched in Fig. 3(d). As a result, the local electric quadrupole moments 

form a chiral helix along [001] and are mirrored between the two structures, as observed in a 

trigonal chiral crystal DyFe3(BO3)4 [Usui1].  
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Fig. 3 Resonant diffraction profiles; (a),(c) around the (002) reflection, where (a) was 

measured for the left-handed crystal (P6522) while (c) was measured for the right-handed 

crystal (P6122), and (b) around the (001) reflection. Note that (a) and (b) were taken from 

sample#1 with the (001) surface, whereas (c) was taken from sample#2 with the (119) 

surface. Solid or broken curves are pseudo-Voigt peak fits. (d) A distorted CuCl6 

octahedron, observed quadrupole moments, 𝐐𝜉2−𝜂2 (upper) and 𝐐𝜂𝜁 (lower), and a chiral 

quadrupole helix along [001] as a linear combination of the quadrupole moments. The 

helix is mirrored between two enantiomers (left: P6522 and right: P6122). Two colors of 

the quadrupole moments show the sign of poles, red (+) and blue (). The local Cartesian 

coordinate system ξηζ is defined so that ξ is along the two-fold axis (// <110>), ζ is along 

[001], and η is normal to both of them. The quadrupole moment 𝐐3𝜁2−𝑟2, which is not 

observed in our experiment, is omitted here.   
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Fig. 4 Photon-energy dependence of the resonantly allowed reflections around the Cu L3 

edge while maintaining a given diffraction condition; (a) (001) and (b) (002) forbidden 

reflections due to electric quadrupole moments from a left-handed (P6522) crystal 

(sample#1) with the (001) surface, and (c) (1/3 1/3 +δ) and (d) (1/3 1/3 1+δ) magnetic 

reflections from sample#3 with the (110) surface. (c) and (d) were taken below TN. A green 

curve in (a) is a Lorentzian fit to correct the self-absorption (see main text).  

 

Figures 5(a) and 5(b) show RXD profiles of the (1/3 1/3 ±δ) magnetic reflections from 

sample#3 with the (110) surface, whose resonant enhancement is shown in Fig. 4(c). The 

RXD intensities of magnetic reflections from the reported magnetic structure when using 

circularly polarized x-ray beams can be expressed as  

𝐼(ℎ, 𝑃2, ±𝑘) =
𝐼𝐆

8
{[sin2𝜔 + sin22𝜃 + sin2(2𝜃 − 𝜔)](𝛿𝛕,𝐆+𝐤 + 𝛿𝛕,𝐆−𝐤) + 2ℎ𝑃2 sin(2𝜃 −

𝜔) sin 2𝜃 (𝛿𝛕,𝐆+𝐤 − 𝛿𝛕,𝐆−𝐤)},  (3) 

where ω is the incident angle of x-ray beams to the (110) surface [see the inset of Fig. 5(a)], 

G represents a reciprocal lattice vector, τ is the scattering vector, and h = –1 (+1) indicates 

spin helicity for the left- (right-)handed magnetic structure {corresponding to Figs. 2(c) and 

2(d) [Figs. 2(a) and 2(b)]} (See Appendix B for details). 𝐼𝐆 = 𝐹𝐆
∗𝐹𝐆 is the diffraction intensity 

of a fundamental reflection at G. Here, 𝐹𝐆 = (3 4𝜋𝑞⁄ )(𝐹−1
1 − 𝐹+1

1 )∑ exp(𝑖𝐆 ∙ 𝐫𝑗)𝑗  is the 

structure factor, where q is the modulus of the wave vector of incident x-rays, 𝐹±1
1  is the 

atomic scattering properties of the electric-dipole transition, and 𝐫𝑗 is the positional vector of 

the jth Cu2+. Equation (3) relates the circular dichroism to the spin helicity. As the two 

propagation vectors k1 and k2 do not coexist in a single magnetic domain, the observation of 

two distinct magnetic reflections indicates the presence of configuration domains. A mono-

chiral crystal exhibits a mono-chiral spin helix since the helical modulation results from the 

antisymmetric exchange interaction mediated through spin-orbit coupling [Kousaka2]. Thus, 

we obtain only two magnetic domains with a right-handed spin helix [Figs. 2(a) and 2(b)].  
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In addition to the observed (1/3 1/3 ±δ) reflections, which are satellite reflections 

around G = (0, 0, 0), we observed the resonantly-allowed (1/3 1/3 1±δ) reflections [see Figs. 

