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We studied experimentally and numerically the effect of an imposed gas pressure on
the discharge flow of granular media from a cylindrical silo. This study is motivated by a
nuclear safety related phenomenology of fuel fragments displaced from a fuel rod under
several accidental conditions, the flow being potentially driven by pressurized fission gases
within the rod. We imposed a moderate constant air pressure at the top of the granular
column (≈3000 Pa) and we varied the size and type of the particles and the surrounding
fluid where the discharge occurs, using air and water to test the role of the coolant fluid in
the nuclear safety problem. The measured parameters are the particle mass flow rate, the
volumetric flow rate of air, and the pressure along the silo. The particle and air flow rates are
found to be nonsteady and to increase with time. To model these behaviors, we use a two-
phase continuum model with a frictional rheology to describe particle-particle interactions,
and we propose a simple quasisteady analytical model considering the air-pressure gradient
at the orifice as an additional driving force to the gravity. We implemented numerically
the two-phase continuum model in an axisymmetric configuration which reproduces the
experimental results.

DOI: 10.1103/PhysRevFluids.7.064306

I. INTRODUCTION

The discharge flow of granular media from a silo is of practical interest in many industrial
processes. Since the pioneer work of Hagen in 1852 [1] (translated in [2]), it is well known that
the discharge flow of granular media from a silo is constant and depends mainly on the outlet
dimensions, independently of the quantity of material in the silo. To predict this behavior, Hagen
introduced the concept of a free fall arch at the outlet. By dimensional analysis, this arch scales
with the outlet diameter D giving a velocity at the outlet of v0 ∝ √

gD and a flow rate Q ∝
√

gD5.
Even though this scaling reproduces well the experimental observations, it does not give a detailed
understanding of the physical processes at plays in silo discharge. For example, Rubio-Largo et al.
[3] have shown experimentally and using discrete simulations that instead of a free fall zone, an
accelerating zone develops at the outlet scaling with the outlet diameter. Recently in the framework
of a continuum modeling for the granular flows, it has been shown thanks to numerical simulation
[4–8] that the shear-dependent frictional rheology μ(I ) [9–11] reproduces qualitatively the granular
discharge from a silo. In particular, the scaling of the flow rate is recovered. These studies suggest
that close to the outlet, inertia dominates the flow and the frictional dissipation becomes negligible,
in agreement with the scaling of the free fall arch concept. To take into account the small dependence
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of the flow rate on the particle diameter, dp, Hagen [1] and Beverloo et al. [12] noted that the particles
at the border of the outlet would partially lose their velocities and disrupt their neighbors, suggesting
to use a reduce outlet diameter (D − kdp), where k is a fitting parameter. This leads to the simplest
and widely used empirical expressions for a flat-bottomed silo, known as the Hagen-Beverloo
relation. However, a recent work by Janda et al. [13], based on experimental measurements, suggests
a different explanation. They have shown that the granular media tend to dilate at the outlet to
maintain the discharge flow rate. The particle volume fraction at the outlet then depends on the ratio
D/dp, whereas the velocity still follows the previous scaling law.

Thus, for gravity driven flows of a given granular media, the outlet diameter appears as
the only variable to control the flow rate in industrial situations. An existing method to
overcome this situation and increase the discharge flow rate consists in pressurising the air in
the silo, the subsequent relative motion of the interstitial fluid then blowing the material out of
the silo [14]. The effect of interstitial pressure gradients on the discharge of granular materials
has been studied in several geometrical configurations [14–20]. To model the grain-fluid coupling,
most of the authors considered that the air pressure gradient acts as a driving force in addition to
gravity. This gradient can be estimated thanks to classical models for flow through porous media.
Recently, Zhou et al. [20] proposed to use a two-phase continuum model using the shear-dependent
frictional rheology μ(I ) for the particulate phase and the Darcy-Forchheimer resistance law for the
drag force between the two phases [21]. They have shown that this model reproduces qualitatively
the experimental results for a steady flow where a constant flow rate of air is injected at the top of
a silo. This continuum model also validated an analytical model, where the driving fluid pressure
gradient in addition to gravity corresponds to a mean gradient over a circular zone of size D/2 above
the orifice where the particles accelerate.

However, few studies have been devoted to nonsteady discharge flow from silo driven by a
pressurized gas. In particular, this configuration is relevant for the nuclear safety related issue. In
the reactor pressure vessel of a pressurized water reactor of a nuclear power plant, the nuclear
fuel is confined within fuel rods that are elongated cylinders (4 m long and 1 cm diam). This fuel
initially consists of stack of 1-cm-long pellets, which are then fragmented into smaller pieces due
to irradiation. The smallest fragments measure around tens of micron in the rim region. During a
hypothetical reactivity initiated accident, the fuel and the rod are stressed due to a rapid and intense
power peak. Some initially defected rods may then fail. Due to internal stresses and the potential
presence of pressurized fission gases within the rod, fuel can be ejected toward surrounding water
flow. Because the fuel fragments are at high temperature due to the power pulse, their interaction
with the water could then induce a violent pressurization and vaporization, potentially hindering
surrounding structures. The intensity of this interaction is strongly connected to the flow rate of fuel
fragments out of the rod. Therefore, it is of interest to understand how this flow rate scales with
the main parameters of the problem, such as failure opening, fragment sizes, and gas overpressure
with respect to surrounding water. Due to the finite initial amount of gas within the rod, the gas
flow will necessarily be unsteady. The experimental device somewhat simulates the situation using
some idealizations of the process, namely the silo being the fuel rod, the granular media being the
fuel, and the pressurized air being the fission gases. The impact of the surrounding fluid is also
considered by immersing the silo in water.

The main objective of the present study is to investigate experimentally, analytically, and
numerically how an imposed gas pressure at the top of a silo influences the discharge flow of
granular media. One interesting feature of this configuration is that the particle and air flows
are nonstationary, as can be seen in industrial situations. For experiments we mainly used model
granular media composed of glass beads of uniform diameter, but we also used sand particles,
having a more angular shape and a bidisperse mixture to test more realistic media. We studied the
role of the surrounding fluid by discharging the silo mainly in air but also in water.

The article is organized as follows. In Sec. II, we present the experimental setup and the
experimental observations. Then following previous authors [14–18,20], we develop in Sec. III a
quasisteady analytical model to describe the observed behaviors. Finally in Sec. IV, thanks to a
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FIG. 1. (a) Experimental setup displaying the system of air injection with a constant pressure.
(b) Schematic view of the experimental setup for studying the discharge of a silo immersed in water. The
pressure taps are labeled Pi with the corresponding elevation with respect to the bottom given in brackets.

numerical simulation, we address the ability of the continuum model developed in [20] to reproduce
the experimental results in an axisymmetric configuration.

II. EXPERIMENTAL OBSERVATIONS

A. Experimental setup

The experimental setup is illustrated in Fig. 1(a) for a discharge in air displaying the system of
air injection, and in Fig. 1(b) for a discharge in water.

