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Abstract. There has been a lot of interest in explainable and trustworthy ma-
chine learning over the past few years. In some problems, it is not enough to
predict correctly the true class label, but also to provide the probability that the
prediction is true. This probability makes it possible to have confidence or not in
the prediction. In this paper, we propose a new approach to calibrate the probabil-
ities of a machine learning model through a post-processing step. The objective is
to exploit some positive results such as that calibration is rather better on a small
number of categories or subsets of classes than on a large number of classes.
Based on this observation, our calibration approach, based on probabilistic belief
revision, calibrates the predicted probabilities on the classes with the probabili-
ties of subsets of classes. Preliminary experimental studies show very promising
results, especially on certain datasets such as those of hierarchical classification.

Keywords: Classification · Probability calibration · Belief revision

1 Introduction

In AI, the current decade has seen the increasing use of innovative intelligent systems
and applications that rely heavily on machine learning (ML). We are then confronted
with new and difficult problems and risks induced, for the most part, by the complexity
of the systems, their opacity and the sensitivity of certain critical applications. Among
the serious questions we find confidence, trust, interpretability and explainability of rea-
soning and decisions that can be made automatically. Therefore, many issues are cur-
rently challenging the ML community to strengthen the explainability, interpretability
and reliability of ML models and AI-based systems more generally.

In classification tasks, the goal is typically to learn a model that predicts the class
variable as accurately as possible. Sometimes this is not enough since not only do we
need to predict the class with good accuracy, but also provide a probability that the
prediction is correct. This probability makes it possible to know the confidence that
the model has in its prediction, and this can have consequences on how this prediction
is managed in the context of automated decision-making as in safety-critical applica-
tions. Some models, like Bayesian classifiers, can provide directly posterior probabili-
ties while other classifiers use certain techniques and tricks to provide these probabili-
ties. In practice, many models give poor estimates of predictive probabilities [13], often
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they overestimate these probabilities as in the case of random forests and even modern
deep network-based models [5]. Calibration techniques are often used to better calibrate
the probabilities of the model when it makes predictions.

We propose in this paper an original idea never used to calibrate the probabilities
of a classifier. We see calibration as an uncertain information update task in the light
of new uncertain and more reliable inputs. We place ourselves within the framework of
Jeffrey’s revision [12], a well-known framework for updating probabilistic beliefs with
uncertain inputs. The preliminary results obtained confirm this intuition, in particular
on certain datasets where there are class taxonomies, as is the case in several fields.

This paper is organized as follows : The second section summarizes some basic
background notions about classification, probability calibration of classifiers and up-
dating uncertain information with new uncertain inputs. Section 3 presents our work’s
main idea, followed in Section 4 by details about our proposed Jeffrey’s rule-based
probability calibration approach. Section 5, presents the experimental results, and Sec-
tion 6 concludes this paper with some concluding remarks.

2 Basic background notions

2.1 Classification

Classification is a predictive task consisting in associating input data instances with
symbolic labels. A classification task is defined by two sets of variables: A set of fea-
tures X= {X1,..,Xn} where |X|=n, and a discrete target variable denoted C taking
values in its domain DC .

Definition 1. (Classifier) A classifier f is a function mapping each input data instance
x (vector instantiating each variable in X) to one value from the discrete variable
domain DC .

Note that classification where each data instance x is associated exactly with one
class is called multi-class classification, contrary to multi-label classification where one
can associate a subset of classes at the same time to a data instance. In this paper, we
deal only with calibrating multi-class classifiers.

2.2 Classifier probability calibration

We say that a classifier f is calibrated (or provides calibrated prediction probabilities)
if, when it predicts a label ci∈C with probability p̂i, this prediction will be correct with
probability p̂i (intuitively, the probability pf (C=ci|p=p̂i) is calibrated if on average, the
prediction is correct with probability p̂i).

