Pierre Seize
email: pierre.seize@onera.fr

Lionel Matuszewski
email: lionel.matuszewski@onera.fr

Guillaume Puigt
email: guillaume.puigt@onera.fr

Towards multi-physics simulations using Jacobian-free Newton-Krylov method

For multi-physics simulations, the definition of an accurate implicit time integration scheme is of paramount importance to converge the multi-physics system efficiently towards its steady solution. Generally, the definition of the Jacobian approximation relies on scientist experience and is one of the biggest flaws since cross-solver coupling terms are generally disregarded. As a time integration method, a Jacobian-Free Newton-Krylov can improve the precision of the Jacobian approximation. In this context, we present the strategy adopted for our in-house computational fluid dynamics solver: CEDRE.

I. Introduction

T growth of computational power allows the simulation of more complex problems, with either finer and more complex meshes, or more complex physical models. It is then crucial to use numerical methods that can keep up with today's problems complexity as they can take advantage of the computational power to reduce the cost of a numerical simulation. Reducing the cost of a numerical simulation is interesting on many points. For a company, it will reduce the financial cost. For a researcher, it will take less time. For the environment, it will use fewer resources.

The multi-physics software team of the French aerospace lab, ONERA, is responsible for the development of CEDRE. It is a software system aiming to solve high-energy problems, embedding several solvers, each dedicated to a given physics, and coupled internally. Because it aims to solve problems on an industrial scale, and despite constant work from the team, the development of new numerical methods in CEDRE can be complex. There is therefore some progress that can be made, inspired by more recent works found in the literature.

It seems that the overall performance of CEDRE on steady problems could be improved. Naturally, the performance on steady problems is linked to the performance of the implicit time integrator. In order to enhance the performance and the stability of implicit time integration methods, it has been decided to simplify the approximation of the Jacobian, sometimes drastically. One of the biggest flaws of today's implicit solver is then the low quality of the approximated Jacobian and the fact that cross-solver coupling terms are not accounted for.

For multi-physics problems, a strong implicit coupling may enhance the convergence rate of the overall solver. It would allow solving directly multi-physics problems, instead of solving each physical problem one after another. Because of the strong nonlinear coupling due to the multi-physics interactions, it is quite difficult to form the global, fully coupled Jacobian. Many numerical methods, such as [START_REF] Wong | Sequential-implicit Newton method for multiphysics simulation[END_REF], solve the physical equations sequentially to avoid this difficulty. In [START_REF] Huang | High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit-explicit Runge-Kutta schemes[END_REF], the authors solve the whole system of equations in a monolithic way. In both approaches, the cross-physics Jacobian is still required.

II. Mathematical framework

The multi-physics platform CEDRE contains several dedicated solvers. The multifluid reactive Navier-Stokes solver within CEDRE uses a Finite Volume method for spatial discretization over unstructured meshes [START_REF] Eymard | Solution of Equation in R n (Part 3)[END_REF][START_REF] Haider | Efficient implementation of high order reconstruction in finite volume methods[END_REF][START_REF] Haider | A high-order interpolation for the finite volume method: the coupled least squares reconstruction[END_REF][START_REF] Refloch | CEDRE software[END_REF]. For any conservative set of equations, this method is necessary to compute the divergence of the flux density by Gauss theorem, using the flux computed at the mesh faces. Afterward, the remaining equation is of the form:

M dQ dt = F (Q (t)) (1)
where Q is a vector representing the state over the mesh, F is the numerical approximation of the divergence of the flux, and M is a diagonal matrix, where each diagonal element is the volume of the corresponding cell. For simplicity, we assume there are no source terms, but they could be included in F without loss of generality.