We use cylindrical silos of height H = 0.5 m and internal diameter L = [20; 40; 60] mm. They
are dismountable and composed of three parts: a top plug that can be removed in order to pour the
particles into the silo, a main part in perspex with a thickness of 5 mm, and a changeable bottom
plug with a circular outlet of diameter D = [10; 20] mm located at its center. An o-ring seal is added
to the bottom plug to ensure the tightness of the silo.

The silo is initially filled from the top with a total mass mt of granular media, keeping the
aperture closed. Three types of granular media are used: smooth spherical glass particles of mass
density ρp = 2500 kg m−3 (provided by Potter & Ballotini), smooth spherical ceramic particles of
mass density ρp = 6000 kg m−3 (provided by SiLibeads), and sand particles, having a more angular
shape, of mass density ρp = 2500 kg m−3 (provided by Sibelco). All the particles are sieved, and
the mean size value is given in Table I, the dispersion in size being of ±10%. We also studied
the silo discharge for a bidisperse mixture, blending the same mass of ceramic particles of two
sizes (dp = 180 and 1165 μm). In this case, the column is filled by layers of 200 g, premixed in a
container. Once the silo filled, the initial column height (h0

p) is measured, varying between 32 and
40 cm. We deduce the initial bulk particle volume fraction φb = mt/(ρph0

pSb), where Sb is the area
of the silo cross section. The top of the silo is then closed.

A constant pressure of air (density ρ f = 1.2 kg/m3 and viscosity η f = 1.8 × 10−5 Pa s) over the
granular media during the discharge of the silo is obtained thanks to five latex balloons acting as a
large reservoir of air. This reservoir is connected thanks to a system of valves to the top of the silo
through two holes of diameter 4 mm (see Fig. 1). The balloons are separated into two groups of two
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TABLE I. Performed experiments.

Granular media Mean particle diameter dp (μm)

Glass particles [124; 190; 375; 538; 762; 1129; 1347] μm
Ceramic particles [180; 550; 1165] μm
Sand 864 μm
Bidisperse mixture (ceramic particles) 50% mass of 180 and 1165 μm

and three balloons, respectively, connected through valve 3 that we keep opened during the entire
process, ensuring the homogeneity of the pressure in all the balloons. To inflate the balloons, we
open valve 4, close valves 1 and 2, and inject pressurized air into the balloons until they reach their
maximum diameter of approximately 50 cm corresponding to an overpressure of ≈3000 Pa. Then,
we close valve 4, we open valves 1 and 2, and the outlet is quickly opened manually. During the
silo discharge, the pressurized air stored inside the balloons flows through the granular media. The
total air flow rate is measured thanks to two flow meters (Aalgorg GFM mass flow meter with flow
ranges of 0–5, 0–20, and 0–50 L/min with an accuracy of 1% and a response time of 1 s) located
upstream to the two air inlets at the top of the silo, and it is determined by Qair = Qair1 + Qair2.

Simultaneously, the interstitial air pressure pf along the silo is captured by five pressure sensors
thanks to 3 mm holes drilled at different locations along a vertical axis as shown in Fig. 1. These
holes are closed with a 40 μm mesh, and they are connected by a tube to one end of a differential
piezoelectric pressure sensor, Honeywell DCAL405DN (range ±1245 Pa) or DCAL430DN (range
±7472 Pa), the other end being at the room pressure. The pressure signal is recorded during each run
with an accuracy of ±0.25% and a frequency of 100 Hz. The air pressure above the granular column
is given by the sensor P1, as can be seen in Fig. 1. For all experiments we observe a quasiconstant
level during the discharge with a relative variation below 10%.

When the discharge occurs in air, all the particles are collected by a metal vessel weighted by
an electronic balance (Mettler Toledo 6002S) with a precision of 0.1 g at a frequency of 20 Hz.
The instantaneous mass flow rate is obtained by processing the local slope of the mass versus time
during δt = 1 s, Q(t ) = [m(t + δt ) − m(t )]/δt .

To study the discharge in water, the bottom of the silo is immersed in a rectangular water tank
(14 × 35 × 40 cm3) as shown in Fig. 1(b). This tank, made on glass to allow visualization, possesses
a spillway 27.5 cm above the bottom to ensure a constant water level, hw, above the silo bottom. A
camera (GoPro) is placed in front of the silo to film the whole silo zone at an acquisition frequency
of 240 frames per second and a resolution of 480 × 848 pixel2 corresponding to a 60 × 30 cm2

viewing zone of the silo. A rectangular light panel placed behind the silo provides a homogeneous
white light source. A postprocessing of the pictures allows us to track the vertical position (hp) of
the top of the granular column within the silo and to deduce the temporal evolution of the particle
mass ejected through the outlet, m(t ) = (h0

p − hp)ρpφbSb. The discharge flow rate of the granular
media is then obtained as previously with δt = 0.08 s.

Each experiment is repeated at least twice with approximately the same experimental conditions:
a small variation on the imposed initial air pressure level can be observed, as it depends slightly on
the inflation size of the balloons; otherwise the results are fairly reproducible.

B. Typical results

We present in this section the results obtained for a silo of diameter L = 40 mm and an outlet
size D = 10 mm: for those parameter values, we obtain a long discharge period as well as a
good performance for maintaining a constant air pressure, which facilitates the analysis of the
experimental results.
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FIG. 2. Temporal evolution for (a),(c) the air pressure and (b),(d) the pressure gradient along a silo with
L = 40 mm, D = 10 mm for ceramic particles (dp = 180 μm) discharging in (a),(b) air and (c),(d) water with
hw ≈ 50 mm.

Thanks to the five pressure sensors, we measured the temporal evolution of the air pressure
during the discharge. A typical evolution is represented in Fig. 2(a) for a discharge of ceramic
particles (dp = 180 μm) in air. We observe that in this case, the total time of the discharge is around
14 s. The evolution of P1 indicates a quasiconstant pressure level at the top of the silo during the
discharge, with a tiny decrease leading to a relative variation below 10%. The pressures at the other
elevations increase with time due to the decrease of the granular column height, and then they match
with P1 when the air column reaches the sensor position.

From the air pressure, we can deduce an estimation of the pressure gradients in the bulk of
the silo, (∂ pf /∂z) |i j= (Pi − Pj )/(zi − z j ), where i and j correspond to the index of the pressure
sensors as shown in Fig. 1, and near the outlet, (∂ pf /∂z) |0= P5/z5. In Fig. 2(b) we observe that the
pressure gradients in the bulk of the silo obtained with different pairs of sensors are superimposed
while the pressure taps are immersed in the granular media. This suggests a vertical linear variation
of the pressure in the bulk of the silo, corresponding to an incompressible flow. The air pressure
gradient in the bulk of the silo increases more than linearly with time, and then the curves rapidly
drop toward zero when the pressure taps are in the air part of the reservoir. Near the outlet [see the
inset in Fig. 2(b)], the air pressure gradient is also found to increase similarly with time, but it is an
order of magnitude larger than in the bulk of the silo. This is due to the restriction of the flow cross
section at the outlet, which impacts the streamlines upstream on a typical length h1 ≈ D [20].
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FIG. 3. Temporal evolution of (a),(c) the particle mass flow rate and (b),(d) the volumetric flow rate of air
for L = 40 mm, D = 10 mm, and dp = 180 μm (ceramic particles) for a discharge in air (a),(b) and in water
(c),(d). The black lines correspond to the experimental measurements. The blue dotted lines represent the mean
mass flow rate for a discharge in air without air injection, Q0.