4(d), 5(c), and 5(d)], exhibiting clear circular dichroism as well. These reflections are 

satellites around G = (0, 0, 1), which are absent for the reported magnetic structure because 

the (0 0 1) reflection is space-group forbidden, i.e., I(001) = 0 in Eq. (3). This is consistent with 

the absence of intensity off-the resonance [Fig. 4(a)]. Nevertheless, their magnetic origin is 

evident because of the temperature dependence shown in Fig. 5(f) as they vanish above TN.  

To clarify their origin, we collected RXD data along (00L) and found a broad peak at 

(0 0 1/2), existing only below TN [see Fig. 5(e)]. The (0 0 1/2) reflection shows negligible 

circular dichroism and, therefore, probes another magnetic component than the helical 

component. The broad peak width indicates the small correlation length of this component 

that is ~4.5 nm, supporting that the component is independent of the helical one. Here the 

correlation length p was obtained as p = c/2πΔl, where Δl is the fitted half-width at half 

maximum of the reflection. Note that the penetration depth of the x-ray beams at the 

incidence angle for (0 0 1/2) estimated in the same way for (001) is ~52 nm. Considering (i) 

the resemblance to the reported magnetic signals in chiral langasite Ba3(Nb,Ta)Fe3Si2O14, (ii) 

the absence of circular dichroism, and (iii) no expected cycloidal component because of no 

electric polarization in the ground state [Miyake1], the additional component can be 

described by sinusoidal modulations along [001], as drawn in Fig. 1(d). Thus, this 

observation supports a longitudinal conical (or helical-butterfly) structure shown in Fig. 1(e). 

Indeed, the symmetry analysis using “k-Subgroupsmag” from the Bilbao Crystallographic 

Server [Perez-Mato1] gives such a magnetic structure as a possible magnetic subgroup of the 

space group of the paramagnetic phase with the given two magnetic propagation vectors k1(2) 

and k3 = (0, 0, 1/2).  

In the presence of out-of-plane sinusoidal modulations with a propagation vector k3, 

the amplitude of the in-plane component modulates along [001] with a twice larger 

propagation vector than k3. This allows magnetic reflections at τ = (0, 0, 0) + k1(2) + 2k3, 

appearing at (1/3 1/3 1±δ). Therefore, the RXD intensities of the family of (1/3 1/3 1±δ) 

reflections can be written as  

𝐼(ℎ, 𝑃2) =
𝐼𝐆

32
𝐴1
2{[sin2𝜔 + sin22𝜃 + sin2(2𝜃 − 𝜔)](𝛿𝛕,𝐆+𝐤1+2𝐤3 + 𝛿𝛕,𝐆+𝐤1−2𝐤3 +

𝛿𝛕,𝐆+𝐤2+2𝐤3 + 𝛿𝛕,𝐆+𝐤2−2𝐤3) + 2ℎ𝑃2 sin(2𝜃 − 𝜔) sin 2𝜃 (−𝛿𝛕,𝐆+𝐤1+2𝐤3 − 𝛿𝛕,𝐆+𝐤1−2𝐤3 +

𝛿𝛕,𝐆+𝐤2+2𝐤3 + 𝛿𝛕,𝐆+𝐤2−2𝐤3)},  (4) 

where A1 is a series expansion coefficient (see Appendix C for details). This matches well 

with the experimental observation, i.e., the emergence of the reflections with circular 

dichroism corresponding to spin helicity.  
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Fig. 5 Resonant diffraction profiles of magnetic reflections measured below TN; (a) (1/3 1/3 

+δ) [G = 0 + k1], (b) (1/3 1/3 –δ) [G = 0 + k2], (c) (1/3 1/3 1+δ) [G = 0 + 2k3 + k1], (d) (1/3 

1/3 1–δ) [G = 0 + 2k3 + k2], and (e) (0 0 1/2) [G = 0 + k3]. For comparison, a profile 

measured above TN with the π polarization is shown in (e) by a black broken line. The inset 

of (a) shows the diffraction geometry, where q (q’) is the wave vector of incident 

(scattered) x-ray beam and τ is the scattering vector. (f) Temperature dependence of the 

(1/3 1/3 1–δ) reflection from sample#2 with the (119) surface. Red curve in (f) represents 

power-law fit [ (TN – T)α], where α (= 0.48 ± 0.03) is the critical exponent and TN is fixed 

to 10.7 K.  

