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Abstract
Recently, a general analytical formula to extract all the Rotation Invariant Features (RIFs)
of the diffusion Magnetic Resonance Imaging (dMRI) signal was proposed. The features
extracted using this formula represent a generalisation of the usual second degree RIFs such
as the mean diffusivity. In this work, we study the usefulness of all the 12 algebraically
independent RIFs extracted from 4th degree spherical harmonics that model the dMRI
signal per voxel in the context of Alzheimer Disease (AD) identification. To do so, and
since we are working with imbalanced data sets, we first introduce a non-linear metric to
evaluate the performance of the models, the (B-score). This proposed metric allows high
score only when both classes are distinguished correctly. We use the proposed metric in
conjunction with a deep Convolutional Neural Network that operates on subject slices to
identify if a subject has AD or not. We find that micro-structure information communi-
cated by RIFs is indeed useful to AD identification and that not all RIFs are equivalently
useful. We also identify the two best RIF combinations for the ADNI - SIEMENS and
the ADNI - GE medical data sets respectively. The combination of these RIFs achieves
a classification B-score of 73.62% and 72.31% on the previous data sets respectively. We
note the importance of combining high degree RIFs with low degree ones to improve the
classification performance.
Keywords: Convolutional neural network, imbalanced data set evaluation metric, dMRI,
Rotation invariant features.

1. Introduction

Alzheimer’s disease (AD) is one of the incurable neuro-degenerative diseases. It consists
of dying neurons in the brain which manifests as dementia and it is observed on Magnetic

∗ Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initia-
tive(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the
design and implementation of ADNI and/or provided data but did not participate in analysis or writing
of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Resonance Images (MRI) as a shrinking of the size of the white and gray matter and an
increase in the size of the Cortico-Spinal Fluid (CSF) of the ventricles (Jones, 2012). It
is difficult to get an early diagnosis of this illness via only visual interpretation of MRI.
As a consequence, many deep learning approaches have been proposed such as those of
Khan et al. (2019); Chitradevi and Prabha (2020); Ding et al. (2019); Suh et al. (2020);
Loddo et al. (2022). All of these methods use MRI scans to identify AD as it is the only
clinically used mean. Thus, when working with medical data the problem of imbalanced
data sets always arises. This is because the prevalence of diseases is low compared to
healthy patients. To resolve this problem, previous works rely on data augmentation in
order to increase the variability and the number of data points in each class so as to have
the same number of data points or manually make sure the data sets are balanced. Then,
they fine-tune on slices of MRI scans a deep learning model such as Visual Geometry Group
(VGG) model Simonyan and Zisserman (2014), Inception V3 model Szegedy et al. (2015),
AlexNet Krizhevsky et al. (2012), Resnet-101 He et al. (2015) or Inception Resnet V2
Szegedy et al. (2016). Khan et al. (2019) rely on intelligent slice selection to pick-out the
most informative slices. Other methods such as Loddo et al. (2022) use ensemble learning
methods to improve the classification performance. When using MRI data the previous
works achieve very high classification performances (≥ 90% accuracy). This is because
MRI scans reflect the anatomical structure of the brain and models can see the shrinking
of the brain’s white and gray matter as well as the increase in the CSF volume.

In this work, we investigate the brain’s white matter changes associated with AD. To
this end, the use diffusion MRI (dMRI) data while avoiding anatomical clues by registering
all subject scans to the same space. Few studies have investigated the use of dMRI to tackle
the task of AD identification, with the exception of the work of Aderghal et al. (2018). The
use of dMRI data instead of anatomical MRI is of interest because it provides information
on the brain’s micro-structure which can be used to infer the brain’s white and gray matter
changes (Jones, 2012).