For a discharge in water, we observe mainly the same feature for the air pressure evolution [see
Figs. 2(c) and 2(d)]. However, the pressure level inside the column and the pressure gradient near
the outlet, P5 and (∂ pf /∂z) |0= P5/z5, seem to be higher than on the dry case.

We now turn to the particle and air flow rates, as can be seen in Fig. 3 for a discharge in air
or in water while maintaining a constant overpressure at the top of the silo. We observe that both
flow rates increase more than linearly with time. In particular, the granular flow rate is significantly
larger than the value Q0 corresponding to the gravity-driven case. Indeed, during the silo discharge
the height of the granular column decreases, which facilitates the passage of air and, simultaneously,
increases the air pressure gradient through the granular media. As a result, the air flows at higher
velocity, which results in an increasing drag on the particles, and thus an increasing granular flow
rate with time. The oscillations observed on the particle flow rate for a discharge in air [Fig. 3(a)]
are due to the electronic balance response and are not considered in the following (see Appendix A).

To interpret these results, in the next section we will adapt the analytical model developed by
Zhou et al. [20] for a stationary gas-assisted discharge flow of granular media from silos, to the
pressure-imposed configuration.
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FIG. 4. (a) Particle mass flow rate as a function of the volumetric air flow rate for glass particles with
L = 40 mm, D = 10 mm, and a discharge in air. (b) Particle mass flow rate as a function of the particle size
for various instantaneous air flow rate for the same data. The straight line represents Eqs. (1) and (2) with
α = 0.84, β = 0.07. The dashed lines represent the analytical model developed by Zhou et al. [20] for a steady
flow [Eq. (8)].

III. QUASISTEADY ANALYTICAL MODEL

A. Hypothesis of the model and experimental validation

In the previous section, we showed that a pressurized gas at the top of a silo leads to a
nonstationary discharge flow. However, the time evolution of the particle and air flow rates stays
moderate, as can be seen in Fig. 3. Based on this observation, we may assume the flow to be
quasisteady. To test this hypothesis, in Fig. 4(a) we have plotted the particle flow rate versus the
volume flow rate of air for various particle sizes for a discharge in air. For each particle size, we
observe that the granular flow rate increases with the air flow rate similarly to steady flow [20],
where the air flow rate at the top of the silo is constant. From the temporal evolution of the particle
and air flow rate, we can also extract the particle flow rate for a given volume flow rate of air, as
shown in Fig. 4(b) as a function of the particle diameter. The particle flow rate decreases when the
particle size increases. Indeed, for a granular media composed of coarser particles, having a higher
permeability, the air flow resistance is lower, corresponding to a lower driving force applied on
the granular flow. We also plot on this graph the mass flow rate of the discharge driven by gravity
without air injection (×). The data are well adjusted using the expression given by Janda et al. [13]:

Q0 = Cφ0ρp
√

gD5/2, (1)

where g is the gravitational acceleration, ρp is the particle density, and C is a fitting parameter, and
where the volume fraction at the center of the outlet accounts for the particle size dependence:

φ0 = ξφφb
[
1 − αe−β D

dp
]
, (2)

where φb is the bulk volume fraction, and ξφ , α, and β are fitting parameters. We obtained α = 0.82
and β = 0.07, in good agreement with previous work in various configurations [8,13,20,22–24].
However, we observe a small discrepancy between the model and the experiment for the lower
particle size where air countercurrent flow cannot be neglected. Interestingly, in Figs. 4(a) and 4(b)
we observe that, except for the largest flow rate, the data with air injection are well adjusted by
the analytical model developed by Zhou et al. [20] (see the dashed lines), which we outline as
follows. Following [14–18], Zhou et al. [20] model the grain-fluid coupling by considering that the
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air pressure gradient near the orifice acts as a driving force in addition to gravity:

Q = Q0

(
1 + 1

φ0ρpg

∂ pf

∂z
|o
)1/2

, (3)

where Q0 represents the discharge flow rate without gas injection, and ∂ pf /∂z|o is the air pressure
gradient normal to the orifice at the outlet zone. To evaluate this term, Zhou et al. [20] first assume
that the inertial, advective, buoyancy, and viscous stresses terms are negligible with respect to
the drag force in the fluid momentum balance, which simply reduces to the balance between the
fluid pressure gradient and the drag force. Then, they use the Darcy-Forchheimer resistance law to
determine the drag force between air phase and granular media. Finally, they introduce the volume
average velocity of the mixture, Ui = φup

i + (1 − φ)u f
i , and they suppose that the streamlines are

quasivertical both close to the orifice and in the bulk. The local relative velocity between the
mixture and particles at the orifice, vrel|0 = [Uz|0 − up

z |0], can be deduced from a mass balance
across the silo assuming incompressibility:

vrel|0 = Qair − Q/(φ0ρp)

S0
(4)

with S0 the orifice cross section, Qair the air volume flow rate, and Q the particle mass flow rate. The
pressure gradient at the outlet zone then reads

∂ pf

∂z
|0 ≈ η f

κv (φ0, d )
vrel|0 + ρ f d

κi(φ0)
[vrel|0]2, (5)

where the coefficients of the Darcy-Forchheimer law are

κv = (1 − φ)3d2/(150φ2) and κi = (1 − φ)3d2/(1.75φ), (6)

namely the Kozeny-Carman coefficient and the Ergun coefficient. The equations are normalized
using ρpgD as a pressure scale, the outlet size D as a lengthscale, and

√
D/g as a timescale, except

for the flow rate that is made dimensionless using the gravity-driven particle flow rate Q0. The
dimensionless parameters are denoted with a tilde; in particular, Q̃ = Q/Q0 is the dimensionless
particle flow rate, and Q̃air = φ0ρpQair/Q0 is the dimensionless air flow rate. Then, Eq. (3) can be
written

∂ p̃ f

∂ z̃
|0= φ0(Q̃2 − 1). (7)

By identification with Eq. (5), Zhou et al. [20] obtain a quadratic equation whose positive root gives
the particle flow rate for a given air flow rate that reads as follows for a downward air flow:

Q̃ = (−2Ni0Q̃air − Nv0) + √
�

2(1 − Ni0)
with � = N 2

v0 + 4(1 + Nv0Q̃air ) + 4Ni0
(
Q̃2

air − 1
)
, (8)

where we introduced Nv0 = η f Q0/[φ2
0ρ

2
pκv (φ0, d )gS0] and Ni0 = ρ f dpQ2

0/[φ3
0ρ

3
pκi(φ0, d )gS2

0]. The
good agreement in Fig. 4 between the experimental data with air injection and Eq. (8) for most of the
flow rates suggests that this analytical model can be adapted to the pressure-imposed configuration
by considering a quasisteady flow, as is done in the following section.

