
HAL Id: hal-03740180
https://hal.science/hal-03740180

Submitted on 29 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Autoregressive based Drift Detection Method
Mansour Zoubeirou A Mayaki, Michel Riveill

To cite this version:
Mansour Zoubeirou A Mayaki, Michel Riveill. Autoregressive based Drift Detection Method. IEEE
WCCI 2022 - IEEE world congress on computational intelligenceWORLD CONGRESS ON COMPU-
TATIONAL INTELLIGENCE, Jul 2022, Padoue, Italy. pp.1-8, �10.1109/IJCNN55064.2022.9892066�.
�hal-03740180�

https://hal.science/hal-03740180
https://hal.archives-ouvertes.fr

Autoregressive based Drift Detection Method
Mansour Zoubeirou A Mayaki

Université Côte d’Azur
Inria, CNRS, Nice France

mansour.zoubeirou-a-mayaki@inria.fr

Michel Riveill

Université Côte d’Azur
CNRS, Inria, Nice France

michel.riveill@unice.fr

Abstract—In the classic machine learning framework, models
are trained on historical data and used to predict future values.
It is assumed that the data distribution does not change over time
(stationarity). However, in real-world scenarios, the data genera-
tion process changes over time and the model has to adapt to the
new incoming data. This phenomenon is known as concept drift
and leads to a decrease in the predictive model’s performance.
In this study, we propose a new concept drift detection method
based on autoregressive models called ADDM. This method can
be integrated into any machine learning algorithm from deep
neural networks to simple linear regression model. Our results
show that this new concept drift detection method outperforms
the state-of-the-art drift detection methods, both on synthetic
data sets and real-world data sets. Our approach is theoretically
guaranteed as well as empirical and effective for the detection
of various concept drifts. In addition to the drift detector, we
proposed a new method of concept drift adaptation based on the
severity of the drift.

Index Terms—Concept drift detection , Data streams , Auto-
regressive model , Machine learning , Deep neural networks

I. INTRODUCTION

Thanks to progress in the field of big data and data analysis,
machine learning models and more particularly those based
on deep neural networks (Deep Learning) are nowadays ex-
periencing phenomenal success. Since the beginning of the
2010s, neural networks have been developing at high speed
and the fields of application are multiplying in all business
sectors. In the machine learning framework, models are trained
on historical data and used to predict future values. In this
framework, we assume that future incoming data streams
are stationary, i.e., the data generating process does not
change over time. However, this assumption does not hold
in most real-world applications [1]. For example the statistical
properties of a streaming data can change over time due to
seasonality or random events. This phenomenon is known
in the machine learning community as concept drift. In the
presence of concept drift, the model’s predictions become less
accurate over time.

Machine learning models should therefore take in account
concept drift and update their weights at the right time.
Detecting a concept drift is one of the main challenges when
learning with streaming data because of the high speed and
their large size sets which are not able to fit in the main
memory [2]. To deal with concept drift, many algorithms and
methods (ADWIN, DDM, KSWIN, PageHinkley) have been
proposed in the literature. Most of these algorithms detect
concept drifts by tracking the changes in the model’s error

rate or using a distance function to measure the dissimilarity
of the input data distribution between some timestamps. These
methods are very sensitive to changes leading to large numbers
of detected drifts and false alarms [1]. Moreover, most of these
algorithms require full and immediate access to ground-truth
labels which is an unrealistic assumption in most real-world
applications.

To accurately detect concept drifts in stream data, we
propose to integrate an autogressive time series model inside
the machine learning loop by considering the model’s error as
a time series. We used a self-exciting threshold auto-regressive
(SETAR) model [3] as the base autoregressive model. SETAR
is a nonlinear time series model and a special case of regime
switching models in which different models apply to different
intervals of values of some key features. Our method has two
components: a machine learning model for the learning task
and a SETAR model that detects the changes in the learning
model’s error rate distribution. We call the new concept drift
detection method ADDM. This approach can be used with any
type of predictive model (Logistic regression, random forest
etc.). Our results show that the new concept drift detection
method outperforms all state-of-the-art methods on six (6)
synthetic data sets and five (5) real-world data sets. ADDM is
more accurate and has a very low false alarms rate. A low false
alarms rate is very important in real-world application because
retraining a machine model is time-consuming and resource-
intensive. This method also has some theoretically guarantees
as the parameters of the change detection component (SETAR
model) are estimated using ordinary least squared (OLS) [4].
Another advantage of our method is that we can construct con-
fidence intervals for the detected drift points using statistical
inference and subsampling [5]. In addition to the drift detector,
we proposed a new method of concept drift adaptation based
on the severity of the drift. The main idea is to aggregate the
old and the new models using an estimate of the dissimilarity
between the old concept and the new one as weights. The
higher is the severity, the less relevant is the old model.

The rest of the paper is outlined as follows. The Related
Works section discusses the notions related to concept drift
and the other studies (or articles) related to concept drifts
detection methods/algorithms. The third section is dedicated
to the theoretical definition of the self-exciting threshold
auto-regressive model and the description of ADDM concept
drift detection method. In section Experimental Data sets,
we describe the data sets used for our experiments. The

978-1-7281-8671-9/22/$31.00 ©2022 IEEE

hyperparameters optimization section describes in detail
the models architecture, the performance metrics and the
drift detection algorithms hyper-parameters optimization. The
results are presented and discussed in section Results and
discussions.