In order to visualize the quality of predicted probabilities, one can display a relia-
bility diagram (see example of Fig.1), a visual representation of prediction calibration.
This comes down to plotting expected accuracy as a function of confidence. In such
a diagram, confidence estimates are grouped into bins to allow computing the sample
accuracy. Hence, a well calibrated model corresponds to the plot of the identity func-
tion. Calibration errors correspond to the gap between the estimated probabilities and
the accuracy ones.
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As for measuring classifiers efficiency, there are different measures for measuring
miscalibration. Some commonly used metrics are Expected Calibration Error (ECE),
Average Calibration Error (ACE), and Maximum Calibration Error (MCE). In few
words, miscalibration metrics assess the errors by binning the samples by their con-
fidence then assess the accuracy in each bin. For instance, ECE is simply the weighted
mean gap between the confidence of the classifier and the observed accuracy (on a test
set) in each bin. Similarly, the Maximum Calibration Error (MCE) gives simply the
maximal gap (see for instance [8] for more details on measuring miscalibration). Neg-
ative log likelihood (NLL) can also be used to indirectly measure the model calibration
since it penalizes high probability scores assigned to incorrect labels and low proba-
bility ones assigned to correct labels [1]. The lower these metrics are, the better is the
quality of the calibration.

Various approaches have been proposed to perform recalibration. Platt scaling [11]
and isotonic regression [9] are the most widely used in the binary classification setting.
The most common way of extending these methods to the multi-class setting is treating
the problem as k one-versus-all problems, where k is the number of classes [15]. Below,
we recall how the two main post-processing methods perform.

Platt scaling is a parametric calibration method which fits a logistic regression
model on the validation set, using the non-probabilistic predictions of the initial clas-
sifier zi as features, to learn scalar parameters a, b ∈ IR and compute the calibrated
probabilities p̂i as p̂i = α(azi + b). The parameters a and b can be optimized by min-
imizing the Negative Log Likelihood. The Platt scaling can be extended to the multi-
class setting by applying a linear transformation Wzi + b to the logits vector zi. The
parameters a and b will be in a higher dimension, W ∈ IRk∗k and b ∈ IRk respectively.
The resulting method is called Matrix scaling or Vector scaling if W is a diagonal
matrix. There is also another extension of this method, called Temperature scaling,
which uses a single scalar parameter T > 0 to calibrate the probabilistic predictions as
follows p̂i = max

l
αsm(zi/T )

(l), where αsm(zi)
(l) is the predicted probability of the

class l = 1..k [5].
Isotonic regression is a non-parametric calibration method which outputs a piece-

wise constant function f to transform a probability pi into a calibrated one by minimiz-
ing the mean-squared loss function

∑n
i=1(f(pi)− yi)

2, where yi is the true label. The
Isotonic regression can be extended to the multi-class setting by performing a calibra-
tion for each class separately as a one-versus-all problem followed by a postprocessing
to normalize the combined calibrated probabilities.

2.3 Updating uncertain information with new uncertain inputs : Jeffrey’s rule

Jeffrey’s rule [6] extends the classical probabilistic conditioning to the case where the
new information is uncertain. It allows to update an initial probability distribution p
into a posterior one p′ given the uncertainty bearing on a set of mutually exclusive and
exhaustive events λ={λ1,..,λn} (namely, λ is a partition of the set of possible states Ω).
In this setting, the new input is in the form (λi, αi), i=1..n where αi denotes the new
probability of λi. Jeffrey’s rule lies on the two following principles:
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- Success principle (P1 )

∀λi ∈ λ, p′(λi) = αi (1)

After the update operation, the posterior probability of each event λi must be equal to
αi as required in the new inputs. The uncertain inputs are seen as constraints or an effect
once the new information is fully accepted.

- Probability kinematics principle (P2)

∀λi ∈ λ,∀ϕ ⊆ Ω, p(ϕ|λi) = p′(ϕ|λi) (2)

This principle aims to ensure a kind of minimal change by ensuring that the posterior
distribution p′ should not change the conditional probability degrees of any event ϕ
given the uncertain events λi. Jeffrey’s rule assumes that in spite of the disagreement
about the events λi in the prior distribution p and the posterior one p′, the conditional
probability of any event ϕ⊆Ω given any uncertain event λi should remain the same in
the original and the revised distributions.