In Ref. [20], air was injected at a constant flow rate, which imposes a constant pressure gradient
near the orifice. In this study, during the discharge of the silo, the air pressure at the top of the silo is
maintained at a quasiconstant level, which corresponds to a quasiconstant total pressure drop of air
across the silo �pf . For a discharge in air, this pressure drop is simply given by the upper sensor,
�pf = P1, where we use the mean value over the discharge. For a discharge in water, the outlet
pressure, P f

outlet, depends on the water depth above the silo outlet, hw [see Fig. 1(b)]. To quantify
this dependence, we performed experiments with an injection of a steady air flow rate from the silo
top (see Appendix B). We found that the surrounding liquid adds a hydrostatic overpressure at the
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FIG. 5. (a) Experimental pressure gradient near the outlet as a function of [Qair − Q/ρpφbi]/S0 with L =
40 mm and D = 10 mm for various particle sizes dp for monodisperse beads, and for the sand particles and
the bidisperse mixture (see Table I). The dashed lines represent Eq. (5) with the fitting parameter φ0. (b) The
obtained fitting parameter φ0 normalized by the initial bulk volume fraction φbi as a function of aspect ratio
D/dp for various silo diameters L and outlet sizes D for glass particles (circles), ceramics particle (squares),
and for the sand particles and the bidisperse mixture. The black solid line represents Eq. (2) with ξφ = 0.80,
α = 0.84, and β = 0.07.

outlet, P f
outlet = Patm + ρwg(hw + h0), where Patm represents the room air pressure and h0 ≈ 1 cm

seems to correspond to the height of a bubble, observed in our experiments, located beneath the
bottom of the silo during the discharge. The total pressure drop of air across the silo then reads
�pf = P1 − ρwg(hw + h0), where we use the mean value over the discharge.

Based on the experimental observations [see Figs. 2(b) and 2(d)], we separate the granular
column into two zones: the upper zone where the pressure gradient is uniform, and the bottom
zone close to the orifice where it is larger. We then express the total pressure drop of the fluid as

�pf = h1
∂ pf

∂z
(t ) |0 +[hp(t ) − h1]

∂ pf

∂z
(t ) |b, (9)

where hp represents the column height, (∂ pf /∂z) |0 represents the pressure gradient near the outlet
for z < h1, and (∂ pf /∂z) |b represents the pressure gradient in the bulk far from the outlet for z > h1,
which we assume to be uniform along the granular column. The transition between the two zones is
supposed to occur for h1 � D as the jump of the pressure gradient appears at the scale of the outlet
size.

Following [14–18,20], we model the grain-fluid coupling by considering that the air pressure
gradient near the orifice acts as a driving force in addition to gravity [Eq. (3)], where the mass flow
rate of the discharge driven by gravity without air injection, Q0, is given by Eqs. (1) and (2) with
α = 0.82 and β = 0.07 as seen previously.

To evaluate both air pressure gradients, we follow Zhou et al. [20] and we suppose that
we can neglect the inertial, advective, buoyancy, and viscous stress terms with respect to the
drag force as ρ f � ρp, D � d and the Froude number defined on the particle length Frp =
(u f − up)2/gd ≈ Q2

air/(gdD2) � κid−2. Then, as the particulate Reynolds number of air, given by
Rep = ρ f u f dp/η ∼ ρ f Qairdp/(ηS0), varies in a range of 1–800, we also use the Darcy-Forchheimer
resistance law to determine the drag force between air phase and granular media.

As shown by Zhou et al. [20], the pressure gradient at the outlet zone is then given by Eq. (5),
where all the quantities should be considered as instantaneous. To validate this equation, in Fig. 5(a)
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FIG. 6. (a) Experimental pressure gradient in the bulk as a function of [Qair − Q/ρpφbi]/Sb with L = 40 mm
and D = 10 mm for various particle sizes dp for monodisperse beads, and for the sand particles and the
bidisperse mixture (see Table I). The dashed lines represent Eq. (11) with the fitting parameter φb. (b) The
obtained fitting parameter φb normalized by the initial bulk volume fraction φbi as a function of aspect ratio
D/dp for various silo diameters L and outlet sizes D for glass particles (circles), ceramics particle (squares),
and for the sand particles and the bidisperse mixture. The dashed line represents φb = φbi.

we have plotted the experimental pressure gradient at the outlet versus vrel|(0) [using for simplicity
the initial bulk volume fraction in Eq. (4)] for various particle size and granular media with L =
40 mm and D = 10 mm. We observe that the data are fairly well fitted by Eq. (5) using φ0 as an
adjustable parameter obtained using the least-squares method [see the dashed lines in Fig. 5(a)].
To model the permeability of the bidisperse mixture, we use the Sauter diameter d̄p = 1/[Xf /d f

p +
(1 − Xf )/dc

p], where Xf is the mass fraction of fine particles, d f
p is the diameter of fine particles,

and dc
p is the diameter of coarse particles. In Fig. 5(b) we have plotted the particle volume fraction

at the outlet, φ0, obtained as a fitting parameter and normalized by the initial bulk volume fraction,
versus the ratio D/dp for all the granular media and the silo configuration studied. All the data are
superimposed and are well adjusted by Eq. (2) with the same coefficients (α = 0.84, β = 0.07) as
for the gravity-driven experiment and with a fitting coefficient ξφ = 0.80. This suggests that the
dilation that occurs at the outlet due to geometrical constraints is not influenced by the air flow.

Similarly, we evaluate the air pressure gradient in the bulk by first deducing from a mass balance
the local relative velocity between the mixture and particles vrel(t )|b = [Uz(t )|b − up

z (t )|b]:

vrel(t )|b = Qair(t ) − Q(t )/(φbρp)

Sb
, (10)

with Sb the silo cross section, Qair(t ) the instantaneous volume flow rate of air, and Q(t ) the
instantaneous particle mass flow rate. Then the pressure gradient in the bulk reads

∂ pf

∂z
(t )|b ≈ η f

κv (φb, d )
vrel(t )|b + ρ f d

κi(φb)
[vrel(t )|b]2, (11)

where the coefficients of the Darcy-Forchheimer law are given by Eq. (6). To validate Eq. (11), we
have plotted in Fig. 6(a) the experimental pressure gradient in the bulk [using ∂ pf /∂z(t )|45] versus
vrel|b [using, for simplicity, the initial bulk volume fraction in Eq. (10)] for various particle sizes and
granular media with L = 40 mm and D = 10 mm. We observe that the data are fairly well fitted
by Eq. (11) using φb as an adjustable parameter obtained using the least-squares method [see the
dashed lines in Fig. 6(a)]. In Fig. 6(b) we have plotted the obtained bulk particle volume fraction,
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FIG. 7. Flow chart diagram of the numerical solver.

φb, normalized by the initial bulk volume fraction, versus the ratio D/dp for all the granular media
and the silo configuration studied. We obtain that the ratio φb/φbi falls in a range 0.9–1.1, which
justifies that we will now assume for simplicity φb = φbi.