 

Whereas the antisymmetric exchange interaction was proposed to create the sinusoidal 

modulation in a helically twisted 120° AFM structure for langasite Ba3NbFe3Si2O14 

[Scagnoli1], this mechanism is unlikely applicable for CsCuCl3 because the sinusoidal 

modulation has a different propagation vector than the helical component. The commensurate 

propagation vector implies its origin in local spin-orbit interaction, i.e., single-ion anisotropy. 

Although single-ion anisotropy has long been believed not to be relevant in S = 1/2 systems 

[Moriya2], its importance for such systems was pointed out by Liu et al. [Liu1]. Taking the 

quantization axis z along the elongated direction of CuCl6 octahedron, a hole populates 

3𝑑𝑥2−𝑦2 [Laiho1]. Our RXD results support this picture as the negative poles (electron) of the 

electric quadrupole moment of Cu 3d point to the z axis while the positive poles (hole) point 

to the orthogonal directions, as shown in Fig. 3(d). The z axis lies not in the basal plane, 

implying that single-ion anisotropy favors spins to point off the basal plane. This additional 

term in the magnetic Hamiltonian may stabilize the longitudinal conical structure.  

It might be worth comparing the longitudinal conical structure also with double 

molybdate RbFe(MoO4)2 because of similarity and difference, which exhibits a 120° AFM 

structure with helical modulation along [001] without a sinusoidal component [Marty1]. 

While there is orbital angular momentum L in Fe3+ for Ba3NbFe3Si2O14 due to strong 

hybridization between Fe 3d and O 2p orbitals [Scagnoli1] and in Cu2+ for CsCuCl3 as here 
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discussed, L may be negligible in Fe3+ for RbFe(MoO4)2 as the bond length between Fe and 

O is much larger in RbFe(MoO4)2 than in Ba3NbFe3Si2O14 (more than 1 pm) [Jain1]. A 

negligibly small L results in a minor single-ion anisotropy insufficient to stabilize the 

longitudinal conical structure.  

In conclusion, we performed resonant soft x-ray diffraction on a chiral crystal 

CsCuCl3 and characterized its multi-chiral structures, i.e., the orbital chirality in the crystal 

structure and the magnetic structure. Two quadrupole moment components of the Cu2+ 3d 

states, determined by the distorted CuCl6 octahedron, were quantified by measuring two 

independent forbidden reflections. The result agrees with the presence of a hole in a specific 

3d state and a chiral arrangement of the orbitals. In addition to the magnetic satellite 

reflections already observed by neutron diffraction originated from the 120° 

antiferromagnetic structure in the basal plane with a helical modulation along the principal 

axis, we found additional magnetic reflections implying the presence of sinusoidal 

modulations along the principal axis in the magnetic structure, i.e., a longitudinal conical (or 

helical-butterfly) structure. The out-of-plane sinusoidal modulations might be caused by a 

single-ion anisotropy with its local quantization axis of Cu 3d states being off the basal plane. 

Our results suggest a strong correlation between orbital and magnetism even in S = 1/2 

systems and its importance to understanding the magnetic ground state.  
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Appendix A: Symmetry analysis and RXD intensities of forbidden reflections 

Here, we calculate RXD intensities of the forbidden reflections with referring to Refs. 

[Lovesey1,Nakajima1]. The electron density ρ(r) around an ion can be expressed by electric 

multipoles ρlm(r) as 𝜌(𝐫) = ∑ 𝜌𝑙𝑚(𝑟)𝑌𝑙
𝑚(�̂�)𝑙,𝑚 , where �̂� is a radial unit vector and 𝑌𝑙

