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Optimal designs of the Exponentially Weighted Moving Average (EWMA) 

median chart for known and estimated parameters based on median run 

length 

 

In the literature, the sole dependence on the ARL as the performance measure of a control chart has 

received much criticism. This is because interpretation based on the ARL alone can be misleading, as 

the shape and skewness of the run-length distribution vary according to the magnitude of the process 

mean shift. Therefore, we consider the median run length (MRL) performance measure for optimal 

EWMA median chart when process parameters are known and estimated. We provide an illustrative 

example to show the application of the optimal EWMA median chart based on expected median run 

length (EMRL). 

Keywords: Estimated parameters; exponentially weighted moving average (EWMA) median 

chart; known parameters; median run length (MRL); steady-state; zero-state. 

 

1. Introduction 

Quality is an essential component considered by consumers in choosing among various 

services or products. Hence, it is important for all industries to offer quality services or 

manufacture quality products so that they can remain competitive against their competitors. For 

instance, by having a process that manufactures quality products, the manufacturing company will 

have a good production yield, low production cost and products that can exceed the customers’ 

expectations. There are no service operations or production processes that can remain stable 

forever. Statistical Process Control (SPC) is a collection of powerful tools that applies statistical 

techniques to minimize the variability and provide continuous quality improvement of a process. 

SPC is widely used in service and industrial sectors. Control chart is one of the most important 

SPC tools to maintain, as well as improve the quality of services and products. Control chart 

enables practitioners to examine whether the quality characteristics of their products are in-control 
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(IC), i.e. within the chart’s control limits. In this competitive era, control chart should be simple to 

construct, interpret, implement and able to detect small and large shifts in the process mean 

efficiently. 

The Shewhart mean (𝑋̅) chart is one of the most well-known control chart to date because of 

its simplicity. However, the 𝑋̅ chart requires the assumption that the process follows a normal 

distribution to be satisfied as it uses sample average in process monitoring, which is easily affected 

by outliers and leads to a high level of out-of-control (OOC) signal. To alleviate this problem, 

Janacek and Meikle (1997) suggested the median (𝑋̃) chart. Although the 𝑋̅ chart is more effective 

compared to the 𝑋̃ chart, Khoo (2005) stated that the 𝑋̃ chart is a good substitute for the 𝑋̅ chart as 

it is more robust against outliers. In practice, the 𝑋̃ chart is preferred due to its robustness against 

contamination, outliers and small deviations from normality. It is worth mentioning that Statistical 

Process Control (SPC) charts are designed to mainly detect permanent shifts and not occasional 

disturbances (like outliers). When a permanent shift happens, it will remain there until the 

assignable causes have been removed. On the other hand, outliers are disturbances that happen 

occasionally and they are usually not associated with any assignable cause, instead they are due to 

other causes such as careless mistakes in recording. 

In addition, it is well-known that the Shewhart 𝑋̅ chart is effective in detecting large process 

shifts. However, it is less sensitive to small and moderate process mean shifts as it is a memoryless-

type control chart. A memoryless control chart is a control procedure for which the decision is 

based on the current observation only, which makes the control chart relatively insensitive to small 

and moderate mean shifts. Therefore, various memory-type control charts are proposed to enhance 

the performance of the Shewhart 𝑋̅ chart towards detecting small and moderate process mean shifts. 

The memory-type control charts are designed to incorporate past and present information in order 
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to obtain a better performance in the detection of small and moderate process mean shifts compared 

to the memoryless-type control charts which ignore past information (Abbas, Riaz, and Does 2013). 

The most commonly used memory-type control charts are the cumulative sum (CUSUM) and 

exponentially weighted moving average (EWMA) charts proposed by Page (1954) and Roberts 

(1959), respectively. 

Roberts (1959) proposed the EWMA 𝑋̅  chart and it has attracted the interest of many 

researchers, see, for example, Simoes, Epprecht, and Costa (2010), Eleftheriou and Farmakis 

(2016), Shamsuzzaman et al. (2016) and Zwetsloot, Schoonhoven, and Does (2016). This is 

because the EWMA 𝑋̅ chart can detect small and moderate shifts in the process mean effectively. 

Moreover, this may be due to the fact that many researchers considered the EWMA 𝑋̅ chart to be 

robust against deviations from the normality assumption. However, Human, Kritzinger, and 

Chakraborti (2011) proved that this consideration is invalid, especially when using the EWMA 𝑋̅ 

chart to monitor contaminated data. Castagliola (2001) noted that the EWMA 𝑋̃ chart is a suitable 

alternative to the EWMA 𝑋̅ chart as median is less affected by deviations from the normality 

assumption compared to the mean. Since then, various types of median control charts were 

proposed, see, for instance, the 𝑋̃ chart for the detection of permanent mean shifts (Khoo, 2005), 

generally weighted moving average (GWMA) 𝑋̃ chart (Sheu and Yang 2006) and CUSUM 𝑋̃ chart 

(Yang, Pai, and Wang 2010). 

Surprisingly, we observe that all the 𝑋̃ charts in the current literature are designed based on the 

average run length (ARL) performance metric. Here, the ARL is defined as the average number of 

sample points that need to be plotted on a chart before the chart issues an OOC signal. However, 

many researchers have criticized the use of the ARL as the sole performance metric of a control 

chart, see, for example, Bischak and Trietsch (2007), Teh et al. (2015), Khoo et al. (2015), Lee 
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and Khoo (2017), and Tang et al. (2019a). The main critique of using the ARL alone to characterize 

the whole run-length (RL) distribution is that the RL distribution is known to be highly right-

skewed for an IC process or a process with small mean shifts (Gan, 1993). To solve this problem, 

many researchers suggested the use of the percentiles of the RL distribution to characterize the 

whole RL distribution for various control charts, see, for example, the EWMA 𝑋̅ chart (Jones, 

Champ, and Rigdon 2001), CUSUM 𝑋̅ chart (Jones, Champ, and Rigdon 2004), Shewhart 𝑋̅ chart 

(Chakraborti 2007), synthetic 𝑋̅ chart (Khoo et al. 2012), among others. 

Among the different percentiles of the RL distribution, many researchers such as Khoo et al. 

(2011), Low et al. (2012), Teoh et al. (2014), and Lee and Khoo (2017) demonstrated that the 50th 

percentile of the RL distribution, also known as the median run length (MRL), is a better 

performance measure compared to the ARL, regardless of the type of control charts. This is 

because the MRL is less affected by the skewness of the RL distribution and gives a better measure 

of central tendency compared to the ARL (Maravelakis, Panaretos, and Psarakis 2005). Moreover, 

in practical applications, it is common that there is a lack of historical data to determine the actual 

shift size or in many situations, the shift size varies based on some unknown stochastic models. 

To tackle this problem, we suggest the use of expected MRL (EMRL) as the performance metric 

of a chart when the shift size is unknown. Note that the EMRL performance measure is obtained 

by integrating over the density function 𝑓𝛿(𝛿) for a range of shift sizes from 𝛿min to 𝛿max, where 𝛿min and 𝛿max denote the lower and upper bounds of the shift sizes, respectively. The EMRL 

performance measure was also considered by Teoh et al. (2017), Tang et al. (2019a), and Lim et 

al. (2019), among others. 

Most of the control charts discussed earlier are designed by assuming that the process 

parameters are known (Case-K) or can be accurately estimated from the Phase-I samples. However, 
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in various practical situations, the process parameters, i.e. the mean and the variance are usually 

unknown (Case-U) and need to be estimated from a finite number of Phase-I samples. It is worth 

mentioning that the performance of control charts deteriorates significantly if the Case-K 

assumption is invalid, due to the variability in estimating the parameters. Recently, many 

researchers have investigated various control charts under the Case-U scenario, see for example, 

Zwetsloot and Woodall (2017), Chong et al. (2019, 2020), Tang et al. (2019a, 2019b) and Hu et 

al. (2019). Interested readers are referred to Jensen et al. (2006) and Psarakis, Vyniou, and 

Castagliola (2014) for literature review of Case-U control charts. 

Due to the advantages of the MRL and EMRL performance metrics, in this article, we 

investigate the optimal designs of the Case-K EWMA 𝑋̃ chart by minimizing the OOC MRL and 

EMRL, for both the known and unknown shift size cases, respectively. Moreover, all the 𝑋̃ charts 

in the current literature are designed to investigate the zero-state performance, where it is assumed 

that the Phase-II process being monitored starts out-of-control. However, in practical situations, 

we cannot ignore the steady-state performance, where it is assumed that for the Phase II process 

monitoring, the process remains in the IC state for a long duration of time before the process goes 

OOC. Hence, we investigate both the zero- and steady-state Case-K performances of the EWMA 𝑋̃ chart in this article. Moreover, we evaluate the performances of the optimal EWMA 𝑋̃ chart 

under Case-U situations. 

This article is structured into several sections as follows: The plotting statistic and some 

characteristics of the EWMA 𝑋̃ chart are discussed in Sections 2 and 3 for known and unknown 

process parameters, respectively. The performance of the Case-K EWMA 𝑋̃ chart, in terms of the 

ARL, SDRL and percentiles of the RL distribution is given in Section 4. In Section 5, the 

optimization designs of the EWMA 𝑋̃ chart using the MRL and EMRL performance metrics are 
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provided. Section 6 compares the EWMA 𝑋̃ and Shewhart 𝑋̃ charts when the shift size is either 

known or unknown. Section 6 also discusses the effect of parameters estimation on the 

performance of the EWMA 𝑋̃ chart. The application of the EWMA 𝑋̃ chart is illustrated using a 

real industrial dataset in Section 7. Some concluding remarks are given in Section 8. 

 

2. The EWMA 𝑿̃ chart when parameters are known 

Assume that samples {𝑌𝑖,1, 𝑌𝑖,2, … , 𝑌𝑖,𝑛} , for 𝑖 ∈ 1, 2, …,  are taken from n independent and 

identically distributed normal random variables, i.e. N(𝜇0 + 𝛿𝜎0, 𝜎02), where 𝜇0 and 𝜎0 are the IC 

process mean and standard deviation, respectively, and 𝛿 is the size of the standardized mean shift. 

Let 𝑌̃𝑖 represents the sample median of the ith sample, i.e. 

𝑌̃𝑖 = { 𝑌𝑖,(𝑛+12 )     , if 𝑛 is odd𝑌𝑖,(𝑛2)+𝑌𝑖,(𝑛2+1)2 , if 𝑛 is even,                                            (1) 

where {𝑌𝑖,(1), 𝑌𝑖,(2), … , 𝑌𝑖,(𝑛)} are the measurements of the ith sample arranged in ascending order. 

For ease of implementation of median-type charts, in practice, odd n is usually considered. This is 

because the computation of the sample median is faster and easier, when n is an odd value. 

Therefore, in this article, we will only consider the cases where n is an odd value. The Case-K 

EWMA 𝑋̃ chart’s plotting statistic for the ith sample is given as 𝑍𝑖 = (1 − 𝜆)𝑍𝑖−1 + 𝜆𝑌̃𝑖,                                                       (2) 

where 𝜆 ∈ (0,1] is a smoothing constant and 𝑍0 = 𝜇0. The upper control limit (UCL) and lower 

control limit (LCL) of the Case-K EWMA 𝑋̃ chart are calculated as 

 𝑈𝐶𝐿 = 𝜇0 + 𝐾𝜎0                                                                  (3a) 

and 

 𝐿𝐶𝐿 = 𝜇0 − 𝐾𝜎0,                                                                 (3b) 



8 

 

respectively, where K is a positive constant. 