To obtain analytically the evolution of the granular column height hp(t ), and subsequently the
particle flow rate Q(t ) and the air volume flow rate Qair(t ), we first normalize the equations as
described previously for a steady flow. Then Eq. (8) can be rewritten to link the air flow rate to the
particle flow rate:

Q̃air = Q̃ +
√

� − Nv0

2Ni0
with � = 4Ni0Q̃2 − 4Ni0 + N 2

v0. (12)

Note that the discriminant � is strictly positive as Q̃ > 1. Introducing in Eq. (9) the pressure gradient
near the outlet given by Eq. (7) and the pressure gradient in the bulk given by Eq. (11), together with
Eq. (12), we thus obtain an expression linking the particle flow rate with the granular column height:

h̃p = �p̃ f − h̃1φ0(Q̃2 − 1)

Nvbφb

(
φb

φ0

√
�−Nv0
2Ni0

− Q̃
)

+ Nibφb

(
φb

φ0

√
�−Nv0
2Ni0

− Q̃
)2 + h̃1. (13)

Finally, the variation of the granular height h̃p with time is given by the particle velocity far from
the outlet, with the assumed incompressibility reading as

dh̃p

dt̃
= ũp

z |z�0= −Q̃Q0

φbρpSb
√

gD
with the initial condition h̃p(t = 0) = h̃0

p. (14)

B. Numerical solver

To solve this problem, and according to the experimental observation, we suppose that the
particle volume fraction far from the outlet keeps its initial value, φb = φbi, and that h1 = D as the
jump of the pressure gradient appears at the scale of the outlet size. Therefore, the only adjustable
parameter in Eq. (13) is the volume fraction at the outlet φ0. Equations (13) and (14) are solved
numerically thanks to a dedicated Matlab script. Equation (14) is discretized using an Euler explicit
method with a time step δt = 0.05 s, similar to the frequency of acquisition of the electronic balance.

A flow chart diagram of the numerical solver is displayed in Fig. 7. The entrance variables at
the initial time step t0 contain the experimental parameters (L, D, dp, η f , ρp), the experimental
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FIG. 8. Comparison of the experimental measurements with the results predicted by the quasisteady
model for the temporal evolution of (a),(c) the dimensionless particle flow rate and (b),(d) the dimensionless
volumetric flow rate of air for L = 40 mm, D = 10 mm, and dp = 180 μm (ceramic particles) for a discharge
in air (a),(b) and in water (c),(d). The red dashed lines represent the analytical model [Eqs. (13) and (14)] with
(a),(b) φ0 = 0.48 and (c),(d) φ0 = 0.44. The purple dashed-dotted line represents the same model neglecting
the overpressure due to water [Eq. (B1)].

conditions (h0
p, φb), the total pressure drop, �pf , and the experimental discharge flow rate driven by

gravity, Q0. We impose a first value for φ0 = 0.3. For each discrete time step t̃i (see the part framed
by the red dashed lines in Fig. 7), the nondimensional discharge flow rate of particles Q̄i is calculated
according to the inverse function of Eq. (13). Then, the next iteration granular column height h̃i+1

p

can be determined by Eq. (14). This computing loop is run while h̃p stays positive. Therefore, this
loop provides a prediction of the discharge flow rate Q(t ) as a function of time linked to a prescribed
value of φ0. This prediction is compared to the temporal evolution of the experimental discharge
flow rate, and the fitting value of φ0 is obtained using the least-squares method.

C. Comparison with experiments

In Fig. 8(a) we observe a good agreement between the model and the experimental dimensionless
mass flow rate, upon which the least-squares method is based, for a granular media composed of
spherical monodisperse particles. In Fig. 8(b) we also observe a fairly good agreement between the
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FIG. 9. Comparison of the experimental temporal evolution of the dimensionless particle flow rate with
the results predicted by the quasisteady model (red dashed line) for L = 40 mm, D = 10 mm for (a) the sand
particles (dp = 864 μm) and (b) the bidisperse mixture (ceramic particles with 50% mass of dp = 1165 and
180 μm).

experimental volume flow rate of air entering into the silo during the discharge and the model
deduced from Eqs. (13) and (14). The model predicts also fairly well the dynamic of a silo
discharge in water, as can be seen in Figs. 8(c) and 8(d), taking into account in �pf the overpressure
at the outlet [Eq. (B1)] due to the water column (see the dashed red line). Neglecting the overpres-
sure leads to an overestimation of the flow rates with the same φ0 (see the purple dashed-dotted
line). We also observe that the model gives a good prediction of the experimental results for the
sand particles [see Fig. 9(a)] and the bidisperse mixture [see Fig. 9(b)].

0 100 200 300
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1

1.2
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Mixture

FIG. 10. Obtained fitting parameter φ0 normalized by the initial bulk volume fraction φbi as a function
of the aspect ratio D/dp for various silo diameters L and outlet sizes D for glass particles (circles), ceramics
particle (squares), sand particles, and for the bidisperse mixture. The empty symbols correspond to a silo
discharge in air, and the full symbols correspond to a silo discharge in water. The black solid line represents
Eq. (2) with ξφ = 1, α = 0.84, and β = 0.07.
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FIG. 11. (a) Configuration and (b) boundary conditions of the continuum simulation for the discharge of a
silo with a pressurized gas at its top in a cylindrical geometry.

Finally, in Fig. 10 we have plotted the obtained value of φ0, normalized by φbi, as a function of
the ratio D/dp, for various silo diameters L and outlet sizes D, for all the granular media studied,
and for a discharge in air (empty symbols) or in water (full symbols). We observe that the data are
a little bit scattered but superimpose reasonably and are well represented by Eq. (2) (see the full
line in Fig. 10) with the same coefficients α and β as for the gravity-driven experiment and with
the fitting parameter ξφ = 1. This suggests that the steric effect due to the finite size of the particle
compared to the outlet size is scarcely influenced by the air flow. Moreover, the good collapse of the
experimental results for the sand particles and the bidisperse mixture tends also to suggest that the
permeability is the main parameter in this experiment. We also observe that the surrounding fluid
does not play a significant role in the discharge. Using a gravity-driven experiment to calibrate α

and β, we can thus fully predict the temporal evolution of the discharge flow of a granular media
from a silo with an imposed air pressure at its top. Let us note that the value of ξφ differs slightly
from the one determined with the gradient of pressure near the outlet [see Fig. 5(b)], which may
suggest that this parameter also accounts for the zone of evaluation of the pressure gradient as seen
in Ref. [20]. This will be discussed in the following section, where we test the ability of a two-phase
continuum model with μ(I ) frictional rheology for the granular phase to predict the discharge flow
from a silo with an imposed pressure at its top in a cylindrical geometry.