In Aderghal et al. (2018) the authors propose to pre-train a neural network to classify
on slices of structural Magnetic Resonance Imaging (sMRI) data. Then, fine-tune the
model’s weights on slices of Mean Diffusivity (MD). The MD slices correspond to the average
water molecules diffusivity per voxel and are recovered from dMRI data using the DTI
acquisition scheme (Jones, 2012). Thus, the authors only use a 28×28 patch that contains
the hippocampal region and only consider the MD which may not be the optimal measure
of changes in the brain’s micro-structure. The reported classification accuracy obtained
using this method on the ADNI data set is 92.5%. Furthermore, the work of Aderghal et al.
(2018) uses as input sMRI and MD slices that are registered using linear registration to the
Montreal Neurological Institute space. This type of registration deals with translation and
rotation transformations which preserve the anatomical shape of the brain. Consequently
the anatomical clues of AD are still present in the data.

In this work, we rely on all the 12 algebraically independent Rotation Invariant Fea-
tures (RIFs) extracted from 4th degree Spherical Harmonics that model the dMRI signal
(Zucchelli et al., 2020) to quantify white matter changes associated AD. RIFs capture the
form of the diffusion signal per voxel while avoiding its different rotations and they have
been shown to be linked to the local brain micro-structure in Zucchelli et al. (2020). Also,
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RIFs can be seen a form of dimensionality reduction on the space of the acquired diffusion
signal. This is of particular interest in our work where we do not have a lot of subjects.

Indeed, in this work we answer the following 4 questions :

1. How can we evaluate a model on an imbalanced data set while enforcing greater
balance between the classes?

2. Is the RIFs’ micro-structure information helpful for AD identification?

3. Are there RIFs that are more important than others?

4. Does the combination of the best RIFs improve the classification performance?

Firstly, to answer first question, we propose a metric that is fair in the context of
imbalanced data sets and helps to fairly measure the models’ performances. Since most
medical imaging data sets are imbalanced in favor of healthy subjects because the prevalence
of the majority of diseases is low, the use of the accuracy metric does not provide much
information on the performance of the models where if a model classifies every data point
in the majority class the accuracy will be high even though the model did not learn any
decision boundary. Previous works report the true positive and the true negative rates,
thus it is difficult to keep track of the balance of both metrics. The balanced accuracy
metric regroups both rates in a simple linear formula. Thus due to it’s linearity it does not
perform well and the scores it provides can be interpreted in different ways. Consequently,
we propose the B-score, a non-linear metric that combines the true and false positive rates
and can be generalised to a multi class setting using the fractions of correctly classified data
points w.r.t. the number of data points in that class. Secondly, To answer the second and
third questions, we use each one of the RIFs as input to the proposed deep neural network
to do subject classification into AD or NC. Finally, we experiment with combining the best
RIFs of each data set to answer question four.

Subsequently, we summarise our contributions in this work as follow :

• The B-score : a fair and intuitive metric to evaluate models on imbalanced data sets.

• A deep learning model that operated on slices of RIFs to circumvents the problem of
over-fitting and achieves a classification performance of 73.62% B-score on the ADNI
- SIEMENS data set using the RIF combination R22

⊕
R2444 and 72.31% B-score on

the ADNI - GE medical data set using the RIF combination R44
⊕
R2224

⊕
R2244.

• A study of the importance of each RIF and the combination of the best RIFs for the
task of AD identification on multiple scanners.

2. Background/Theory

2.1. Diffusion MRI signal as a spherical function

Consider a set of dMRI signals acquired in a voxel using multiple gradient directions at
the same b-value (HARDI acquisition scheme (Descoteaux, 2008)). The signal can be ap-
proximated using spherical harmonics (SH) of maximum degree D. The signal can then be
interpolated in any gradient direction using:
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f(θ, φ) =
D∑

l=0, even

l∑
m=−l

cm
l Y

m
l (θ, φ) (1)

where θ and φ are the azimuth and inclination angles respectively. These angles represent
a position on a unitary sphere in spherical coordinates. Y m

l (·) are the real SH given by

Y m
l =


√

2 ·Re(y|m|l ), if m > 0
Re(y0

l ), if m = 0√
2 · Img(y|m|l ) if m < 0

where

ym
l (θ, φ) = im+|m|

√
(2l + 1)(l − |m|)!