We model the RL characteristics of the Case-K EWMA 𝑋̃ chart using the Markov chain 

method. Note that we apply the Markov chain model introduced by Brook and Evans (1972), which 

divides the interval between the lower and upper control limits into 2𝑢 + 1 subintervals (𝐻𝑗 −∆,𝐻𝑗 + ∆], for 𝑗 ∈ {−𝑢,… , 0 , … ,+𝑢}, each centered at 𝐻𝑗 = 𝐿𝐶𝐿+𝑈𝐶𝐿2 + 2𝑗∆, where 2∆= 𝑈𝐶𝐿−𝐿𝐶𝐿2𝑢+1  

(see Figure 1). Every subinterval (𝐻𝑗 − ∆,𝐻𝑗 + ∆], for 𝑗 ∈ {−𝑢,… , 0 , … ,+𝑢} denotes a transient 

state of the Markov chain. The Markov chain is considered as in the transient state 𝑗 ∈{−𝑢, … , 0, … ,+𝑢} at sample i if 𝑍𝑖 ∈ (𝐻𝑗 − ∆,𝐻𝑗 + ∆], otherwise, the Markov chain reaches the 

absorbing state (−∞, 𝐿𝐶𝐿] ∪ [𝑈𝐶𝐿,+∞). The transition probability matrix (tpm) P which is used 

to model the RL characteristics of the Case-K EWMA 𝑋̃ chart is (Lucas and Saccucci, 1990) 𝐏 = ( 𝐑 𝐫𝟎𝑇 1),                                                             (4) 

where 𝐫 = 𝟏 − 𝐑𝟏 with 𝟏 = (1, 1, … , 1)𝑇 and 𝟎 = (0, 0, … , 0)𝑇. Here, R is a submatrix of size (2𝑢 + 1, 2𝑢 + 1) containing the probabilities 𝑅𝑗,𝑘, which are associated with the 2𝑢 + 1 transient 

states defined earlier, i.e. 

𝐑 =
[  
   
  𝑅−𝑢,−𝑢 ⋯ 𝑅−𝑢,−1 𝑅−𝑢,0 𝑅−𝑢,+1 ⋯ 𝑅−𝑢,+𝑢⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮𝑅−1,−𝑢 ⋯ 𝑅−1,−1 𝑅−1,0 𝑅−1,+1 ⋯ 𝑅−1,+𝑢𝑅0,−𝑢 ⋯ 𝑅0,−1 𝑅0,0 𝑅0,+1 ⋯ 𝑅0,+𝑢𝑅+1,−𝑢 ⋯ 𝑅+1,−1 𝑅+1,0 𝑅+1,+1 ⋯ 𝑅+1,+𝑢⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮𝑅+𝑢,−𝑢 ⋯ 𝑅+𝑢,−1 𝑅+𝑢,0 𝑅+𝑢,+1 ⋯ 𝑅+𝑢,+𝑢]  

   
  
 .                       (5) 

 

[Please insert Figure 1 here] 

 



9 

 

Then, the probabilities 𝑅𝑗,𝑘 can be computed using the formula (Castagliola, Maravelakis, 

and Figueiredo 2016), 𝑅𝑗,𝑘 = 𝐹𝑌̃ [𝐻𝑘+∆−(1−𝜆)𝐻𝑗𝜆 |𝑛] − 𝐹𝑌̃ [𝐻𝑘−∆−(1−𝜆)𝐻𝑗𝜆 |𝑛],                               (6) 

where 𝐹𝑌̃(∙ |𝑛) denotes the cumulative distribution function (c.d.f.) of the sample median 𝑌̃𝑖, for 𝑖 ∈ {1, 2, … }, i.e. 𝐹𝑌̃(𝑤|𝑛) = 𝐹𝛽 (Φ(𝑤−𝜇0𝜎0 − 𝛿) | 𝑛+12 , 𝑛+12 ). Here, Φ(∙) and 𝐹𝛽(∙ |𝑎, 𝑏) represent 

the c.d.f.s of the standard normal distribution and beta distribution with parameters (𝑎, 𝑏) , 

respectively. Also, we define 𝐩ini = (𝑝−𝑢, … , 𝑝0, … , 𝑝𝑢)𝑇  as an initial probability vector with 

dimension (2𝑢 + 1, 1) corresponding to the 2𝑢 + 1 transient states, such that 

𝑝𝑗 = {1, if 𝑍0 ∈ (𝐻𝑗 − ∆,𝐻𝑗 + ∆]0, if 𝑍0 ∉ (𝐻𝑗 − ∆,𝐻𝑗 + ∆].                                               (7) 

When the matrix R has a sufficiently large number of subintervals 2𝑢 + 1 (for example, u = 200, 2𝑢 + 1 = 401), this finite method gives an accurate evaluation of the RL characteristics of the 

Case-K EWMA 𝑋̃ chart. Note that we can consider the zero-state RL of the Case-K EWMA 𝑋̃ 

chart as a discrete phase-type random variable having parameters (𝐑, 𝐩ini) (refer to Neuts 1981; 

Latouche and Ramaswami 1999). Hence, the zero-state probability density function (p.d.f.) 𝑓𝑅𝐿(ℓ) 

and c.d.f. 𝐹𝑅𝐿(ℓ) of the RL distribution are equal to 𝑓RL(ℓ) = 𝑃𝑟(RL = ℓ) = 𝐩ini𝑇 𝐑ℓ−1𝐫                                                  (8) 

and 𝐹RL(ℓ) = 𝑃𝑟(RL ≤ ℓ) = 1 − 𝐩ini𝑇 𝐑ℓ𝟏,                                             (9) 

respectively, where ℓ ∈ {1, 2, … }. Then, the zero-state (100𝛽)th percentile of the RL distribution, 

i.e. ℓ𝛽 can be computed using (Gan, 1993) 𝑃𝑟 (RL ≤ ℓ𝛽 − 1) ≤ 𝛽 and 𝑃𝑟(RL ≤ ℓ𝛽) > 𝛽,                               (10) 
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for 0 < 𝛽 < 1. Here, we can obtain the zero-state percentile of the Case-K RL distribution by 

using both Equations (9) and (10). Note that when 𝛽 = 0.5, ℓ0.5 is the Case-K MRL value. The 

zero-state Case-K ARL and SDRL values can be computed as ARL = 𝑣1                                                                        (11) 

and  SDRL = √E2RL − ARL2,                                                        (12) 

respectively. Here,  E2RL = 𝑣1 + 𝑣2,                                                                 (13) 

where 𝑣1 and 𝑣2 represent the 1st and 2nd factorial moments of the RL given as 𝑣1 = 𝐩ini𝑇 (𝐈 − 𝐑)−1𝟏                                                            (14) 

and 𝑣2 = 2𝐩ini𝑇 (𝐈 − 𝐑)−2𝐑𝟏,                                                        (15) 

respectively, while I denotes the identity matrix of size (2𝑢 + 1, 2𝑢 + 1). 

The steady-state percentile of the RL distribution, ARL and SDRL of the Case-K EWMA 𝑋̃ chart can also be computed by applying the Markov chain method mentioned above, but by 

using the steady-state probability vector 𝐩ss instead of the initial probability vector 𝐩ini. Due to 

the fact that the tpm P in Equation (4) is not ergodic, Lucas and Saccucci (1990) noted that the 

exact steady-state probability vector is not available. To make the tpm P ergodic, they suggested 

using the cyclical steady-state probability vector which can be obtained by modifying the tpm P 

such that the plotting statistic is reset back to state (0) when it is in the OOC state, i.e. (Lucas and 

Saccucci, 1990) 𝐏∗ = ( 𝐑 𝐫0…1…0 0).                                                       (16) 
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Note that we can obtain 𝐩ss  by solving 𝐩 = 𝐏∗𝑇𝐩 such that 𝟏𝑇𝐩 = 1. Then, 𝐩ss = (𝟏𝑇𝐪)−1𝐪, 

where q represents a vector of length 2𝑢 + 1 obtained from p by removing the entry associated 

with the absorbing state, such that the sum of all probabilities in 𝐩ss is equal to 1. Hence, the 

cyclical steady-state 𝑓𝑅𝐿(ℓ), 𝐹𝑅𝐿(ℓ), percentile of the RL distribution, ARL and SDRL can be 

computed in the same way as that for the zero-state case, but by replacing 𝐩ini𝑇  with 𝐩ss𝑇  in 

Equations (8) to (15). 

 

3. The EWMA 𝑿̃ chart when parameters are unknown 

In practical situations, the IC process mean and standard deviation, i.e. 𝜇0  and 𝜎0  are 

usually unknown and we have to estimate them from a Phase-I historical sample. Castagliola et al. 

(2016) showed that the estimators of 𝜇0 and 𝜎0 for the 𝑋̃-type chart are 𝜇0̂ = 1𝑚 ∑ 𝑋̃𝑖𝑚𝑖=1                                                                (17) 

and 𝜎0̂ = 1𝑑2,𝑛 ( 1𝑚 ∑ 𝑅𝑖𝑚𝑖=1 ),                                                         (18) 

respectively. Here, 𝑋̃𝑖  and 𝑅𝑖 = 𝑋𝑖,(𝑛) − 𝑋𝑖,(1)  denote the sample median and the range of  

subgroup i, respectively, and the constant 𝑑2,𝑛 can be obtained easily from any Statistical Quality 

Control text book. Then, the 𝑈𝐶𝐿̂ and 𝐿𝐶𝐿̂ of the Case-U EWMA 𝑋̃ chart can be easily obtained 

using Equations (3a) and (3b), respectively, by replacing K, 𝜇0 and 𝜎0 with 𝐾′, 𝜇̂0 and 𝜎̂0, where 𝐾′ is a positive constant for Case-U. 

 For the Case-U EWMA 𝑋̃  chart, we may consider the standardized EWMA plotting 

statistic as an alternative to that in Equation (2). The standardized EWMA plotting statistic for the 

ith sample is given as 
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𝑍𝑖′ = (1 − 𝜆)𝑍𝑖−1′ + 𝜆 (𝑌̃𝑖−𝜇0𝜎0 ),                                                       (19) 

where 𝑍0′ = 0. Then, the corresponding modified 𝑈𝐶𝐿̂′  and 𝐿𝐶𝐿̂′  control limits of the Case-U 

EWMA 𝑋̃ chart are 𝑈𝐶𝐿̂′ = 𝑈 + 𝐾′𝑊                                                           (20a) 

and  𝐿𝐶𝐿̂′ = 𝑈 − 𝐾′𝑊,                                                           (20b) 

respectively, where 𝑈 = 𝜇̂0′ −𝜇0𝜎0  and 𝑊 = 𝜎̂0′𝜎0 . The zero-state unconditional p.d.f. and c.d.f. i.e. 