II. RELATED WORKS

In statistical (or machine) learning domain, concept drift
occurs when the statistical properties of the targeted variable
y varies arbitrary over time due to a change in the input data X
distribution. Concept drifts can be categorised in three groups
according to their sources [6]. The first type of concept drift
called virtual drift occurs when the data distribution changes
but does not affect the decision boundaries: Pt(X) ̸= Pt+1(X)
while Pt(y|X) = Pt+1(y|X). Virtual concept drift is not
well studied in machine learning community because it does
not affect the model’s outputs. The second source of concept
drift called actual drift happens when the drift changes the
target variable. Thus the a posterior probability of the data
changes in time while it distribution remains unchanged:
Pt(y|X) ̸= Pt+1(y|X), Pt(X) = Pt+1(X). The last type of
concept drift result from the mixture of the two first sources:
Pt(y|X) ̸= Pt+1(y|X) and Pt(X) ̸= Pt+1(X). In practice it
is very difficult to separate these sources of concept drifts when
learning with stream data. The drift detection algorithms just
try to detect the changes that affect the model’s output without
focusing on their sources.

A. Concept Drift Understanding

Concept drift understanding answers three main questions:
When did the drift occur, How severe is the change and
Where are the drifts regions [6]. The when refers to the
fact that any concept drift detection algorithms should be able
to detect the timestamps where the data distribution changes
significantly. Recalling the definition of concept drift, when
a drift occurs at time t, an alarm signal is triggered and it
also indicates that the learning system should adapt to a new
concept. Another important question is how much did the
data distribution change at the drift points (severity of the
drifts). The severity of concept drift quantifies the dissimilarity
between the new concept and the previous concept . The
severity is defined as ∆ = δ(Pt(X, y), Pt+1(X, y)) where
δ is a function that measures the discrepancy of two data
distributions when there is a drift at timestamp t [6]. The
greater the value of ∆, the larger the severity of the concept
drift. The severity gives an idea of how the learners should
adapt to the new concept. If the ∆ is low we may just need
to update the learners without changing many parameters.
In contrast if the drift is severe, we may need to retrain a
whole new model. The last question is to identify where the
drift regions (new concepts) are located. The drift regions
of concept drift are the sub-regions where the new concept
and the previous concept are located. These sub-regions are
identified by finding parts of the features space where Pt(X, y)
and Pt+1(X, y) are statistically different. In ensemble learning
scenarios, detecting concept drift regions can help predicting

instances in stable regions. Moreover, when learning with an
artificial neural network we can use the knowledge of the
concept drift regions to put weights on the features.

Like all the state-of-the-art concept drift detection algo-
rithms, ADDM responds to the first question. It detects with
high precision the drift points by monitoring the model’s
error rate. Contrary to the state-of-the-art algorithms, ADDM
can compute confidence intervals of each detected drift using
statistical hypothesis testing and subsampling methods.

B. Concept Drift Detection Methods in the Literature

Concept drift detection methods can be classified into three
categories in terms of the test statistics they apply [6]. The first
category called error rate-based drift detection algorithms
refers to all the methods that track changes in the online error
rate of base models. The algorithms trigger an alarm when
there is a statistically significant increase or decrease of the
error rate at some timestamps. Our ADDM method belongs to
this category. The second category is data distribution-based
drift detection algorithms which use a distance function or
a metric to quantify the dissimilarity between the distribution
of data before and after the suspected drift timestamp [6].
These algorithm detect drifts directly from the input data and
try to detect the time and the location of the drifts. The
last category called multiple hypothesis test drift detection
methods use multiple hypothesis tests to detect concept drift.
The most popular state-of-the-art drift detection algorithms
(ADWIN, DDM, KSWIN, PageHinkley) are error rate-based.
The ADaptive WINdowing (ADWIN) [7] is an adaptive
sliding window algorithm for concept drift detection in stream
data. ADWIN require the user to specify a sensitivity hyper-
parameter α ∈ (0, 1) which allows the algorithm to adjust to
the input data. A drift is detected when two sub-windows of a
recent window of observations exhibit an absolute difference
in means larger than α. The Drift Detection Method (DDM)
is a concept drift detection method based on the PAC learning
model premise [8]. If the algorithm detects an increase in
the error rate higher than a calculated threshold, an alarm
is triggered, either change is detected or the algorithm will
warn the user that change may occur in the near future.
The Page-Hinkley (PH) concept drift detector detects changes
by computing the observed values and their mean up to the
current moment [9]. The algorithm detects a concept drift if the
observed mean at some instant is greater than a threshold value
λ. The Kolmogorov-Smirnov Windowing (KSWIN) concept
drift detection method is based on the Kolmogorov-Smirnov
(KS) statistical test [10]. Other versions of these algorithms
have been proposed by other authors: Learning with Local
Drift Detection (LLDD) [11], Early Drift Detection Method
(EDDM) [12], Heoffding’s inequality based Drift Detection
Method (HDDM) [13], DELM [14].