A. Pseudo time-stepping

Looking for a steady solution means looking for a zero of F. But because F usually has "bad" mathematical properties, its stiffness, for example, it is computationally too hard to look directly for the zero with a classical root-finding algorithm. Instead, it is easier to start from a given initial condition and solve the temporal equation, Eq. (1), to let the state converge to the steady solution. This steady solution is the only meaningful information, and the intermediate states are of no interest. Therefore the time evolution does not have to make sense, in the sense of the Physics. For example, two cells on the same mesh can move forward in time at different speeds, which produces an incorrect evolution but may converge faster to the steady state. This method is called Pseudo time-stepping, or Pseudo-transient continuation [START_REF] Kelley | Convergence analysis of Pseudo-Transient Continuation[END_REF].

All of this means that since we are not interested in the temporal evolution of our physical system, it makes sense to try to reach the steady state as fast as possible, in spite of accuracy, and not lose time computing accurately the time evolution. To do so, one has to use implicit time integration methods over explicit ones, as they have far greater stability and can be used with larger time steps.

B. Implicit time integration methods

Implicit Euler's method, which is the simplest implicit time integration method, is used at iteration n to find the state at the next iteration Q n+1 , knowing the state at the current iteration Q n . Applied to Eq. (1), the next state is given implicitly as the solution of a certain equation:

M Q n+1 -Q n ∆t n = F (Q n+1) ⇔ M δQ n ∆t n = F (Q n + δQ n) (2)
where ∆t n is the time step between iterations n and n + 1, and δQ n = Q n+1 -Q n . As we will handle time integration one step at a time, the subscript n on ∆t and δQ will be omitted when it does not cause any misunderstanding. In the end, this time integration method gives us the state evolution δQ as the root of a nonlinear function:

F (δQ) = MδQ -∆tF (Q n + δQ) = 0 . (3)
More generally, any implicit time integration method produces one or multiple nonlinear problems such as Eq. (3).

C. Nonlinear solver

Finding the root of a nonlinear function can be done with a Newton method. Starting from δQ 0 = 0, the Newton method iterates until some convergence criterion is met:

δQ i+1 = δQ i -F (δQ i) -1 F (δQ i) . (4)
Here we see that a nonlinear solver iteration requires a linear solver. For example, the first iterate of the Newton method is

δQ 1 = ∆t (M -∆tF (Q n)) -1 F (Q n).
We identify that δQ 1 is found as the solution to a linear problem of the form:

Ax = b (5)
with

A = M -∆tF (Q n), b = ∆tF (Q n)
, and x = δQ 1 .

D. Linear solver

As stated in the introduction, the meshes used in our problems can be quite large, so in the end, the dimension of the linear problems is also large. It is even usually too large to be realistically solved with a direct method, such as Gaussian elimination or a LU decomposition. Therefore, one must use an iterative method to keep the memory usage and the computational time to a decent level, in spite of accuracy. A common way to solve large sparse linear systems like Eq [START_REF] Haider | A high-order interpolation for the finite volume method: the coupled least squares reconstruction[END_REF] is the use of Krylov subspace methods, such as BiCGStab [START_REF] Van Der Vorst | Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[END_REF], GMRES [START_REF] Saad | GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF], and many others [START_REF] Liesen | Krylov subspace methods: principles and analysis[END_REF]. The general idea behind Krylov subspace methods for linear systems is to start from an initial guess x 0 , giving us an initial residual r 0 = b -Ax 0 . Then we construct the nested Krylov subspaces K i = Vect r 0 , Ar 0 , . . . , A i-1 r 0 . At iteration i, the solution approximation is found in x 0 + K i by requiring a certain projection or minimizing condition. For GMRES, the residual r i = b -Ax i is such as it satisfies a Petrov-Galerkin condition r i ⊥ AK i , which is equivalent to minimizing its norm [START_REF] Simoncini | Recent computational developments in Krylov subspace methods for linear systems[END_REF]. A crucial detail of Krylov subspace methods is that the matrix A is not explicitly needed, only its action on a vector as an operator is.

This sets up the mathematical framework for the resolution of steady problems in CEDRE [START_REF] Selva | Méthodes itératives pour l'intégration implicite des équations de l'aérothermochimie sur des maillages nonstructurés[END_REF]. A pseudo timestepping is used to let an initial state evolve to the steady limit, using an implicit time integration method. The time integration method produces some nonlinear problems, solved with a Newton method. The Newton method requires the linearization of the equation and needs the solution of some linear problems, solved with a Krylov subspace method.

