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Abstract—Meta-learning has been widely studied and im-
plemented in many Automated Machine Learning systems to
improve the process of selecting and training Machine Learning
models for new tasks, by leveraging expertise acquired on previ-
ously observed tasks. We design a novel meta-learning challenge
aiming at learning-to-learn from one of the most essential model
evaluation data, the learning curve. It consists of multiple model
evaluations collected during the process of training. A meta-
learner is expected to apply a learned policy to learning curves
of partially trained models on the task at hand, to rapidly find
the best task solution, without training all potential models to
convergence. This implies learning the exploration-exploitation
trade-off. Our challenge is split into two phases: a development
phase and a final test phase. In each phase, a meta-learner
is meta-trained and meta-tested on validation learning curves
(development phase) or test learning curves (final test phase).
During meta-training, the meta-learner is allowed to learn from
the provided learning curves in any possible way. In meta-testing,
we borrowed the common Reinforcement Learning setting in
which an agent (a meta-learner) learns by interacting with
an environment storing pre-computed learning curves. A meta-
learner must pay a cost (corresponding to the actual training and
testing time) to reveal learning curve information progressively.
The meta-learner is evaluated and ranked based on the average
area under its learning curves. This challenge was accepted as
part of the official selection of WCCI 2022 competitions.

Index Terms—AutoML, machine learning, meta-learning,
learning curves, learning to learn, reinforcement learning.

I. INTRODUCTION

Artificial learning systems are good at learning to solve

mono-task problems, e.g. recognizing faces, playing video

games, driving cars, translating languages, and assisting doc-

tors to diagnose diseases. However, they are not yet capable

of performing a wide diversity of tasks, unlike intelligent

living beings. Learning from scratch every new task is ob-

viously wasteful of computational resources. There is hope

that leveraging experience from past learned tasks may both

accelerate the learning process and yield better performance

on new tasks. This is currently an active area of research,

encompassing transfer learning [37], representation learning

[3], few-shot learning [34], life-long learning [6], continual

learning [7], and meta-learning [33] to name a few.

Meta-learning regroups a wide variety of techniques per-

mitting learning systems to capitalize on the experience gained

on previous tasks to train models on a new task faster,

with fewer examples, and possibly with better performance.

Approaches include learning from algorithm evaluations

(e.g. accuracy scores), from task and/or model properties

(e.g. dataset meta-features, model hyper-parameters), and from

model priors (e.g. pre-trained model parameters) [33]. In

particular, methods based on algorithm evaluation, which

inspire this paper have been widely and efficiently exploited

in meta-learning. One may simply select the algorithm that

performed best on previously seen datasets, e.g. based on

the average rank [1], [18]. Some approaches use such data

to build recommender systems [10], [21], [22], [28], [30],

[36]. REVEAL [29] explored a very different direction by

formulating the meta-learning problem as a special Reinforce-

ment Learning (RL) problem and solved it using existing

RL methods. However, the aforementioned methods require

evaluating fully trained models, a limitation that we address

in this paper.

In our proposed setting, we consider multiple evaluations of

the learning process, more specifically, the algorithm learning

curve. A learning curve evaluates an algorithm’s incremental

performance improvements, as a function of training cycles

(e.g. a number of iterations over the training set or epochs,

number of examples, or simply wall time). It is an important

tool that has been utilized for making decisions in supervised

machine learning [24], such as early stopping or early discard-

ing. Some existing learning-curve-based performance predict-

ing methods, such as, [14]–[16], use “hard-coded” policies

relying on pairwise comparisons of algorithm learning curves,

which do not scale well. Our setting pushes that idea one step

further: we want to stimulate the community to produce meta-

learners capable of delivering trained policies.