4π(l + |m|)! P
|m|
l (cos θ). exp(imφ).

cm
l are the scalar coefficients of SH that are estimated from the acquired data, l and m
represent the degree and order of the spherical function respectively. Only real SH are
used because the diffusion signal is real so their is no need to use the complex form of the
SH basis. Also, since the diffusion signal is antipodaly symmetric, only even degree SH
are considered.

2.2. Rotation Invariant Features

Using Equation (1) multiple Rotation Invariant Features (RIFs) can be extracted. A simple
example of RIFs is the mean of the values on the sphere. The formula

Rl1,··· ,ld =
l1∑

m1=−l1

· · ·
ld∑

md=−ld

cl1m1 · · · cldmd
G(l1,m1| · · · |ld,md) (2)

∀li ∈ N s.t. l mod 2 ≡ 0.

developed by Zucchelli et al. (2020) can be used to find the set of all RIFs up to a max-
imum degree d, where G(·) represent the Gaunt coefficients, climi

are the coefficient from
Equation (1) linked to the degree li and order mi. In the same work, Zucchelli et al. (2020)
identified the set of all algebraically independent RIFs up to degree d = 4 which amounts
to 12 RIFs and they show that these RIFs are directly linked to the underlying local brain
micro-structure.

3. Data and Method

This works adopt a deep learning approach where a Convolutional Neural Network (CNN)
is trained on the extracted and normalised RIFs to identify if a patient has the Alzheimer
Disease (AD) or has a Normal brain Connectivity (NC). To do so, we start from raw dMRI
data that needs to be preprocessed beforehand including the RIF extraction and slicing
steps. Finally, we train a CNN model to classify patients into AD or NC. An overview of
the proposed pipeline is illustrated in Figure 4 of Appendix D.
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3.1. Data set

The data is obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), diffusion magnetic resonance imaging
(dMRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). The data was acquired with different
scanners such as GE medical and SIEMENS. Since the RIFs are extracted from dMRI
data, we use the corresponding data sets and make the distinction between scans acquired
using the SIEMENS scanner and the ones acquired using the GE medical scanner. This is
because different manufacturers have different specifications. The number of available scans
is reported in Table 1.

Table 1: Number of scans in the ADNI dataset by scanner type.

Scanner Before preprocessing After preprocessing
#AD scans #NC scans #AD scans #NC scans

SIEMENS 51 378 46 352
GE medical 194 427 191 419

For the SIEMENS scanner the scans are given in the form of 55 volumes per subject,
seven of them were acquired at a b-value of 0 and the rest at b-value 1000. As for the GE
medical scanner, we have 46 volumes per subject, five of them were acquired at a b-value of
0 and the rest at b-value 1000. All the scans have been preprocessed and sliced according
to the steps described in Appendix A and Appendix B.

3.2. B-score

From Table 1 it can be seen that, regardless of the scanner, we have an imbalanced data set
in favor of the NC class. As a result, in order to evaluate the proposed model, we propose
to use the B-score metric that we define as

B-score = n×
∏n

i=0 frac_class(i)∑n
i=0 frac_class(i)

. (3)

where n is the number of classes and frac_class(i) is the number of subjects of class i
that are correctly classified divided by the number of subjects of class i. In a two class
classification setting, as is the case in this work, Equation (3) can be expressed as follow :

B-score = 2× frac_class(AD)× frac_class(NC)
frac_class(AD) + frac_class(NC) = 2× TPR× TNR

TPR+ TNR

where TPR and TNR represent the True Positive Rate (sensitivity) and the True Negative
Rate (specificity) respectively.
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Figure 1: B-score’s surface in blue vs
Balanced accuracy’s surface in green.