Baier et al. [1] used neural network uncertainty instead of
the model’s error rate to detect concept drift. The authors
proposed to use the Monte Carlo Dropout technique to
capture the model’s uncertainty. A drift is detected when
the model’s uncertainty increases or decreases significantly at

some timestamp(s). Their algorithm called Uncertainty Drift
Detection (UDD) is based on ADWIN algorithm. The main
advantage of UDD method is that in contrast of the majority
of error based drift detection algorithms, it does not require
full and immediate access to ground-truth labels which is an
unrealistic assumption in most real-world use cases [1].

Yan et al. [15] proposed an algorithm based on Hoeffd-
ing’s inequality to monitor the error rate and detect concept
drift. The main idea of their method is to use Hoeffding’s
concentration inequality to examine the consistency of the
predictive error. This algorithm relies on the theorem that if
the data distribution is stationary if the difference between
the predictive error at time t denoted pt as and its lower
bound pbayes goes to 0 when the number of training instances
increases [16]. The authors used Hoeffding’s Inequality to
estimate the desired upper bound above which the error rate
is considered highly unstable. If the predictive error difference
∆t = pt − pbayes is very high after learning a large enough
number of instances, it means that their is a concept drift
and the data distribution has changed. According to there
results, their method gives better results than the state-of-
the-art methods. Wang et al. [17] proposed a new concept
drift detection method for class imbalanced problem called
DDM-OCI. The new method is inspired from the DDM [8],
instead of monitoring the model’s error rate, the authors used
the recall of the minority class to detect changes in the data
distribution. Their results show that, DDM-OCI responds to
new concepts faster than the model applying DDM. Greco
and Tania [18] proposed a real-time unsupervised per-label
drift detection methodology based on embedding distribution
distances in deep learning models . Their method exploits the
inner representations assigned by a deep learning model to
new unseen data to detect drifts.

III. OUR APPROACH FOR LEARNING UNDER CONCEPT
DRIFT

A. Self-exciting Threshold Autoregressive (SETAR) Models

The self-exciting threshold autoregressive model is a non-
linear time series model proposed by Tong in 1978 [4]. This
model is special case of regime switching models in which
different models apply to different intervals of values of some
key variable. This model has certain properties such as limit
cycles, amplitude dependent frequencies, and jump phenomena
that can not be captured by classic linear time series models
[3]. Formally, a SETAR model with k regimes can be written
mathematically as follows [4]:

Yt = ϕ
(i)
0 + ϕ

(i)
1 Yt−1 + · · ·+ ϕ(i)

pi
Yt−p + ϵit (1)

ri−1 ≤ Yt−d < ri (2)

Where i = 1 . . . k, 1 < d ≤ max(pi) a positive integer, Yt

is a time series and Yt−d the threshold variable. The thresholds
values are −∞ < r0 < r1 < · · · < rk < +∞; for each regime
i, the error term ϵit is a sequence of martingale differences
satisfying:

E(ϵit|Ft−1) = 0, supt = E(|ϵit|δ|Ft−1|) <∞

a.s. for some δ > 2

With Ft−1 a σ field generated by {ϵit−j |j = 1, . . . ; i =
1, . . . , k}. Such a process partitions the one-dimensional Eu-
clidean space into k regimes and follows a linear auto-
regressive model in each regime [4]. A two regime SETAR
model can be written as follows:

Yt = (ϕ0 + ϕ1Yt−1 + · · ·+ ϕpYt−p)1Yt−d≤r

+ (β0 + β1Yt−1 + · · ·+ βpYt−p)1Yt−d>r + ϵt

Where p denotes the autoregressive level , Yt−d the thresh-
old variable and r the threshold parameter. In principle, we
would like ϵt to be conditionally heteroskedastic, but for
formal theory, we assume that ϵt is iid (0, σ2). This model is
called self-exciting because the threshold variable is a function
of the past values of the endogenous variable Yt. Since the
SETAR model is a locally linear model, ordinary least squares
(OLS) techniques can be used to estimate its parameters [19].
Under the assumption that the error ϵt is iid N(0, σ2), OLS
is equivalent to maximum likelihood estimation. The model in
equation 1 can be rewritten as follows:

Yt = Φ
′
Xt(r) + ϵt (3)

Xt = (1, Yt−1, . . . , Yt−p)
′

Xt(r) = (Xt1Yt−d≤r, Xt1Yt−d>r)

Where Φ = (ϕ, β), ϕ = (ϕ0, ϕ1, . . . , ϕp) and (β =
β0, β1, . . . , βp).

The parameters of interest are Φ and r. For a given threshold
value r, the OLS estimate of Φ is [19]

ˆΦ(r) =

(
T∑

t=1

Xt(r)
′
Xt(r)

)′ (
T∑

t=1

Xt(r)
′
Yt

)
(4)

With estimated residuals ϵ̂t(r) = Yt − Xt(r)
′ ˆΦ(r) and their

estimated variance

σ̂2
T (r) =

1

T

T∑
t=1

ϵ̂t
2 (5)

The estimation task is now reduced to finding the threshold
values r that minimizes estimated residuals variance σ̂2

T (r)
which depends exclusively on r. The other parameters are then
computed by using equation (4). The threshold parameter is
computed by minimizing equation (5) as follows:

r̂ = argmin
r∈R

σ̂2
T (r) (6)

Where R = {yt−d, for all d + 1 ≤ t ≤ T}. R has a finite
number of elements [T − (d+ 1)].

