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Virtual double-well potential for an underdamped oscillator created by a feedback loop

Salambô Dago, Jorge Pereda, Sergio Ciliberto, and Ludovic Bellon∗
Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

Virtual potentials are a very elegant, precise and flexible tool to manipulate small systems and
explore fundamental questions in stochastic thermodynamics. In particular double-well potentials
have applications in information processing, such as the demonstration of Landauer’s principle.
Nevertheless, virtual double-well potentials had never been implemented in underdamped systems.
In this article, we detail how to face the experimental challenge of creating a feedback loop for an
underdamped system (exploring its potential energy landscape much faster than its over-damped
counterpart), in order to build a tunable virtual double-well potential. To properly describe the
system behavior in the feedback trap, we express the switching time in the double-well for all
barrier heights, combining for the first time Kramer’s description, valid at high barriers, with an
adjusted model for lower ones. We show that a small hysteresis or delay of the feedback loop in the
switches between the two wells results in a modified velocity distribution, interpreted as a cooling
of the kinetic temperature of the system. We successfully address all issues to create experimentally
a virtual potential that is statistically indistinguishable from a physical one, with a tunable barrier
height and energy step between the two wells.

I. INTRODUCTION

Feedback traps are widely used to trap and manip-
ulate Brownian particles in solution, and explore funda-
mental questions in non-equilibrium statistical mechanics
of small systems [1–4]. Indeed, by controlling an exter-
nal force acting on a colloidal particle as a function of
its measured position, one can create a virtual poten-
tial. This is a very powerful tool, more flexible [5] than
its physical counterparts consisting of localized poten-
tial forces created by optical or magnetic tweezers [6–
10]. Feedback loops on the system’s position are used
in particular to study Landauer’s principle, by creating
double-well potentials and using the trapped particle as
a memory [10, 11]. Within the information processing
framework, lowering the dissipation seems a promising
path to reduce energy costs [12–15]. Working with vir-
tual potentials within underdamped dynamics thus ap-
pears as a natural endeavor. Moreover, the underdamped
regime offers new insights on a wide variety of fundamen-
tal questions on the connections between feedback and
thermodynamics [16–19].

Nevertheless, implementing virtual potentials in the
underdamped regime is not an easy task, especially
within the stochastic thermodynamics framework that
requires a high measurement precision to resolve the kBT
scale. Indeed, at low damping, systems are resonant and
very sensitive to perturbation, noise or drift. Moreover,
the feedback update delay can have strong consequences
on the coupling between the system and the thermal
bath [4, 19].

We propose in this article an electrostatic feedback de-
signed to create virtual double-well potentials acting on
a micro-cantilever, which serves as an underdamped me-
chanical oscillator. The system offers a flexibility and
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a precision never achieved before, with excellent qual-
ity in terms of position measurement and force tuning.
Thanks to the thorough study of the feedback effects
detailed in this article, we are able to create clean, re-
liable and tunable double-well potentials which outper-
form those produced by optical and magnetic tweezers
(either physical or virtual), and have the added advan-
tage of being analytically tractable. Therefore, this ex-
perimental work presents an unprecedented experimental
tool to explore information thermodynamics, and in par-
ticular Landauer’s principle in the underdamped regime.

In the following, we detail the experimental challenges
we faced to remove any bias introduced by the feedback
loop. To put these challenges in context, we present a
study of the response of underdamped systems to a feed-
back control. This study incorporates experimental and
numerical simulation results, as well as a comprehensive
theoretical model. The latter includes the unified and
complete description of the switching time of the can-
tilever in the double-well potential: our expression tends
towards Kramer’s escape time in the high-energy barrier
limit, but it also provides an adjusted model for barriers
lower than the thermal energy, where Kramer’s formula
is no longer valid.

The article is organised as follows: we first present the
experimental system and the principle of the feedback
loop (section II), before exploring the non-idealities of a
real-life implementation (section III). In particular, we
analyse how an hysteresis in the switches between the
wells, or, equivalently, a delay in the actuation, results in
a bias of the energy exchanges with the thermal bath,
effectively warming or cooling the oscillator Brownian
noise. From this comprehensive analysis, we define in
section IV the requirements that need to be met to mit-
igate imperfections. Lastly, section V describes the final
implementation of the feedback loop, and shows that this
loop creates a virtual potential indistinguishable from an
equivalent physical one.
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FIG. 1. Experimental system. The conductive cantilever
is sketched in yellow. Its deflection x is measured with a
differential interferometer [20], by two laser beams focused
respectively on the cantilever and on its base. The cantilever
at voltage V = ±V1 is facing an electrode at V0. The voltage
difference V − V0 between them creates an attractive elec-
trostatic force F ∝ (V − V0)2. The dashed box encloses the
feedback controller, consisting of a comparator and a multi-
plier, which create the double-well potential.

II. VIRTUAL DOUBLE-WELL POTENTIAL:
PRINCIPLE

As sketched in Fig. 1, the underdamped oscillator is
a conductive cantilever [21] mounted in a closed airtight
chamber at room temperature T0. The chamber min-
imises all air flows induced drifts in the measurement,
and can also used as a vacuum chamber to modulate
the pressure, thus the resonator quality factor, at will.
The cantilever deflection x is measured with very high
accuracy and signal-to-noise ratio by a differential inter-
ferometer [20]. The Power Spectral Density (PSD) of
the thermal fluctuations of x is plotted in Fig. 2: the
fundamental mode dominates by 3 orders of magnitude
the higher-order deflection modes of the cantilever. The
second deflection mode at 8 kHz is conveniently removed
from the measured signal by focusing the sensing laser
beam on its node, at around 0.78% of the cantilever
length. This simple adjustment helps in having a phys-
ical system very close to an ideal Simple Harmonic Os-
cillator (SHO). The fit of this PSD with the theoreti-
cal thermal noise spectrum of a SHO leads to its res-
onance frequency f0 = ω0/2π = 1270 Hz and quality
factor Q = mω0/γ = 10, where m, k = mω2