Combining these the true positive rate and the
true negative rate measures in the B-score metric
quantifies the classification of each class without ne-
glecting the others. Indeed, this metric penalises the
model more than the accuracy and balanced accu-
racy metrics when the classification is very poor in
one class. As a consequence it enforces the balance of
classification correctness for all classes compared to
other metrics (See Figure 1). This can be illustrated
in the extreme case using the data sets employed in
this work and a model that classifies all AD and NC
patients in the NC class. In this case, we would have
TPR = 0 and TNR = 1 resulting in a balanced ac-
curacy of 50%, the accuracy will be 68% and 88%
on the test set of ADNI - SIEMENS and ADNI -
GE medical data sets respectively, thus the B-score
would be 0%. One advantage of the B-score over the F1-score is that it can be generalised
to a multi-class setting. Another is that the F1-score is not symmetric and gives different
results depending on which class is set as the positive one. This can also be observed in the
setting were all data points are classified in one class where we would have an F1-score of
0% in one setting and > 0 in the other.

3.3. Deep learning model

The deep learning model we propose first uses convolutional layers to extract important
information from the slices of a subject in input then aggregates these information into one
vector that is used to take the final decision on the class of the subject.

Figure 2: The proposed deep learning model.

More formally, let {xi}ni=0 be a set of n slices of a subject X obtained using the Fixed
slicing policy and f a Convolutional Neural Network (LeCun et al., 1998) with only convolu-
tional layers. Using f we generate for each slice xi a set of m features maps Fi = {Fi,j}mj=0.
Then, we take the average of each feature map Fi,j over j to get a latent representation
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li ∈ Rm of the slice. This operation is called Global Average Pooling (GAP) (Lin et al.,
2013). Finally, to get a latent representation l of the subject X we take the sum over all li
(see Figure 2). This subject’s latent representation l is fed to a Softmax classification layer
to identify if the subject is of the AD or NC class.

Adopting this approach of global average pooling forces the network f to encode ele-
mentary input features in each feature map so that when we take the mean it represents the
presence or absence of that particular feature. Also, by operating on slices we reduce the
number of the parameters of the model which is a regularisation on the space of solution
thus reducing the risk of over-fitting.

Intuitively, this approach can be seen as : if we have a feature that is present in any of
the subject slices we encode it in the latent representation l. Then, this latent representation
l is fed to a classification layer with two neurons to determine the class of the subject.

The architecture of the network f used in this work is composed of two convolutional
blocks each one is composed of a 2D convolution with filters of size 4× 4 and a stride of 2,
batch normalisation, ReLU activation function then a dropout layer with a 20% probability.
The first and second convolutional layers are composed of 50 and 75 filters respectively.

4. Results

In this section we present the different results of the used classification approach in different
training settings using the B-score. We relegate the implementation details to Appendix C.

4.1. Single RIF performance

When looking at the difference in distribution of the RIFs across the classes as depicted
in Figure 5 of Appendix D, we can see that their distributions can be differentiated as the
distribution of the AD scans is shifted more towards null values which gives darker images.

To classify the subjects’ scans, we rely on the deep learning model detailed in Section
3.3 to learn a decision boundary that best classifies the data as AD or NC based on a
single RIF. Subsequently, we train the proposed model on each RIF independently on both
the ADNI - SIEMENS and the ADNI - GE medical data sets for 50 epochs. We report
the B-score obtained on the test set of each data set in Table 2. We note that all models
converged or have been saved before over-fitting thanks to the check-pointing validation
strategy. We do not include convergence curves due to space constraints.

Table 2: B-score obtained by each RIF extracted from the ADNI - SIEMENS and ADNI -
GE medical data sets. The four best performing RIFs are highlighted in bold.