𝑚(�̂�) is 

the spherical harmonics with –l ≤ m ≤ l. We get ρlm(r) as 𝜌𝑙𝑚(𝑟) = ∫ 𝜌(𝐫)𝑌𝑙
𝑚(�̂�)∗𝑑�̂�. The 

multipole moments are generally expressed as an expected value of the spherical tensor 𝑇𝑄
𝐾, 

which relates to 𝑌𝑙
𝑚(�̂�) as 𝑇𝑄

𝐾 = 𝑌𝑙
𝑚(�̂�) with m = Q and l = K. Here, K is the rank of the 

tensor and Q is its projection, holding the relation –K ≤ Q ≤ K. 〈𝑇𝑄
𝐾〉 is a complex number, 



11 
 

〈𝑇𝑄
𝐾〉 = 〈𝑇𝑄

𝐾〉′ + 𝑖〈𝑇𝑄
𝐾〉", with 〈𝑇𝑄

𝐾〉∗ = (−1)𝑄〈𝑇−𝑄
𝐾 〉. There are five independent real-number 

components for quadrupole moments with K = 2, 〈𝑇0
2〉′, 〈𝑇+1

2 〉′, 〈𝑇+1
2 〉", 〈𝑇+2

2 〉′, and 〈𝑇+2
2 〉", 

which corresponds to 𝑄3𝑧2−𝑟2, 𝑄𝑧𝑥, 𝑄𝑦𝑧, 𝑄𝑥2−𝑦2, and 𝑄𝑥𝑦 for a general Cartesian coordinate 

system xyz, respectively.  

There are six Cu2+ located at r1~r6 in a single unit cell with the Wyckoff position 6a, 

as listed in Table A1. Using 〈𝑇𝑄
𝐾〉 of Cu2+ at r1, those of the remaining five Cu2+ can be 

obtained by rotating 〈𝑇𝑄
𝐾〉 by 𝜒𝜋 3⁄  (r2), 2𝜒𝜋 3⁄  (r3), 𝜒𝜋 2⁄  (r4), −2𝜒𝜋 3⁄  (r5), and −𝜒𝜋 3⁄  

(r6), where χ = –1 (+1) corresponds to a left- (right-)handed crystal structure. The RXD 

structure factor 𝛹𝑄
𝐾 of a (00L) reflection is  

𝛹𝑄
𝐾 = 〈𝑇𝑄

𝐾〉 (1 + e2𝜋𝜒𝑖
𝑄

6e2𝜋𝑖
𝐿

6 + e2𝜋𝜒𝑖
𝑄

3e2𝜋𝑖
𝐿

3 + e2𝜋𝜒𝑖
𝑄

2e2𝜋𝑖
𝐿

2 + e2𝜋𝜒𝑖
𝑄

3e−2𝜋𝑖
𝐿

3 + e2𝜋𝜒𝑖
𝑄

6e−2𝜋𝑖
𝐿

6).

 (A1)  

It is evident that a left- (right-)handed structure gives forbidden reflections when L – Q = 6n 

(L + Q = 6n), where n is an integer. Note that 〈𝑇0
𝐾〉 does not contribute to the space-group 

forbidden reflections but to allowed reflections. We take the local Cartesian coordinate 

system ξηζ shown in Fig. 3(d), where ξ is along the two-fold axis <110>, ζ is along [001], η is 

normal to both the directions. The two-fold (C2) symmetry constraints 〈𝑇𝑄
𝐾〉 that is an odd 

function of ξ to be zero, i.e., 〈𝑇+1
2 〉′ and 〈𝑇+2

2 〉", corresponding to ζξ and ξη, respectively. As a 

short summary, only one quadrupole moment contributes to respective forbidden (00L) 

reflections; 〈𝑇+1
2 〉" (ζξ) for (001) and 〈𝑇+2

2 〉′ (ξ2 – η2) for (002).  

The scattering length at an atomic resonance is sensitive to the polarization of incident 

x-rays ε and that of scattered x-rays ε’. The resonant scattering is then sensitive to anisotropic 

electron density characterized by electric quadrupole moments. An x-ray susceptibility tensor  