Given a probability distribution p encoding the initial beliefs and new inputs in the
form (λi, αi) for i=1..n, the updated probability degree of any event ϕ⊆Ω is obtained
as follows:

p′(ϕ) =
∑
λi

αi ∗
p(ϕ ∩ λi)

p(λi)
(3)

The posterior distribution p′ obtained using Jeffrey’s rule always exists and it is unique
[4]. Note that in Jeffrey’s rule, the events λi should be somewhat possible in the prior
distribution (namely, ∀λi∈λ, p(λi)>0).

Jeffrey’s framework for updating uncertain information with uncertain inputs has
been used primarily for reasoning with uncertain information and observations [10]. In
classification, it has been used instead to make predictions with uncertain observations
(often called soft evidence) in some classifiers [2,3] such as those based on Bayesian
networks or recently with some neural networks-based classifiers [14]. To the best of
our knowledge, none of these works had used Jeffrey’s rule of conditioning for proba-
bility calibration purposes.

3 Motivating example

The starting point of this work is the following observation: on large-scale classification
problems (involving a large number of classes), it is often difficult to correctly predict
certain classes, especially in the case of unbalanced datasets (often, classifiers favor
majority classes to the detriment of underrepresented classes). What is true for the ac-
curacy of the predictions is also true for the confidence probabilities of the model in its
predictions. This difficulty may be essentially linked to the nature of the data and the
specificities of the classifiers used. For example, if we use random forests by limiting
the depth of the trees too much, it will be difficult to discriminate certain classes since
the number of tests on the features is strongly limited.
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Two simple questions then arise: i) If we group classes into categories (kind of
super classes, so as to be better represented and reduce the number of classes), can we
improve the quality of the predictions (in terms of accuracy and calibration)? ii) If so,
would it be possible to exploit the best performances of the predictions on the categories
(subsets of the initial classes) to rectify or calibrate the predictions and the calibration
of the classifier f?

For the first question, the answer is positive for most of the datasets and classifiers,
although with different results depending on how the classes {c1, .., ck} are grouped
into categories {cat1, .., catj} (with j<k). In Fig. 1, one can see the reliability diagrams
of an SVM classifier learnt on the well-known DBPedia1 dataset. Clearly, the SVM
classifier built on 70 classes is poorly calibrated (see the gap to the perfect calibration
line) compared to the SVM built on 9 categories.
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Fig. 1: Reliability diagrams of SVM classifiers on DBPedia

For the second question, having a more calibrated classifier on the categories provides
relevant information on the classes included in each category. How to use these proba-
bilities on the categories and in which case they should be used in order to guarantee an
improvement of the probabilities of the initial classifier will be discussed in the follow-
ing section.

4 Probability calibration based on Jeffrey’s rule

Let us denote the classifier to calibrate f and let us denote by f ′ the one learnt on
categories and ensuring better calibrated probabilities on categories. Each category from

1 This dataset is a cleaned extract of 342,782 wikipedia articles’ data providing hierarchical
classes (there are 3 levels with 9, 70 and 219 classes respectively), https://www.kaggle.com/
danofer/dbpedia-classes.

 https://www.kaggle.com/danofer/dbpedia-classes
 https://www.kaggle.com/danofer/dbpedia-classes
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{cat1, .., catj} is a subset of classes from {c1, .., ck} (note that a given class belongs to
only one category). Namely, the categories form a partition of the set of classes.

4.1 Jeffrey’s rule-based Probability Calibration

We have, on one side, classes and a probability distribution provided by the classifier
f , and on the other side, categories (a partition of the classes) and another probability
distribution on categories provided by the classifier f ′. Moreover, in most cases, the
probabilities of the classifiers f ′ are more calibrated as illustrated in the example of
Fig. 1 meaning that the classifier f ′ is more reliable in terms of calibration. This places
our problem somehow in the framework of updating uncertain information with new
uncertain information. Note that the prior information is a probability distribution p
over {c1, .., ck} and that the new information is also uncertain and it is in the form of a
probability distribution p′ over a partition of {c1, .., ck} and denoted {cat1, .., catj}.
It fully makes sense to update the distribution p with p′ since this latter provides more
calibrated probabilities. This comes down to give priority to the new information p′