III. The Jacobian-free Newton-Krylov method

A. Motivations

The Finite Volume Navier-Stokes solver of CEDRE is based on a standard second-order MUSCL formulation [START_REF] Haider | Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[END_REF] or an advanced multi-slope formulation [START_REF] Le Touze | Multislope MUSCL method for general unstructured meshes[END_REF]. It has also been extended to a higher order of accuracy through successive correction algorithms using ideas from the k-exact polynomial reconstruction (see for instance [START_REF] Ollivier-Gooch | A high-order-accurate unstructured mesh finite-volume scheme for the advectiondiffusion equation[END_REF][START_REF] Pont | Multiple-correction hybrid k-exact schemes for high-order compressible RANS-LES simulations on general unstructured grids[END_REF] as examples of high-order approximation techniques). In CEDRE, even if F is computed with a high-order accurate method, the Jacobian F is only computed at order 1 and high-order accurate terms are neglected. The gradient reconstruction methods, the slope limiters, and other complex elements from the spatial Finite Volume discretization do not appear in the Jacobian, even if they play a role in the function evaluation. Moreover, because CEDRE solves a large variety of physical problems, the contributions to the Jacobian of some complex physical models are not accurately computed. It is the case of some modern turbulence models for example, where the contributions to the Jacobian are hard to derive and tend to decrease the robustness of the overall solver. For those reasons, it has been preferred to simplify the Jacobian contributions of such models, or even ignore them.

When deriving the linear problem from the nonlinear one, the Jacobian of the nonlinear operator appears in the linear system matrix. For the Newton method, on Eq. 4, the matrix was A = F (δQ i) = M -∆tF (Q n + δQ i). It makes sense that if the Jacobian F is poorly approximated, despite accurately solving the linear system, the solution will not be accurate as it is the solution of a different problem. Therefore, in CEDRE, the nonlinear solver convergence is reduced because the linear solver cannot use the "true" Jacobian.

As stated before, the Krylov subspace method used as the linear solver does not need the matrix, but only to be able to apply it to a vector as a linear operator. An idea is then to approximate the matrix-vector product of the Jacobian of F in δQ against a vector v by the finite difference:

F (δQ)v ≈ F (δQ + εv) -F (δQ) ε (6)
where we introduced a differentiating parameter ε that must be set correctly, as we will discuss later. From the expression on F we gather:

F (δQ)v ≈ Mv -∆t F (Q n + δQ + εv) -F (Q n + δQ) ε (7)
The advantages of this approximation are many. First, no contribution to the function F is discarded, contrary to what is currently done in CEDRE. Second, the Newton nonlinear solver does not need a single Jacobian, but a Jacobian per iteration as can be seen in Eq. (4). A common way consists of computing the first Jacobian matrix and supposing the other ones are close enough. With this method, the correct Jacobian is used at each step of the nonlinear procedure. Third, there is no need to compute and store the full Jacobian, which reduces memory costs. Fourth, it avoids the development of the Jacobian approximation, and of course, it saves engineering time and human resources. On the other hand, each matrix-vector multiplication requires an additional function evaluation.

B. Choice of ε

To ease the notations, as we are now interested in the Jacobian-vector product approximation, we call x the point (or vector) in which the Jacobian is evaluated, f the function of interest, and v the vector multiplied by the Jacobian. The approximation is now:

f (x) v ≈ f (x + εv) -f (x) ε . (8)
The parameter ε is the same as the one introduced in Eq. (6). In exact arithmetic, we could write that Eq. (8) stands true with a truncation error in O (ε), and the approximation would converge linearly in ε, then the smaller ε the better.

Because computers use fixed-point arithmetic, this last statement is no longer true. Indeed, using an ε too close to machine precision will pollute the result with round-off error. Therefore, ε must be chosen carefully to make a compromise between truncation and round-off error.