In the “meta-learning from learning curves” setting, meta-

learners should learn to optimize time management: rather

than waiting until all potential algorithms are fully trained to

be evaluated, they should interrupt training and take advantage

of the information on partially trained algorithms (i.e. partial

learning curves) to avoid wasting time on less promising

algorithms. This should speed up the algorithm selection

process for the given task at hand [8], [23], [31]. In other

words, we allow a meta-learner to switch between the learning

curves of algorithms. It actively requests to train and test

algorithms to reveal their performance on a given dataset,

which implies an “active meta-learning” setting. Besides, the

meta-learner should learn to spend smartly and efficiently a
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given time budget T for training algorithms. If it gives an

insufficient amount of time to an algorithm, it may waste it

as the algorithm training process might be interrupted before

producing a new evaluation score.

The angle that we are taking to stimulate the community

to work on this problem is to organize a challenge. This

challenge is the third of the meta-learning challenge series

(https://metalearning.chalearn.org) of ChaLearn [2], and was

officially selected as part of the competition program of

WCCI 2022. Its goal is to develop meta-learning algorithms

(meta-learning agents) that can leverage learning curve in-

formation of partially trained algorithms, hence reducing the

wasteful time of training them to convergence. Our challenge

was much inspired by MetaREVEAL [25], a reinforcement

learning-based meta-learning from learning curves method,

which combines the following three ideas: (i) “active meta-

learning” implemented in ActivMetal [30], (ii) formulating

meta-learning as a special Reinforcement Learning problem

in REVEAL [29], and (iii) exploiting partial learning curve

information in Freeze-Thaw Bayesian Optimization [31]. In

contrast to allocating a fixed-time budget ∆t in each step in

MetaREVEAL, in our challenge, meta-learners must learn a

“smart” policy to allocate sufficient ∆t to each algorithm in

order to be successful. This implicitly increases the difficulty

of the challenge, as the meta-learner needs to learn to solve two

problems at the same time: algorithm selection and budget

allocation.

To facilitate running the challenge, we created a bench-

mark dataset consisting of pre-computed learning curves as

a function of time. Though actual algorithm training and

testing are not conducted during the challenge, meta-learners

must pay a cost corresponding to the actual computational

time, for revealing their performance. Hence, meta-learners

are expected to learn the trade-offs (see Figure 1) between:

- exploitation = continuing “training” an already tried good

candidate algorithm (requesting its next learning curve point)

and

- exploration = checking new candidate algorithms (asking

its first learning curve point).

Although our challenge focuses on meta-learning from

learning curves, we provide meta-features of datasets and

hyperparameters of algorithms to offer more possibilities for

meta-learning to a wide range of methods.

II. CHALLENGE META-DATASETS

A. Real-world meta-dataset

We created a meta-dataset of pre-computed learning curves

by running 20 algorithms with different hyperparameters on

30 cross-domain datasets1 in the AutoML challenge [11].

The descriptions of these datasets can be found in [11].

Each algorithm is either a Random Forest (RF) [5] or a

Gradient Boosting (GB) [9] algorithm, using implementations

1The application fields include medical diagnosis, speech recognition,
classification of text, prediction of customer satisfaction, object recognition,
etc. The datasets have been preprocessed in suitable fixed-length vectorial
representations.

Fig. 1: Exploration-exploitation trade-offs in meta-learning

from learning curves.

provided by Scikit-learn [26]. As the number of features

considered when looking for the best split is one of the most

important hyperparameters of RF and GB [32], we vary their

“max feature” hyperparameters to provide a hyperparameter

searching space to meta-learners.

We also include meta-features that describe well the char-

acteristics of each dataset, such as learning task, metric, time

budget, etc. Detailed descriptions of the meta-features can be

found in [11].

We respected the data splits of the AutoML challenge

into a training set, a validation set, and a test set, for each

dataset. We trained on the training set and produced 2 learning

curves: one using the validation set and the other using the

test set. Consistent with the AutoML challenge setting, the

learning curve points on the validation and test sets are time-

synchronous, but irregularly spaced because they are chosen

by the learning algorithms themselves. Thus the time intervals

between two points on a learning curve may vary.