0 and γ
are respectively: the mass, stiffness and damping co-
efficient of the SHO. The slight difference between the
measurement and the model is due to frequency depen-
dency of the viscous damping of the cantilever in air [22].
From the PSD we compute the variance at equilibrium
σ2
0 = 〈x2〉 = kBT0/k ∼ 1 nm2, which is used as length

scale.
Two time scales typically describe an underdamped

system: its natural oscillation period T0 = f−10 ∼ 0.8 ms
(comparing the inertial and elastic terms), and its relax-
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FIG. 2. Power Spectral Density (PSD) of the can-
tilever deflection in a single well. Measured PSD of the
thermal noise driven deflection with no feedback (V1 = 0, solid
lines), and best fit by the theoretical spectrum of a Simple
Harmonic Oscillator (SHO, dashed line). The second deflec-
tion mode, visible at 8 kHz when the laser beam is focused at
the free end of the cantilever (magenta), is successfully hidden
by focusing the laser beam on the node of this mode (blue).
At frequencies up to 10 kHz, the cantilever behaves like a SHO
at f0 = 1270 Hz, with a quality factor Q = 10. We infer from
this measurement the variance σ2

0 = 〈x2〉 = kBT0/k, used to
normalize all measured quantities.

ation time τr = 2Q/ω0 ∼ 2.5 ms (comparing the inertial
and damping terms). We add a third one, the time scale
of position relaxation [23], which compares the damping
and elastic terms: τγ = γ/k = 1/(Qω0) ∼ 13µs. Due to
its oscillating nature, the resonator explores the potential
energy landscape typically every T0, and the dissipative
part can be sensitive to changes in energy down to τγ .
This position relaxation τγ is much faster than that of
most over-damped systems used to create double wells
in stochastic thermodynamics, namely colloidal particles
optically trapped in water. Since inertia can be neglected
in these systems, their response time is set by τγ , and
typically amounts to 30 ms [24].

In order to use the cantilever as a one-bit memory, we
need to confine its motion in an energy potential con-
sisting of two wells separated by a barrier, whose shape
can be tuned at will. This potential U is created by a
feedback loop, which compares the cantilever deflection
x to an adjustable threshold x0. After having multiplied
the output of the comparator by an adjustable voltage
V1, the result is a feedback signal V which is +V1 if
x > x0 and −V1 if x < x0. The voltage V is applied
to the cantilever which is at a distance d from an elec-
trode kept at a voltage V0. The cantilever-electrode volt-
age difference V0 ± V1 creates an electrostatic attractive
force F = 1

2∂dC(d)(V0 ± V1)2 [25], where C(d) is the
cantilever-electrode capacitance. Since d � σ0, ∂dC(d)
can be assumed constant. We apply V0 ∼ 100 V and
V1 � V0 so that, to a good approximation, F ∝ ±V1
up to a static term. This feedback loop results in the
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b)

FIG. 3. (a) Probability Density Function (PDF) of x.
The PDF of x (blue) measured during a 10 s acquisition with
the feedback on, with x0 = 0 and two values of V1 adjusted
to have respectively a 5 kBT0, and a 0.5 kBT0 energy barrier
height. The fit using the Boltzmann equilibrium distribution
with the potential shape in Eq. (1) (dashed red) is excellent.
(b) Double-well potential energy. The measured poten-
tials (blue) are inferred from the PDF of x in a) and the
Boltzmann distribution. The high noise level for large val-
ues of U stems from the bad sampling of regions with low
probability. We obtain as expected the 5 kBT0 and 0.5 kBT0

barriers corresponding to the two values of V1. The fits using
Eq. (1) are again excellent (dashed red).

application of an external force whose sign depends on
whether the cantilever is above or below the threshold
x0. As long as the reaction time τd of the feedback loop
is very fast (at most a few µs), the switching transient
is negligible: τd � τγ , T0, τr. As a consequence, the os-
cillator evolves in a virtual static double-well potential,
whose features are controlled by the two parameters x0
and V1. Specifically, the barrier position is set by x0
and its height is controlled indirectly by V1, which sets
the wells centers ±x1 = ±V1∂dC(d)V0/k. The potential
energy constructed by this feedback is:

U(x, x0, x1) =
1

2
kx
(
x− S(x− x0)x1

)2
, (1)

where S is the sign function: S(x) = −1 if x < 0 and
S(x) = 1 if x > 0. In the following, unless we specify
otherwise, we will always consider the case of a symmetric
potential, corresponding to x0 = 0.

The two degree of freedom of the underdamped system,
the deflection x and the velocity v = ẋ, are considered
as random variables of a stochastic process. They are
ruled by a Langevin equation (Eq. (A2) in appendix A),

or equivalently characterized by the Probability Density
Function (PDF) P (x, v, t) for finding the cantilever in
position x, and velocity v at time t, whose dynamics is
given by Kramer’s equation [26]:

∂tP + v∂xP −
∂xU

m
∂vP =

γ

m
∂v(vP ) + kBT0

γ

m2
∂2vP,

(2)

As the potential U(x, x0, x1) does not depend on the
speed, the equilibrium PDF of the velocity in the double-
well is the same as the one in a single harmonic well and
scales as a Gaussian of variance kBT0/m: PDF(v) ∝
e−mv

2/(2kBT0). The stationary Boltzmann distribution
therefore factorizes the equilibrium x and v PDF:

Peq(x, v) = PDF(x)× PDF(v) (3)

∝ e−
U(x)
kBT0 × e−

mv2

2kBT0 (4)

The potential in Eq. (1) can be experimentally mea-
sured from the PDF of x and the Boltzmann equilib-
rium distribution: U(x) = U0 − kBT0 ln[PDF(x)], with
U0 an arbitrary constant. Fig. 3 presents two examples
of an experimental symmetric double-well potential gen-
erated by the feedback loop, tuned to have a barrier of
1
2kx

2
1 = 5kBT0 and 0.5kBT0 (respectively x1 =

√
10σ0

and x1 = σ0). The dashed red line is the best fit with
Eq. (1), demonstrating that the feedback-generated po-
tential behaves as a static one, in terms of the position
PDF.