There are many ways to choose the parameter, but people tend to focus on the same few options [START_REF] Abhyankar | PETSc/TS: a modern scalable ODE/DAE solver library[END_REF][START_REF] Liu | CFD high-order accurate scheme Jacobian-Free Newton Krylov method[END_REF][START_REF] Park | On physics-based preconditioning of the Navier-Stokes equations[END_REF]. Those options are summed up in [START_REF] Knoll | Jacobian-free Newton-Krylov methods: a survey of approaches and applications[END_REF], and the most popular ones are introduced in [START_REF] Pernice | NITSOL: a Newton iterative solver for nonlinear systems[END_REF] and [START_REF] Dennis | Numerical methods for unconstrained optimization and nonlinear equations[END_REF]:

ε ds = √ ε 0 v 2 max (| x, v | , x 0 v 1) sign (x, v) (9)
ε wp = ε 0 (1 + x 2) v 2 . (10
)
Here ε 0 is the estimated relative error in function evaluation, usually set equal to machine epsilon ε mach , and x 0 is an estimation of the "typical size" of x. In particular, the choice ε wp from [START_REF] Pernice | NITSOL: a Newton iterative solver for nonlinear systems[END_REF] seems to be the most popular today. In Fig. 1, those two choices are displayed. This case corresponds to the 1D Burgers' equation over a regular periodic mesh made of 10 cells (or segments in 1D). The function f corresponds to the right-hand side of Eq. (1) when solving the Burgers' equation, integrated spatially with a first-order Finite Volume method using an exact Riemann solver (Godunov 's scheme). This function was chosen because it is a nonlinear conservative equation, often viewed in CFD as a simplified version of Euler equations and it contains most aspects of nonlinear hyperbolic equations. The vectors x and v are 10 + r 1 and 0.1 (2r 2 -1) where r 1 and r 2 are random vectors following a uniform distribution on [0, 1[(from the Python package NumPy: random.random). In this figure, two regions are easily spotted as ε decreases: the first one on the right, corresponding to the truncation error dominated region, where the error decrease linearly in ε, and the second one on the left, where round-off errors add up in a more "chaotic" way and increase the total error. The two popular choices of ε are represented with colored dots. Their performance relative to one another cannot be commented from this result alone, as a different f , x, or v may change the figure, but they show their interest in this example as they tend to minimize the approximation error.

A problem arises from the definition of ε wp (and ε ds). As the norm used on Eq. (10) is the 2-norm, the parameter does not scale well when using large vectors. For example, if x and v are constants vectors equal to x 0 and v 0 respectively, one would hope to get

ε wp = √ ε 0 (1+|x 0 |) |v 0 |
but it is not the case with the current definition. Practically, on a mesh with twice more cells, the vectors would be twice as long but the vector components would stay in the same order of magnitude. It would be nice to change Eq. (10) so that ε wp would not be modified by such a variation. That is why we suggest using a modified version, where instead of using the 2-norm we use . N = . 2 / √ N with N the vector size: the "scaled" 2-norm. Then we get the expected result for the parameter, and its value should be less dependent on the vector size:

ε wp, N = ε 0 (1 + x N) v N . (11)

C. Numerical experiments over the choice of ε

Figure 2 shows how the error changes when N increases for the two common choices ε wp and ε ds , and also for the modified version ε wp, N . To better understand how those choices change with N, the numerical experiment from Fig. 1 is repeated with N increasing exponentially from 10 1 to 10 7 . Figure 2 shows all points as cross markers, and the last one with a circle marker, to see the "trail" of each ε. It can be seen that both popular choices tend to move with regard to N, and they eventually end up increasing the relative error in the matrix-vector product evaluation. The modified choice, however, does not change much with N, and the good approximation from the beginning is preserved. Once again, the values shown are extremely dependent on the choice of x and v, and it would be hasty to conclude one is better than the others from their positions in Fig. 2. That is why it is not meaningful to compare the slopes or the relative positions of the curves in Fig. 3: with another v, the green curve corresponding to the choice ε wp, N might be moved up significantly, and the orange one corresponding to ε ds might not. Nonetheless, the interesting feature of Fig. 3 is that the choice ε wp, N gives an error almost independent of N in this case. The classical choices may be better at some point, but they eventually end up being worse as the vector size grow. 1) from a Finite Volume method using a centered scheme for the 1D Euler equations.