In total, 1200 learning curves were included in our meta-

dataset, some of which can be seen in Figure 2. The learning

curves cross each other indicating that algorithm ranking

on this dataset changes over training time. In addition, the

algorithm ranking also varies across datasets, suggesting that

a successful meta-learner should learn a dataset-dependent

algorithm searching policy that can adapt to a new dataset.

B. Sample meta-dataset

Due to the limited number of real-world (AutoML) datasets

(30 datasets) in the AutoML challenge [11], we want to

save all of them for evaluating participants’ solutions on the

challenge platform. We thus synthetically generated learning

curves of 20 algorithms on 100 artificial datasets2, which

are used for practice purposes only. The synthetic data is

included in the starting kit 3 provided to the participants for

2The synthetic learning curves are not included in the meta-dataset used
for testing and ranking participants in our challenge. Performing well on the
sample (synthetic) meta-dataset does not guarantee that the agent performs
well on the real-world meta-dataset in the challenge.

3A starting kit consists of necessary materials and instructions to develop
your own agent and test it locally in the same way used in the challenge,
which includes: sample meta-dataset, sample submissions, ingestion program,
and scoring program.

2
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(a) VALIDATION learning curves (b) TEST learning curves

Fig. 2: Learning curve samples of our real-world meta-dataset. They are obtained from the validation set (Figure 2a) and the

test set (Figure 2b) of a dataset named “evita”. In the legend inside the figures, the first two characters of the algorithm name

indicate the algorithm family: Random Forest (rf) or Gradient Boosting (gb). The rest indicates the value of the hyperparameter

“max features”. For examples, “gb mf 01” corresponds to a Gradient Boosting algorithm with “max features” = 0.1, while

“rf mf 10” corresponds to a Random Forest algorithm with “max features” = 1.0. The scores shown on the y-axis depend

on the metric used in the dataset, in this case, are AUC (Area Under the ROC Curve) scores. T and t0 are measured in seconds.

developing and testing their methods. The points on each

synthetic learning curve are sampled from a sigmoid function

parameterized by three parameters a, b and c as follows:

lc(x) =
a

1 + e−b(x−c)
(1)

Using parameterized sigmoid functions gives us abilities

to experiment with learning curves of various shapes, by

changing their asymptotic performance (determined by a),

increasing rate (determined by b), and “warm-up” time (deter-

mined by c). Values of a, b, and c were generated from matrix

factorizations. The purpose of using matrix factorization is

to obtain matrices with some underlying structures indicating

that some particular groups of algorithms work well on some

groups of datasets. More details of this meta-dataset can be

found in [25].

III. CHALLENGE PROTOCOL

A. Challenge phases

We devised a novel two-phase challenge protocol, using

both validation and test learning curves to avoid overfitting

test data, and k-fold meta-cross-validation to reduce variance

in the evaluation:

• Development phase: participants submit agents (meta-

learners) that will be meta-trained and meta-tested on the

validation learning curves (see Figure 3).

• Final test phase: no further submissions are made in

this phase. The last submitted agent of each participant in

the Development phase is forwarded automatically to this

phase. It is evaluated on the test learning curves, using

the agent’s prescriptions made with only the knowledge

of partially revealed validation learning curves, following

its policy (see Figure 5).

In each phase, the meta-dataset is split using the k-folds

meta-cross-validation procedure, with k=6 (as illustrated in

Figure 4). More precisely, in each iteration (split), 25 datasets

are used for meta-training the agent and the rest (5 datasets)

is used for meta-testing. The final results are averaged over

the test folds.

Fig. 4: K-folds meta-cross-validation, with k=6.

3
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Fig. 3: Development phase. The submitted agent interacts back and forth with the environment to reveal validation learning

curves progressively. The agents’ learning curve is constructed based on the revealed validation learning curves.

B. Meta-training

During meta-training, 25 meta-training datasets are passed

to the meta train() function implemented in a partici-

pant’s agent, including validation learning curves, test learning

curves, meta-features of datasets, and hyperparameters of

algorithms, for each dataset. The agent is free to learn from

these data in any possible way.