Since the model’s parameters are estimated using ordinary
least squared (OLS) method, we have some theoretical guaran-
tees of its convergence [4]. We can also construct confidence
intervals for the detected drift points by using statistical
inference and sub-sampling [5].

B. ADDM for Concept Drift Detection

Our ADDM method belongs to the category of concept
drift detection methods based on error rate monitoring. The
model triggers an alarm when there is a statistically significant
increase or decrease of the error rate at some timestamps. As
proved by Gama et al. [16], if the data distribution is stationary,
the error rate should converge to its minimum value. Therefore
if the error rate becomes very high after predicting a large
enough sample, it may indicate that the data distribution has
changed and the model is no longer fit to the data. ADDM has
two components: a machine learning model for the prediction
task and a SETAR model that detects the changes in the
learning model’s error rate Yt. When new data instances arrive,
they are predicted at the time of arrival with the deep learning
model. The prediction errors are then computed and used as
target variable Yt for the SETAR model (see Fig.1). Referring
to the definition of the SETAR model in equation (1), our
model forecasts the error rate using a linear combination of its
past values assuming that the behavior of the error rate changes
once it enters a different regime or concept. The threshold
values estimated by equation (6) correspond to the concept
drift points in the data. We can also construct confidence
intervals for each detected drift using statistical inference and
sub-sampling [5].

C. Model Updating or Concept drift adaptation

After detecting concept drifts, we need to update the model
so that it adapts to the new data distribution. In the literature
there are mainly three groups of drift adaptation methods. The
first method consist of retraining a whole new model when
a concept drift is detected. The second strategy is ensemble
method which consist of aggregating a new model trained on
the samples from the new distribution with the old models.
This strategy can save significant effort to retrain a new
model for recurring concepts. Ensemble methods comprise
a set of base classifiers that may have different types or
different parameters [6]. The last drift adaptation strategy
consists of partially updating the model when the underlying
data distribution changes. This strategy is more efficient than
retraining an entire model when the drift only occurs in well
located regions (decision tree algorithm are suited in this case
because trees have the ability to examine and adapt to each
sub-region separately). This approach can be difficult to use
in case of deep learning models because these models are
considered as black boxes and we don’t know what parameters
to update.

We propose a new concept drift adaptation method that
consist of aggregating the old model with a new model trained
on the most recent samples using the severity of the concept
drift. The main idea is aggregate the old and new model using
an estimate of the dissimilarity (severity of the drift) between
the old concept and the new one as weight. The higher is
the severity, the less relevant is the old model. The severity
denoted wt is also used as the weight of the new model in the
final model. We first compute the third quantile Q3 in each
regime and compute wt as follows:

wt =
max(Q0

3, Q
t
3)

Q0
3 +Qt

3

(7)

Where Q0
3 is the third quantile of the error rate in the old

concept and Qt
3 in the new concept. We used the third quantile

Q3 just to make sure that we have a good estimate of the
error rate in each regime. One can use any other quantile
or aggregating metrics (mean, variance etc.). The quantiles
are more suited because they are less sensitive to extreme
values. The term max(Q0

3, Q
t
3) is used to ensure that the model

learned under the new concept always gets the highest weight
during aggregation. The final model is defined as follows:

M t
ϕ̂
←M0

ϕ̂
· (1− wt) + wt ·Mnew (8)

Where M0
ϕ̂

is the old model and Mnew the new model trained
with the most recent data. The new model Mnew can be
learned on a subset (or a window) containing the most recent
data or on the whole data set. The main advantage of our
method is that it takes into account the severity of the drift
when updating the model. If the drift is very severe, the new
model has a much more important role than the old one and
the influence of the old model may fade. Another advantage is
that, it’s very flexible and can be used with any kind of model.
For example when learning with artificial neural networks, we
can average the old and the new model parameters using wt

or just average their outputs.
ADDM algorithm is defined as follows:

Algorithm 1 ADDM algorithm
1: Input: Training data Dtr; Validation data Dval; Data

stream Ds

2: Train deep learning model: M0
ϕ̂
←Mϕ · fit(Dtr, Dval)

3: Compute validation error: ϵ̂val ← (yval − ŷval)
2

4: Fixe a time window w
5: repeat
6: Receive incoming data instances xt−w

7: Predict values: ŷt−w ←M0
ϕ̂
· predict(xt−w)

8: Compute error: ϵ̂t−w ← (yt−w − ŷt−w)
2

9: Learn Setar model with ϵ̂t−w ∪ ϵ̂val
10: if change is detected then
11: Compute drift severity: wt ← max(Q0

3,Q
t
3)

Q0
3+Qt

3

12: Get most recent labeled data Drecent

13: Train new model Mnew ←Mϕ · fit(Drecent)
14: M t

ϕ̂
←M0

ϕ̂
· (1− wt) + wt ·Mnew

15: end if
16: until Ds ends

IV. EXPERIMENTAL DATA SETS

In order to evaluate our method’s capabilities, we compared
its performance to those of seven (7) state-of-the-art methods
on six (6) synthetic data sets with artificial concept drifts and
five (5) real-world data sets. The synthetic data sets were
simulated using the python scikit-multiflow package [20]. The
Friedman multi-variate regression data set [21] consist of teen