𝑓 = (

𝑓𝜉𝜉 𝑓𝜉𝜂 𝑓𝜉𝜁
𝑓𝜉𝜂 𝑓𝜂𝜂 𝑓𝜂𝜁
𝑓𝜉𝜁 𝑓𝜂𝜁 𝑓𝜁𝜁

), (A2)  

defined by the local symmetry of a resonant atom, describes the scattering. We here take the 

local Cartesian coordinate system ξηζ. Note that the tensor components and electric 

quadrupole moments are related as 𝑄3𝜁2−𝑟2 =
1

2
(2𝑓𝜁𝜁 − 𝑓𝜉𝜉 − 𝑓𝜂𝜂), 𝑄𝜉𝜁 =

2

√3
𝑓𝜉𝜁, 𝑄𝜂𝜁 =

2

√3
𝑓𝜂𝜁, 𝑄𝜉2−𝜂2 =

1

√3
(𝑓𝜉𝜉 − 𝑓𝜂𝜂), and 𝑄𝜉𝜂 =

2

√3
𝑓𝜉𝜂 [Nagao1]. The local C2 symmetry along 

the ξ axis requires the relation 𝑓 = 𝐶2𝑓𝐶2
−1, which results in 𝑓𝜉𝜂 = 𝑓𝜉𝜁 = 0,  

𝑓 = (

𝑓𝜉𝜉 0 0

0 𝑓𝜂𝜂 𝑓𝜂𝜁
0 𝑓𝜂𝜁 𝑓𝜁𝜁

). (A3)  

Each Cu2+ position is connected by the six-fold screw symmetry along ζ, whose 𝑓 is thus 

obtained as shown in Table A1. The RXD form factor �̂� from a single unit cell at the 

scattering vector τ = (0, 0, L) is calculated as  
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�̂�(00𝐿) = 𝑓 + 𝐶3
𝜒
𝑓𝐶3

−𝜒
e2𝜋𝑖

𝐿

6 + 𝐶3
2𝜒
𝑓𝐶3

−2𝜒
e2𝜋𝑖

𝐿

3 + 𝐶2
1𝑓𝐶2

−1e2𝜋𝑖
𝐿

2 + 𝐶3
−2𝜒

𝑓𝐶3
𝜒
e−2𝜋𝑖

𝐿

3 +

𝐶3
−𝜒
𝑓𝐶3

𝜒
e−2𝜋𝑖

𝐿

6. (A4)  

By using resonant scattering amplitude in the respective polarization channel ε’ε (�̂�(00𝐿)
𝜀′𝜀 ) 

described as  

�̂�(00𝐿)
𝜀′𝜀 = 𝛆′�̂�(00𝐿)𝛆, (A5)  

the RXD intensity 𝐼(00𝐿) using circular polarization with the Stokes parameter P2 is obtained 

as  

𝐼(00𝐿)(𝑃2) =
1

2
(|�̂�(00𝐿)

𝜎′𝜎 |
2

+ |�̂�(00𝐿)
𝜋′𝜎 |

2

+ |�̂�(00𝐿)
𝜎′𝜋 |

2

+ |�̂�(00𝐿)
𝜋′𝜋 |

2

) + 𝑃2Im (�̂�(00𝐿)
𝜎′𝜋

∗
�̂�(00𝐿)
𝜎′𝜎 +

�̂�(00𝐿)
𝜋′𝜋

∗
�̂�(00𝐿)
𝜋′𝜎 ),  (A6)  

while 𝐼(00𝐿) using linear polarization with the Stokes parameter P3 (+1 for σ while –1 for π) is  

𝐼(00𝐿)(𝑃3) =
1

2
(1 + 𝑃3) (|�̂�(00𝐿)

𝜎′𝜎 |
2

+ |�̂�(00𝐿)
𝜋′𝜎 |

2

) +
1

2
(1 − 𝑃3) (|�̂�(00𝐿)

𝜎′𝜋 |
2

+ |�̂�(00𝐿)
𝜋′𝜋 |

2

). (A7)  

We obtain  

𝐼(001)(𝑃3 = ±1) = 𝐼(001)(𝑃2 = ±1) = 9𝑓𝜂𝜁
2cos2𝜃 =

27

4
|𝑄𝜂𝜁|

2
cos2𝜃, (A8)  

𝐼(002)(𝜒, 𝑃2) =
9

8
(𝑓𝜉𝜉 − 𝑓𝜂𝜂)

2
(1 + sin2𝜃)(1 − 𝜒𝑃2 sin 𝜃)

2 

=
27

8
|𝑄𝜉2−𝜂2|

2
(1 + sin2𝜃)(1 − 𝜒𝑃2 sin 𝜃)