C. Meta-testing

During meta-testing, an agent is presented with one dataset

at a time. To avoid further meta-learning, the agent is reset to

its original state after the meta-training phase, at the beginning

of each test task. The agent then iteratively interacts with its

“environment” (that can supply it with learning curves and

meta-features of datasets and algorithms) in a Reinforcement

Learning fashion (see Figure 5). In each step, the agent has

2 types of actions: suggesting to reveal a new value of a

given algorithm’s validation learning curve and choosing the

current best performing algorithm. Then, the agent observes

the learning curve point revealed to decide its next action. The

agent’s own validation and test learning curves are built from

the agent’s choice of best algorithms at each time step.

D. Agent-environment interface

We supplied sample code abiding with an interface that

allows RL-style interactions between the agent and the en-

vironment (as demonstrated in Figure 3 and Figure 5).

First, an agent must implement its own meta-training pro-

cedure in the meta train() function, using the provided meta-

training data:

trained agent = agent.meta train(validation learning curves,

test learning curves, dataset meta features,

algorithm hyperparameters)

Then, the trained agent starts interacting with the environ-

ment by suggesting actions and observing feedback from the

environment:

action = trained agent.suggest(observation)

observation, done = env.reveal(action)

where:

observation (state): includes the information of:

• A: index of the algorithm explored in the previous step

• C A: a counter that keeps track of the amount of time

has been spent for algorithm A
• R validation C A: the validation score of algorithm A

achieved with respect to C A

action: consists of three elements:

• A∗: index of the most promising partially trained algo-

rithm that the agent found so far (for constructing the

agents’ learning curve)

• A: index of the algorithm to be explored next (for

revealing the next point on its validation learning curve)

• ∆t: amount of time to be spent for training algorithm A
in this step

done: indicates whether the current episode is ended (i.e.

when the agent exceeds the time budget T given for the dataset

at hand). In each episode, the agent is meta-tested on one

dataset at a time (corresponding to one row in Figure 4).

IV. CHALLENGE EVALUATION & METRICS

A. Evaluation

In this challenge, an agent is evaluated by accumulated

rewards obtained on meta-testing datasets. The reward is

given based on the Area under the agents’ Learning Curve

(ALC), which is computed from validation learning curves or

test learning curves, depending on the challenge phase. The

4
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Fig. 5: Final test phase. The interaction between the agent and the environment is similar to the Development phase. However,

the agents’ learning curve is computed from test learning curves which are hidden from the agent.

computation of the ALC is explained in Section IV-B. Having

separate validation sets and test sets of learning curves is novel

in our protocol and is not common in usual Reinforcement

Learning (RL) settings. RL agents are usually evaluated in

the same environment where they are trained, which may

lead to environment overfitting [35] and poor generalization

[13]. Hence, our challenge protocol is designed to avoid these

potential problems.

In the Development phase, the agents’ learning curve is

established from the results of the most promising algorithm

chosen by the agent at each time step, using the validation

scores (see Figure 3). The final score used for ranking on the

leaderboard is the average accumulated reward obtained on the

meta-testing datasets.

The protocol is similar in the Final test phase, except that,

the agents’ learning curve is built from test learning curves

which are hidden during the Development phase to avoid

overfitting the test data (see Figure 5). The predictions of

which algorithm should perform best at each time step are

used to compute the test learning curves on which they are

evaluated.

B. Metrics

We are interested in agents with high “any-time learning”

capacities, which means the ability to perform well if they

were to be interrupted at any point in time. Hence, the agent

is evaluated by the accumulated reward, which is equal to the

ALC. This puts more emphasis on performance improvements

at the beginning of an episode, taking inspiration from [19],

[20]. The computation of the ALC is shown in Figure 6). The

reward in each step is thus defined by:

r(t) = [R∗(t)−R∗(t−∆t)] [(T − t)] (2)

Fig. 6: Computation of the Area under the Learning Curve

(ALC). It is carried out by integrating the learning curve using

horizontal rectangles, in the style of Lebesgue integrals.

where R∗(t) and R∗(t−∆t) are the best algorithm perfor-

mances achieved in this step and the previous step respectively:

R∗(t) = max
k≤t

R(k) , (3)

R∗(0) = 0 , (4)

The x-axis is scaled logarithmically to stress more on the

beginning performance, which makes the reward function

become:

r(t) = [R∗(t)−R∗(t−∆t)] [(1− t̃)] (5)

with the normalized time:

t̃ =
log(1 + t/t0)

log(1 + T /t0)
(6)

The larger t0 is, the more important the beginning of the

learning curve is. In our challenge, t0 is set to 60 seconds.