𝑓𝑅𝐿(ℓ) and 𝐹𝑅𝐿(ℓ) of the Case-U EWMA 𝑋̃ chart are (Castagliola et al., 2016) 𝑓𝑅𝐿(ℓ) = ∫ ∫ [𝑓𝑈(𝑢|𝑚, 𝑛) × 𝑓𝑉(𝑣|𝑚, 𝑛)]𝑓𝑅𝐿(ℓ)𝑑𝑤𝑑𝑢+∞0+∞−∞                             (21) 

and 𝐹𝑅𝐿(ℓ) = 1 − ∫ ∫ [𝑓𝑈(𝑢|𝑚, 𝑛) × 𝑓𝑉(𝑣|𝑚, 𝑛)]𝐹̂𝑅𝐿(ℓ)𝑑𝑤𝑑𝑢+∞0+∞−∞ ,                       (22) 

respectively, where 𝑓𝑅𝐿(ℓ)  and 𝐹̂𝑅𝐿(ℓ)  are the conditional p.d.f. and c.d.f. obtained through 

Equations (8) and (9), respectively, by replacing 𝜇0 and 𝜎0 with 𝜇̂0′  and 𝜎̂0′ . 
 Next, similar to Case-K, we can obtain the zero-state percentile of the Case-U RL 

distribution by using both Equations (22) and (10). Based on Equations (22) and (10) when 𝛽 =0.5, ℓ0.5 is the Case-U MRL value. The zero-state Case-U ARL and SDRL values can be computed 

as ARL = ∫ ∫ [𝑓𝑈(𝑢|𝑚, 𝑛) × 𝑓𝑉(𝑣|𝑚, 𝑛)]𝑣1𝑑𝑤𝑑𝑢+∞0+∞−∞                             (23) 

and SDRL = √E2RL − ARL2,                                                      (24) 

respectively, where E2RL = ∫ ∫ [𝑓𝑈(𝑢|𝑚, 𝑛) × 𝑓𝑉(𝑣|𝑚, 𝑛)](𝑣̂1 + 𝑣2)𝑑𝑤𝑑𝑢+∞0+∞−∞ .                      (25) 
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Note that 𝑣1 and 𝑣2 can be obtained from Equations (14) and (15), respectively, by replacing 𝜇0 

and 𝜎0 with 𝜇̂0′  and 𝜎̂0′ . There is no closed-form formulae for 𝑓𝑈(𝑢|𝑚, 𝑛) and 𝑓𝑉(𝑣|𝑚, 𝑛), hence 

Castagliola & Figueiredo (2013) provided a good approximation for them and the details are not 

repeated here due to space constraints. Also, it is worth mentioning that the cyclical steady-state 

Case-U 𝑓𝑅𝐿(ℓ), 𝐹𝑅𝐿(ℓ), percentile of the RL distribution, ARL and SDRL can be computed in the 

same way as that for the zero-state case, but by replacing 𝐩ini𝑇  with 𝐩ss𝑇  in Equations (21) to (25). 

 

4. Performance of the Case-K EWMA 𝑿̃ chart in terms of the ARL, SDRL, and percentiles 

of the RL distribution 

We present the results of ARL, SDRL and percentiles of the RL distribution for the Case-

K EWMA 𝑋̃ chart based on zero- and steady-state cases in Tables 1 and 2, respectively. The chart’s 

optimal parameters (𝜆, 𝐾) of the Case-K EWMA 𝑋̃ chart were obtained through an optimization 

program written using the ScicosLab software. In these tables, we consider the desired IC ARL, ARL0 = 370, sample sizes n = {3, 7} and 𝛿opt = {0.5, 2.0}. Here, 𝛿opt is the desired magnitude of 

a mean shift for which a fast detection is required. Note that the ARL, SDRL and percentiles of 

the RL distribution in these tables are computed for different shift sizes of 𝛿 ={0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2.0}, based on the chart’s optimal parameters (𝜆, 𝐾). 

 

[Please insert Tables 1 and 2 here] 

 

From Tables 1 and 2, for both the zero- and steady-state cases, respectively, we observe 

that the ARL value is larger than the 50th percentile of the RL distribution, i.e. the MRL, except 

for some cases where mean shifts   are large. Moreover, we notice that the difference between 
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ARL and MRL values reduces as the shift in the process mean increases. This shows that the 

skewness of the RL distribution changes according to the size of the mean shift, where the RL 

distribution is highly right-skewed when the process is IC or slightly OOC, and it becomes almost 

symmetric when the process is OOC. Therefore, special caution is needed in the interpretation of 

the RL distribution based only on the ARL. For instance, for the IC case of ARL0 = 370 in Table 

1, where 𝑛 = 3 and 𝛿opt = 0.5, practitioners may falsely conclude that a false alarm will be 

signalled by the 370th sample in half of the time. However, in reality, the ARL0 is located between 

the 60th and 70th percentiles of the RL distribution, where a false alarm actually happens earlier, 

i.e. by the 257th sample, where the IC MRL (MRL0) = 257, in half of the time. Moreover, still 

considering the same case in Table 1 but with 𝛿 = 2.0, the ARL1 is 2.77 and the OOC signal almost 

happens the same time, i.e. by the 3rd sample, where the OOC MRL (MRL1) = 3, in half of the 

time. This particular example shows that for a highly right-skewed RL distribution, the median is 

always smaller than the average. However, for an almost symmetric RL distribution, the median 

is about the same as the average. Since the interpretation of the ARL for a symmetric RL 

distribution is certainly different from that of a highly right-skewed RL distribution, we 

recommend the use of the MRL as a more appropriate representation of the central tendency 

compared to the ARL. 

The percentiles of the RL distribution are able to give more information related to the 

behaviour of a control chart. When δ = 0, the lower percentiles, for instance, the 5th, 10th and 20th 

percentiles of the RL distribution, give some useful information about the early false alarms of the 

IC process. Using n = 3, 𝛿opt = 0.5 and δ = 0 in Table 2 as an example, there is a 10% probability 

for an early false alarm to take place by the 40th sample. This finding is interesting as it shows that 

although the ARL0 value (=370) is relatively large, the values of the lower percentiles are relatively 
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small, indicating that a large number of false alarms happens when the process monitoring starts. 

Moreover, higher percentiles, for instance the 80th, 90th and 95th percentiles of the RL distribution 

give practitioners extra information regarding the process. For example, when n = 7, 𝛿opt = 0.5 

and 𝛿 = 1.0 in Table 2, practitioners can claim with 95% confidence that an OOC will be signalled 

by the 6th sample. 

Moreover, it is crucial for practitioners to pay attention on the spread of the RL distribution. 

The difference between the 95th and 5th percentiles of the RL distribution gives important clues 

about the skewness, spread and variation of the RL distribution. In Tables 1 and 2, we notice that 

as the value of 𝛿 increases, the difference between the 95th and 5th percentiles decreases. Taking 

the case of n = 7 and 𝛿opt = 0.5 in Table 2 as an example, for 𝛿 = 0.2, the difference between the 

5th and 95th percentiles is 107; whereas for 𝛿 = 1.5, the difference between the same percentiles is 

only 2. This indicates that for IC and slightly OOC processes, the spread of the RL distribution is 

large; whereas for a large OOC process, there is less variability in the RL distribution. Hence, 

interpretation using the ARL alone is inappropriate and misleading as the level of spread in the RL 

distribution of the EWMA 𝑋̃ chart varies according to the size of the mean shift. The ARL only 

gives the expected number of points that are needed to be plotted on a control chart prior to 

obtaining an OOC signal or a false alarm. It is not an indicator of the probability of getting an 

OOC signal or false alarm by a particular number of samples. Therefore, we need to propose an 

alternative performance measure for the EWMA 𝑋̃ chart. It is interesting to note that the MRL is 

a more reliable criterion as it is less influenced by the skewness of the RL distribution compared 

to the ARL. In addition, the MRL indicates that the EWMA 𝑋̃ chart will signal by a certain number 

of samples in 50% of the time or with 50% certainty. 
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5. Optimization designs of the EWMA 𝑿̃ chart based on MRL and EMRL 

In this section, we discuss the optimization designs of the Case-K EWMA 𝑋̃ chart, that is, by 

minimizing the (i) MRL1 and (ii) OOC EMRL (EMRL1) for known and unknown mean shift sizes, 

respectively. When the mean shift size is known a priori, the optimization design of the Case-K 

EWMA 𝑋̃ chart based on the MRL is performed by minimizing the MRL1, where the desired IC 

MRL (MRL0) is predefined by the user. For the Case-K EWMA 𝑋̃ chart, 𝜆 and K are the two 

parameters that need to be optimized. In the following, we outline the detailed steps to determine 

the Case-K EWMA 𝑋̃ chart’s optimal parameters (𝜆, K) when the mean shift size is known: 

Step 1. Input the MRL0, n, and 𝛿opt values. 

Step 2. Initialize both the 𝜆 and K parameters with a small value such as 0.01. 

Step 3. By using nonlinear equation solver, vary the parameters (𝜆, 𝐾) simultaneously so 

that the MRL0 value in Step 1 is satisfied. 

Step 4. Calculate the MRL1 value using Equations (9) and (10), where 𝛽 = 0.5, based on 

the current combination of parameters (𝜆, K) obtained in Step 3. 

Step 5. Repeat Steps 3 to 4 and determine all the possible combinations of parameters (𝜆, 

K) together with their corresponding MRL1 value. 

Step 6. Choose the combination of parameters (𝜆, K) that results in the smallest MRL1 value 

as the chart’s optimal parameters. 

The assumption that the mean shift size is known a priori, is too restrictive. In various situations, 

the magnitude of an exact mean shift size in a process is usually unknown. The above optimization 

design, based on minimizing MRL1, may perform badly if the actual mean shift size deviates from 

the 𝛿opt value. For instance, consider the zero-state case of the Case-K EWMA 𝑋̃ chart with n = 5 

and 𝛿opt = 0.8 having optimal parameters (𝜆, 𝐾) = (0.5001, 0.9227) and MRL1 = 5 in Table 3. 
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If we use these parameters (𝜆, 𝐾) for the situation where the actual mean shift size is 0.2, the 

computed MRL1 = 83, which results in an undesirable relative error of 100 ×(83 − 35) 35 =⁄ 137% compared to the optimal MRL1 = 35 (refer to Table 3 where n = 5 and 𝛿opt = 0.2). To circumvent the problem that arises due to limited knowledge regarding the actual 

mean shift size, we suggest to use an alternative performance measure, i.e. the expected MRL 

(EMRL) which performs well for a range of mean shift sizes. 

Therefore, for the case of an unknown mean shift size, the optimization design of the EWMA 𝑋̃ chart based on EMRL is conducted by minimizing the EMRL1, where the IC EMRL (EMRL0) 

is predefined by the user. Here, the EMRL is computed by EMRL = ∫ 𝑓𝛿(𝛿)MRL(𝛿)𝑑𝛿.𝛿max𝛿min                                                     (26) 

Since it is difficult to know the actual distribution of 𝑓𝛿(𝛿), several researchers, such as Castagliola, 

Celano, and Psarakis (2011) and Ou et al. (2012) assumed that the shift in the process mean follows 

the uniform, 𝑈[𝛿min, 𝛿max] distribution. The integral in Equation (26) is evaluated numerically 

using the Gauss-Legendre quadrature method. In the following, we outline the detailed steps to 

determine the EWMA 𝑋̃ chart’s optimal parameters (𝜆, K) when the mean shift size is unknown: 

Step 1. Input the EMRL0, n, 𝛿min and 𝛿max values. 

Steps 2–6. Similar to Steps 2–6 when the mean shift size is known, but by replacing MRL0 

with EMRL0 and MRL1 with EMRL1. 

Note that the optimization designs of the Case-U EWMA 𝑋̃ chart can be obtained in the same way 

as that for the Case-K EWMA 𝑋̃ chart, but by replacing K of Case-K MRL and Case-K EMRL 

with 𝐾′ of Case-U MRL and Case-U EMRL, followed by adding another input parameter m. 

 

 



18 

 

6. Performance studies 

In this section, we compare the optimal Case-K EWMA 𝑋̃ and Case-K Shewhart 𝑋̃ charts, for both 

known and unknown mean shift sizes. Note that in these comprehensive comparative studies, we 

consider both the zero- and steady-state Case-K MRL and EMRL performances. Here, the UCL 

and LCL of the Case-K Shewhart 𝑋̃  chart are computed by using Equations (3a) and (3b), 

respectively, but by replacing the constant K with L, where L > 0 is the control limit coefficient of 

the Shewhart 𝑋̃ chart. Moreover, we evaluate the performances of the optimal EWMA 𝑋̃ chart 

under Case-U situations. 