2,  (A9)  

𝐼(002)(𝑃3 = +1) =
9

8
(𝑓𝜉𝜉 − 𝑓𝜂𝜂)

2
(1 + sin2𝜃) 

=
27

8
|𝑄𝜉2−𝜂2|

2
(1 + sin2𝜃), and   (A10)  

𝐼(002)(𝑃3 = +1) =
9

8
(𝑓𝜉𝜉 − 𝑓𝜂𝜂)

2
(1 + sin2𝜃)sin2𝜃 

=
27

8
|𝑄𝜉2−𝜂2|

2
(1 + sin2𝜃)sin2𝜃, (A11)  

where θ is the Bragg angle. We find (002) shows circular dichroism correlating to crystal 

chirality while (001) does not. Unlike trigonal systems [Tanaka1,Usui1], there is no 

azimuthal angle dependence on the RXD intensities because such dependence appears due to 

a coupled term between two quadrupole moments.  

 

Table A1 The atomic position, multipole moments, and x-ray susceptibility tensor of six 

Cu2+ in a single unit cell. Here χ represents the crystal chirality, –1 (+1) for a left- 

(right-)handed structure.  

Label Position Multipole moments X-ray susceptibility tensor  

1 𝐫1 = (0, 0, 0) 〈𝑇𝑄
𝐾〉 𝑓 

2 𝐫2 = (𝑥, 𝑥,
1

6
𝜒) 〈𝑇𝑄

𝐾〉e2𝜋𝜒𝑖
𝑄
6  𝐶3

𝜒
𝑓𝐶3

−𝜒
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3 𝐫3 = (0, 𝑥,
1

3
𝜒) 〈𝑇𝑄

𝐾〉e2𝜋𝜒𝑖
𝑄
3  𝐶3

2𝜒
𝑓𝐶3

−2𝜒
 

4 𝐫4 = (−𝑥, 0,
1

2
) 〈𝑇𝑄

𝐾〉e2𝜋𝜒𝑖
𝑄
2  𝐶2

1𝑓𝐶2
−1 

5 𝐫5 = (−𝑥,−𝑥,
1

3
𝜒) 〈𝑇𝑄

𝐾〉e−2𝜋𝜒𝑖
𝑄
3  𝐶3

−2𝜒
𝑓𝐶3

𝜒
 

6 𝐫6 = (0, −𝑥,
1

6
𝜒) 〈𝑇𝑄

𝐾〉e−2𝜋𝜒𝑖
𝑄
6  𝐶3

−𝜒
𝑓𝐶3

𝜒
 

 

Appendix B: RXD intensities of magnetic reflections from the helical structure 

The magnetic scattering term in the resonant scattering length from a single atom is  

𝑓m = −(
3

4𝜋𝑞
) 𝑖(𝛆′ × 𝛆) ∙ 𝐦(𝐹−1

1 − 𝐹+1
1 ), (B1)  

where m is the unit vector along a magnetic moment, q is the modulus of the wave vector of 

incident x-ray beams, and 𝐹±1
1  represents the atomic scattering properties of the dipole 

transition [Lovesey2]. We here use the Cartesian coordinate system xyz, where x is along 

[110], y is along [–210], and z is along [001] [see Fig. 5(a) for the diffraction geometry, an 

incident angle of ω and scattering angle of 2θ]. The photon polarization dependence (𝛆′ × 𝛆) 

is given by  

𝛆′ × 𝛆 = (
𝛔′ × 𝛔 𝛔′ × 𝛑
𝛑′ × 𝛔 𝛑′ × 𝛑

) = (
𝟎 �̂�

−𝐪′̂ 𝐪′̂ × �̂�
), (B2)  

where �̂� = (− sin𝜔 , 0, − cos𝜔) [𝐪′̂ = (sin(2𝜃 − 𝜔) , 0, − cos(2𝜃 − 𝜔))] is the unit vector 

along the wave vector of incident [scattered] x-ray beams and 𝐪′̂ × �̂� = (0, sin 2𝜃 , 0). Total 

scattering amplitude F is described by using a magnetic form factor 𝐅𝑚 = ∑ 𝐦𝑗e
𝑖𝛕∙𝐫𝑗