IV. CONTINUUM SIMULATION

A. Two-phase continuum modeling

Following Zhou et al. [20], we consider a two-phase continuum model to capture the coupling
between the air and the granular material during the discharge of the silo. This two-fluid flow out
of a cylindrical silo with a pressurized air flow can be considered as an axisymmetric flow with
no azimuthal velocity. Therefore, we use the cylindrical coordinate system, where r stands for the
radial direction and z for the vertical direction, the coordinates being drawn in Fig. 11(a). We write
the mass conservation equations for both phases, fluid and particles:

∂
(
ru f

r
)

∂r
+ ∂

(
ru f

z
)

∂z
= 0, (15)

∂
(
rup

r
)

∂r
+ ∂

(
rup

z
)

∂z
= 0. (16)
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The momentum conservation equations for both phases read

−R f
∂u f

r

∂t
− ∂ pf

∂r
− Bv

(
u f

r − up
r

) − Bi
(
u f

r − up
r

)∣∣u f
r − up

r | | = 0, (17)

−R f
∂u f

z

∂t
− ∂ pf

∂z
− Bv

(
u f

z − up
z

) − Bi
(
u f

z − up
z

)∣∣u f
z − up

z

∣∣ = 0, (18)

−ρ

[
∂up

r

∂t
+ up

r

∂up
r

∂r
+ up

z

∂up
r

∂z

]
+ 1

r

∂
(
rσ p

rr
)

∂r
+ ∂σ

p
zr

∂z
− ∂ pf

∂r
= 0, (19)

−ρ

[
∂up

z

∂t
+ up

r

∂up
z

∂r
+ up

z

∂up
z

∂z

]
+ ∂σ

p
zz

∂z
+ 1

r

∂
(
rσ p

rz
)

∂r
− ∂ pf

∂z
− ρg = 0. (20)

For the fluid phase [(17) and (18)] the drag force between the granular phase and the gas phase
is modeled by the Darcy-Forchheimer resistance law, where Bv = η(1 − φ)/κv and Bi = ρ f d (1 −
φ)2/κi. Additionally, R f = ρ f [1 + Cvmφ/(1 − φ)] represents a virtual mass approach taking un-
steady effects into account in the fluid phase [25–28], where Cvm = 2 is an empirical coefficient (in
the range of 0.5 � Cvm � 2.0 [29]) and φ = 0.6 is the volume fraction of granular media. In the
granular phase [(19) and (20)], we use the shear-dependent frictional rheology [9–11]:

σ
p

i j = ηpγi j with ηp(|γ̇ |, pp) = μ(I )pp

|γ̇ | , (21)

where γ̇i j is the strain-rate tensor (for example, γ̇rz = ∂up
r /∂z + ∂up

z /∂r) with |γ̇ | = √
(γ̇i j γ̇i j/2) its

second invariant. The friction function of the μ(I )-rheology is defined as

μ(I ) = μs + �μ/(I0/I + 1) with I = |γ̇ |d/
√

pp/ρp,

where I0, μs, and �μ are constants that depend on the granular media. We do not take into account
the shear-rate dependence of the volume fraction [11].

Note that the system of equations is made dimensionless for resolution using the silo diameter
L as a lengthscale, ρgL as a pressure scale, and

√
L/g as a timescale. Note as well that we use

a regularization technique to avoid the divergence of the viscosity when the shear becomes too
small by replacing ηp by min(ηp, ηmax) with ηmax = 100ρ

√
gL3 a constant that is large enough

[4,5,8,20,30].

B. Some details on numerical implementation

The free software Basilisk [31] resolves partial differential equations on adaptive Cartesian
meshes. Libraries are developed to solve Navier-Stokes equations with a finite-volume projection
method, and a volume-of-fluid method is used to track the two phases. To solve the coupled
Eqs. (17)–(20), we consider the gas phase and the granular phase separately. We rewrite the
momentum equation of the gas phase as

R f

−→u f
n+1 − −→u f

n

�t
= −−→� pf − Bl (

−→u f
n+1 − −→u p) − Bi | −→u f

n − −→u p | (−→u f
n+1 − −→u p), (22)

and according to incompressibility (15) and (16), Eq. (22) can be written in the following form
(reminiscent of the projection method itself):

−→� ·
(

r�t
−→� pf

R f + �t (Bl + Bi|−→u f
n − −→u p|)

)
= −→� ·

(
r

R f
−→u f

n + �t (Bl
−→u p + Bi

−→u p|−→u f
n − −→u p|)

R f + �t (Bl + Bi|−→u f
n − −→u p|)

)
.

(23)

Equation (23) is in the form of a Poisson-Helmholtz equation that we solve in Basilisk, using a
specific solver [32]. Thus we obtain the pressure field of the fluid phase as well as the corresponding
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pressure gradients, which corresponds to the drag forces that we impose on the granular media, in
Eqs. (19) and (20). We solve them at each time step in a 2D axisymmetric configuration.

This configuration for studying the discharge of a silo with an imposed gas pressure at the top
is displayed in Fig. 11(a). In the cylindrical coordinate, the calculation domain consists of a two-
dimensional (2D) plane of width L and height H = 4L. The granular media is considered as a
continuum media and has an initial height hp = 3.8L. The width of the silo L is divided into 64
computation cells (leading to enough precision). An outlet of radius R = D/2 is placed at the right
bottom of the calculation domain.

On the side walls [see the black lines in Fig. 11(b)], a Neumann boundary condition is applied
both for the granular pressure and the fluid pressure together with a no-penetration condition as
well as a nonslip condition. At the outlet, a Dirichlet boundary condition is applied [see the purple
dashed line in Fig. 11(b)] for the pressure of the two phases (pp = 0 and pf = 0) together with
a Neumann boundary condition for the normal and tangential components of the velocity for both
phases. For the plane of symmetry [see the purple dashed-dotted line in Fig. 11(b)], a no-penetration
condition is applied for the normal velocity component for both phases, and a free-slip boundary
condition is applied for the tangential velocity component, along the vertical direction. Finally, for
the top border of the calculation domain, a Dirichlet boundary condition is chosen for the pressure
of the two phases, but with different values. For the fluid phase, pf = pair, where pair represents the
value of the fluid pressure imposed, and for the granular phase, pp = 0. Additionally, the normal
and tangential components of the velocity for both phases possess a Neumann boundary condition.

During the simulation, the velocity fields of both phases are calculated for every �t = 0.1/
√

L/g.
Therefore, the instantaneous mass flow rate of the granular phase and the volumetric flow rate of the
fluid phase can be determined from the velocity fields by integrating the vertical velocity component
across the outlet, Qi = ρ

∫ R
0 2πrup

z |z=0 dr and Qair = ∫ R
0 2πru f

z |z=0 dr. The other fields, like the
pressures, are saved during the simulation for every �t = 1/

√
L/g.

C. Numerical results

We carried out a series of continuum simulations, varying the value of the imposed constant
gas pressure pair at the top of the silo and of the outlet radius R. The dimensionless coefficients in
the drag force between the two phases are taken as Bv = 25 for the viscous term and Bi = 6.3 for
the inertial term corresponding to the experimental conditions for a particle size of about 500 μm.
We take for the rheological constants μs = 0.4, �μ = 0.28, I0 = 0.4. Additionally, the coefficient
representing a virtual mass approach is set to a value of R f = 0.002ρ.

In Fig. 12(a), the streamlines for both phases are displayed with red lines for the granular phase
and green dotted lines for the fluid phase. We observe that both streamlines are vertical far from
the outlet. Upon approaching the outlet due to the restricted cross section, the streamlines converge
towards the outlet and the velocity increases. The flow at the outlet can be reasonably taken as
vertical, as supposed in the analytical model. In the following part, we will discuss a typical example
of numerical simulation, with an outlet radius R = 0.25L and an imposed air pressure pair = 5ρgL.