exactly in line with Jeffrey’s rule. Hence, the revised probabilities pc are obtained fol-
lowing Jeffrey’s rule as follows : ∀ci∈DC ,

pc(ci) = p(ci) ∗
p′(cat(ci))

p(cat(ci))
, (4)

where cat(ci) denotes the category of class ci. Note also that p(cat(ci)) is the proba-
bility of all classes from category cat(ci) computed from the prior distribution p. The
posterior distribution pc always exists and it is unique unless the first classifier f asso-
ciates a zero probability to cat(ci) (namely, p(cat(ci)) = 0).

4.2 Jeffrey’s rule-based Probability Calibration in practice

Up to now, we have briefly presented the main idea to calibrate the probabilities of a
classifier f by exploiting the probabilities of another classifier f ′ on categories in the
spirit of Jeffrey’s rule. Now, several questions arise regarding the use of our calibration
technique in practice :

– How to group classes into categories ? In some domains, there are taxonomies and
class hierarchies to semantically group classes into categories. This is a first op-
tion but it does not necessarily guarantee the best results. The number of categories
and the composition of the categories is one of the key points to have well cali-
brated probabilities on the categories to ensure better results after the calibration.
For datasets without class taxonomies, one way would be to cluster the data and ob-
tain the categories corresponding to the clusters using some clustering techniques.

– In what case there could be an improvement and how much will the improve-
ment be? The improvement will be all the greater when the initial probabilities are
weakly calibrated and when the probabilities on the categories p′ are such that they
can correct the initial probabilities p. This needs to be formally or empirically char-
acterized to identify the situations where calibration based on the proposed method
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is advisable. Another idea to improve the results of the calibration is, as we will see
in our preliminary experimental study, to start with calibrated probabilities both for
the classifier to be calibrated f and for the calibration classifier f ′. Indeed, nothing
prevents in this case from using existing calibration techniques to pre-calibrate p
and p′ to finally revise according to our Jeffrey’s rule-based Probability Calibration
method. We don’t even have to use the same classification technique for f and f ′

in case the latter guarantees a better calibration on the categories.

These questions are not trivial and are beyond the scope of this paper.

Before proceeding to the experimental study section, Fig. 2 below illustrates our
Jeffrey’s rule-based Probability Calibration process that encompasses both of the above
issues, i.e. the part regarding how to group classes into categories and the one on how
to further improve the initial calibration using an oracle (for instance, using existing
calibration techniques).

5 Experimental study

This section presents preliminary results evaluating our approach for classifier proba-
bility calibration based on Jeffrey’s rule. The experiments are carried out on some well-
known datasets where grouping classes into categories is done thanks to existing class
taxonomies (for instance, DBPedia and Amazon products reviews datasets) or where it
is easy to group manually classes into categories according to the semantics of classes
(such as, Stanford Sentiment Treebank dataset ) or using a clustering method (as is the
case for MNIST and Fashion-MNIST datasets) which are described below :

– DBPedia dataset2 is a cleaned extract of 342,782 wikipedia articles’ data. Widely
used as a baseline for NLP/text classification tasks, it provides hierarchical cate-
gories in three levels with 9, 70 and 219 classes, respectively.

– Amazon products reviews (Amazon PR) 3 is a dataset of amazon customers reviews
structured by products into 3 levels with 6, 64 and 510 classes, respectively.

– Stanford Sentiment Treebank (SST) 4 is a dataset containing 215,154 phrases with
fine-grained sentiment labels in the parse trees of 11,855 sentences in movie re-
views rated from 1 to 5.

– MNIST [7] is a handwritten digits dataset of 28x28 images containing a training set
of 60,000 examples and a test set of 10,000 examples.

– Fashion-MNIST 5 is a dataset of Zalando’s article images consisting of a training
set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28
grayscale image, associated with a label from 10 classes.