The experimental challenge undertaken in this work is
to build a proper virtual potential identical to a physical
one: the feedback loop should have no noticeable effect
on the position and velocity equilibrium distributions.

III. VIRTUAL DOUBLE-WELL POTENTIAL:
PRACTICAL NON-IDEALITIES

Setup Comparator Filter Defect Main bias
bandpass

1 TS3022 1 MHz Hysteresis: Cooling
h = 0.15σ0

2 LM219 No Filter Early trigger: Warming
h < 0

Final LM219 1 MHz h ∼ 0 No bias

TABLE I. Setup 1, setup 2, and final setup distinctive fea-
tures.

An ideal feedback loop comparator satisfies three re-
quirements: it presents no measurement noise, it is im-
mediate, and it always switches exactly at the prescribed
x0 position. In real comparators, however, those three
requirements compete with each other, and a tradeoff
between them needs to be found. For example, a high-
frequency measurement noise causes the comparator to
switch at inexact positions. It is therefore common to low
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pass filter the input signal to remove this noise, at the ex-
pense of introducing a delay in the switching time. Alter-
natively, one can reduce the effect of noise by introducing
an artificial hysteresis around the threshold, larger than
the noise amplitude, but in this case the switching be-
tween wells doesn’t occur at the appropriate position. In
the next subsections, we study the consequences of each
of these non-idealities.

A. Hysteresis

1. Experimental observation

One major experimental challenge lies in the compara-
tor hysteresis. To illustrate its consequences, we use the
setup 1 whose circuit is detailed in section V (see Tab. I
and Fig. 7). In this case we measure an average hystere-
sis of h = 0.15σ0: the voltage switches upward from −V1
to V1 when the position crosses x0 + h from below, and
downward when crossing x0 − h from above. This hys-
teresis is likely due to the use of the comparator outside
its nominal regime in terms of voltage ranges.

-3 -2 -1 0 1 2 3
0
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FIG. 4. PDF of the oscillator speed. Experimental PDF
of v for x1 = σ0 inferred from a 10 s acquisition using setup 1,
setup 2 and the final setup (see Tab. I), respectively in blue,
orange and black markers. Each time, the best Gaussian fit is
superimposed in plain line: the fit is excellent for the setups
with positive or zero hysteresis (setup 1 and final setup). Re-
garding setup 2 (negative hysteresis), the Gaussian fit is not
as good, but remains satisfactory, and the higher moments
of the experimental PDF are close to the Gaussian vanish-
ing values: respectively −0.08 and −0.3 for the skewness and
the excess kurtosis. Finally, we superimpose in grey thick
line the experimental PDF without feedback, which perfectly
matches the equilibrium distribution (dashed red line). It is
worth noticing that the final setup (black) also ideally repro-
duces the equilibrium distribution.

A comparator hysteresis has an effect on the velocity
distribution of the system, as illustrated in Fig. 4. While

the speed PDF keeps a satisfactorily Gaussian shape for
the different setups, its variances are altered compared to
the equilibrium distribution perfectly matched without
feedback. Therefore, the velocity variance turns out to
be an adequate observable to summarize the effect of the
hysteresis on the velocity distribution. The hysteresis
should also alter the PDF of position for nearby wells, in
particular around the threshold cusp (rounding effect),
but it is a tiny effect, hard to observe experimentally.

Let us introduce the kinetic temperature T of the sys-
tem defined through the velocity variance: σ2

v = 〈v2〉 =
kBT/m. At equilibrium in a bi-quadratic potential, the
kinetic temperature should match the bath temperature
T0 as prescribed by the Boltzmann distribution. To fa-
cilitate the reading we introduce the ratio θ = T/T0,
so that the velocity standard deviation simplifies into
σv =

√
θω0σ0.

We measure the kinetic temperature evolution through
the velocity variance for different distances between the
wells. The experimental results plotted on Fig. 5 show
a cooling of the system when the wells are close. We
propose in the next paragraphs a theoretical model that
supports this observation.

0 1 2 3 4 5
0.7

0.8

0.9

1

1.1

FIG. 5. Kinetic temperature with hysteresis (setup
1). The ratio θ = T/T0 is plotted as a function of the dis-
tance between the wells x1. Blue markers: experimental data
obtained from setup 1 with a typical hysteresis h = 0.15σ0

at each switch. Grey line: simulation data from Nsim = 200
iterations of 30/f0 long trajectories of the cantilever evolving
in a potential created with a h = 0.15σ0 hysteresis on the
threshold. Dashed red line: the numerical solution of Eq. (9)
perfectly predicts the hysteresis consequences on the temper-
ature.

2. Theoretical model

We model the consequences on the system tempera-
ture using the infinitesimal energy balance equation, with
K = 1

2mv
2 the kinetic energy,W the stochastic work and
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Q the stochastic heat [12, 16, 27, 28]:

dU

dt
+
dK

dt
=
dW
dt
− dQ

dt
(5)

This energy balance is the starting point of the model
developed in this article to link the feedback hystere-
sis to the system temperature, similarly to the approach
followed in the theoretical description of feedback cool-
ing [14, 15].