The same numerical experiment was made on a more complex case: the 1D Euler equations. Here, the function f corresponds to the right-hand side of Eq. (1) given by a centered Finite Volume method, with the interface flux defined as an average of left and right fluxes. This spatial method is known for its instability when used in an actual solver, but it is useful in this experiment as the analytic Jacobian is easy to derive. This physical model assigns 3 degrees of freedom in each cell, and we will use the primitive variables here: the vector x corresponds to a uniform density of 1kg m -3 , a velocity equal to a sine making one period over the mesh and of amplitude 10m s -1 , and uniform pressure of 10 5 Pa. The vector v is a random vector in [0, 1] as before, where the first component is scaled by 10 -3 , the second by 10 -2 , and the third by 10 2 , in order to impose 10 -3 relative perturbations.

The results, presented in Fig. 4, are in agreement with the previous ones. Even if the modified choice is not the best in the beginning, for small values of N, its corresponding error does not change as N increases, whereas the errors associated with the classical choices eventually end up increasing with N.

These two experiments highlight the weakness of the two classical choices and the interest in the suggested modification. Indeed, the modified version is less dependent on the vector size, and therefore its corresponding approximation does not end up being worse as the vector size grows, as opposed to the classical choices.

D. Towards a coupled fully implicit solver

As stated in the introduction, getting the Jacobian when it includes multiple solvers is hard. Let us take an example with two solvers, each of them being dedicated to one set of physical equations. The vector x can be decomposed as (x 1 , x 2), and f (x) = (f 1 (x) , f 2 (x)). The Jacobian of f in x is then:

f (x) = ∂ f 1 ∂x 1 ∂ f 1 ∂x 2 ∂ f 2 ∂x 1 ∂ f 2 ∂x 2 . (12
)
When evaluating the Jacobian, the off-diagonal terms ∂ f 1 ∂x 2 and ∂ f 2 ∂x 1 are the ones that are hard to get. With the matrix-free method, those terms are implicitly taken into account when evaluating a Jacobian-vector product. Moreover, when dealing with physical models with different "sensibility", it is possible to set one ε per model [START_REF] Turpault | Modélisation, approximation numérique et applications du transfert radiatif en déséquilibre spectral couplé avec l'hydrodynamique[END_REF], resulting in the approximation:

f (x) v ≈ f 1 (x + (ε 1 v 1 , ε 2 v 2)) -f 1 (x) ε 1 , f 2 (x + (ε 1 v 1 , ε 2 v 2)) -f 2 (x) ε 2 . (13
)
The idea to use a matrix-free evaluation for multiple solvers and one ε per model has not been tested yet in CEDRE. We hope that a fully implicit time integration method would be possible, and would help reach the steady state faster on multi-physics problems. This idea is another motivation for our choice of this method.

Here we introduced the Jacobian-free Newton-Krylov method and compared two popular choices of ε from the literature to a suggested modified version. This modified version aims to scale better with regard to the vector size. The numerical experiments show that the suggested version does indeed, so this is the version we will use in our matrix-free evaluation of the Jacobian-vector product.

IV. Applications

The method described step by step above was implemented in CEDRE using already existing parts such as the GMRES linear solver. It then had to be checked on various test cases and compared with the standard method, which uses the poorly approximated Jacobian.

A. Reactive hypersonic test case

The first test case we will present here is one of a solid sphere in a high-energy flow. The reason we choose that case is that it is a typical target application of CEDRE. The flow is composed of air made of 77% N 2 and 23% O 2 . Because the input speed is such as the flow is hypersonic, a strong shock is present in front of the sphere, and because of the high temperatures, the air components decompose into N, O, and NO. Therefore, this is a high-energy, reactive test case, which is a targeted application of CEDRE.