Train model Model

Train new model

Drift detector OutputOld data

New data

Update model

Incoming data for inference

Most recent label Drift detected

1 2 3

4

5

Fig. 1. Architecture and Dataflow of ADDM. 1 Train a predictive model with old data set. 2 Predict new incoming data and compute the error rate. 3

Search for changes in the model’s error rate. If drift is detected, triggers a signal to update the model. 4 Train new model with most recent data if drift is
detected and update the old model. 5 Predict the final output with updated model.

features each generated from a uniform distribution from the
interval [0, 1]. The Friedman data set is commonly used to
test concept drift detection methods . In our experiments, we
simulated three different versions of the Friedman data sets
with different types of drifts. The Brieman regression data
set is inspired by Baeir et al. [1]. The data set contains teen
features, simulated from uniform distribution. The Mixed data
set was inspired by Gama et al. [8] and has 6 attributes. Four
attributes are relevant for classification: two boolean attributes
and two numeric attributes uniformly distributed from 0 to 1
[20]. The Agrawal stream generator was first introduced by
Agrawal et al. [22]. The generator generates a stream data
set of nine features, six numeric and three categorical for
binary classification task. We generated two data sets from this
generator with different types of concept drift. At the end we
have six synthetic data sets among which three regression data
sets and three classification data sets. In each data set, artificial
concept drifts were introduced by modifying the distribution
of some features.

In addition to these synthetic data sets, we tested our method
on five real-world data sets. Note that all the following data
sets are publicly available on UCI Machine Learning Repos-
itory website [23]. The Panama electricity data set contains

historical records of Panama’s electricity demand and weather
measures from January 2015 until June 2020 [24]. The data
set contains historical electricity load, calendar information
related to holidays (and school period) and Weather variables,
such as temperature, relative humidity, precipitation, and wind
speed, from three main cities in Panama [24]. The goal is
to predict the electricity demand using all available features.
In this data set, concept drift is present due to seasonal
weather changes which affects the electricity demand. The
Italian air quality data set contains the responses of a gas
multi-sensor devices deployed on the field in the Italian main
cities. Hourly responses averages are recorded along with
gas concentrations references from a certified analyzer [25].
The data were recorded from March 2004 to February 2005.
They recorded some air quality measures such as the hourly
averaged concentrations for CO, Non Metanic Hydrocarbons,
Benzene, Total Nitrogen Oxides (NOx) and Nitrogen Dioxide
(NO2). The goal is to predict the benzene concentration
(C6H6(GT)), which is a proxy for air pollution. Like in the
electricity data set, concept drift is present due to seasonal
weather changes. The NSW data set contains data from the
Australian New South Wales electricity market [8]. In this
market, prices are flexible and are affected by demand and

supply of the market. The data set contains 45.312 instances
and nine features dated from 7 May 1996 to 5 December
1998. The goal is to predict if the electricity price goes
up or down each 30 minutes. Concept drift is present due
to seasonal weather changes which affects the electricity
demand and its price. The gas sensor array drift data set
contains measurements from 16 chemical sensors utilized in
simulations for drift compensation in a discrimination task of
6 gases at various levels of concentrations. The data set was
gathered over a period of 36 months in a gas delivery platform
facility situated [26]. The goal is to achieve good classification
performance over time. Concept drifts are present in the data
due to sensor aging and external alterations. The Beijing
Multi-Site air quality data set contains 6 main air pollutants
and 6 relevant meteorological variables at multiple sites in
Beijing. Each variable is measured hourly from March 1st,
2013 to February 28th, 2017. The goal is to predict the PM2.5
variable which is a proxy of air quality measure. Concept drifts
are present in this data set due to seasonal weather changes.

V. EXPERIMENTAL DESIGN

A. Performance Metrics

In the case of synthetic data sets we know exactly where
the drifts occurred so we can compare the detector’s outputs
to them. For the synthetic data sets, we use the following
metrics: detection accuracy, True positive, false positive (or
false alarms) and the mean time to detection (MTD) . Contrary
to synthetic data sets, real-world data sets don’t have specified
concept drift points. It is therefore very difficult to evaluate
concept drift detection algorithms on them. In this case,
we can’t use metrics like accuracy or true positive rate to
compare the detectors. To compare ADDM to the state-of-
the-art algorithms on real-world data sets, we use the mean
squared error (MSE) loss of the learning model in case of
regression task and the cross entropy loss for classification
tasks. For each data set, if a drift is detected, a new model
is learned from scratch and evaluated on a subset of the most
recent data. The final performance of the detector is computed
by averaging its losses on all the detected regions. For each
detection algorithm, we also take in account the number of
detections because in real-world applications a detector that
gives a large number of alarms is not optimal.