In a stationary state when no external work is per-
formed (〈W〉 = 0) there is no kinetic energy evolution
on average (〈dK/dt〉 = 0), so that using the heat expres-
sion (A7) derived in Appendix A, Eq. (5) reduces to:

〈dU
dt
〉 =

ω0

Q
kBT0(1− θ) (6)

If there is a switching hysteresis, the comparator trig-
gers only when x = ±h (sign depending on origin) instead
of x = x0 = 0. The cantilever overreaches the barrier at
each crossing. This implies an extra distance travelled by
the cantilever in the initial well (centred on ±x1) before
the feedback makes it switch in the second well. This
extra distance corresponds to a potential energy step:

∆Uh =
1

2
k
[
(h+ x1)2 − (h− x1)2

]
= 2kx1h (7)

This amount of potential energy is lost each time the can-
tilever crosses the barrier. Between the crossings, the sys-
tem thermalizes in contact with the heat bath. Thus the
system is always out-of-equilibrium and reaches a steady
state characterized by the kinetic temperature T . The
latter allows the warming heat influx from the thermo-
stat to compensate on average the energetic losses caused
by the hysteresis at each barrier crossing. It only remains
to express the average heat flux corresponding to these
discrete energetic losses: we need to quantify how often
on average the cantilever crosses the threshold. In ap-
pendix B, we derive the crossing rate Γ of the potential
barrier B for a system at temperature T :

Γ(B, T ) = ω0
B
kBT

∫ ∞
1

exp(−ε BkBT )

π + 2 sin−1(ε−1/2)
dε (8)

Using Eq. (8) applied to the barrier energy B =
1
2k(x1 + h)2, we can express the potential contribution
in Eq. (6) and derive:

Γ(
1

2
k(x1 + h)2, θT0)×∆Uh =

ω0

Q
kBT0(1− θ) (9)

The temperature solution of Eq. (9) allows the system
to reach a steady state in which the average heat flux lost
by the system (Γ∆Uh), and the heat influx from the heat
bath (proportional to T − T0) equilibrate. The numer-
ical solution of Eq. (9) is plotted on Fig. 6: the kinetic
temperature presents a minimum around x1 . σ0, which

FIG. 6. Consequences of an hysteresis on the kinetic
temperature. θ = T/T0 is plotted as a function of the dis-
tance x1 between the wells. The colormap is drawn with the
model prediction provided by Eq. (9): positive hysteresis h
cools the system down, while negative hysteresis warms the
system up. The dependance on x1 comes from the balance
between the barrier crossing rate and the energy step due
to the hysteresis at each switch. The blue, black and orange
points correspond respectively to the experimental results ob-
tained with the three setups addressed in this paper: setup 1
(h = 0.15σ0), final setup (tiny hysteresis), and setup 2 (early
trigger).

deepens as the hysteresis h increases. These trends can
be easily understood: firstly, the larger the hysteresis, the
greater the energy loss at each switch, and, therefore, the
lower the system temperature. Secondly, the energy loss
per switch is proportional to x1, but the barrier crossing
rate decreases with x1: in the high barrier limit there are
no more switches and T = T0, and in the low barrier limit
there is no more energy step at the switch, so that T = T0
as well. The effect on the temperature is maximized for
x1 ∼ σ0 when the two opposing effects counteract each
other most. The model, applied to the setup 1 measured
hysteresis, is in perfect agreement with the experimen-
tal data as highlighted in Fig. 5. Let us also point out
that the same description holds for negative hysteresis:
early switches make the system warm up, as shown in
red on Fig. 6. In conclusion, removing all hysteresis at
the barrier crossing is mandatory to maintain a proper
equilibrium in the double-well potential, instead of cre-
ating an out-of-equilibrium steady state characterized by
a temperature T 6= T0.

3. Simulation confirmation

We complete the study by simulating Nsim = 200 tra-
jectories of the cantilever evolving in a potential created
with h = 0.15σ0 hysteresis on the threshold. The numer-



6

ical simulation is in very good agreement with both the
model and the experimental data (see Fig. 5).

B. Switching delay

A time delay between the cantilever crossing the bar-
rier and the force switching is inevitable because real
comparators have finite switching speed, but also due to
the delay inherent to the low-pass filter applied to the po-
sition measurement. The effect of such a delay is similar
to that of an hysteresis. Indeed, if there is a time delay
τd, the cantilever overreaches the barrier of a distance
hd on average at each passage, that can be computed
knowing the speed PDF:

hd = 〈|v|〉τd =

∫ ∞
0

|v| e
− v2

2σ2v

σv
√

2π
dvτd (10)

=

√
2θ

π
σ0ω0τd (11)

The absolute value in the average of v comes from the
fact that only the velocity sign that matches the barrier
crossing is considered (for example positive velocity for
upward crossing). The time delay can thus be treated as
a mean hysteresis hd, associated to an energy step ∆Ud =
2kx1hd, leading to an equation equivalent to Eq. (9) with
an updated barrier height:

Γ(
1

2
kx21, θT0)×∆Ud =

ω0

Q
kBT0(1− θ) (12)

Thus, the temperature of the system trapped in a double-
well potential with switching time delay τd is a solution
of the following equation, derived from Eq. (12):

g

(
x1

σ0
√

2θ

)
Qω0τd θ = 1− θ (13)

where

g(z) =
4√
π
z3
∫ ∞
1

exp(−εz2)

π + 2 sin−1(ε−1/2)
dε (14)

The numerical solution of Eq. (13) has a profile similar
to the solutions of Eq. (9) plotted on Fig. 6.

The function g(z) presents a global maximum g∗ =
0.21 in z∗ = 0.64, allowing to compute the minimum
temperature and corresponding well distance

θmin =
1

1 + g∗Qω0τd
=

1

1 + g∗τd/τγ
(15)

x1,min = z∗σ0
√

2θmin (16)

The minimum temperature is thus a function of the ratio
between the switch delay τd and the smallest intrinsic
time of the resonator, τγ : no kinetic temperature change
is expected if the former is much smaller than the latter.