5
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V. BASELINE METHODS AND RESULTS

A. Baseline methods

We implemented and tested various methods with sim-

ple to sophisticated exploration-exploitation strategies on

our challenge, including: uniform-distribution-based (Ran-

dom Search agent), sampling-based (Best on Samples agent),

heuristic-based (Freeze-Thaw Bayesian Optimization agent),

exploitation-only (Average Rank agent), RL-based (Double

Deep Q-Network agent). We describe each of them in a

subsection below.

1) Random Search: This is a simple baseline that performs

a random search on the algorithm space. It randomly chooses

an algorithm and assigns an arbitrary amount of time for

training and testing the algorithm. As this baseline has a huge

variance, we run it 5 times and report its average performance.

This baseline is implemented only for comparison purposes.

In a realistic setting, one would not average over several runs.

2) Best on Samples: An intuitive way of selecting algo-

rithms for a new task is to try each of them with some samples

first, then, select the algorithm that performed best on the

samples to run on the entire dataset [27]. We adapted it to

make a baseline, by selecting the algorithm that performed

best within a fixed (and small) amount of time tsampling

instead. More specifically, at the beginning of each episode,

it trains every algorithm with the same amount of time

∆t = tsampling (we set tsampling = 0.02× T ). Based on the

observed results, it selects the one that achieved the highest

evaluation score to spend the rest of the given time budget:

∆t = T − (|A| × tsampling), with |A| is the number of

algorithms.

3) Freeze-Thaw Bayesian Optimization [31]: In a meta-

learning setting where a hyperparameter space is available,

one may use the standard Bayesian Optimization to quickly

and efficiently search for good hyper-parameters. Freeze-Thaw

successfully applied Bayesian Optimization to find the best

model among a set of “frozen” models (with different sets of

hyperparameters) that are partially trained. At the beginning, it

tries each algorithm with a small amount of time ∆t to quickly

explore the algorithm performance space (we set ∆t = 0.025×
T ). Then it leverages the partial learning curve information

in a Bayesian Optimization fashion to decide which ones to

“thaw” and resume training it. By doing so, it avoids wasting

too much time on not promising models and focuses on high

potential models. In our experiments, this is the only method

that uses provided algorithm hyperparameter space to perform

its searching strategy. However, it does not learn a policy from

experience.

4) Average Rank: Another simple and natural idea to select

algorithms for a new dataset is based on past algorithm

rankings [1], [4], [17], [18], which motivated us to build an

Average Rank baseline. In meta-training, it constructs a global

average ranking of algorithms from the terminal performance

scores of algorithms on datasets. The rank of each algorithm

Aj is defined by:

global rank(Aj) =

∑Dmeta−train

i=1 rankij
Dmeta−train

(7)

where Dmeta−train is the total number of meta-training

datasets, and rankij is the rank of algorithm Aj on the dataset

Di. In meta-testing, only the algorithm having the highest

global rank is chosen to run on the dataset at hand with the

entire given time budget: ∆t = T . In a real-life scenario,

running this baseline is very time-consuming as it requires

training and testing the whole set of algorithms on all meta-

training datasets to have a complete ranking.

5) Double Deep Q-Network [12]: As the meta-testing

procedure is designed with inspiration from RL, using an RL

method as a baseline is essential. Double Deep Q-Network

(DDQN) is a well-known and easy to be implemented RL

method. We designed a specific environment based on the one

from the meta-testing phase to meta-train this DDQN agent.