𝑗  and 

𝑏 = −(
3

4𝜋𝑞
) 𝑖(𝐹−1

1 − 𝐹+1
1 ) as  

𝐹 = 𝑏 (
𝟎 �̂� ∙ 𝐅𝑚

−𝐪′̂ ∙ 𝐅𝑚 (𝐪′̂ × �̂�) ∙ 𝐅𝑚
).  (B3)  

The jth Cu2+ in the helical magnetic structure of CsCuCl3 has the magnetic moment  

𝐦𝑗 = (

cos(𝑖𝐤 ∙ 𝐫𝑗)

sin(𝑖𝐤 ∙ 𝐫𝑗)

0

) =
1

2
(

e𝑖𝐤∙𝐫𝑗 + e−𝑖𝐤∙𝐫𝑗

−𝑖ℎ(e𝑖𝐤∙𝐫𝑗 − e−𝑖𝐤∙𝐫𝑗)

0

).  (B4)  

Here rj is the positional vector of the jth Cu2+, k is the magnetic propagation vector, either k1 

or k2, and h = –1 (+1) describes the spin helicity of a left- (right-)handed helical magnetic 

structure. 𝐅𝑚 is calculated by summing up 𝐦𝑗  at all positions in a crystal with a phase factor,  

𝐅𝑚 = ∑ 𝐦𝑗e
𝑖𝛕∙𝐫𝑗

𝑗 =
𝐹𝐆

2
(

𝛿𝛕,𝐆−𝐤 + 𝛿𝛕,𝐆+𝐤

𝑖ℎ(𝛿𝛕,𝐆−𝐤 − 𝛿𝛕,𝐆+𝐤)

0

), (B5)  
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where G is a reciprocal lattice vector and 𝐹𝐆 = ∑ e𝑖𝐆∙𝐫𝑗𝑗  is the crystal structure factor for the 

scattering vector τ = G. Using Eqs. (A6), (B3), and (B5), RXD intensity of magnetic 

reflections from the helical magnetic structure when using circular polarization is obtained as  

𝐼(ℎ, 𝑃2) =
𝐼𝐆

8
{[sin2𝜔 + sin22𝜃 + sin2(2𝜃 − 𝜔)](𝛿𝛕,𝐆+𝐤 + 𝛿𝛕,𝐆−𝐤) + 2ℎ𝑃2 sin(2𝜃 −

𝜔) sin 2𝜃 (𝛿𝛕,𝐆+𝐤 − 𝛿𝛕,𝐆−𝐤)}.  (B6)  

Here, 𝐼𝐆 = 𝐹𝐆
∗𝐹𝐆 gives the intensity of the fundamental reflection at the scattering vector τ = 

G. Equation (B6) explains the magnetic satellite reflections around G = (0, 0, 0) with circular 

dichroism correlating to h, i.e., (1/3 1/3 ±δ), while does not for those around G = (0, 0, 1), 

i.e., (1/3 1/3 1±δ), as (001) is a forbidden reflection.  

 

Appendix C: RXD intensities of magnetic reflections with sinusoidal modulations 

With the presence of the sinusoidal modulations along [001] described by k3, the in-

plane amplitude of the helical component modulates along [001] with a twice larger wave 

vector than k3. The in-plane amplitude for the jth Cu2+ can be expanded as 𝐴0 +

𝐴1 cos(2𝐤3 ∙ 𝐫𝑗) + ⋯, where Ai is the ith coefficient of series expansion. Hence, mj is written 

as  

𝐦𝑗 = 𝐴0 (

cos(𝑖𝐤 ∙ 𝐫𝑗)

sin(𝑖𝐤 ∙ 𝐫𝑗)

0

) + 𝐴1(

cos(2𝐤3 ∙ 𝐫𝑗) cos(𝑖𝐤 ∙ 𝐫𝑗)

cos(2𝐤3 ∙ 𝐫𝑗) sin(𝑖𝐤 ∙ 𝐫𝑗)

0

) +⋯+(

0
0

Δ sin(𝐤3 ∙ 𝐫𝑗)
) 

=
𝐴0

2
(

e𝑖𝐤∙𝐫𝑗 + e−𝑖𝐤∙𝐫𝑗

−𝑖ℎ(e𝑖𝐤∙𝐫𝑗 − e−𝑖𝐤∙𝐫𝑗)