C. Measurement noise

The PSD in Fig. 2 demonstrates that, in a single well,
the thermal noise of the cantilever is very close to that of
an ideal SHO, on a wide frequency range. Nevertheless,
2 sources of deviation can be noticed. First, higher-order
deflection modes (from the third up) are clearly visible,
and contribute to the measured signal by adding high fre-
quency noise accounting for 0.05σ0. Second, some back-
ground noise remains, due to higher conditioning elec-
tronic noise and to the shot noise of the photodiodes of
the interferometer. At high frequencies, this noise floor,
around 3× 10−9 σ2

0/Hz, supersedes the signal from the
first deflection mode. Integrated on the 1 MHz band-
width of the final setup filtering (detailed later in section
VC), this background noise contributes up to 0.05σ0.
This measurement noise reaching in total 0.07σ0 has two
unwanted consequences on the feedback generated poten-
tial: parasitic switches and early triggering.

1. Parasitic swiches

If the apparatus compares the raw deflection signal Vx
from the interferometer directly to the threshold Vx0 , the
noise in the input signals produces multiple transitions at
the crossing. As a consequence, the feedback loop output
voltage V oscillates rapidly between positive and nega-
tive values, so the mean voltage seen by the electrode
vanishes. Because of these parasitic switches of the com-
parator, the cantilever ends up trapped at the threshold
position x0 = 0, in between the two desired equilibrium
ones ±x1.

2. Early triggering

The high frequency noise triggers the switch before
the signal of interest (the position of the first deflection
mode) actually crosses the threshold, and therefore in-
duces early switches. In setup 2 (whose circuit is de-
tailed in Fig. 7, and summarized into Tab. I), the high
frequency noise is not removed, so that a negative hys-
teresis appears due to the early triggers. Consequently
the system temperature rises in accordance with the pre-
diction of previous sections. The experimental evidence
of the temperature rise in setup 2 is superimposed with
orange crosses to the theoretical curves in Fig. 6.

IV. REQUIREMENTS

To mitigate the consequences of the experimental non-
idealities listed above, we need to adapt the experimental
setup. We detail in this section the essential experimental
constraints to create a proper virtual potential.



7

A. Limiting the hysteresis

To maintain the velocity equilibrium distribution in
the virtual potential, and to limit the cooling to 5%, from
Fig. 6 we deduce that the hysteresis has to be lower than
0.02σ0. Note that this value, deduced from the model
summarized in Eq. (9), is computed for a quality factor
of 10, and higher values of Q would result in an even more
stringent requirement. As regards the cooling effect, one
would wish to suppress the hysteresis altogether, but a
tiny hysteresis is nevertheless needed for stability pur-
poses: the output of the comparator circuit is unstable
if no reference to the input is introduced. All in all, the
hysteresis of the comparator should remain between 0.5%
and 2% of σ0.

B. Removing parasitic switches: temporal lock-up

The common workaround to the issue of repeated fast-
switches is to introduce an hysteresis through a positive
feedback of the output on the comparator threshold. To
be effective, this strategy requires an hysteresis wider
than the measurement noise, hence larger than 0.07σ0
(see section III C). Such a large hysteresis is prohibitive
in our case because of the cooling effect. As an alter-
native, we implement a temporal lock-up to freeze the
comparator state after a switch, for roughly 1/4 of the
oscillator’s natural period 1/f0. By the time the com-
parator is active again, the cantilever has evolved in the
new well –on average– long enough to reach the bottom
of the well, and is therefore far enough from the threshold
that an undue noise-induced switch is improbable. One
drawback is that short excursions in the other well are
forbidden as well. However, these events –indeed present
in a real double-well potential– are unlikely enough that
removing them has no noticeable effect of the statistical
properties of the virtual potential.

C. Removing early triggering: low-pass filtering

To correct early switches (occurring in setup 2), we
must filter the high-frequency noise. The second mode
contribution is hidden by focusing the laser on the mode
vibration node. The higher-order modes and the elec-
tronic shot noise are low-pass filtered. When designing
this filter, the concern is the delay introduced, since it
will induce an hysteresis, possibly cooling the system.

On the one hand the filter has to cut the high frequency
noise over 1000f0 to limit the background noise contri-
bution (increasing at high frequencies) to 0.05σ0. But on
the other hand the filter response time τd has to remain
much lower than τγ/g

∗ to limit the cooling effect: this
bound corresponds to 1− θ � 1 using Eq.(15). To sum-
marize, using the relation between the cutoff frequency
fc of a first order low-pass filter and its response time
τd ∼ 5

2πfc
(the relation holds for higher-order filters in

first approximation), fc is bounded by:

5g∗Qf0 � fc < 1000f0 (17)

With a quality factor Q = 10 and a resonance fre-
quency f0 = 1.2 kHz, the interval reads: 13 kHz � fc <
1.2 MHz.

D. Characteristics of the cantilever

The cantilever is chosen to meet the requirements of
the filter cutoff frequency and the comparator hysteresis,
expressed in Eq.(17): by selecting a low Q and low f0, we
minimize the cooling, and alleviate the constraints on the
feedback characteristics. We thus choose Q = 10 and a
relatively slow oscillator: f0 = 1.2 kHz. Furthermore, we
choose a low stiffness k ∼ 5× 10−3 N/m to have a large
thermal noise, thus a large signal (Brownian) to noise
(background) ratio.

V. FINAL SETUP

We detail in this section the final experimental setup
designed to meet all the requirements previously listed.
The feedback circuit diagram is detailed in Fig. 7: it
contains the basic components (comparator and multi-
plier) on which some elements are added to ensure its
efficiency. The deflection signal from the interferometer
Vx is filtered by a low-pass filter (green) before entering
the comparator device (red). The tunable threshold Vx0

is biased by the voltage Vlock resulting from the lock-up
feedback loop (blue components) before being compared
to Vx. The comparator output voltage is then multiplied
by the adjustable voltage V1.

A. Stability

To ensure the stability of the comparator output, we
introduce a tiny hysteresis corresponding to Ri/Rh =
1.2 kΩ/3.2 MΩ fraction of the output fed on the posi-
tive input (see Fig. 7). As the position signal scales as
σ0 (in V) =

√
〈V 2
x 〉 ∼ 50 mV, the hysteresis has to stay

between 0.5%σ0 = 0.25 mV and 2%σ0 = 1 mV to meet
the requirements of section IVA. With the ±1 V power
supply voltage of the comparator device, the hysteresis
amplitude of our final design reaches 0.37 mV and there-
fore remains in the range specified.