R0 R22224 R2224 R222 R2244 R224
ADNI - SIEMENS 40.95% 51.28% 42.49% 58.7% 29.18% 0%
ADNI - GE medical 67.69% 64.40% 72.29% 66.61% 69.82% 66.24%

R22 R2444 R244 R4444 R444 R44
ADNI - SIEMENS 61.22% 60% 0% 31.46% 40.63% 15.73%
ADNI - GE medical 67.60% 31.47% 68.26% 66.72% 50.56% 74.28%
From Table 2 it can be seen that some RIFs are more useful than others to the classi-

fication task at hand. For example, in the context of the ADNI - SIEMENS data set, the
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RIF R22 achieves a test B-score of 61.22% whereas the RIF R224 achieves a B-score of 0%
as it classifies every AD scan in the NC class. This emphasises the importance of using
of the B-score metric where it quantifies more clearly the quality of the learned decision
boundary.

Also, we observe a significant leap in performance for most RIFs when going from the
ADNI - SIEMENS to the ADNI - GE medical data set. For example, R44 goes from 15%
B-score to over 70%. Furthermore, we can see that the best RIFs for classification are not
the same across the two tested data sets. Many factors could have this effect notably the
small size and the scarcity of AD scans compared to NC scans in the ADNI - SIEMENS
data set, noise levels in this data set, the fact that different manufacturers have different
hardware specification and acquisition schemes. The study of these factors is relegated to
a future work.

4.2. Multi-RIF performance

In this section, we train the proposed deep learning model for 150 epochs using 4 combina-
tions of the previously best found RIFs of each data set namely R22, R2444, R222, R22224 for
the ADNI - SIEMENS data set and the RIFs R44, R2224, R2244, R244 for the ADNI - GE
medical data set. We start with only the best RIF then add in the second best as another
channel in the input slice image, etc, . . . The obtained test B-scores on both tested data
sets are reported in Table 3.

Table 3: B-score obtained on the ADNI - SIEMENS and ADNI - GE medical data sets by
each RIF combination denoted by the

⊕
symbol. The best performing RIFs combination

on each data set is highlighted in bold.

(a) ADNI - SIEMENS data set.
RIF combination B-score

R22 72.99%
R22

⊕
R2444 73.62%

R22
⊕
R2444

⊕
R222 71.79%

R22
⊕
R2444

⊕
R222

⊕
R22224 71.79%

(b) ADNI - GE medical data set.
RIF combination B-score

R44 69.59%
R44

⊕
R2224 66.24%

R44
⊕
R2224

⊕
R2244 72.31%

R44
⊕
R2224

⊕
R2244

⊕
R244 63.33%

From Table 3 we can identify that there is indeed a specific combination of RIFs that
maximises the performance on each data set. For example, for the ADNI - SIEMENS data
set we get the best test B-score of 73.61% when using the RIFs R22

⊕
R2444 as for the

ADNI - GE medical data set we get the best test B-score of 72.31% when using the RIFs
R44

⊕
R2224

⊕
R2244. Furthermore, it can be noticed that high order RIFs help improve

the classification B-score. On both tested data sets we see that the best model combines
a standard second order RIF be it R22 or R44 with a high order one(s). Thus, the RIFs
combination that maximises the classification B-score of AD vs NC is not the same across
the data sets.

In addition, when comparing Table 2 with Table 3, we see that when we train the
proposed deep learning model for 50 epochs on the RIF R44 of the ADNI - GE medical data
set we get a classification B-score of 74.28% whereas when we train for 150 epochs we get
72.31% B-score. This is due to the adopted model saving strategy where we save a model

8



CNN and dMRI 4th degree rotation invariant features for AD identification

weights that improve the classification performance on the validation set but not necessarily
on the test set since we do not have access to it during the training phase and the chosen
validation set’s distribution in not representative enough of the test set’s distribution.

0 20 40 60 80 100 120 140
Epochs

100

101

102

Lo
ss

train loss
valid loss
model saving epoch

(a) ADNI - SIEMENS data set.

0 20 40 60 80 100 120 140
Epochs

100

101

Lo
ss

train loss
valid loss
model saving epoch

(b) ADNI - GE medical data set.

Figure 3: The log-scale evolution of the weighted cross entropy loss for train and validation
of the proposed deep learning model trained on R22

⊕
R2444 for the ADNI - SIEMENS

data set and on R44
⊕

R2224
⊕

R2244 for the ADNI - GE medical data set.