Fig. 5 Mesh used for the reactive hypersonic test case

This case uses a 2D axisymmetric mesh, shown in Fig. 5, on which we solve the reactive Navier-Stokes equations. The flow initially moves along the axisymmetric axis at Ma = 15 from left to right in Fig. 5. The sphere is modeled by an adiabatic wall. The time integration uses local time-stepping based on the CFL number. The linear solver, GMRES, uses a block Jacobi right preconditioning based on the standard poorly approximated Jacobian. Two runs are compared. The first one uses classical CEDRE methods and in particular the standard Jacobian for the linear resolution. The second one uses the Jacobian-vector approximation introduced before. At first glance, the two runs give similar results, as shown in Fig. 6. This is reassuring as it shows that the new method is able to find the same steady state as the old one. To compare the convergence of the overall steady problem, one can look at what is commonly called the residual, which is the current right-hand side from Eq. (1). Indeed, the steady solution corresponds to a null right-hand side, so looking at the residual is a good indicator of the convergence to the steady state. The residual is computed component by component, and we look at its evolution against time. This is plotted for some components in Fig. 7, where we look at the base 10 logarithms of the L2 residual norm. First, we notice that the two methods yield almost identical residuals. Second, the residuals seem to oscillate instead of decrease, which signifies that the method is not able to reach a steady state. It is due to the spatial methods used in this particular example. Because of them, no matter the time integration method, we are not able to get a better approximation of the steady state. Yet this test case is not uninteresting. It shows that the JFNK method explained above is able to handle stiff equations, with chemistry and high-energy. The fact that it behaves like the standard time integration method is indeed reassuring, as it means it was well defined and implemented in the code. We explain the oscillations in the residual by some oscillatory behavior of some cells in the domain that can switch locally from first order to second order of accuracy depending on the local solution (due to the MUSCL formulation). Some people tend to freeze the order of accuracy of the cells in the convergence process to enhance convergence but this approach was not retained in this article.

B. Transonic airfoil

The second test case is an RAE 2822 airfoil, at Ma = 0.75 in atmospheric conditions at 10km. At these flight conditions, a shock appears on the upper surface. The airfoil chord line is set to c = 1m and the computational domain extends 30c upwind, downwind, under, and above the airfoil. The mesh is unstructured, with cell sizes going from 100µm at the wall to 2.5m at the farfield boundary condition. Near the airfoil, several layers of regular cells are defined as in a regular C shape mesh. This choice is motivated by the possibility to capture better boundary layer effects near the profile. Also, the mesh is refined at the expected shock location, as seen in Fig. 8. We solve the Navier-Stokes equations, with the Spalart-Allmaras turbulence model.

The same time integration schemes from the previous test case are used and compared. The shock on the upper surface can indeed be seen in the results, in Fig. 9. Once again, looking at the computed fields does not help in deciding if one method is better than the other, as the differences are expected to be too small for the naked eye. Therefore, we check the residuals.

V. Conclusion and planned work

This paper addresses the definition of an implicit time integration procedure to deal with multi-physics simulations. As it was briefly introduced, the key ingredient is the definition of an accurate Jacobian matrix. Such a matrix links solutions of different physics, which makes the cross-interactions difficult to account for. Here, we consider the Jacobian-Free Newton-Krylov (JFNK) method to approximate the product of the Jacobian matrix and a vector a by finite difference approximation. This method is interesting for our solver CEDRE for two reasons. First, it gives the linear solver a better Jacobian matrix, instead of a low order approximation. Second, it does not discard any part of the physical model, unlike the classical method.