B. Temporal lock up

The temporal lock-up feedback is implemented
through a follower assembly and a capacitor (blue com-
ponents on Fig. 7). The comparator (red device on
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FIG. 7. (a) Electrical diagram of the feedback loop.
The cantilever deflection signal Vx from the interferometer
passes through a low pass filter (fc = 1 MHz, model SR560,
green) before entering the LM219 comparator (red). The
threshold signal Vx0 is momentarily modified by Vlock after
each switching of the comparator. Vlock is the result of a
lock-up feedback consisting in a follower assembly and a ca-
pacitive circuit built with the following components: opera-
tional amplifier LT131, capacity Clock = 4.7 nF, resistances
Rlock1 = 20 kΩ and Rlock2 = 1.2 kΩ. The output of the com-
parator is then multiplied by V1 to modulate the final voltage
V (using an AD633-EVALZ analog multiplier). With respect
to this design (denoted as final setup), we call setup 1 the same
circuit but with a TS3022 comparator leading to a switching
hysteresis h = 0.15σ0. Similarly we call setup 2 the final
circuit without the low-pass filter leading to early triggers
(negative hysteresis). The setups’ distinctive characteristics
are summarized in table I. (b) Example of signals. The
cantilever deflection signal Vx is plotted in black, the lock-up
voltage Vlock in blue and the output voltage V in red (with
V1 = 2V ). The threshold Vx0 is set to 0.

Fig. 7) compares Vx/2 to (Vx0
+ Vlock)/2, without be-

ing affected by the temporal lock-up components val-
ues thanks to the impedance conversion provided by the
buffer. The purpose of this is to bias the threshold Vx0

during the discharge time of the capacitor Clock, in order

to prevent the comparator switching back right after a
switch. In the static regime without switches, the out-
put is constant for example at +Vsat = 1 V, which cor-
responds to the charged capacity that acts as an open
circuit so that Vlock = 0. Right after a switch of the
output voltage, the capacity starts reversing its charge
through Rlock2 +Rlock1, and Vlock moves immediately to
2Rlock2/(Rlock2 + Rlock1)Vsat = 110 mV, before decreas-
ing to 0. As long as Vlock remains large, it prevents any
switch. The capacity Clock = 4.7 nF rules the Vlock re-
laxation time τlock = (Rlock1 + Rlock2)Clock = 0.1 ms.
It is chosen to freeze the comparator during approxi-
mately a quarter of the cantilever period: 3 × τlock =
0.3 ms ∼ 1/(4f0). Indeed, we verify on Fig. 7 b) that
when Vx (black line) crosses the threshold Vx0

= 0, the
comparator properly switches only once from V = −V1
to V = +V1 (red line), as Vlock (blue line) becoming tran-
siently positive significantly increases the threshold value
for approximately 0.3 ms.

C. Devices characteristics

To maintain less than 5% cooling in the final setup,
we use a LM219 comparator that has no hysteresis and a
typical 80 ns response in the working conditions. A tiny
hysteresis of 0.37 mV is added through feedback resis-
tances to guarantee stability: Ri/Rh = 1.2 kΩ/3.2 MΩ.
Finally, the low-pass filter added to remove early trig-
gers has its cutoff frequency chosen within the prescribed
range: fc = 1 MHz. A smaller cutoff frequency could be
chosen (down to ∼ 500 kHz as prescribed by Eq.(17)), to
lower the background noise contribution even more (re-
duced to 4%σ0 for a 500 kHz bandwidth). In the final
setup, we use a SR560 model containing two identical
tunable cutoff frequencies 1st-order R-C filters, to pro-
vide first or second-order filtering at fc = 1 MHz.

D. Virtual potential characteristics

The position distribution of the cantilever trapped in
the virtual potential produced with the final setup per-
fectly matches the expected equilibrium distribution in a
double-well, as illustrated in Fig. 3. Moreover, we show
in Fig. 4 that the velocity distribution in closely-spaced
wells (x1 = σ0) is also in excellent agreement with the
equilibrium expectation (without feedback), contrary to
the two previous setups, for which the velocity PDF is
clearly modified by the feedback. To complete the ex-
perimental verification, we measure the velocity variance
for different distances between the wells. Fig. 6 (black
markers) shows that the velocity distribution in the vir-
tual double-well potential of the final setup is not biased.
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FIG. 8. Double-well potential tuning. U(x0, x1, x) is
computed through the measured PDF of x during 10 s acquisi-
tions and the equilibrium Boltzmann distribution for different
values of the controlled parameters x0 and x1. The top graph
corresponds to x0 = 0 and x1 ∈ [0, 4]σ0, the bottom one to
x0 ∈ [−1.25, 1.25]σ0 and x1 = 2σ0. The two parameters allow
to explore different barrier height and potential energy step
between the two wells. The high noise level for large values
of U stems from the low sampling of regions with low proba-
bility.

VI. CONCLUSION

This underdamped system has the strong merits of a
short relaxation time and a highly precise deflection mea-
surement, but controlling its virtual potential requires
special caution on the feedback control. Namely, the un-
derdamped regime makes the response much more sensi-
tive to any noise or delay in the driving force. The thor-
ough study of the effects of experimental non-idealities
enables us to identify the key requirements needed to
create a proper virtual potential. The experimental chal-
lenge that ensues is successfully addressed by the final
setup. Ultimately, we demonstrate that the response of
the system in the double-well potential built this way is
statistically equivalent to the one expected at equilibrium
in a physical potential.

Additionally, this virtual potential can be precisely
controlled through the tuneable parameter x0 which sets
the barrier position, and the parameter x1 which defines
the distance between the wells. Fig. 8 shows the influ-
ence of the above mentioned parameters on the potential
shape. The wells curvature is not tuneable as solely set

by the cantilever stiffness, and the barrier height is en-
slaved to all other parameters.