B. Hyper-parameters Optimization

In this article, we have used deep learning based models
as the backbone of the prediction step of the ADDM method,
but any type of machine learning model can be used (logistic
regression, random forest, etc.). For the synthetic data sets,
our used simple multi-layer perceptron (MLP) neural networks
with two hidden layers. In case of real-world data sets, we used
long short-term memory (LSTM) neural networks architecture
(see Table I). Each model is trained and validated on a
subset of the data set where there is no concept drift. The
learned model is then used to predict values for new incoming
data where concept drift is suspected to be present. We then
compute the error rate of the model on new data and try to

find if there are significant changes at some timestamps. When
learning with artificial neural networks, instead of monitoring
the error rate which requires total access to the true labels,
we can use the model’s uncertainty to detect concept drift
as done by Baeir et al. [1]. Using Monte Carlo Dropout, we
can compute and monitor the model’s uncertainty and detect
concept drifts.

The state-of-the-art drift detection methods and algorithms
(DDM, ADWIN, PageHinkley, HDDM,KSWIN) used in this
study have some hyper-parameters that should be well chosen
carefully so the algorithm can adjust to the data set. For
each method/algorithm, we determined the optimal hyper-
parameters by using a subset of the data set that we called
experimental set. For each synthetic data set, we took a
subset containing one concept drift as the experimental set.
Each algorithm is executed on the experimental sets to find the
best hyper-parameters. These hyper-parameters are then used
in the final experiments. We compared these state-of-the-art
methods to our ADDM drift detection method. As described in
section III-A, the SETAR model requires the user to set some
hyper-parameters. The main parameters are the time delay for
the threshold variable d, the auto regressive level p. In our
study the parameters values are: d = 2 and p = 5. We aim
to evaluate and give a fair comparison among the detectors
concerning the performances of real concept drift detection.
The optimal hyper-parameters are listed in table II.

TABLE I
NEURAL NETWORK ARCHITECTURE FOR EACH DATA SET.

Data set architecture Hyper-parameters Epochs
Friedman MLP (30,15,1) 50

Friedman no return MLP (30,15,1) 50
Brieman 2d planes MLP (30,15,1) 50

Agrawal 32 MLP (20,10,1) 50
Agrawal 3213 MLP (20,10,1) 50

Mixed MLP (20,10,1) 50
Panama electricity LSTM (120,60,30) 50
Italian air quality LSTM (64,32,15) 50
NSW electricity LSTM (120,60,30) 50
Gas sensor drift MLP (120,120,6) 50

Beijing air quality LSTM (120,60,30) 50

TABLE II
DESCRIPTION OF EACH DATA SET. DRIFTS REFERS TO THE NUMBER OF

DRIFTS.THE REMAINING COLUMNS SHOW, THE OPTIMAL
HYPER-PARAMETER ACCORDING TO THE DETECTOR.

Data set Samples Features Target Drifts ADWIN Page-Hinkley KSWIN
Friedman 20000 3 continuous 3 1×10−4 1×10−6 0.001
Friedman no return 20000 3 continuous 6 1×10−6 1×10−6 0.0034
Brieman 2d planes 20000 11 continuous 6 1×10−3 1×10−6 0.0032
Agrawal 32 20000 3 2 classes 1 5×10−6 50 0.0034
Agrawal 3213 20000 3 2 classes 4 4.2×10−5 50 0.0029
Mixed 20000 5 continuous 3 0.0441 1×10−6 0.0059
Panama electricity 48048 17 continuous - 1×10−5 1×10−10 1×10−10

Italian air quality 8991 14 continuous - 3.41×10−4 1×10−10 1×10−10

NSW electricity 45312 9 2 classes - 1×10−5 1×10−10 1×10−10

Gas sensor drift 13910 129 6 classes - 4×10−15 0.05 1×10−10

Beijing air quality 420768 18 continuous - 6×10−5 1×10−10 1×10−10

VI. RESULTS AND DISCUSSIONS

In this section, we present the results of the state-of-
the-art drift detection methods and ADDM method on the
experimental data sets. For each data set, we compared ADDM
to seven state-of-the-art concept drift detection methods.

A. Results on Synthetic Data sets

Table III shows the experimental results of the drift detec-
tion algorithms on the synthetic data sets. Recall that in case of
synthetic data sets we know the exact drift points so we can
compare them to the detector’s outputs. These results show
that ADDM outperforms all other methods in terms of true
positives (TP) and false alarms (FA). It has a very low false
alarm rate. Despite the parameter optimization , note that the
state-of-the-art methods detect a very large number of drifts.
This illustrates these algorithms’ problem of high reactivity
leading to a large number of false positive drift detection [1].
Contrary to state-of-the-art methods, ADDM is less sensitive
to small variation and only detects statistically significant
drifts. This is very important in real-world application because
retraining a machine model is time-consuming and resource-
intensive. Fig. 2 and Fig. 3 show the results of all the
algorithms applied respectively to the Mixed and the Brieman
2d planes data sets. On these data sets, ADDM accurately
detects all the drifts unlike the other algorithms. The Mixed
data set contains three concept drift points and ADDM is
the only method capable of accurately detecting all the drift
points (horizontal line with red plus (+) markers in Fig. 2).
The Brieman data set contains six (6) drift points, ADDM
accurately detected five of them (horizontal line with red plus
(+) markers in Fig. 3) when none of the other methods detects
more than one drift.