 

6.1 Performance comparisons between the Case-K EWMA 𝑿̃ and Shewhart 𝑿̃ charts when 

the shift size is known 

We present the zero- and steady-state Case-K performances of the optimal EWMA 𝑋̃ and 

Shewhart 𝑋̃ charts for the desired IC MRL, MRL0{250, 370} in Tables 3 and 4, respectively, 

where the shift size is known. Since the Shewhart 𝑋̃ chart is a memoryless-type control chart, its 

zero- and steady-state Case-K performances are exactly the same and we only present the zero-

state results. In these tables, we consider the cases where 𝑛 ∈ {3, 5, 7, 9, 11}  and 𝛿opt ∈{0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. For each case, we present the optimal parameters (𝜆, K) and 

parameter L of the Case-K EWMA 𝑋̃ and Shewhart 𝑋̃ charts, respectively, and their corresponding 

5th (ℓ0.05), 50th (MRL) and 95th (ℓ0.95) percentiles of the RL distribution. Note that the difference 

between the ℓ0.05 and ℓ0.95 can be used to determine the spread and variation of the RL distribution. 

Also, similar to Castagliola et al. (2016), we set 𝜆 ≥ 0.1 for the convergence of the Markov chain 

approach. 
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[Please insert Tables 3–4 here] 

 

From Tables 3 and 4, we observe that under both the zero- and steady-state cases, the optimal 

Case-K EWMA 𝑋̃ chart outperforms the Case-K Shewhart 𝑋̃ chart for small and moderate shifts 

in the process mean, since the EWMA 𝑋̃  chart gives a smaller MRL1 value compared to the 

Shewhart 𝑋̃ chart. However, for large shifts in the process mean, the optimal Case-K EWMA 𝑋̃ 

chart has an almost similar performance to the Case-K Shewhart 𝑋̃ chart. Taking the case of MRL0 

= 250, n = 3 and 𝛿opt = 0.1 (small shift) in Table 3 as an example, the zero- and steady-state MRL1s 

of the EWMA 𝑋̃ chart are equal to 122 and 121, respectively; whereas the MRL1 of the Shewhart 𝑋̃ chart is 227. Still considering this case but with 𝛿opt = 2.0 (large shift), the zero- and steady-

state MRL1s of the Case-K EWMA 𝑋̃ and Case-K Shewhart 𝑋̃ charts are both equal to 2. This 

result is expected, as the EWMA procedure greatly outperforms the Shewhart procedure for small 

and moderate shifts in the process mean; whereas they have comparable performance for large 

shifts in the process mean. 

Still investigating Tables 3 and 4, we also notice that the zero- and steady-state MRL1s of the 

Case-K EWMA 𝑋̃ chart have comparable performances. For example, in Table 4, when MRL0 =370, n = 3 and 𝛿opt = 0.1, the zero- and steady-state MRL1s of the Case-K EWMA 𝑋̃ chart are 

equal to 164 and 162, respectively, and a similar trend is observed for other cases. In addition, it 

is interesting to note that the Case-K EWMA 𝑋̃  chart shows a smaller variation in the RL 

distribution compared to the Case-K Shewhart 𝑋̃ chart for small and moderate mean shift sizes, i.e. 0.1 ≤ 𝛿opt ≤ 1.0. This is shown by a smaller difference between the ℓ0.05 and ℓ0.95 values of the 

former compared to the latter. However, for large mean shift sizes, i.e. 𝛿opt ≥ 1.5, both the Case-

K EWMA 𝑋̃ and Shewhart 𝑋̃ charts have comparable variation in the RL distribution. For example, 
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by considering the steady-state case of MRL0 = 370, n = 7 and 𝛿opt = 0.2 in Table 4, the variation 

in the RL distribution for the EWMA 𝑋̃ chart is 104– 7 = 97; whereas that for the Shewhart 𝑋̃ 

chart is 779 − 14 = 765. However, when the shift size increases to 𝛿opt = 2.0, the variation in 

the RL distribution for the EWMA 𝑋̃ chart is 2 − 1 = 1, which is similar to that of the Shewhart 𝑋̃ chart. 

 

6.2 Performance comparisons between the EWMA 𝑿̃ and Shewhart 𝑿̃ charts when the shift 

size is unknown  

Table 5 presents the Case-K EWMA 𝑋̃ and Shewhart 𝑋̃ charts’ optimal parameters (𝜆, 𝐾) and 

parameter L, respectively, and their corresponding minimized EMRL1 value computed based on 

Equation (26), for a range of shift sizes from 𝛿min = 0.1 to 𝛿max = 2.0. Note that in this study, we 

consider the desired IC EMRL value, EMRL0 = 370 and 𝑛 ∈ {3, 5, 7, 9,11}. Moreover, in Table 

5, based on these computed optimal parameters (𝜆, 𝐾) and parameter L of the Case-K EWMA 𝑋̃ 

and Shewhart 𝑋̃ charts, respectively, we give the corresponding (ℓ0.05, MRL1, ℓ0.95) values for 𝛿 ∈{0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. For example, in Table 5, when n = 5 and 𝛿 = 0.1, the 

values of (ℓ0.05, MRL1, ℓ0.95) for the zero-state case of the Case-K EWMA 𝑋̃ chart are (18, 126, 

509), corresponding to the optimal parameters (𝜆, 𝐾 ) = (0.1042, 0.3583) obtained based on 

minimizing EMRL1. 

 

[Please insert Table 5 here] 

 

From Table 4, when 𝑛 = 7 and 𝛿 = 0.2, the steady-state chart’s optimal parameters and 

MRL1 value for the Case-K EWMA 𝑋̃  chart are (𝜆, 𝐾)  = (0.1000, 0.2996) and MRL1 = 32 , 
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respectively; whereas for the same case, we obtain MRL1 = 34  based on the global chart’s 

parameters (𝜆, 𝐾) = (0.1281, 0.3489) in Table 5. This example indicates that the MRL1 value 

computed based on the global chart’s parameters presented in Table 5 is close to the MRL1 value 

for a specific mean shift size presented in Table 4. Therefore, the global charts’ parameters of the 

Case-K EWMA 𝑋̃ and Shewhart 𝑋̃ charts presented in Table 5 are robust alternatives to the charts’ 

parameters for a specific mean shift size given in Table 4, particularly when the exact shift size is 

unknown. 

The results in Table 5 show that the optimal Case-K EWMA 𝑋̃ chart is superior to the 

Case-K Shewhart 𝑋̃ chart based on the EMRL1 performance measure, for a range of shift sizes 

from 𝛿min = 0.1 to 𝛿max = 2.0. Moreover, in Table 5, the optimal Case-K EWMA 𝑋̃ chart has a 

better zero- and steady-state MRL1 performances in detecting small and moderate mean shift sizes 

(𝛿 < 1.0) compared to the Case-K Shewhart 𝑋̃ chart; whereas for large shift sizes (𝛿 > 1.0), the 

Case-K Shewhart 𝑋̃ chart demonstrates a similar or slightly superior performance to the Case-K 

EWMA 𝑋̃ chart. In terms of the variation in the RL distribution, the Case-K EWMA 𝑋̃ chart 

greatly outperforms the Case-K Shewhart 𝑋̃ chart for small and moderate mean shift sizes. For 

instance, for both the zero- and steady-state cases where 𝑛 = 9 and 𝛿 = 0.6 (moderate shift size) 

in Table 5, the variations of the RL distribution which can be measured by the difference between ℓ0.05 and ℓ0.95 are 8 and 27, respectively, for the Case-K EWMA 𝑋̃ and Shewhart 𝑋̃ charts. This 

study also shows that the Case-K EWMA 𝑋̃  chart has an almost similar variation in the RL 

distribution for both the zero- and steady-state cases. 
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6.3 Performances of the optimal EWMA 𝑿̃ chart under Case-U situation 

We present the zero-state Case-U performance of the optimal EWMA 𝑋̃  chart for the 

desired MRL0 = 370 in Table 6, where the shift size is known. The main purpose of this section 

is not to show the superiority of the optimal Case-U EWMA 𝑋̃ chart to the Case-U Shewhart 𝑋̃ 

chart but to examine the effect of parameters estimation on the performance of the optimal EWMA 𝑋̃ chart. Since we have demonstrated that the zero- and steady-states Case-K performances of the 

optimal EWMA 𝑋̃ chart are almost the same in Section 6.1, we only present the zero-state Case-

U results of the optimal EWMA 𝑋̃ chart in this subsection. Note that in Table 6, we display the 

chart’s optimal parameters (𝜆, 𝐾) of the Case-U EWMA 𝑋̃ chart, followed by the corresponding 

(ℓ0.05, MRL1, ℓ0.95) values for 𝑛 ∈ {3, 5, 7, 9}, 𝑚 ∈ {10, 20, 40, 80, 100000} and  𝛿 ∈{0.1, 0.2, 

0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. Due to space constraint, we did not present the EMRL1 results of the 

optimal Case-U EWMA 𝑋̃ chart when the shift size is unknown. 

 

[Please insert Table 6 here] 

 

In Table 6, the zero-state Case-U results of the EWMA 𝑋̃ chart when m is large, i.e. m = 100000 

approach the zero-state Case-K results of the EWMA 𝑋̃ chart in Table 4. For instance, when n = 3 

and 𝛿  = 0.2, the (ℓ0.05, MRL1, ℓ0.95) values of the zero-state Case-U EWMA 𝑋̃  chart for m = 

100000 are (13, 60, 225) (see Table 6); whereas the (ℓ0.05, MRL1, ℓ0.95) values of the Case-K 

EWMA 𝑋̃ chart are (13, 60, 224) (see Table 4). This is expected, as taking a large number of 

Phase-I samples allows the process parameters to be accurately estimated, i.e. Case-K. For the 

same reason, we observe that the MRL1 value of the Case-U EWMA 𝑋̃ chart generally decreases 

as m increases, where n and 𝛿 are fixed. For example, when n = 5 and 𝛿 = 0.4 in Table 6, the MRL1 



23 

 

value of the Case-U EWMA 𝑋̃ chart is 23 for m = 10; whereas the MRL1 value decreases to 16 as 

m increases to 80. 

Moreover, we observe that the optimal parameters computed for the Case-U EWMA 𝑋̃ chart 

is important, as it allows this chart to have a closer IC performance to the nominal MRL, i.e. MRL1 = 370. For example, in Table 6, when n = 3, m = 10 and 𝛿 = 0.4, the MRL0 value of the 

Case-U EWMA 𝑋̃ chart is 370, corresponding to the optimal parameters (𝜆, 𝐾) = (0.1104, 0.5840). 

However, for the same combination of n, m and 𝛿, the optimal parameters (𝜆, 𝐾) = (0.1260, 0.5030) 

(see the last column of Table 6) will give a smaller value of  MRL0= 86 (when process parameters 

are estimated) using our computer program. Hence, the use of optimal parameters computed for 

the Case-U EWMA 𝑋̃ chart will result in better IC performance, i.e. with less false alarms, when 

the process parameters are not known and need to be estimated. 

 

7. Real data example 

We illustrate the application of the optimal EWMA 𝑋̃ chart based on minimizing the EMRL1 

in monitoring the diameter of forged piston rings. Note that these piston rings data are available in 

Montgomery (2013). A piston ring is a ring that fits in between the cylinder and piston of a 

combustion engine. The diameter of a piston ring is crucial in preventing engine damage. This is 

because as the temperature increases, the piston ring will also expand and it may collide with the 

cylinder and lead to engine breakdown. Hence, the diameter of piston rings must follow the 

standards for compression ring gaps as outlined by the Society of Automotive Engineers (SAE). 