Figure 3 represents the evolution of the training and validation loss of the best models
from Table 3. We can see that these models did not over-fit to the training data sets and the
best weights were saved at the lowest validation B-score point as enforced by the adopted
saving protocol (See Appendix C). From these loss curves we can appreciate that this saving
protocol allowed in the case of the ADNI - GE medical data set to store the weights just
before the validation loss started to increase. As for the ADNI - SIEMENS data set, we
can see that the weights of the model were saved just before the validation loss started to
stabilise which backs the adopted model saving protocol.

5. Discussion and Conclusion

In this work, we studied the effectiveness of the 12 algebraically independent RIFs extracted
from 4th degree spherical harmonics that model the dMRI signal in each voxel in the context
of AD identification which is, to the best of our knowledge, the first work in this direction.
The RIFs can be seen as a dimentionality reduction method on the space of the diffusion
signal that extracts micro-structure information and helps cope with the lack of data. The
closest work to ours is Aderghal et al. (2018) where the authors use dMRI data as MD slices
which correspond to the RIF R0. Thus, in Aderghal et al. (2018) the authors do not use the
full brain scan, with only a low degree RIF: the MD. Also, they rely on the anatomical clues
in the scan since they do not use non-linear registration. Whereas in our work, we try to
gain a deeper understanding of the newly introduced RIFs general formula and high order
RIFs Zucchelli et al. (2020) through data that is non-linearly registered to the same space to
avoid anatomical clues and a simple CNN based pipeline that is trained using the weighted
cross-entropy loss to take into consideration the fact the we are working with imbalanced
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data sets. Also, we propose a novel metric to accurately asses the classification performance
and reduce the impact of the imbalanced data set (Q1 of the introduction). Furthermore, we
observe that RIFs contain micro-structure information that can be harnessed in the context
of AD identification (Q2 of the introduction). Also, not all RIFs are important to the task
of AD identification and there exists a combination of RIFs that maximises the classification
performance. In addition, high order RIFs are very useful and contain information that is
important to maximise the classification performance (Q3 and Q4 of the introduction).

A future extension to this work may include increasing the size of the data sets via
Variational Auto-Encoder with a learned Riemannian latent space manifold as in Chadebec
et al. (2021). Additionally, since in this work we avoided using anatomical clues in order
to quantify the informativeness of the RIF, a future work could combine both approaches
to maximize the classification performance which we can see that there is still room for
improvement when using the B-score metric.

In conclusion, this work proves the usefulness of micro-structure information communi-
cated by RIFs in the context of AD identification especially the high degree ones. Also, we
propose a metric that quantifies the learned decision boundary more fairly and accurately.
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Appendix A. Preprossessing

Since we are starting from raw dMRI data, a preprocessing phase is mandatory. In this
phase, we follow the following steps :

1. Denoising to remove of some of the Racian noise present inherently in all dMRI data
(Done using the MRtrix library (Tournier et al., 2019)).

2. Distortion correction to correct of distortions in the scans that may emerge from
patients’ movements (Done using the MRtrix library (Tournier et al., 2019)).

3. Rotation Invariant Features extraction to extract in each voxel all 12 alge-
braically independent RIFs calculated from 4th degree Spherical Harmonics that
model the dMRI signal (Done using the dmipy library (Fick et al., 2019) which con-
trains the code from Zucchelli et al. (2020)).

4. Registration to remove anatomical clues and focus on the RIFs values in each voxel.
It consists of casting all the scans onto one reference RIFs scan of a NC patient using
a linear and non-linear transformations (Done using the FSL library (Jenkinson et al.,
2012)).

After these steps, for each scan we obtain 12 corresponding 3D matrices each one rep-
resents one of the 12 RIFs. Note that not all scans passed the preprocessing step and the
number of usable scans is reported in Table 1.