During the meta-testing phase, the agent uses its learned policy

to explore and exploit algorithms. For allocating the given time

budget, it keeps track of the amount of time that has been

spent for each algorithm C(A), and doubles it every time it

re-selects the algorithm: ∆t = 2× C(A).

B. Baseline results

We ran baseline methods on our real-world meta-dataset in

the Final test phase and report the detailed results in Table

I. In the Final test phase, an agent is evaluated by its ALC

computed from test learning curves of algorithms on datasets,

hidden from the agent.

The experiments indicate the overall superiority of DDQN

to other baselines, which not only has the highest average ALC

score (0.38), but also reaches the best ALC score on 22 out

of 30 datasets among the baselines. We attribute this superi-

ority to the fact that it leverages meta-learning from learning

curve data of previous tasks. Remarkably, DDQN achieved a

relatively good score on dataset ‘macro’ compared to other

techniques, which failed to select an algorithm returning any

result within the given time budget. Another agent that learns

from experience is the Average Rank agent. However, it learns

a policy that acts identically for all datasets. This exploitation-

only strategy does not work well in our challenge, as Average

Rank obtained an average ALC score of only 0.23.

In contrast, both the Freeze-Thaw agent and the Best on

Samples agent rely only on partially revealed learning curve

information on the dataset at hand, not leveraging prior tasks.

Although both of them achieved almost the same average

ALC scores (0.33 and 0.34 respectively), the latter won more

times than the former. The relatively good performance of

the Best on Samples agent can be explained by the fact that

the algorithm selection policy is based on time-dependent per-

formances of algorithms, which requires tuning the tsampling

hyperparameter.

The Random Search agent is at the bottom of the table

with an extremely low average ALC score of 0.05. This

confirms the need for more elaborate policies to select suitable

6
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algorithms and distribute the time budget for a given dataset,

which is the ultimate goal of our challenge.

C. Summary of the challenge results

We briefly present the results of the top 5 approaches,

with comparisons to our baselines in Table I. Our analysis

of methods employed revealed that it is more effective to

learn policies (with reinforcement learning) than rely on hard-

coded policies. This holds both for choosing algorithms and

spending wisely the time budget, as done by teams MoRiHa

and neptune. In contrast, using pre-defined lists of ∆t, as done

by AIpert and our DDQN baseline, did not yield as good

results. Team MoRiHa, which finished in 1st place, achieved

the highest average ALC score of 0.43 and the best score on

21 out of 30 datasets. More in-depth analyses will be made

available in our technical report 4.

VI. CONCLUSION

We present the design of the first challenge on meta-learning

from learning curves. The challenge protocol is implemented

based on the common RL paradigm in which a meta-learner

iteratively selects an algorithm to be “trained” and reveals

more information on the chosen algorithms’ learning curve.

To encourage participants to develop meta-learners with high

“any-time learning” capacities, we use the ALC metric to

evaluate and rank the meta-learners. Our initial baseline results

indicate that DDQN, an RL method that can meta-learn from

previously seen learning curves, has advantages over other

baseline methods. We compared against simpler baselines that

either did not rely on past experience (no meta-learning), but

used the performance of all algorithms on a sub-sample of the

dataset at hand to make their choice (Best on samples) and

methods that did rely on past experience but indiscriminately

of datasets (Average Rank). Since neither performed well,

we can see that the advantage of DDQN is to learn smart

policies from past experience including tactics that are specific

to given algorithms. The effectiveness of this strategy has been

further confirmed by the results of the top-ranked teams in our

challenge.

We are preparing of more in-depth analysis of this chal-

lenge, which we will make available shortly on our website

https://metalearning.chalearn.org/. From the lessons learned

from this challenge, we prepared a second round (in conjunc-

tion with AutoML-Conf 2022), currently on-going as of the

publication of this paper. It includes larger meta-datasets and

some modifications of the challenge protocol suggested by

participants. After the second round terminates, we intend to

prepare a more complete analysis, including ablation studies to

uncover the critical ingredients of the most successful agents.
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