Due to the importance of the diameter of piston rings, in this study, the EWMA 𝑋̃ chart is 

applied to monitor the inner diameter of forged automobile piston rings. The Phase I data with m 

= 25 samples have been collected and presented in Table 7. It consists of 𝑖 = 1, 2, …, m subgroups, 
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each having n = 5 observations, 𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑛. We assume that the IC mean 𝜇0 and IC standard 

deviation 𝜎0 are both known and can be correctly estimated from the Phase I data. Then, for this 

Phase I data, the estimators of 𝜇0 and 𝜎0 for the 𝑋̃-type chart are computed as (Castagliola et al. 

2016) 𝜇0̂ = 1𝑚 ∑ 𝑋̃𝑖𝑚𝑖=1 = 125 ∑ 𝑋̃𝑖25𝑖=1 = 74.00176  

and                               𝜎0̂ = 1𝑑2,𝑛 ( 1𝑚 ∑ 𝑅𝑖𝑚𝑖=1 ) = 12.326 ( 125 ∑ 𝑅𝑖25𝑖=1 ) = 0.0100,  

using Equations (17) and (18), respectively. Moreover, the quality practitioners who are familiar 

with this process, know from past experience that although the exact shift size is unknown, it falls 

between 𝛿min = 0.1 and 𝛿max = 2.0 and the process has gone into the steady-state.  

Then, by assuming that EMRL0 = 370, we obtain the EWMA 𝑋̃ chart’s optimal parameters as (𝜆, 𝐾) = (0.1042, 0.3592) from Table 5. Using these chart’s optimal parameters, we compute the 

UCL and LCL of the EWMA 𝑋̃ chart using Equations (3a) and (3b) as follows: 𝑈𝐶𝐿 = 74.00176 + (0.3592 × 0.0100) = 74.0054 

and 𝐿𝐶𝐿 = 74.00176 − (0.3592 × 0.0100) = 73.9982, 

respectively. After establishing the EWMA 𝑋̃  chart in Phase I, we proceed with Phase II 

monitoring of the piston rings process by taking 15 additional samples (see Table 8). For these 

samples, we compute the sample median values 𝑌̃𝑖 and the EWMA sequence 𝑍𝑖 as presented in 

Table 8. Note that in Table 8, the boldfaced entries denote the OOC cases. Then, we plot the 15 

Phase II samples, sample median values 𝑌̃𝑖 and the EWMA sequence 𝑍𝑖 in Figures 2(a), 2(b) and 

2(c), respectively. We observe in Figure 2(c) that the optimal EWMA 𝑋̃ chart detects the first OOC 
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signal at sample 10, since this is the first sample that falls beyond the UCL. Note that the optimal 

EWMA 𝑋̃ chart also declares other OOC signals at samples 12, 13, 14 and 15. Since the OOC 

signals are declared by the EWMA 𝑋̃ chart, a quick corrective action should be taken to identify 

and remove the assignable cause(s), and bring the process back into the IC situation. 

 

[Please insert Tables 7–8 here] 

[Please insert Figure 2 here] 

 

8. Conclusions  

An in-depth understanding of a control chart’s performance characteristics is crucial as it 

increases practitioners’ confidence in applying it. In the existing EWMA-type charts, the use of 

ARL alone to represent the skewed RL distribution has caused some vital information on the RL 

distribution to be neglected. This article demonstrates that the percentiles of the RL distribution 

are better performance measures compared to the ARL. Among all the percentiles of the RL 

distribution, we focus on the 5th, 50th (i.e. MRL) and 95th percentiles of the RL distribution. This 

is because the MRL is a better measure of central tendency compared to the ARL when the RL 

distribution is skewed, and the difference between the 5th and 95th percentiles gives information 

regarding the spread and variation of the RL distribution.  

Therefore, in this article, we develop an optimal EWMA 𝑋̃ chart based on minimizing the 

MRL1 and EMRL1, for known and unknown mean shift sizes, respectively. Note that the 

optimization design based on minimizing the EMRL provides us with the chart’s optimal 

parameters which performs favourably for a range of shift sizes, i.e. from 𝛿min to 𝛿max when the 

exact shift size is not known in advance. These chart’s optimal parameters presented in Tables 3 
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to 5 are useful to quality practitioners as these tables facilitate a quick implementation of the 

EWMA 𝑋̃  chart. From the performance comparison, we observe that the EWMA 𝑋̃  chart 

consistently outperforms the Shewhart 𝑋̃ chart for small and moderate shift sizes; whereas both 

charts have a comparable performance for large shift sizes. Moreover, when the exact shift size is 

unknown, the EWMA 𝑋̃  chart is superior to the Shewhart 𝑋̃  chart in terms of the EMRL 

performance. In addition, we study the effect of parameters estimation on the performance of the 

optimal EWMA 𝑋̃ chart. We present a real life example to demonstrate the application of the 

EWMA 𝑋̃ chart based on EMRL. In conclusion, the proposed optimization designs of the EWMA 𝑋̃ chart based on MRL and EMRL are useful alternative design criteria for practitioners in the 

design and implementation of this control chart. 
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Table 1. Exact ARLs, SDRLs and percentiles of the RL distribution for the Case-K EWMA 𝑋̃  chart with the  

chart’s optimal parameters (λ, K) corresponding to n ∈ {3, 7}, 𝛿opt ∈ {0.5, 2.0} and ARL0 = 370, under the zero-state case. 

    Percentiles of the RL distribution 

δ ARL SDRL 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 𝑛 = 3, 𝛿opt = 0.5, (𝜆, 𝐾) = (0.1000, 0.4160) 

0.0 370.00 368.50 26 46 88 136 191 257 337 440 586 835 1084 

0.1 176.09 174.58 17 27 47 69 94 125 162 209 276 391 506 

0.2 67.59 66.08 11 15 23 31 40 50 63 80 103 143 183 

0.4 21.16 19.55 7 8 10 13 15 18 21 24 30 39 48 

0.5 14.87 8.29 5 7 8 10 11 13 15 17 20 26 31 

0.6 11.40 9.87 5 6 7 8 9 10 11 13 15 19 22 

0.8 7.12 6.03 4 4 5 6 6 7 8 9 10 12 14 

1.0 5.84 4.07 3 4 4 5 5 5 6 7 7 9 10 

1.5 3.71 1.01 2 3 3 3 3 4 4 4 4 5 5 

2.0 2.77 0.79 2 2 2 2 3 3 3 3 3 4 4 𝑛 = 3, 𝛿opt = 2.0, (𝜆, 𝐾) = (0.6856, 1.4550)  

0.0 370.00 368.50 20 40 83 133 189 257 339 445 595 850 1106 

0.1 308.95 307.44 17 33 70 111 158 214 283 372 496 710 923 

0.2 201.86 200.36 11 22 46 73 104 140 185 243 324 463 602 

0.4 74.13 72.62 5 9 18 27 39 52 68 89 119 169 219 

0.5 46.44 44.92 4 6 11 17 24 33 43 56 74 105 136 

0.6 29.98 28.44 3 4 8 12 16 21 28 36 47 67 87 

0.8 14.37 12.79 2 3 4 6 8 10 13 17 22 31 40 

1.0 8.04 6.37 2 2 3 4 5 6 8 9 12 17 21 

1.5 3.08 0.49 1 1 2 2 2 3 3 4 4 6 7 

2.0 1.81 1.47 1 1 1 1 1 2 2 2 2 3 3 𝑛 = 7, 𝛿opt = 0.5, (𝜆, 𝐾) = (0.1593, 0.3804) 

0.0 370.00 368.50 24 44 86 135 190 257 338 442 589 840 1092 

0.1 132.19 13068 13 20 35 51 71 93 121 157 208 295 382 

0.2 42.17 40.64 7 10 15 19 25 31 39 50 64 89 113 

0.4 12.01 10.40 4 5 6 8 9 10 12 14 17 21 26 

0.5 8.43 6.76 3 4 5 6 7 7 8 10 11 14 17 

0.6 6.47 4.74 3 3 4 5 5 6 7 7 8 10 12 

0.8 4.44 2.52 2 3 3 3 4 4 5 5 6 7 7 

1.0 3.41 1.18 2 2 3 3 3 3 4 4 4 5 5 

1.5 2.26 1.29 2 2 2 2 2 2 2 2 3 3 3 

2.0 1.82 1.47 1 1 2 2 2 2 2 2 2 2 2 𝑛 = 7, 𝛿opt = 2.0, (𝜆, 𝐾) = (0.9363, 1.2996) 

0.0 370.00 368..50 19 39 83 132 189 257 339 445 595 851 1107 

0.1 293.72 292.21 16 31 66 105 150 204 269 354 472 676 879 

0.2 174.61 173.11 10 19 39 63 89 121 160 210 281 401 522 

0.4 54.64 53.12 3 6 13 20 28 38 50 66 88 125 162 

0.5 32.09 31.44 2 4 8 12 17 22 29 39 51 73 95 

0.6 19.73 18.17 2 3 5 7 10 14 18 24 31 45 58 

0.8 8.56 6.90 1 2 2 3 5 6 8 10 13 19 24 

1.0 4.43 2.52 1 1 2 2 3 3 4 5 7 9 12 

1.5 1.62 1.50 1 1 1 1 1 1 2 2 2 3 3 

2.0 1.10 1.44 1 1 1 1 1 1 1 1 1 1 2 

 

 



Table 2. Exact ARLs, SDRLs and percentiles of the RL distribution for the Case-K EWMA 𝑋̃  chart with the  

chart’s optimal parameters (λ, K) corresponding to n ∈ {3, 7}, 𝛿opt ∈ {0.5, 2.0} and ARL0 = 370, under the steady-state 

case. 

    Percentiles of the RL distribution 

δ ARL SDRL 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 𝑛 = 3, 𝛿opt = 0.5, (𝜆, 𝐾) = (0.1000, 0.4166) 

0.0 370.00 369.40 20 40 83 132 189 257 339 445 595 851 1107 

0.1 174.99 169.28 14 24 44 66 92 123 161 210 278 395 513 

0.2 66.70 58.87 9 13 21 29 39 49 62 79 103 143 184 

0.4 20.71 14.00 5 7 10 12 15 17 20 24 30 39 48 

0.5 14.59 8.74 4 6 8 9 11 13 15 17 20 26 31 

0.6 11.42 9.81 5 6 7 8 9 10 11 13 15 19 22 

0.8 7.23 6.05 4 4 5 6 6 7 8 9 10 12 14 

1.0 5.76 2.44 2 3 4 4 5 5 6 7 8 9 10 

1.5 3.68 1.35 2 2 3 3 3 4 4 4 5 5 6 

2.0 2.76 0.94 1 2 2 2 2 3 3 3 4 4 4 𝑛 = 3, 𝛿opt = 2.0, (𝜆, 𝐾) = (0.6774, 1.4450) 

0.0 370.00 369.50 19 39 83 132 189 257 339 445 595 851 1107 

0.1 308.28 307.65 16 33 69 110 158 214 283 371 496 709 922 

0.2 200.60 199.73 11 22 45 72 103 139 184 241 322 461 599 

0.4 73.20 72.01 5 9 17 27 38 51 67 88 117 167 217 

0.5 45.77 44.50 4 6 11 17 24 32 42 55 73 104 135 

0.6 29.89 28.35 3 4 8 12 16 21 28 36 47 67 87 

0.8 14.30 12.71 2 3 4 6 8 10 13 17 22 31 40 

1.0 7.91 6.60 1 2 3 4 5 6 7 9 12 16 21 

1.5 3.04 1.93 1 1 2 2 2 3 3 4 4 6 7 

2.0 1.81 0.89 1 1 1 1 1 2 2 2 2 3 3 𝑛 = 7, 𝛿opt = 0.5, (𝜆, 𝐾) = (0.1592, 0.3807) 