The experimental work detailed in this article opens a
wide range of possibilities in the field of underdamped
system control, and allows high accuracy exploration
of statistical physics in the underdamped regime (and
in particular stochastic thermodynamics). The analysis
presented holds at even lower damping Q � 1, achiev-
able by placing the cantilever in vacuum. This configu-
ration simply imposes more stringent constraints on the
feedback time delay. Finally, this electrical circuit paves
the way to the use of a field-programmable gate array
(FPGA) configured to perform all the calibration and
feedback operations, improving reliability and accuracy.
Indeed, such a digital controller can readily give microsec-
ond response (or even faster) and would meet easily the
experimental requirements listed here, even in the highly
underdamped regime. Besides, more complex configura-
tions of the FPGA target (associating a specific output
voltage to every position) would even allow to create any
arbitrary non-linear potential shape, with several appli-
cations from optimal protocols for minimizing the work
in finite-time operations [29, 30], to the exploration of
non-equilibrium extensions of Landauer’s theory [31, 32].
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Appendix A: Mean Heat

We derive in this section the very general expression of
the average heat over an underdamped stochastic process
following Ref. 27.

Applying to the underdamped regime the generic com-
putations of stochastic energy exchanges [12, 16, 27, 30,
34], we have:

dQ
dt

= −∂U
∂x

ẋ− dK

dt
. (A1)

The computation of the mean dissipated heat re-
quires writing the general Langevin equation of an un-
derdamped system in a potential U :

mẍ = −∂U
∂x
− γẋ+ Fth, (A2)

where Fth is a delta correlated white Gaussian noise
corresponding to the forcing due to the thermal bath:
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〈Fth(t)Fth(t + t′)〉 = 2kBT0γδ(t
′). Multiplying Eq.(A2)

by ẋ leads to the dissipated heat defined by Eq. (A1):

dQ
dt

= mẍẋ− dK

dt
+ γẋ2 − Fthẋ. (A3)

Some caution is required before taking the mean value
of the above expression, because it involves products of
stochastic quantities: in that respect, the Ito discretiza-
tion prescribes for a stochastic function K(v),

dK

dt
=
∂K

∂v
v̇ +

1

2

∂2K

∂v2
v̇2dt. (A4)

We apply Eq. (A4) to K = 1
2mv

2, and use Eq. (A2) to
compute the v̇2 term:

dK

dt
= mvv̇ +

1

2m

(
−∂U
∂x
− γẋ+ Fth

)2

dt (A5)

When taking the mean value and letting dt tend to 0,
most terms simplify out. Indeed, only remain the terms
that involve the thermal noise Fth scaling in 1/

√
dt, some

of which are cancelled by the Ito prescription: 〈Fthv〉 =
〈Fthx〉 = 0. Finally, we obtain the relation: d〈K〉/dt =
m〈ẍẋ〉+ kBT0γ/m. Eq. (A3) then simplifies into:

d〈Q〉
dt

=
γ

m
(2〈K〉 − kBT0). (A6)

Using the definition of the kinetic temperature T =
2〈K〉/kB , and introducing the quality factorQ = mω0/γ,
Eq. (A6) becomes:

d〈Q〉
dt

=
ω0

Q
kB(T − T0). (A7)

This expression is completely general and highlights that
the heat exchanges are reduced at high Q [13].

Appendix B: Switching rate

In the limit of weak damping, the total energy of the
cantilever E = U + K is conserved, and its motion is
periodic in time. The period of oscillation T depends on
the value of E with respect to the barrier height B =
1
2kx

2
1. If E < B, then the motion is confined to a single

well, there is no switches, and the period is T0 = 1/f0. If
E > B, the cantilever visits both wells every period, so
there are 2 switches every period, with

T (E,B) = 2

∫ xM

−xM

√
m

2(E − U(x, x1))
dx (B1)

=
2

ω0

∫ xM

−xM

1√
(xM − x1)2 − (|x| − x1)2

dx

(B2)

=
2

ω0

[
π + 2 sin−1

(√
B
E

)]
, (B3)

where xM = x1 +
√

2E/k is the maximum excursion of
the cantilever. This period is twice T0 when E & B, and
tends to T0 for E � B.

In equilibrium, the statistics of the total energy
E is ruled by the Boltzmann distribution: P (E) =
exp(−E/kBT )/kBT . We deduce the average switching
rate Γ by weighting the 2 switches per period for E > B
by this probability:

Γ(B, T ) =

∫ ∞
B

2

T (E,B)

exp(−E/kBT )

kBT
dE. (B4)

For finite damping, the energy is not conserved along
single trajectories, but still is in average thanks to the
equilibrium with the thermostat. Eq. (B4) is therefore
a good approximation of the switching rate between the
wells for a given barrier height and system temperature.

In Fig. 9, we superimpose the switching rate com-
puted with Eq. (B4) and the results of a simulation
with or without hysteresis. The good agreement be-
tween the simulation and the model justifies the use of
the Γ(B, T ) expression to derive the temperature evo-
lution of the system in a double-well potential with
switching delay. Besides, the dotted red line corre-
sponds to Kramer’s theory [26] prescribing the escape
rate ΓK(B, T ) = ω0

2π e
−B/kBT [35]. Hence, Fig. 9 high-

lights the fact that Kramer’s simplest formula ΓK doesn’t
work for low energy barriers.
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FIG. 9. switching rate Γ as a function of the distance x1
between the wells without switching delay, for two hysteresis:
h = 0 and h = 0.15σ0. For h = 0 and high energy barriers
B = 1

2
x21, Kramer’s simplest model in dashed red line holds

and perfectly matches the simulation data from N = 100
iterations of 30/f0 long trajectories in black line. However, for
smaller barrier height the model Γ(B, T0) of Eq. (B4) in black
dashed line provides a better prediction. For a h = 0.15σ0

hysteresis, the simulation data from N = 100 iterations of
30/f0 long trajectories in blue line is in very good agreement
with the model Γ(B′, T ) with parameters T = θhT0 solution
of Eq. (9) and B′ = 1

2
(x1 + h)2.