The temporal evolution of the pressure profiles of the fluid phase pf /ρgL for different positions
along the silo is shown in Fig. 12(c), denoted by full lines at the side wall and dashed lines at the
center [see Fig. 12(b) for the position of evaluation of the fluid pressure]. We observe a similar trend
to that observed in the experiment [see Fig. 2(a)]: the pressure at a given position increases during
the discharge period due to the decrease of the granular column height, and it finally reaches the
imposed pressure level pair when the tap is above the granular media. Moreover, we observe that the
measurements at the side wall of the silo [see the full lines in Fig. 12(c)] give the same values as at
the central line of the silo (dashed lines) as long as z > 2R, which validates using the experimental
pressure measurements at the side wall of the silo to estimate the bulk values.

To compare the numerical results with the quasisteady analytical model for the discharge,
we have first evaluated the pressure gradient of the fluid phase at the outlet. Note that in the
simulation, the granular media is incompressible and φ0 = φbi. Zhou et al. [20] have shown for
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FIG. 12. (a) Magnitude of the velocity field for the granular phase and streamlines for the granular flow
(red full lines) and for the gas flow (green dotted lines). (b) Sketch of the position of evaluation of the fluid
pressure. (c) Temporal evolution of the fluid pressure for various vertical positions in the silo taken at the side
wall (full lines) and at the central line (dashed lines) for R = 0.25L and pair = 5ρgL.

a simpler configuration (2D viscous flow) that the mean air pressure gradients near the orifice
need to be evaluated over the zone of acceleration of the particles. Figure 13(a) shows the pressure
gradient averaged on the outlet section, (∂ pf /∂z) |(r<R)(z=0)= (2/R2)

∫ R
0 (∂ pf /∂z) |z=0 rdr, and on

an ellipsoidal zone above the outlet, (∂ pf /∂z) |
( r2

R2 + z2

h2
1
�1)

= [3/(R2h1)]
∫ h1

0 (
∫ R

0 (∂ pf /∂z) |r,z rdr)dz,

where h1 = D. In each case, we observe that the averaged pressure gradient is proportional to
Bl (Qair − Q/ρ )/S0 + Bi(Qair − Q/ρ )2/S0

2, as supposed in the analytical model [Eqs. (4) and (5)]
with, respectively, a multiplicative coefficient A = 1 and 0.4. The coefficient A then accounts for the
zone of evaluation of the pressure gradient similarly to the fitting parameter φ0 in the experiments.
Then, to compare with the numerical results, we use the analytical model given by Eqs. (13) and
(14), replacing Nv0 by AN v0 and Ni0 by AN i0. In Fig. 13(b), we have plotted the temporal
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FIG. 13. (a) Average pressure gradients of the fluid phase on the outlet section (◦) and on an ellipsoidal
zone above the outlet (♦) as a function of Bl (Qair − Q/ρ )/S0 + Bi(Qair − Q/ρ )2/S0

2. (b) Temporal evolution
of the nondimensional discharge flow rate of the granular media Q/ρ

√
gL5 for R = 0.25L and pair = 5ρgL and

comparison with the prediction of the model with different coefficient values A.
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evolution of the discharge flow rate of the granular media, and we compare it with the analytical
model for A = 1 (black full line) and A = 0.4 (red line), corresponding to the volume average of the
pressure gradient at the outlet. We observe a better agreement taking into account this parameter,
the best fit being for A = 0.28, for which we observe a very good agreement between the numerical
results and the quasisteady analytical model.

All of these results show the good ability of the two-phase modeling, with a frictional rheology
for the granular phase and a Darcy-Forchheimer drag force, to reproduce the experimental results
for the discharge of the silo with an imposed pressure at its top. This model and its numerical
implementation could thus be used to predict the behavior for more complex geometrical situations.

V. CONCLUSION

We have investigated experimentally the discharge of a granular media from a silo coupled with
an air flow due to a moderate imposed air pressure at the top of the silo. In this case, we observe
that the particle flow rate increases with time together with the air flow rate, as the height of the
granular column decreases. We have then related these flow rates variations to the time evolution
of the pressure gradient along the granular column that is uniform in the upper part and larger near
the outlet due to flow cross-section reduction. We have shown that the air flow does not modify the
dilation of particles near the outlet with respect to the size ratio between particles and orifice. We
have also investigated the effect of a surrounding liquid, and we have shown that the liquid just adds
an overpressure at the outlet due to the hydrostatic pressure. Additionally, we have used several
types of granular media (monodisperse spheres, bidisperse mixture, sand) of several sizes, and the
results show that the permeability is the main parameter in this experiment. More experiments on
bidisperse mixtures should be performed to confirm this preliminary result.

In the hypothesis of a quasisteady incompressible flow, we have proposed an analytical model,
where the fluid pressure gradient near the orifice acts as an additional driving force with respect to
gravity in accordance with previous authors [14–16,20], and the drag force between the two phases
is given by the Darcy-Forchheimer resistance law, which accounts quite well for the experimental
data. The effects of the silo dimension or of the particle sizes are fully recovered by the model,
which allows us to predict the full discharge of the silo.

Finally, we have fully solved (in a 2D axisymmetric configuration) a continuum two-phase nu-
merical model with a granular frictional rheology and a Darcy-Forchheimer resistance law between
the phases. We have shown the ability of this model to reproduce the experimental observations and
to validate the hypothesis of the analytical model.

In this work, we have studied a nonstationary flow. However, due to the moderate value of the
imposed air pressure at the top of the silo, we have shown that the hypothesis of a quasisteady
incompressible flow is valid. In future work, it would be interesting to test a configuration in
which we impose a higher pressure and a violent rupture of the orifice, as can be seen in industrial
situations, and where, therefore, the compressibility of air cannot be neglected.
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APPENDIX A: OSCILLATIONS OF THE DISCHARGE FLOW RATE

In the temporal evolution of the particle flow rate, as shown in Fig. 3(a), we observe that the
discharge flow rate of the granular media seems to oscillate with a quite regular frequency. This
puzzling feature was also observed in previous studies using the same apparatus [8,20,22] or in the
literature [33]. To investigate the origin of these oscillations, we performed a discharge of the silo

064306-18



NONSTEADY DISCHARGE OF GRANULAR MEDIA FROM A …

)b()a(

0 100 200
0

0.2

0.4

0.6

0.8

FIG. 14. (a) Temporal evolution of the discharge flow rate of the silo filled with water. (b) Frequency of
the oscillation of the flow rate as a function of the discharge flow rate for the granular media and water. The
dashed line represents the stabilization time of the electronic balance.

filled with water with the outlet slightly immersed in a large reservoir of water and a small outlet
size D ≈ 5 mm. In Fig. 14(a) we observe that the flow rate decreases with time, in agreement with
the classical Torricelli law, but also that the signal exhibits fluctuations similar to the granular case.
Figure 14(b) shows the frequency of oscillation as a function of the mass flow rate for both the
discharge of the water and the granular media. For both cases, the data are superimposed and we
observe that the frequency of oscillation increases as the discharge flow rate increases, and saturates
for a large flow rate. This suggests that this effect is linked to the electronic balance response
time rather than to actual flow rate fluctuations. Indeed, the constructor specifies that the electronic
scale has a response time of about 1.5 s for catching a rapid variation of the mass signal, and the
saturated frequency value corresponds approximately to this stabilization time [see the dashed line
in Fig. 14(b)]. Therefore, the oscillations of the signal of the flow rate are not considered in this
paper.