0.0 370.00 369.45 19 39 83 132 189 257 339 445 595 851 1107 

0.1 131.55 126.98 11 18 33 50 70 93 121 158 209 297 385 

0.2 41.67 36.1 6 9 14 19 24 31 39 49 64 89 113 

0.4 11.78 7.42 3 4 6 7 9 10 12 14 17 21 26 

0.5 8.27 4.54 3 3 5 6 6 7 8 10 11 14 17 

0.6 6.48 4.75 3 3 4 5 5 6 7 7 8 10 12 

0.8 4.44 2.53 2 3 3 3 4 4 5 5 6 7 7 

1.0 3.37 1.29 2 2 2 3 3 3 4 4 4 5 6 

1.5 2.23 0.75 1 1 2 2 2 2 2 3 3 3 3 

2.0 1.74 0.56 1 1 1 1 2 2 2 2 2 2 3 𝑛 = 7, 𝛿opt = 2.0, (𝜆, 𝐾) = (0.9686, 1.2729) 

0.0 370.00 369.50 19 39 83 132 189 257 339 445 595 851 1107 

0.1 295.65 295.13 16 32 66 106 151 205 271 356 476 680 885 

0.2 177.76 177.20 10 19 40 64 91 123 163 214 286 409 531 

0.4 56.48 55.88 3 6 13 21 29 39 52 68 91 129 168 

0.5 33.30 32.68 2 4 8 12 17 23 31 40 53 76 99 

0.6 15.61 14.03 1 2 4 6 8 11 14 19 25 35 46 

0.8 7.15 5.45 1 1 2 3 4 5 7 8 11 16 20 

1.0 4.56 3.93 1 1 2 2 3 3 4 5 7 10 12 

1.5 1.63 0.97 1 1 1 1 1 1 2 2 2 3 4 

2.0 1.10 0.32 1 1 1 1 1 1 1 1 1 1 2 

 



Table 3. Comparisons of the (ℓ0.05, MRL1, ℓ0.95) values for the Case-K Shewhart 𝑋̃ and optimal Case-K EWMA 𝑋̃ charts, 

together with the charts' corresponding parameters when 𝑛 ∈ {3, 5, 7, 9, 11}, 𝛿opt ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}  and MRL0 = 250. 
  Shewhart 𝑋̃  EWMA 𝑋̃ (Zero state)  EWMA 𝑋̃ (Steady state) 

n  𝛿opt 𝐿 (ℓ0.05, MRL1, ℓ0.95)  (𝜆, 𝐾)(ℓ0.05, MRL1, ℓ0.95)  (𝜆, 𝐾)(ℓ0.05, MRL1, ℓ0.95) 

3 

0.1 2.0210 (17, 227, 978)  (0.1001, 0.4143) (17, 122, 497)  (0.1000, 0.4152) (13, 121, 503) 

0.2 2.0210 (13, 175, 755)  (0.1001, 0.4143) (11, 50, 181)  (0.1000, 0.4152) (9, 49, 181) 

0.4 2.0210 (7, 85, 366)  (0.1625, 0.5603) (6, 18, 58)  (0.1250, 0.4775) (5, 17, 52) 

0.6 2.0210 (3, 40, 173)  (0.2501, 0.7334) (3, 10, 30)  (0.2500, 0.7329) (3, 10, 30) 

0.8 2.0210 (2, 20, 86)  (0.2501, 0.7334) (3, 6, 16)  (0.2500, 0.7329) (3, 6, 16) 

1.0 2.0210 (1, 11, 46)  (0.5000, 1.1543) (2, 5, 15)  (0.5000, 1.1548) (2, 5, 14) 

1.5 2.0210 (1, 3, 13)  (0.5000, 1.1543) (1, 3, 6)  (0.5000, 1.1548) (1, 2, 6) 

2.0 2.0210 (1, 2, 5)  (0.5000, 1.1543) (1, 2, 3)  (0.5000, 1.1548) (1, 2, 3) 

5 

0.1 1.6150 (16, 215, 928)  (0.1001, 0.3312) (15, 95, 378)  (0.1001, 0.3322) (12, 94, 382) 

0.2 1.6150 (11, 148, 638)  (0.1001, 0.3312) (9, 35, 119)  (0.1001, 0.3322) (7, 35, 120) 

0.4 1.6150 (5, 58, 250)  (0.1250, 0.3805) (5, 13, 33)  (0.1250, 0.3817) (4, 13, 33) 

0.6 1.6150 (2, 24, 102)  (0.2501, 0.5863) (3, 7, 18)  (0.2500, 0.5859) (3, 7, 18) 

0.8 1.6150 (1, 11, 46)  (0.5001, 0.9227) (2, 5, 14)  (0.5000, 0.9225) (2, 5, 14) 

1.0 1.6150 (1, 6, 23)  (0.5000, 0.9226) (1, 3, 8)  (0.5000, 0.9230) (1, 3, 8) 

1.5 1.6150 (1, 2, 6)  (0.5000, 0.9226) (1, 2, 4)  (0.5000, 0.9230) (1, 2, 4) 

2.0 1.6150 (1, 1, 3)  (0.5000, 0.9226) (1, 1, 2)  (0.5000, 0.9230) (1, 1, 2) 

7 

0.1 1.3818 (16, 204, 880)  (0.1001, 0.2837) (14, 78, 303)  (0.1021, 0.2880) (11, 77, 308) 

0.2 1.3818 (10, 127, 547)  (0.1001, 0.2837) (8, 28, 88)  (0.1157, 0.3114) (6, 28, 94) 

0.4 1.3818 (4, 42, 182)  (0.1250, 0.3259) (4, 10, 24)  (0.2500, 0.5026) (3, 10, 32) 

0.6 1.3818 (2, 16, 67)  (0.5001, 0.7898) (2, 6, 20)  (0.5000, 0.7896) (2, 6, 20) 

0.8 1.3818 (1, 7, 28)  (0.5001, 0.7898) (2, 4, 10)  (0.5000, 0.7896) (2, 4, 10) 

1.0 1.3818 (1, 4, 14)  (0.5000, 0.7897) (1, 3, 6)  (0.5000, 0.7901) (1, 3, 6) 

1.5 1.3818 (1, 1, 4)  (0.7500, 1.0683) (1, 1, 3)  (0.7501, 1.0685) (1, 1, 3) 

2.0 1.3818 (1, 1, 2)  (0.7500, 1.0683) (1, 1, 2)  (0.7600, 1.0800) (1, 1, 2) 

9 

0.1 1.2264 (15, 194, 836)  (0.1001, 0.2520) (13, 66, 252)  (0.1001, 0.2527) (10, 65, 254) 

0.2 1.2264 (9, 110, 476)  (0.1001, 0.2520) (8, 23, 70)  (0.1001, 0.2527) (6, 23, 70) 

0.4 1.2264 (3, 32, 139)  (0.2500, 0.4458) (3, 9, 24)  (0.1875, 0.3732) (3, 8, 22) 

0.6 1.2264 (1, 11, 47)  (0.5001, 0.7013) (2, 5, 15)  (0.5000, 0.7011) (2, 5, 15) 

0.8 1.2264 (1, 5, 19)  (0.5001, 0.7013) (1, 3, 7)  (0.5000, 0.7011) (1, 3, 7) 

1.0 1.2264 (1, 3, 9)  (0.5000, 0.7012) (1, 2, 5)  (0.5000, 0.7015) (1, 2, 5) 

1.5 1.2264 (1, 1, 3)  (0.5000, 0.7012) (1, 1, 2)  (0.5000, 0.7015) (1, 1, 2) 

2.0 1.2264 (1, 1, 1)  (0.5000, 0.7012) (1, 1, 2)  (0.5000, 0.7015) (1, 1, 2) 

11 

0.1 1.1137 (14, 185, 796)  (0.1001, 0.2290) (12, 57, 215)  (0.1001, 0.2297) (9, 57, 216) 

0.2 1.1137 (8, 97, 418)  (0.1001, 0.2290) (7, 20, 58)  (0.1001, 0.2297) (5, 20, 58) 

0.4 1.1137 (2, 26, 110)  (0.2500, 0.4050) (3, 7, 20)  (0.2500, 0.4056) (2, 7, 20) 

0.6 1.1137 (1, 9, 35)  (0.5001, 0.6370) (2, 4, 12)  (0.5000, 0.6368) (2, 4, 12) 

0.8 1.1137 (1, 4, 14)  (0.5001, 0.6370) (1, 3, 6)  (0.5000, 0.6368) (1, 3, 6) 

1.0 1.1137 (1, 2, 7)  (0.5000, 0.6369) (1, 2, 4)  (0.5000, 0.6372) (1, 2, 4) 

1.5 1.1137 (1, 1, 2)  (0.5000, 0.6369) (1, 1, 2)  (0.5000, 0.6372) (1, 1, 2) 

2.0 1.1137 (1, 1, 1)  (0.5000, 0.6369) (1, 1, 2)  (0.5000, 0.6372) (1, 1, 1) 

 

 

 

 

 

 

 



Table 4. Comparisons of the (ℓ0.05, MRL1, ℓ0.95) values for the Case-K Shewhart 𝑋̃ and optimal Case-K EWMA 𝑋̃ charts, 

together with the charts' corresponding parameters when 𝑛 ∈ {3, 5, 7, 9, 11}, 𝛿opt ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0} and MRL0 = 370. 
  Shewhart 𝑋̃  EWMA 𝑋̃ (Zero-state)  EWMA 𝑋̃ (Steady-state) 

n  𝛿opt 𝐿 (ℓ0.05, MRL1, ℓ0.95)  (𝜆, 𝐾) (ℓ0.05, MRL1, ℓ0.95)  (𝜆, 𝐾) (ℓ0.05, MRL1, ℓ0.95) 

3 

0.1 2.1022 (25, 333, 1438)  (0.1000, 0.4370) (21, 164, 673)  (0.1000, 0.4376) (17, 162, 679) 

0.2 2.1022 (19, 253, 1092)  (0.1000, 0.4370) (13, 60, 224)  (0.1039, 0.4479) (10, 60, 230) 

0.4 2.1022 (9, 119, 512)  (0.0938, 0.4200) (7, 19, 53)  (0.0938, 0.4212) (6, 19, 53) 

0.6 2.1022 (5, 55, 234)  (0.2501, 0.7669) (4, 11, 35)  (0.2500, 0.7663) (4, 11, 35) 

0.8 2.1022 (2, 27, 114)  (0.2501, 0.7669) (3, 7, 18)  (0.2500, 0.7663) (3, 7, 18) 

1.0 2.1022 (2, 14, 59)  (0.5000, 1.2023) (2, 5, 17)  (0.5100, 1.2191) (2, 5, 17) 

1.5 2.1022 (1, 4, 15)  (0.5000, 1.2023) (1, 3, 6)  (0.5000, 1.2026) (1, 3, 6) 

2.0 2.1022 (1, 2, 6)  (0.5000, 1.2023) (1, 2, 3)  (0.5000, 1.2026) (1, 2, 3) 

5 

0.1 1.6799 (24, 315, 1359)  (0.1000, 0.3494) (18, 124, 499)  (0.1000, 0.3499) (15, 122, 503) 

0.2 1.6799 (16, 212, 915)  (0.1000, 0.3494) (11, 42, 144)  (0.1156, 0.3823) (8, 43, 156) 

0.4 1.6799 (6, 80, 344)  (0.1250, 0.4005) (6, 14, 37)  (0.1250, 0.4013) (4, 14, 37) 

0.6 1.6799 (3, 32, 135)  (0.2501, 0.6131) (3, 8, 20)  (0.2500, 0.6126) (3, 8, 20) 

0.8 1.6799 (1, 14, 59)  (0.5001, 0.9610) (2, 5, 17)  (0.5000, 0.9608) (2, 5, 16) 

1.0 1.6799 (1, 7, 28)  (0.5000, 0.9609) (2, 4, 9)  (0.5000, 0.9612) (1, 4, 9) 