We evaluate our proposed approach on four basic classifiers, namely, Naive Bayes
(NB), Random Forests (RF), Logistic Regression (LR) and Support Vector Machines

2 DBPedia dataset, https://www.kaggle.com/danofer/dbpedia-classes
3 Amazon PR dataset, https://www.kaggle.com/kashnitsky/hierarchical-text-classification
4 SST dataset, https://nlp.stanford.edu/sentiment/treebank.html
5 Fashion-MNIST dataset, https://github.com/zalandoresearch/fashion-mnist

https://www.kaggle.com/danofer/dbpedia-classes
https://www.kaggle.com/kashnitsky/hierarchical-text-classification
https://nlp.stanford.edu/sentiment/treebank.html
https://github.com/zalandoresearch/fashion-mnist
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Fig. 2: Jeffrey’s rule-based Probability Calibration

(SVM). These techniques have been implemented and parameterized using the scikit-
learn library’s basic classifiers and configuration. The evaluation metrics used to assess
how accurate and how well the confidence in the model’s prediction is calibrated are:
Accuracy (Acc), Negative Log Likelihood (NLL), Expected Calibration Error (ECE)
using 15 bins, and Maximum Calibration Error (MCE). Except for the accuracy, the
lower these measures are, the better the calibration’s quality will be.

The results of our probability calibration approach on Amazon product reviews and
DBPedia datasets are shown in Table 1. For both datasets, we have used only two levels:
level one for category labels (6, 9 categories, respectively) and level two for fine-grained
class labels (64, 70 classes, respectively). As expected, except for Random Forest on
Amazon PR, all tested models show an improvement in confidence quality based on all
calibration evaluation metrics, while maintaining, or improving in some cases, the ini-
tial accuracy, thus confirming the potential effectiveness of our approach. Indeed, unlike
the other cases, one can notice that the Random Forest was already well calibrated at the
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beginning, with an ECE ≈ 5%, which explains the ineffectiveness of the calibration in
this situation and confirms that when the initial classifier is already well calibrated, nei-
ther the state-of-the-art methods nor ours have much room for improvement, as shown
in Table 2.

Table 1: Comparison between the performance of the classifiers before (Uncalibrated) and after
the use of Jeffrey’s rule-based Probability Calibration (Proposed method) on Amazon Products
Reviews and DBPedia datasets.

Model
Amazon PR DBPedia

Acc% NLL ECE% MCE% Acc% NLL ECE% MCE%

NB
Uncalibrated 42.93 2.67 27.63 67.17 71.42 1.22 22.41 34.08

Proposed method 53.01 2.05 26.49 53.33 71.71 1.14 20.51 32.09

LR
Uncalibrated 64.00 1.77 23.73 44.90 92.30 0.36 10.31 36.25

Proposed method 67.44 1.42 18.25 32.79 91.76 0.35 09.23 29.74

RF
Uncalibrated 67.19 2.50 05.16 10.59 90.57 0.62 26.39 47.24

Proposed method 67.39 2.40 14.76 25.32 90.36 0.60 25.66 43.03

SVM
Uncalibrated 62.40 1.65 16.85 40.86 83.77 0.87 21.16 54.12

Proposed method 63.35 1.59 06.78 14.98 81.01 0.90 11.05 30.08

Table 2: Comparison between the performance of the classifiers before (Uncalibrated) and after
the use of state-of-the-art calibration methods and Jeffrey’s rule-based Probability Calibration
using the oracle (Proposed method-oracle), on Amazon Products Reviews and DBPedia datasets.