TABLE III
DETECTOR PERFORMANCE ON SYNTHETIC DATA SETS. THE COLUMNS

SHOW THE FALSE ALARMS (FA), TRUE POSITIVES (TP) AND MEAN TIME
TO DETECTION (MTD) OF THE DETECTOR. THE MTD IS EXPRESSED IN

SECONDS

Method Metric Agrawal 32 Agrawal 3213 Mixed Friedman friedman no return Brieman 2d planes

ADDM
TP 1 2 3 3 5 5
FA 0 2 0 0 1 1

MTD 1.5 3.657 0.368 21.823 11.912 20.711

ADWIN
TP 0 4 2 1 0 0
FA 7 15 11 7 10 2

MTD 0.342 0.657 0.128 1.182 0.935 1.289

DDM
TP 0 2 1 0 1 1
FA 17 21 15 6 16 5

MTD 0.372 0.612 0.126 1.435 0.916 1.348

KSWIN
TP 0 0 0 0 1 1
FA 18 21 19 4 9 6

MTD 0.398 0.690 0.178 1.383 1.103 1.287

PH
TP 0 1 1 0 0 1
FA 15 19 17 3 11 7

MTD 0.411 0.613 0.138 1.229 0.980 1.360

EDDM
TP 0 5 3 0 1 3
FA 14 22 17 4 17 3

MTD 0.355 0.611 0.134 1.336 1.044 1.247

HDDM A
TP 0 2 3 0 2 3
FA 17 23 15 5 17 3

MTD 0.384 0.819 0.140 1.373 1.012 1.388

HDDM W
TP 0 1 3 0 0 3
FA 17 19 18 6 16 3

MTD 0.403 0.630 0.133 1.343 1.236 1.324

B. Results on Real-world Data sets

Table IV shows the results of the drift detection algorithms
on real-world data sets. Recall that when comparing ADDM
to state-of-the-art algorithms on real-world data sets, we use

0 500 1000 1500 2000
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro
r r
at
e
or
 u
nc
er
ta
in
ty

ADDM (3 detections)

ADWIN (13 detections)

DDM (16 detections)

PH (18 detections)

KSWIN (19 detections)

error rate
ADDM
ADWIN
DDM
PH
KSWIN
actual drifts

Fig. 2. Detected drifts on the Mixed data set. The vertical lines in green are
the actual drifts points. The horizontal lines show the detected drifts by each
detector. The horizontal line with red plus (+) markers shows our method’s
detections.

0 2500 5000 7500 10000 12500 15000 17500
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro
r r
at
e
or
 U
nc
er
ta
in
ty

ADDM (6 detections)

ADWIN (2 detections)

DDM (6 detections)

PH (8 detections)

KSWIN (7 detections)

error rate
ADDM
ADWIN
DDM
PH
KSWIN
actual drifts

Fig. 3. Detected drifts on the Brieman 2d planes data set. The vertical lines
in green are the actual drifts points. The horizontal lines show the detected
drifts by each detector. The horizontal line with red plus (+) markers shows
our method’s detections.

the mean squared error loss of the learning model in case
of regression task and the cross entropy loss for classifica-
tion tasks. In order to have a better view of the detector’s
performances, we also listed the number of times the model
was retrained (nb train). The number of retraining is equal
to the number of detected drifts and gives us an idea of
how sensitive the detector is. As expected, the state-of-the-art
detectors lead to a large number of retraining. By combining
the loss and the number of retraining, in almost all cases

ADDM outperforms the state-of-the-art detectors. In the rare
cases where other methods have outperformed ADDM, the
improvement is very small and the retraining is at least two
times that of ADDM. For example, on the Gas sensor drift
data set, the KSWIN algorithm retrained the model 42 times
(loss=1.69) while ADDM retrained the model only 7 times
(loss=1.89).

TABLE IV
PERFORMANCE OF DETECTORS ON REAL-WORLD DATA SETS. THE

MODEL’S LOSS (THE LOWER THE BEST) AND THE NUMBER OF
RETRAININGS nb train (THE LOWER THE LESS COMPUTATIONALLY

EXPENSIVE).

Method Metric Panama electricity Italian air quality Beijing air quality Gas sensor drift NSW data set