In this paper, we identified a flaw in a part of the method: the choice of ε. We suggested a change from the classical choices in the definition of ε to remove this weakness of those said choices. We exhibited the mentioned flaw and showed that the suggested modification gets rid of it. We compared all choices, the classical ones and the modified one, on a handful of test cases, two of them being presented before. Still, the test cases are mock-up tests, inspired by actual CFD applications but handmade from simplified models. The reason the tests are simplified and not as complex as actual CFD applications is that we need the exact Jacobian to analytically compute the errors in the Jacobian-vector product approximation. With actual applications, with an actual solver, we do not have the exact Jacobian, which is why we decided to use JFNK in the first place. Therefore, we cannot compare the error in the approximation in actual applications. However, it would be interesting to see how the overall residual convergence is affected by the choice of ε. This will be the next step in our work: we will try the numerical applications featured here again, with the classical ε wp and ε ds choices, and compare the residual plots.

The JFNK method was then compared to the classical method on two problems. On the first one, where the difficulty to reach the steady state comes more from the spatial methods than the temporal integrator, the new method showed similar results compared to the old one. On the second one, the new method gave better residuals, especially for the turbulence model part. This is in line with what we expected, as the JFNK method accurately uses all terms from the physical model, whereas the old method approximates poorly the turbulence model contribution to the Jacobian. Now, we are interested in comparing the JFNK method to the classical method on cases of increasing complexity. As an example, we would like to do the same analysis on the Fifth AIAA CFD Drag Prediction Workshop test case. It consists of a wing-body configuration, on which we solve the Navier-Stokes equation, with a more complex turbulence model than the one we used before such as the kmodel or the k -ω model.

Finally, we intend to solve a steady problem, similar to the reactive hypersonic sphere, but with a more complex chemical model. As this model is new in the solver, the corresponding Jacobian contributions are not yet available. The JFNK method would prove useful as it will enable users to use this new model before having the linearized Jacobian approximation matrix.

Fig. 1

 1 Fig. 1 Error in the Jacobian-vector product approximation for the two most popular choices. The function is the right-hand side of Eq. (1) from a Finite Volume method using an exact Riemann solver for Burgers' equation, over a 10 cell 1D regular mesh.

Fig. 2

 2 Fig. 2 Error in the Jacobian-vector product approximation for the two most popular choices and the suggested correction. Cross markers correspond to the values computed on a mesh with 10 1 , 10 2 , ... cells, and circle markers to the last value with 10 7 cells. Grey markers correspond to 10 7 cells.

Fig. 3 Fig. 4

 34 Fig. 3 Error in the Jacobian-vector product approximation as a function of the vector size

Fig. 6

 6 Fig. 6 Mach number and nitric oxide mass fraction around a sphere in a hypersonic reactive flow

Fig. 7

 7 Fig. 7 Logarithm of the L2 residual norm corresponding to the vertical velocity and nitric oxide mass fraction components for the classical method (blue) and the JFNK method (orange)

Fig. 8 Fig. 9

 89 Fig. 8 Mesh used for the transonic airfoil test case (left), with a zoom on the shock location (upper right) and the leading edge (lower right)

Acknowledgments:

This work is co-funded by the French Aerospace Lab (ONERA) and the French Agency for Innovation and Defence (AID) via a Ph.D. scholarship. AID support is gratefully acknowledged. The authors would like to thank Mses. Jerome and Vinsonneau and Mr. Giot for their interest in our research.

In the first two shown components in Fig. 10, we see that for the JFNK method, the residuals norm decrease is slower than with the standard method, but we are more interested in the converged state estimate quality. At the end of the simulation, the final residual norm seems a bit smaller, though more oscillating, so we will not conclude that the JFNK method is better just from looking at these first two figures. Still, they show that once again, the JFNK method can reach similar convergence levels. In the last component from Fig. 10, on the other hand, the residual norm decreases a lot more with the JFNK method. This is due to the fact that when using the Jacobian-free method, we take into account all terms, including the ones corresponding to the turbulence model. As explained earlier, the standard method uses a Jacobian that tends to poorly approximate those turbulence model terms. As a result of this bad approximation, the residual corresponding to the turbulence viscosity equation cannot decrease further. This highlights the relevance of the JFNK method as when comparing the two methods, the interest in the Jacobian-free formulation becomes clear.