Model
Amazon PR DBPedia

Acc% NLL ECE% MCE% Acc% NLL ECE% MCE%

NB

Uncalibrated 42.93 2.67 27.63 67.17 71.42 1.22 22.41 34.08
Isotonic reg 68.19 1.50 13.03 24.46 88.88 0.45 12.13 24.8
Sigmoid reg 62.32 1.71 22.49 28.37 83.03 0.76 16.62 25.66

Proposed method-oracle 70.12 1.38 9.40 20.67 82.00 0.69 8.53 26.41

LR

Uncalibrated 64.00 1.77 23.73 44.90 92.30 0.36 10.31 36.25
Isotonic reg 67.32 1.47 11.51 19.33 91.76 0.41 15.99 33.26
Sigmoid reg 68.05 1.31 13.45 20.50 92.12 0.40 16.35 32.35

Proposed method-oracle 70.27 1.13 9.10 18.76 91.50 0.36 8.38 24.76

RF

Uncalibrated 67.19 2.50 05.16 10.59 90.57 0.62 26.39 47.24
Isotonic reg 64.39 5.16 21.14 46.88 91.99 0.39 2.71 13.30
Sigmoid reg 67.02 1.73 20.79 41.86 91.47 0.32 1.94 11.72

Proposed method-oracle 66.24 2.63 5.65 9.12 90.10 0.49 1.41 8.46

SVM

Uncalibrated 62.40 1.65 16.85 40.86 83.77 0.87 21.16 54.12
Isotonic reg 65.89 1.52 11.03 22.16 85.49 0.64 18.35 30.88
Sigmoid reg 24.59 2.65 6.12 33.11 33.67 2.55 8.76 40.95

Proposed method-oracle 63.35 1.59 6.78 14.98 81.01 0.90 11.06 30.08
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To further improve the calibration performance, we apply our approach on the re-
sulting models from the oracle which have, in the most cases, a pre-calibrated prob-
abilities p and p

′
. The pre-calibration is provided through the use of state-of-the-art

calibration techniques or another classifier for f ′, trained on the same training set and
showing better calibrated probabilities p

′
on the categories. The obtained results are

shown in Tables 2, 3 and 4.

As expected, the previous results, illustrated in Table 1, improve further with the use
of an oracle and outperform state-of-the-art models, namely, Isotonic regression and
Sigmoid regression. We can see for instance in Table 2, the Random Forest on DBPedia
related ECE being reduced from 26.39 to 1.41%, while ensuring a good accuracy. The
same applies to almost all other classifiers on those datasets. In most cases, the oracle
result is a pre-calibration of the probabilities p and p

′
using Isotonic regression since

when comparing the results of the two state-of-the-art calibration methods, the latter
performs better.

The Stanford Sentiment Treebank (SST) dataset has been processed differently. As
it does not have any levels, a manual clustering based on the semantic of its classes,
films rating, is used to group them into 2 ([[1,2],[3,4,5]]) and 3 ([[1,2],[3],[4,5]]) clus-
ters. The results illustrated in Table 3 confirm the effectiveness of our calibration ap-
proach on this dataset too. In addition to the calibration effect, one may notice that the
initial evaluation metrics are much lower compared to the results presented previously.

Table 3: Comparison between the performance of the classifiers before (Uncalibrated) and after
the use of state-of-the-art calibration methods and Jeffrey’s rule-based Probability Calibration
using the oracle (Proposed method-oracle), on SST.

Model
SST

Acc% NLL ECE% MCE%

NB

Uncalibrated 36.20 1.49 3.26 5.93
Isotonic reg 39.77 1.40 3.76 6.53
Sigmoid reg 40.14 1.42 5.79 9.59

Proposed method-oracle 39.14 1.38 2.80 5.67

LR

Uncalibrated 36.47 1.43 2.37 7.32
Isotonic reg 39.55 1.39 2.95 26.54
Sigmoid reg 38.46 1.41 2.89 13.33

Proposed method-oracle 39.82 1.37 0.91 8.12

RF

Uncalibrated 33.94 2.51 20.81 45.87
Isotonic reg 37.10 1.45 2.83 4.78
Sigmoid reg 37.38 1.47 4.27 7.20

Proposed method-oracle 36.38 1.44 1.48 21.50

SVM

Uncalibrated 36.83 1.52 12.71 49.87
Isotonic reg 38.55 1.40 1.71 26.38
Sigmoid reg 36.61 1.42 1.43 18.75

Proposed method-oracle 39.77 1.38 2.33 32.25
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To get the required categories from datasets without class taxonomies, as is the case
for MNIST and Fashion-MNIST, and where a semantic categorisation as separating the
handwritten digits of MNIST dataset into odd and even numbers proved to be inef-
fective, a k-means clustering technique is performed to group the classes into 2 and 3
clusters. The results obtained with the application of our proposed calibration approach
on this different type of datasets are given in Table 4 and confirm, once again, the ef-
fectiveness of our proposed Jeffrey’s rule-based Probability Calibration technique.