Also, we remove the outliers and normalise the values of each RIF 3D matrix of each
subject. This is done my clipping the values in areas that constitute the brain into a suitable
range specific to each RIF. Then, the values are normalised in the [0-1] range (Values outside
the brain are set to 0).

Appendix B. Fixed Slicing

Due to the scarcity of dMRI scans compared to classical computer vision benchmark data
sets, we cannot use each 4D matrix as a single data point in training a deep learning model
that uses 3D convolutions as it will have too many parameters to learn. To solve this
problem we resort to slicing the 4D RIF scans into 3D ones along the spatial directions,
apply 2D convolutions on them, then regroup the resulting latent space (See Section 3.3).
To this end, we take slices in the 2 main directions (Axial, Coronal) which results in a 3D
matrix where the RIFs represent the channels 1. As a slicing policy we opt for the fixed
slicing. This policy consists of taking the same set of continuous slices in a predefined range
regardless of the training epoch. We take all the brain slices that contain a reasonable
amount of information then let the model decide which information to take/encode.

1. We have tried using the sagittal slices but they didn’t improve the classification performance and nor
allowed us to employ a big enough batch size.
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Appendix C. Implementation details

C.1. Cross data set parameters and data set split

Building and training the deep learning model proposed in this work is done using the
Pytorch library (Paszke et al., 2019). As for the optimisation part, it is done using the Adam
optimisation algorithm (Kingma and Ba, 2014) with a learning rate of 2× 10−6, β1 = 0.9,
β2 = 0.999 and a weight decay of 10−5. To split the data set into train, validation and test,
we noticed that in the ADNI - SIEMENS data set the AD scans represent about 12% of
the data set and in the ADNI - GE medical they represent around 32%. Consequently, we
preserve this ratios in the train, validation and test splits of each data set. The data set
partitioning we use is reported in Table 4.

Following the splits in Table 4, we have 62.5%, 13.5% and 24% of the data sets that is
used for training, validation and testing respectively.

Table 4: ADNI data sets splits.

ADNI - SIEMENS ADNI - GE medical
Train Validation Test Non used Train Validation Test Non used

AD 30 6 10 0 119 26 46 0
NC 200 46 76 30 262 54 100 3

C.2. Scans’ size adjustments

For each data set we make sure that the voxels are isotropic. For the ADNI - GE medical
data set we omit the first 50 and last 56 dimensions of the scans on the second and third
axis because they do not contain any brain information. Then, we pad the volumes with
zeros so as to have cubes (except for the dimension of the RIFs). Finally, we interpolate
the output of the padding operation to the size 12× 224× 224× 224.

C.3. Loss function

Since the training, validation and testing sets are imbalanced, to train the deep learning
models we use the Weighted Cross Entropy loss (WCE) expressed as

LWCE =
∑
i,j

βi · yi,j · log(ŷi,j)

where βi is a scaler that represents the weight of the data point i, yi is a one hot vector
encoding the ground truth label and ŷi is a vector representing the probability distribution
predicted by the network for the input i over all the classes. The weight βi is a hyper
parameter that is set according to the proportion of the class yi in the training set w.r.t the
other classes so that all classes have the same number of training instances when scaled by
βi. In our case, we set it as

βi =


1 if i is NC
200
30 ≈ 6.67 if i is of the ADNI - SIEMENS data set and is AD
262
119 ≈ 2.2 if i is of the ADNI - GE medical data set and is AD
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To test the trained models, we adopt a check-pointing strategy. In this strategy, and
after 5 warm up epoch, we save the model’s weights each time we improve the validation
B-score. Then, for the testing phase, we load the latest saved model and evaluate it on the
test set. Consequently, in case of over-fitting, this approach allows us to use the weights of
the best learned model according to the validation set.

Appendix D. Additional Figures

Figure 4: An overview of the proposed pipeline.

(a) AD vs NC for R0. (b) AD vs NC for R222.

Figure 5: Distribution difference for the RIFs R0 and R222 between the first 20 AD patients
and the first 20 NC patient in the ADNI - SIEMENS data set.
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