APPENDIX B: SILO DISCHARGE IN WATER WITH A CONSTANT
AIR FLOW RATE AT THE TOP

To evaluate the air pressure at the outlet for a discharge flow in water, we performed a steady
experiment where we inject a constant volumetric flow rate of air at the top of the silo. We use
a silo of diameter L = 40 mm with an outlet size D = 10 mm and ceramic particles of diameter
dp = 180 μm. We impose a constant volumetric flow rate of air, Qair ≈ 6 L/min, and we vary the
water depth hw between 0 and 16 cm, as can be seen in Figs. 15(a) and 15(b).

Figure 15(c) represents the temporal evolution of the particle flow rate for hw = 44 mm. We
observe that the instantaneous flow rate first decreases at the beginning of the discharge, due to the
initial condition in which we manually remove the rubber plug after turning on the air flow. Then it
reaches a steady flow similar to a discharge in air [20]. The mean flow rate Q is determined during
this steady discharge period (red solid line), and the red dashed line represents the flow rate driven
by gravity Q0 in air. Therefore, we observe an increase of the flow rate that we relate to the additional
driving force induced by the air flow rate. In Fig. 15(d), we plot the mean flow rate versus hw, and
we observe no dependency on this parameter. Indeed, a constant volumic flow rate of air at the
top of the silo imposes a constant pressure gradient at the outlet. The analytical model for a steady
discharge flow [Eq. (8)] gives a fairly good prediction of the discharge flow rate, independently of
the surrounding fluid (see the dashed line).
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FIG. 15. Silo discharge in water: (a) Experimental setup displaying the position of the pressure sensors.
(b) Typical picture during the discharge showing the definition of hw . (c),(d) Discharge flow of ceramic
particles in water with dp = 180 μm for L = 40, D = 10 mm, and Qair ≈ 6 L/min. (c) Temporal evolution
of the instantaneous discharge flow rate for ceramic particles with dp = 180 μm, L = 40 mm, D = 10 mm,
Qair ≈ 6 L/min, and hw = 44 mm. The full line represents the mean flow rate and the dashed line represents
the gravity-driven flow rate Q0. (d) Mean discharge flow rate as a function of the water depth hw . The dashed
line represents the analytical model for a steady discharge flow with a constant air flow rate at the top of the
silo [Eq. (8)].

Figure 16 illustrates how the gas pressures within the silo [P1 to P5; see Fig. 15(a) for the positions
of the sensors] vary during the silo discharge, for (a) the outlet in open air (hw = 0 mm) and (b)
hw = 85 mm. We observe the same behavior for a discharge either in air or water: while the pressure
tap is inside the granular column, the pressure is constant. However, we observe a shift of the
pressure level between these two cases. To characterize this shift, we focus on the gas pressure level
P5, which is located near the silo outlet (z5 = 1 cm).

Figure 16(c) illustrates the mean pressure level of P5 during the discharge as a function of the
water depth hw. We observe a linear increase of the gas pressure near the outlet, corresponding
to a slope equal to ρwg (where ρw is the density of water), but with a small offset with the value
corresponding to the outlet in open air (hw = 0). This suggests that the surrounding liquid adds a
hydrostatic overpressure at the outlet:

P f
outlet = Patm + ρwg(hw + h0), (B1)

where Patm represents the room air pressure, and h0 ≈ 1 cm accounts for the offset and allows best
fitting of the data. Let us note that this length corresponds approximately to the height of a bubble
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FIG. 16. Discharge of a silo with a constant volumetric air flow Qair ≈ 6 L/min for L = 40, D = 10 mm,
and dp = 180 μm (ceramic particles): (a),(b) temporal evolution of the pressure profiles within the silo P1 to
P5 for (a) hw = 0 mm (with the outlet in air) and (b) hw = 85 mm; (c) mean value of P5 during the discharge
as a function of the water depth hw . The full line represents Eq. (B1).
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observed in the experiments and located beneath the bottom of the silo during the discharge, as can
be seen in Fig. 15(b). While this hydrostatic overpressure has no influence on the particle flow rate
for a constant Qair, it plays a role in the case of a pressure-imposed discharge.

[1] G. H. L. Hagen, Über den Druck und die Bewegung des trocknen Sandes, Bericht über die zur
Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschaften
zu Berlin, 35–42 (1852).

[2] B. P. Tighe and M. Sperl, Pressure and motion of dry sand: translation of Hagen’s paper from 1852,
Granul. Matter 9, 141 (2007).

[3] S. M. Rubio-Largo, A. Janda, D. Maza, I. Zuriguel, and R. C. Hidalgo, Disentangling the Free-Fall Arch
Paradox in Silo Discharge, Phys. Rev. Lett. 114, 238002 (2015).

[4] P.-Y. Lagrée, L. Staron, and S. Popinet, The granular column collapse as a continuum: validity of a two-
dimensional navier-stokes model with a μ(I)-rheology, J. Fluid Mech. 686, 378 (2011).

[5] L. Staron, P.-Y. Lagrée, and S. Popinet, Continuum simulation of the discharge of the granular silo, Eur.
Phys. J. E 37, 5 (2014).

[6] S. Dunatunga and K. Kamrin, Continuum modelling and simulation of granular flows through their many
phases, J. Fluid Mech. 779, 483 (2015).

[7] G. Daviet and F. Bertails-Descoubes, Nonsmooth simulation of dense granular flows with pressure-
dependent yield stress, J. Non-Newtonian Fluid Mech. 234, 15 (2016).

[8] Y. Zhou, P. Y. Lagrée, S. Popinet, P. Ruyer, and P. Aussillous, Experiments on, and discrete and continuum
simulations of, the discharge of granular media from silos with a lateral orifice, J. Fluid Mech. 829, 459
(2017).

[9] G. D. R. MIDI, On dense granular flows, Eur. Phys. J. E 14, 341 (2004).
[10] P. Jop, Y. Forterre, and O. Pouliquen, A constitutive law for dense granular flows, Nature (London) 441,

727 (2006).
[11] Y. Forterre and O. Pouliquen, Flows of dense granular media, Annu. Rev. Fluid Mech. 40, 1

(2008).
[12] W. A. Beverloo, H. A. Leniger, and J. Van de Velde, The flow of granular solids through orifices, Chem.

Eng. Sci. 15, 260 (1961).
[13] A. Janda, I. Zuriguel, and D. Maza, Flow Rate of Particles through Apertures Obtained from Self-Similar

Density and Velocity Profiles, Phys. Rev. Lett. 108, 248001 (2012).
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