1.5 1.6799 (1, 2, 7)  (0.5000, 0.9609) (1, 2, 4)  (0.5000, 0.9612) (1, 2, 4) 

2.0 1.6799 (1, 1, 3)  (0.5000, 0.9609) (1, 1, 2)  (0.5000, 0.9612) (1, 1, 2) 

7 

0.1 1.4372 (22, 298, 1285)  (0.1000, 0.2992) (16, 99, 393)  (0.1000, 0.2996) (13, 98, 395) 

0.2 1.4372 (14, 181, 779)  (0.1000, 0.2992) (9, 32, 104)  (0.1000, 0.2996) (7, 32, 104) 

0.4 1.4372 (5, 57, 247)  (0.1250, 0.3430) (5, 11, 27)  (0.1250, 0.3437) (4, 11, 27) 

0.6 1.4372 (2, 20, 87)  (0.2501, 0.5249) (3, 6, 14)  (0.2500, 0.5246) (3, 6, 14) 

0.8 1.4372 (1, 9, 35)  (0.5001, 0.8226) (2, 4, 11)  (0.5000, 0.8224) (2, 4, 11) 

1.0 1.4372 (1, 4, 17)  (0.5000, 0.8225) (1, 3, 6)  (0.5000, 0.8227) (1, 3, 6) 

1.5 1.4372 (1, 1, 4)  (0.7500, 1.1114) (1, 1, 3)  (0.7500, 1.1114) (1, 1, 3) 

2.0 1.4372 (1, 1, 2)  (0.7500, 1.1113) (1, 1, 2)  (0.7600, 1.1234) (1, 1, 2) 

9 

0.1 1.2755 (21, 282, 1217)  (0.1001, 0.2660) (15, 83, 322)  (0.1000, 0.2662) (12, 82, 323) 

0.2 1.2755 (12, 156, 672)  (0.1001, 0.2660) (8, 26, 81)  (0.1000, 0.2662) (7, 26, 81) 

0.4 1.2755 (4, 43, 186)  (0.1250, 0.3047) (4, 9, 21)  (0.1250, 0.3053) (3, 9, 21) 

0.6 1.2755 (2, 14, 61)  (0.2501, 0.4662) (2, 5, 11)  (0.2500, 0.4659) (2, 5, 11) 

0.8 1.2755 (1, 6, 24)  (0.5001, 0.7303) (1, 3, 8)  (0.5000, 0.7301) (1, 3, 8) 

1.0 1.2755 (1, 3, 11)  (0.5000, 0.7302) (1, 2, 5)  (0.5000, 0.7304) (1, 2, 5) 

1.5 1.2755 (1, 1, 3)  (0.5000, 0.7302) (1, 1, 2)  (0.5000, 0.7304) (1, 1, 2) 

2.0 1.2755 (1, 1, 1)  (0.5000, 0.7302) (1, 1, 2)  (0.5000, 0.7015) (1, 1, 2) 

11  

0.1 1.1581 (20, 268, 1155)  (0.1001, 0.2417) (14, 71, 271)  (0.1000, 0.2418) (11, 70, 271) 

0.2 1.1581 (11, 136, 587)  (0.1001, 0.2417) (8, 23, 66)  (0.1000, 0.2418) (6, 22, 66) 

0.4 1.1581 (3, 34, 146)  (0.2500, 0.4235) (3, 8, 22)  (0.2500, 0.4238) (3, 8, 22) 

0.6 1.1581 (1, 11, 45)  (0.2501, 0.4236) (2, 4, 9)  (0.2500, 0.4233) (2, 4, 9) 

0.8 1.1581 (1, 4, 17)  (0.5001, 0.6633) (1, 3, 6)  (0.5000, 0.6631) (1, 3, 6) 

1.0 1.1581 (1, 2, 8)  (0.5000, 0.6632) (1, 2, 4)  (0.5000, 0.6634) (1, 2, 4) 

1.5 1.1581 (1, 1, 2)  (0.5000, 0.6632) (1, 1, 2)  (0.5000, 0.6634) (1, 1, 2) 

2.0 1.1581 (1, 1, 1)  (0.7500, 0.8957) (1, 1, 1)  (0.7600, 0.9055) (1, 1, 1) 

 

 

 

 

 

 

 



Table 5. Comparisons of the EMRL1 and (ℓ0.05, MRL1, ℓ0.95) values for the Case-K Shewhart 𝑋̃ and optimal Case-K EWMA 𝑋̃  charts, together with the charts’ corresponding parameters when 𝑛 ∈ {3, 5, 7, 9, 11} , EMRL0 = 370 , 𝛿min = 0.1  and 𝛿max = 2.0. 
  

Shewhart X   EWMA X (Zero-state)  EWMA X (Steady-state) 
  𝐿, EMRL1  (𝜆, 𝐾) EMRL1  (𝜆, 𝐾) EMRL1 

n 𝛿 (ℓ0.05, MRL1, ℓ0.95)  (ℓ0.05, MRL1, ℓ0.95)  (ℓ0.05, MRL1, ℓ0.95) 

3 

 2.1022, 51.85  (0.1027, 0.4443) 13.85  (0.1008, 0.4396) 13.67 

0.1 (25, 333, 1438)  (21, 165, 681)  (17, 162, 680) 

0.2 (19, 253, 1092)  (13, 61, 228)  (10, 59, 226) 

0.4 (9, 119, 512)  (7, 20, 54)  (6, 19, 54) 

0.6 (5, 55, 234)  (5, 11, 24)  (4, 11, 24) 

0.8 (2, 27, 114)  (4, 8, 15)  (3, 8, 15) 

1.0 (2, 14, 59)  (3, 6, 10)  (2, 6, 11) 

1.5 (1, 4, 15)  (2, 4, 6)  (2, 4, 6) 

2.0 (1, 2, 6)  (2, 3, 4)  (1, 3, 4) 

5 

 1.6799, 38.33  (0.1042, 0.3583) 10.14  (0.1042, 0.3592) 10.00 

0.1 (24, 315, 1359)  (18, 126, 509)  (15, 125, 513) 

0.2 (16, 212, 915)  (10, 42, 147)  (9, 41, 147) 

0.4 (6, 80, 344)  (6, 14, 35)  (5, 14, 35) 

0.6 (3,32,135)  (4, 8, 16)  (4, 8, 16) 

0.8 (1,14,59)  (3, 6, 10)  (3, 6, 10) 

1.0 (1, 7,28)  (3, 5, 7)  (2, 5, 8) 

1.5 (1, 2, 7)  (2, 3, 4)  (2, 3, 5) 

2.0 (1, 1, 3)  (2, 2, 3)  (1, 2, 3) 

7 

 1.4372, 30.60  (0.1271, 0.3466) 8.35  (0.1281, 0.3489) 8.35 

0.1 (22, 298, 1285)  (16, 110, 445)  (13, 109, 450) 

0.2 (14, 181, 779)  (9, 34, 119)  (7, 34, 120) 

0.4 (5, 57, 247)  (5, 11, 27)  (4, 11, 27) 

0.6 (1, 10, 42)  (3, 6,13)  (3, 7, 13) 

0.8 (1, 5, 19)  (3, 5, 8)  (3, 5, 8) 

1.0 (1, 4, 17)  (2, 4, 6)  (2, 4, 6) 

1.5 (1, 1, 4)  (2, 2, 3)  (1, 2, 4) 

2.0 (1, 1, 2)  (1, 2, 2)  (1, 2, 3) 

9 

 1.2755, 25.29  (0.1828, 0.3844) 7.56  (0.1828, 0.3849) 7.52 

0.1 (21, 282, 1217)  (13, 110, 452)  (12, 109, 455) 

0.2 (12, 156, 672)  (7, 32, 116)  (6, 31, 116) 

0.4 (4, 43, 186)  (4, 9, 24)  (3, 9, 24) 

0.6 (1, 7, 28)  (3, 5, 11)  (3, 5, 11) 

0.8 (1, 6,24)  (2, 4, 6)  (2, 4, 6) 

1.0 (1, 3, 11)  (2, 3, 5)  (1, 3, 5) 

1.5 (1, 1, 3)  (1, 2, 3)  (1, 2, 3) 

2.0 (1, 1, 1)  (1, 2, 2)  (1, 2, 2) 

11 

 1.1581, 21.64  (0.2238, 0.3955) 6.63  (0.2258, 0.3980) 6.63 

0.1 (20, 268, 1155)  (13, 106, 439)  (11, 106, 443) 

0.2 (11, 136, 587)  (6, 29, 108)  (6, 29, 109) 

0.4 (3, 34, 146)  (3, 8, 21)  (3, 8, 21) 

0.6 (1,11, 45)  (2, 5, 9)  (2, 5, 9) 

0.8 (1, 4,17)  (2, 3, 6)  (2, 3, 6) 

1.0 (1, 2, 8)  (2, 2, 4)  (1, 2, 4) 

1.5 (1, 1, 2)  (1, 2, 2)  (1, 2, 3) 

2.0 (1, 1, 1)  (1, 1, 2)  (1, 1, 2) 

 

 

 

 

 

 



Table 6. The (ℓ0.05, MRL1, ℓ0.95) values for the optimal Case-U EWMA 𝑋̃ chart under zero-state, together with the chart's 

corresponding optimal parameters, (𝜆, 𝐾) when 𝑛 ∈ {3, 5, 7, 9, }, 𝛿opt ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0} and MRL0 = 370. 

n 𝛿 10 20 40 80 100000 

3 

0.1 
(0.1026, 0.5630) 

(15, 292, 30990) 

(0.1007, 0.5150) 

(19, 268, 6783) 

(0.1007, 0.4860) 

(19, 238, 2787) 

(0.1006, 0.4668) 

(20, 211, 1658) 

(0.1006, 0.4381) 

(21, 164, 674) 

0.2 
(0.1026, 0.5630) 

(12, 155, 18800) 

(0.1007, 0.5150)  

(13, 117, 3985) 

(0.1026, 0.4913) 

(13, 92, 1327) 

(0.1006, 0.4668) 

(13, 77, 611) 

(0.1006, 0.4381) 

(13, 60, 225) 

0.4 
(0.1104, 0.5840)  

(7, 37, 2758) 

(0.1104, 0.5407) 

(8, 29, 407) 

(0.1260, 0.5503) 

(7, 25, 154) 

(0.1260, 0.5310) 

(7, 23, 95) 

(0.1260, 0.5030) 

(7, 20, 59) 

0.6 
(0.1260, 0.6227) 

(5, 16, 249) 

(0.1260, 0.5796) 

(5, 14, 68) 

(0.2510, 0.8126) 

(4, 13, 63) 

(0.2510, 0.7937) 

(4, 12, 47) 

(0.2510, 0.7683) 

(4, 11, 35) 

0.8 
(0.2197, 0.8262) 

(3, 9, 76) 

(0.2510, 0.8422) 

(3, 8, 37) 

(0.2510, 0.8126) 

(3, 8, 25) 

(0.2510, 0.7937) 

(3, 7, 21) 

(0.2510, 0.7683) 

(3, 7, 18) 

1 
(0.2510, 0.8865) 

(3, 6, 30) 

(0.5010, 1.2727) 

(2, 6, 34) 

(0.2510, 0.8126) 

(3, 5, 14) 

(0.2510, 0.7937) 

(2, 5, 12) 

(0.5010, 1.2038) 

(2, 5, 17) 

1.5 
(0.5010, 1.3176) 

(1, 3, 12) 

(0.7510, 1.692) 

(1, 3, 14) 

(0.5010, 1.2437) 

(1, 3, 7) 

(0.5010, 1.2259) 

(1, 3, 6) 

(0.5010, 1.2038) 

(2, 5, 17) 

2 
(0.5010, 1.3176) 