Table 4: Comparison between the performance of the classifiers before (Uncalibrated) and after
the use of state-of-the-art calibration methods and Jeffrey’s rule-based Probability Calibration
using the oracle (Proposed method-oracle), on MNIST and Fashion-MNIST datasets.

Model
MNIST Fashion-MNIST

Acc% NLL ECE% MCE% Acc% NLL ECE% MCE%

NB

Uncalibrated 83.57 1.99 13.93 45.26 65.52 5.55 29.52 59.56
Isotonic reg 84.69 0.50 1.37 7.17 70.17 0.86 3.46 11.76
Sigmoid reg 83.65 0.73 4.63 38.45 65.68 1.24 8.45 25.90

Proposed method-oracle 88.54 0.36 0.76 5.67 72.54 0.73 2.64 10.63

LR

Uncalibrated 92.56 0.27 0.68 6.98 84.43 0.44 2.16 7.26
Isotonic reg 90.95 0.46 17.49 29.74 77.12 0.80 21.18 32.90
Sigmoid reg 91.33 0.47 20.14 33.76 78.89 0.83 26.42 36.43

Proposed method-oracle 94.88 0.18 0.64 13.68 85.43 0.41 0.91 5.90

RF

Uncalibrated 97.05 0.24 13.65 38.27 87.72 0.41 7.86 18.35
Isotonic reg 95.62 0.61 0.23 11.44 86.16 2.95 0.85 39.85
Sigmoid reg 97.00 0.12 1.75 20.17 87.73 0.64 9.53 40.45

Proposed method-oracle 95.60 0.85 0.16 15.44 86.21 2.94 0.58 40.38

SVM

Uncalibrated 95.85 0.13 1.55 11.66 86.87 0.37 0.76 5.49
Isotonic reg 95.77 0.21 0.47 35.37 86.80 0.47 2.72 20.84
Sigmoid reg 95.78 0.32 2.46 36.38 86.81 0.56 2.12 11.67

Proposed method-oracle 97.24 0.10 0.95 9.96 86.77 0.37 0.56 3.05

6 Concluding remarks

In this preliminary work, we have sketched out a novel method to calibrate the prob-
abilities of a classifier through uncertain and more reliable information revision based
on Jeffrey’s rule of conditioning.

We have noticed during the experimental study that the NLL, ECE and MCE metrics
are not sufficient to predict the effect of the probability calibration technique. Using a
category model that is either overconfident or underconfident while displaying the same
calibration measures in both cases does not lead to the same results after the revision, in
other words, trying to calibrate a very overconfident classes model with another over-
confident category model is not very useful, the same applies to underconfidence.

One of the most important issues facing the proposed approach is the quality of the
category model. Thus, future work may focus on finding a better way of categorisation
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since the one obtained with the clustering method or the given class taxonomies in
hierarchical datasets are not necessarily good.

The computational complexity of our calibration approach depends on the one of
calculating the two distributions p and p′. There are two distinct cases. If we place
ourselves in the case without using an oracle, we will have to sum the cost of calling
the category classifier to get p′ and the one of applying our calibration method, which
is linear in the number of classes, whereas in the other case we will have to add the cost
of the oracle calls.

Even though we have only employed the most basic machine learning classifiers so
far, the calibration approach proposed in this paper is quite competitive with state-of-
the-art methods and has demonstrated its efficacy. We are aware that a wide range of
highly accurate and complex classification models exist, and that highly efficient cali-
bration techniques have already been proposed and applied to them; therefore, our next
step is to test our proposed calibration approach on them, as well as to try to expand the
range of datasets used to further provide evidence on the effectiveness of our approach.
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