11

[1] M. Gavrilov, Y. Jun, and J. Bechhoefer, Real-time cal-
ibration of a feedback trap, Review of Scientific Instru-
ments 85, 095102 (2014).

[2] M. Gavrilov and J. Bechhoefer, Arbitrarily slow, non-
quasistatic, isothermal transformations, EPL (Euro-
physics Letters) 114, 50002 (2016).

[3] A. E. Cohen, Control of nanoparticles with arbitrary
two-dimensional force fields, Phys. Rev. Lett. 94, 118102
(2005).

[4] Y. Jun and J. Bechhoefer, Virtual potentials for feedback
traps, Phys. Rev. E 86, 061106 (2012).

[5] J. A. C. Albay, P.-Y. Lai, and Y. Jun, Realization of
finite-rate isothermal compression and expansion using
optical feedback trap, Appl. Phys. Lett. 116, 103706
(2020).

[6] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto,
R. Dillenschneider, and E. Lutz, Experimental verifica-
tion of landauer’s principle linking information and ther-
modynamics, Nature 483, 187 (2012).

[7] A. Bérut, A. Petrosyan, and S. Ciliberto, Information and
thermodynamics: experimental verification of landauer’s
erasure principle, Journal of Statistical Mechanics: The-
ory and Experiment 2015, P06015 (2015).

[8] J. Hong, B. Lambson, S. Dhuey, and J. Bokor, Experi-
mental test of landauer’s principle in single-bit operations
on nanomagnetic memory bits, Sci. Adv. 2, e1501492
(2016).

[9] L. Martini, M. Pancaldi, M. Madami, P. Vavassori,
G. Gubbiotti, S. Tacchi, F. Hartmann, M. Emmerling,
S. Höfling, L. Worschech, and G. Carlotti, Experimen-
tal and theoretical analysis of landauer erasure in nano-
magnetic switches of different sizes, Nano Energy 19, 108
(2016).

[10] K. Proesmans, J. Ehrich, and J. Bechhoefer, Finite-time
landauer principle, Phys. Rev. Lett. 125, 100602 (2020).

[11] Y. Jun, M. Gavrilov, and J. Bechhoefer, High-precision
test of landauer’s principle in a feedback trap, Phys. Rev.
Lett. 113, 190601 (2014).

[12] S. Dago, J. Pereda, N. Barros, S. Ciliberto, and L. Bel-
lon, Information and thermodynamics: Fast and precise
approach to landauer’s bound in an underdamped mi-
cromechanical oscillator, Phys. Rev. Lett. 126, 170601
(2021).

[13] S. Dago and L. Bellon, Dynamics of information era-
sure and extension of landauer’s bound to fast processes,
Phys. Rev. Lett. 128, 070604 (2022).

[14] J. Gieseler and J. Millen, Levitated Nanoparticles for Mi-
croscopic Thermodynamics—A Review, Entropy 20, 326
(2018).

[15] J. Gieseler, L. Novotny, C. Moritz, and C. Dellago, Non-
equilibrium steady state of a driven levitated particle
with feedback cooling, New J. Phys. 17, 045011 (2015).

[16] U. Seifert, Stochastic thermodynamics, fluctuation the-
orems and molecular machines, Reports on Progress in
Physics 75, 126001 (2012).

[17] K. H. Kim and H. Qian, Entropy production of brownian
macromolecules with inertia, Phys. Rev. Lett. 93, 120602
(2004).

[18] L. Granger and H. Kantz, Thermodynamic cost of mea-
surements, Phys. Rev. E 84, 061110 (2011).

[19] M. L. Rosinberg, T. Munakata, and G. Tarjus, Stochas-

tic thermodynamics of Langevin systems under time-
delayed feedback control: Second-law-like inequalities,
Phys. Rev. E 91, 042114 (2015).

[20] P. Paolino, F. Aguilar Sandoval, and L. Bellon, Quadra-
ture phase interferometer for high resolution force spec-
troscopy, Rev. Sci. Instrum. 84, 095001 (2013).

[21] Doped silicon cantilever OCTO1000S from Micromo-
tive Mikrotechnik, nominal length 950µm, nominal mass
5× 10−11 kg.

[22] L. Bellon, Thermal noise of microcantilevers in viscous
fluids, Journal of Applied Physics 104, 104906 (2008).

[23] M. Chupeau, S. Ciliberto, D. Guéry-Odelin, and
E. Trizac, Engineered swift equilibration for Brownian
objects: from underdamped to overdamped dynamics,
New J. Phys. 20, 075003 (2018).

[24] τγ is proportional to the power of the laser that creates
the trap and can vary widely, ranging from ∼ 0.1 ms
to 100 ms in the many optical tweezer setups that have
been used to study stochastic thermodynamics. We re-
tain 30 ms as the typical time scale of experiments tack-
ling Landauer’s bound [1, 2, 4, 6, 7, 10, 36].

[25] H.-J. Butt, B. Cappella, and M. Kappl, Force measure-
ments with the atomic force microscope: Technique, in-
terpretation and applications, Surface Science Reports
59, 1 (2005).

[26] H. Kramers, Brownian motion in a field of force and
the diffusion model of chemical reactions, Physica 7, 284
(1940).

[27] K. Sekimoto, Stochastic Energetics, Lecture Notes in
Physics, Vol. 799 (Springer, 2010).

[28] K. Sekimoto and S. Sasa, Complementarity relation for
irreversible process derived from stochastic energetics,
Journal of the Physical Society of Japan 66, 3326 (1997).

[29] A. Gomez-Marin, T. Schmiedl, and U. Seifert, Optimal
protocols for minimal work processes in underdamped
stochastic thermodynamics, The Journal of Chemical
Physics 129, 024114 (2008).
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