(1, 2, 5) 

(0.5010, 1.2727) 

(1, 2, 4) 

(0.5010, 1.2542) 

(1, 2, 4) 

(0.5010, 1.2259) 

(1, 2, 4) 

(0.5010, 1.2038) 

(1, 3, 6) 

5 

0.1 
(0.1261, 0.4960) 

(14, 272, 13376) 

(0.1026, 0.415) 

(18, 227, 4482) 

(0.1007, 0.3880) 

(19, 190, 2242) 

(0.1006, 0.3730) 

(19, 163, 1312) 

(0.1006, 0.3503) 

(18, 124, 500) 

0.2 
(0.1026, 0.4500) 

(8, 105, 10110) 

(0.1007, 0.4110) 

(12, 75, 1876) 

(0.1026, 0.3923) 

(12, 60, 679) 

(0.1006, 0.3730) 

(11, 51, 322) 

(0.1006, 0.3503) 

(11, 41, 144) 

0.4 
(0.1261, 0.4960) 

(6, 23, 626) 

(0.1260, 0.4622) 

(6, 19, 135) 

(0.1260, 0.4393) 

(6, 17, 68) 

(0.1260, 0.4242) 

(6, 16, 50) 

(0.1260, 0.4021) 

(6, 14, 37) 

0.6 
(0.2510, 0.7055) 

(3, 11, 96) 

(0.2510, 0.6714) 

(3, 9, 42) 

(0.2510, 0.6486) 

(3, 9, 29) 

(0.2510, 0.6339) 

(3, 8, 24) 

(0.2510, 0.6142) 

(3, 8, 20) 

0.8 
(0.2510, 0.7055) 

(3, 6, 26) 

(0.5010, 1.0144) 

(2, 6, 29) 

(0.2510, 0.6486) 

(3, 5, 13) 

(0.2510, 0.6339) 

(2, 5, 12) 

(0.5010, 0.9622) 

(2, 5, 17) 

1 
(0.5010, 1.0487) 

(2, 4, 20) 

(0.5010, 1.0144) 

(2, 4, 13) 

(0.5011, 0.9920) 

(2, 4, 11) 

(0.5010, 0.9786) 

(2, 4, 10) 

(0.5010, 0.9622) 

(2, 4, 9) 

1.5 
(0.5011, 1.0490) 

(1, 2, 5) 

(0.5010, 1.014) 

(1, 2, 4) 

(0.5010, 0.9922) 

(1, 2, 4) 

(0.5010, 0.9786) 

(1, 2, 4) 

(0.5010, 0.9622) 

(1, 2, 4) 

2 
(0.7510, 1.3818) 

(1, 1, 3) 

(0.7510, 1.3481) 

(1, 1, 3) 

(0.5010, 1.0002) 

(1, 1, 2) 

(0.5010, 0.9786) 

(1, 1, 2) 

(0.5010, 0.9622) 

(1, 1, 2) 

7 

0.1 
(0.1261, 0.4250) 

(14, 246, 9848) 

(0.1026, 0.3550) 

(16, 192, 3646) 

(0.1007, 0.3320) 

(17, 155, 1837) 

(0.1007, 0.3200) 

(17, 131, 1070) 

(0.1007, 0.3000) 

(16, 99, 392) 

0.2 
(0.1026, 0.385) 

(10, 54, 5882) 

(0.1026, 0.355) 

(10, 54, 1249) 

(0.1026, 0.3358) 

(10, 44, 398) 

(0.1104, 0.3370) 

(10, 39, 213) 

(0.1026, 0.3040) 

(10, 32, 109) 

0.4 
(0.1260, 0.4248) 

(6, 17, 222) 

(0.1572, 0.4448) 

(5, 14, 78) 

(0.1260, 0.3761) 

(5, 13, 42) 

(0.1260, 0.3632) 

(5, 12, 34) 

(0.1261, 0.3450) 

(5, 11, 27) 

0.6 
(0.2510, 0.6031) 

(3, 8, 42) 

(0.2510, 0.5743) 

(3, 7, 24) 

(0.2510, 0.5550) 

(3, 7, 19) 

(0.2510, 0.5426) 

(3, 6, 16) 

(0.2510, 0.5259) 

(3, 6, 14) 

0.8 
(0.5010, 0.8961) 

(2, 5, 24) 

(0.3760, 0.7256) 

(2, 4, 13) 

(0.5010, 0.8486) 

(2, 4, 13) 

(0.5010, 0.8373) 

(2, 4, 12) 

(0.5010, 0.8235) 

(2, 4, 11) 

1 
(0.5010, 0.8961) 

(1, 3, 10) 

(0.5010, 0.8673) 

(1, 3, 8) 

(0.5010, 0.8486) 

(1, 3, 7) 

(0.5010, 0.8373) 

(1, 3, 7) 

(0.5010, 0.8235) 

(1, 3, 6) 

1.5 
(0.5010, 0.8961) 

(1, 2, 4) 

(0.751, 1.152) 

(1, 2, 4) 

(0.5010, 0.8486) 

(1, 2, 3) 

(0.7510, 1.1243) 

(1, 1, 3) 

(0.7510, 1.1125) 

(1, 1, 3) 

2 
(0.5010, 0.8961) 

(1, 1, 2) 

(0.5010, 0.8673) 

(1, 1, 2) 

(0.5010, 0.8553) 

(1, 1, 2) 

(0.5000, 0.8235) 

(1, 1, 2) 

(0.5000, 0.8225) 

(1, 1, 2) 

9 

0.1 
(0.1026, 0.3420) 

(14, 219, 7900) 

(0.1016, 0.3140)  

(16, 163, 3333) 

(0.1182, 0.3220) 

(15, 135, 1637) 

(0.1006, 0.2837)  

(16, 108, 867) 

(0.1006, 0.2660) 

(15, 83, 333) 

0.2 
(0.1026, 0.3420) 

(10, 57, 3856) 

(0.1026, 0.3156) 

(10, 42, 767) 

(0.1182, 0.3220) 

(9, 36, 273) 

(0.1026, 0.2868) 

(9, 31, 144) 

(0.1006, 0.2660) 

(8, 26, 81) 

0.4 
(0.2510, 0.5352) 

(4, 14, 168) 

(0.2510, 0.5098) 

(4, 12, 66) 

(0.2510, 0.4928) 

(4, 11, 43) 

(0.2510, 0.4818) 

(4, 10, 35) 

(0.2510, 0.4670) 

(3, 10, 28) 

0.6 
(0.2510, 0.5352) 

(3, 6, 25) 

(0.5010, 0.7696) 

(2, 6, 29) 

(0.5010, 0.7532) 

(2, 6, 22) 

(0.2510, 0.4818) 

(3, 5, 12) 

(0.2510, 0.4670) 

(2, 5, 11) 

0.8 
(0.5010, 0.7948) 

(2, 4, 15) 

(0.5010, 0.7696) 

(2, 4, 11) 

(0.5010, 0.7532) 

(2, 3, 9) 

(0.5010, 0.7432) 

(2, 3, 9) 

(0.5010, 0.7312) 

(1, 3, 8) 

1 
(0.5010, 0.7948) 

(1, 3, 7) 

(0.5010, 0.7696) 

(1, 3, 6) 

(0.5010, 0.7532) 

(1, 2, 5) 

(0.5010, 0.7432) 

(1, 2, 5) 

(0.5010, 0.7312) 

(1, 2, 5) 

1.5 
(0.7510, 1.0467) 

(1, 1, 3) 

(0.7510, 1.0220) 

(1, 1, 3) 

(0.7510, 1.0066) 

(1, 1, 3) 

(0.5010, 0.7432) 

(1, 1, 2) 

(0.5010, 0.7312) 

(1, 1, 2) 

2 
(0.5010, 0.7948) 

(1, 1, 2) 

(0.5010, 0.7696) 

(1, 1, 2) 

(0.5010, 0.7591) 

(1, 1, 2) 

(0.5000, 0.7301) 

(1, 1, 2) 

(0.5000, 0.7302) 

(1, 1, 2) 

 



Table 7. Phase I dataset for illustrative example of the optimal EWMA 𝑋̃ chart based on EMRL. 

i Phase I (𝑋𝑖,𝑗)   𝑋̃𝑖 𝑅𝑖 
1 74.030 74.002 74.019 73.992 74.008  74.008 0.038 

2 73.995 73.992 74.001 74.011 74.004  74.001 0.019 

3 73.988 74.024 74.021 74.005 74.002  74.005 0.036 

4 74.002 73.996 73.993 74.015 74.009  74.002 0.022 

5 73.992 74.007 74.015 73.989 74.014  74.007 0.026 

6 74.009 73.994 73.997 73.985 73.993  73.994 0.024 

7 73.995 74.006 73.994 74.000 74.005  74.000 0.012 

8 73.985 74.003 73.993 74.015 73.988  73.993 0.030 

9 74.008 73.995 74.009 74.005 74.004  74.005 0.014 

10 73.998 74.000 73.990 74.007 73.995   73.998 0.017 

11 73.994 73.998 73.994 73.995 73.990  73.994 0.008 

12 74.004 74.000 74.007 74.000 73.996  74.000 0.011 

13 73.983 74.002 73.998 73.997 74.012  73.998 0.029 

14 74.006 73.967 73.994 74.000 73.984  73.994 0.039 

15 74.012 74.014 73.998 73.999 74.007  74.007 0.016 

16 74.000 73.984 74.005 73.998 73.996  73.998 0.021 

17 73.994 74.012 73.986 74.005 74.007  74.005 0.026 

18 74.006 74.010 74.018 74.003 74.000  74.006 0.018 

19 73.984 74.002 74.003 74.005 73.997  74.002 0.021 

20 74.000 74.010 74.013 74.020 74.003   74.010 0.020 

21 73.982 74.001 74.015 74.005 73.996  74.001 0.033 

22 74.004 73.999 73.990 74.006 74.009  74.004 0.019 

23 74.010 73.989 73.990 74.009 74.014  74.009 0.025 

24 74.015 74.008 73.993 74.000 74.010  74.008 0.022 

25 73.982 73.984 73.995 74.017 74.013   73.995 0.035 

 

Table 8. Phase II dataset for illustrative example of the optimal EWMA 𝑋̃ chart based on EMRL. 

i Phase II (𝑌𝑖,𝑗)  𝑌̃𝑖 𝑍𝑖 
1 74.012 74.015 74.030 73.986 74.000  74.012 74.005 

2 73.995 74.010 73.990 74.015 74.001  74.001 74.004 

3 73.987 73.999 73.985 74.000 73.990  73.990 74.001 

4 74.008 74.010 74.003 73.991 74.006  74.006 74.002 

5 74.003 74.000 74.001 73.986 73.997  74.000 74.001 

6 73.994 74.003 74.015 74.020 74.004  74.004 74.002 

7 74.008 74.002 74.018 73.995 74.005  74.005 74.003 

8 74.001 74.004 73.990 73.996 73.998  73.998 74.002 

9 74.015 74.000 74.016 74.025 74.000  74.015 74.005 

10 74.030 74.005 74.000 74.016 74.012  74.012 74.007 

11 74.001 73.990 73.995 74.010 74.024  74.001 74.005 

12 74.015 74.020 74.024 74.005 74.019  74.019 74.009 

13 74.035 74.010 74.012 74.015 74.026  74.015 74.010 

14 74.017 74.013 74.036 74.025 74.026  74.025 74.014 

15 74.010 74.005 74.029 74.000 74.020  74.010 74.013 

 



 

 

 

 

 

 

 

Figure 1. Interval between lower and upper control limits divided into 2𝑢 + 1 subintervals of 

width 2∆ each. 
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Figure 2. EWMA 𝑋̃ chart corresponding to the Phase II dataset in Table 8. 
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