ADDM loss 0.020 0.007 0.006 1.89 0.290
nb retrain 7 5 5 7 5

ADWIN loss 0.032 0.02 0.016 1.727 0.234
nb retrain 7 1 195 21 12

DDM loss 0.030 0.014 0.014 1.714 0.253
nb retrain 18 4 145 41 17

KSWIN loss 0.034 0.011 0.016 1.69 0.255
nb retrain 10 6 132 42 10

PH loss 0.044 0.016 0.016 1.724 0.239
nb retrain 12 7 119 37 11

EDDM loss 0.026 0.008 0.004 1.748 0.276
nb retrain 10 3 78 33 8

HDDM A loss 0.058 0.007 0.003 1.694 0.260
nb retrain 5 4 69 23 9

HDDM W loss 0.059 0.009 0.004 1.696 0.288
nb retrain 5 3 58 27 8

CONCLUSION

Detecting concept drift is important in real-world applica-
tions as it leads to a decrease in machine learning models
performance. The traditional concept drift detection methods
are very sensitive to changes and leads to a large number
of false alarms. These methods also often require full access
to the true labels. In this paper, we propose a method that
combines a machine learning algorithm with autoregressive
time series models to detect concept drift in stream data. The
main idea is to consider the error rate of a machine learning
model as a time series and model them with an autoregressive
time series model. We compared ADDM to seven (7) state-of-
the-art concept drift detection algorithms on six (6) synthetic
data sets and five (5) real-world data sets. The results show
that it outperforms all the state-of-the-art algorithms in terms
of accuracy and has a very low false alarm rate. In addition
to the drift detection method, we proposed a new method of
concept drift adaptation based on the severity of the drift. The
main idea is to aggregate the old and new model using an
estimate of the dissimilarity between the old concept and the
new one as weights. The higher is the severity, the less relevant
is the old model. In future works we aim to use auto-regressive
models to detect concept drifts using directly the input data
instead of the error rate or the model’s uncertainty. This can
be very useful in cases where the true labels are not available.

REFERENCES

[1] L. Baier, T. Schlör, J. Schöffer, and N. Kühl, “Detecting con-
cept drift with neural network model uncertainty,” arXiv preprint
arXiv:2107.01873, 2021.

[2] S. Kadam, “A survey on classification of concept drift with stream data,”
2019.

[3] H. Tong and K. S. Lim, “Threshold autoregression, limit cycles and
cyclical data,” in Exploration Of A Nonlinear World: An Appreciation
of Howell Tong’s Contributions to Statistics. World Scientific, 2009,
pp. 9–56.

[4] R. S. Tsay, “Testing and modeling threshold autoregressive processes,”
Journal of the American statistical association, vol. 84, no. 405, pp.
231–240, 1989.

[5] J. Gonzalo and M. Wolf, “Subsampling inference in threshold autore-
gressive models,” Journal of Econometrics, vol. 127, no. 2, pp. 201–224,
2005.

[6] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 12, pp. 2346–2363, 2018.

[7] A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in Proceedings of the 2007 SIAM international
conference on data mining. SIAM, 2007, pp. 443–448.

[8] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Brazilian symposium on artificial intelligence. Springer,
2004, pp. 286–295.

[9] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1/2, pp. 100–115, 1954.

[10] C. Raab, M. Heusinger, and F.-M. Schleif, “Reactive soft prototype
computing for concept drift streams,” Neurocomputing, vol. 416, pp.
340–351, 2020.

[11] J. Gama and G. Castillo, “Learning with local drift detection,” in
International conference on advanced data mining and applications.
Springer, 2006, pp. 42–55.

[12] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda,
and R. Morales-Bueno, “Early drift detection method,” in Fourth inter-
national workshop on knowledge discovery from data streams, vol. 6,
2006, pp. 77–86.

[13] I. Frias-Blanco, J. del Campo-Ávila, G. Ramos-Jimenez, R. Morales-
Bueno, A. Ortiz-Diaz, and Y. Caballero-Mota, “Online and non-
parametric drift detection methods based on hoeffding’s bounds,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp.
810–823, 2014.

[14] S. Xu and J. Wang, “Dynamic extreme learning machine for data stream
classification,” Neurocomputing, vol. 238, pp. 433–449, 2017.

[15] M. M. W. Yan, “Accurate detecting concept drift in evolving data
streams,” ICT Express, vol. 6, no. 4, pp. 332–338, 2020.

[16] J. Gama, R. Sebastiao, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine learning, vol. 90, no. 3, pp. 317–346,
2013.

[17] S. Wang, L. L. Minku, D. Ghezzi, D. Caltabiano, P. Tino, and X. Yao,
“Concept drift detection for online class imbalance learning,” in The
2013 International Joint Conference on Neural Networks (IJCNN), 2013,
pp. 1–10.

[18] S. Greco and T. Cerquitelli, “Drift lens: Real-time unsupervised concept
drift detection by evaluating per-label embedding distributions,” in 2021
International Conference on Data Mining Workshops (ICDMW), 2021,
pp. 341–349.

[19] B. E. Hansen, “Inference in tar models,” Unpublished working paper.
Chestnut Hill, MA: Boston College Department of Economics (Decem-
ber), 1996.

[20] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-multiflow:
A multi-output streaming framework,” Journal of Machine Learning
Research, vol. 19, no. 72, pp. 1–5, 2018. [Online]. Available:
http://jmlr.org/papers/v19/18-251.html

[21] J. H. Friedman, “Multivariate adaptive regression splines,” The annals
of statistics, pp. 1–67, 1991.

[22] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: A per-
formance perspective,” IEEE transactions on knowledge and data engi-
neering, vol. 5, no. 6, pp. 914–925, 1993.

[23] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[24] E. Aguilar Madrid and N. Antonio, “Short-term electricity load fore-
casting with machine learning,” Information, vol. 12, no. 2, p. 50, 2021.

[25] S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. Di Francia, “On
field calibration of an electronic nose for benzene estimation in an urban
pollution monitoring scenario,” Sensors and Actuators B: Chemical, vol.
129, no. 2, pp. 750–757, 2008.

[26] A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and
R. Huerta, “Chemical gas sensor drift compensation using classifier
ensembles,” Sensors and Actuators B: Chemical, vol. 166, pp. 320–329,
2012.