0

) +

𝐴1

4
(

e𝑖(2𝐤3+𝐤)∙𝐫𝑗 + e−𝑖(2𝐤3+𝐤)∙𝐫𝑗 + e𝑖(2𝐤3−𝐤)∙𝐫𝑗 + e−𝑖(2𝐤3−𝐤)∙𝐫𝑗

−𝑖ℎ[e𝑖(2𝐤3+𝐤)∙𝐫𝑗 − e−𝑖(2𝐤3+𝐤)∙𝐫𝑗 − e𝑖(2𝐤3−𝐤)∙𝐫𝑗 + e−𝑖(2𝐤3−𝐤)∙𝐫𝑗]

0

) +⋯−

𝑖
Δ

2
(

0
0

e𝑖𝐤3∙𝐫𝑗 − e−𝑖𝐤3∙𝐫𝑗
),  (C1)  

where Δ is the relative amplitude of the sinusoidal component with respect to the helical 

component without the modulations. Note that the coefficients, Ai and Δ, keep |𝐦𝑗| = 1. 𝐅𝑚 

is calculated as  

𝐅𝑚 =
𝐴0

2
𝐹𝐆(

𝛿𝛕,𝐆−𝐤 + 𝛿𝛕,𝐆+𝐤

−𝑖ℎ(𝛿𝛕,𝐆−𝐤 − 𝛿𝛕,𝐆+𝐤)

0

) +

𝐴1

4
𝐹𝐆 (

𝛿𝛕,𝐆−2𝐤3−𝐤 + 𝛿𝛕,𝐆+2𝐤3+𝐤 + 𝛿𝛕,𝐆−2𝐤3+𝐤 + 𝛿𝛕,𝐆+2𝐤3−𝐤

−𝑖ℎ[𝛿𝛕,𝐆−2𝐤3−𝐤 − 𝛿𝛕,𝐆+2𝐤3+𝐤 − 𝛿𝛕,𝐆−2𝐤3+𝐤 + 𝛿𝛕,𝐆+2𝐤3−𝐤]

0

) +⋯−

𝑖
Δ

2
𝐹𝐆(

0
0

𝛿𝛕,𝐆−𝐤3 − 𝛿𝛕,𝐆+𝐤3

).  (C2)  
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RXD intensities for the magnetic satellite reflections observed in our experiment are obtained 

as  

𝐼(ℎ, 𝑃2) =
𝐼𝐆

8
{[sin2𝜔 + sin22𝜃 + sin2(2𝜃 − 𝜔)] [𝐴0

2(𝛿𝛕,𝐆−𝐤 + 𝛿𝛕,𝐆+𝐤) +
𝐴1

2

4
(𝛿𝛕,𝐆−2𝐤3−𝐤 +

𝛿𝛕,𝐆+2𝐤3+𝐤 + 𝛿𝛕,𝐆−2𝐤3+𝐤 + 𝛿𝛕,𝐆+2𝐤3−𝐤)] + 2Δ2[cos2(2𝜃 − 𝜔) + cos2𝜔](𝛿𝛕,𝐆−𝐤3 +

𝛿𝛕,𝐆+𝐤3) + 2ℎ𝑃2 sin(2𝜃 − 𝜔) sin 2𝜃 [𝐴0
2(𝛿𝛕,𝐆−𝐤 − 𝛿𝛕,𝐆+𝐤) +

𝐴1
2

4
(𝛿𝛕,𝐆−2𝐤3−𝐤 − 𝛿𝛕,𝐆+2𝐤3+𝐤 −

𝛿𝛕,𝐆−2𝐤3+𝐤 + 𝛿𝛕,𝐆+2𝐤3−𝐤)]}.  (C3)  

Equation (C3) explains the appearance of magnetic satellite reflections around (001), i.e., (1/3 

1/3 1±δ) [τ = (0, 0, 1) + 2k3 + k], and those due to the sinusoidal modulations (0 0 ±1/2) [τ = 

(0, 0, 0) + k3], in addition to those around (000), i.e., (1/3 1/3 ±δ). (1/3 1/3 1±δ) show circular 

dichroism correlating to h as similar to (1/3 1/3 ±δ), whereas (0 0 ±1/2) does not.  
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