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Algebraic Magnetism

Arnaud Mayeux

With an appendix by Matthieu Romagny

Abstract. For a diagonalizable monoid scheme A(M)S acting on an algebraic space X, we
introduce for any submonoid N of M an attractor space XN . We then investigate and study
various aspects of attractors associated to monoids.
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ARNAUD MAYEUX

1. Introduction

Let M be a finitely generated abelian group and let S be a base scheme. Let D(M)S be the
associated diagonalizable group scheme (i.e. if M = Zr ×

∏n
i=1 Z/niZ, then D(M)S = Gr

m,S ×∏n
i=1 µni,S is the product of a split torus with group schemes of roots of unity.) Algebraic actions

of diagonalizable group schemes appear systematically in many areas of mathematics. This article
is devoted to introduce a new tool in the general context of an arbitrary algebraic action of a
diagonalizable group scheme on a scheme or on an algebraic space. The style is foundational
and we in fact develop the theory for any diagonalizable monoid scheme (to be defined in this
article).

1.1 Definition of algebraic attractors

Let S be a scheme. Let M be an abelian monoid. Let Z[M ] be the ring
⊕

m∈M ZXm where the
multiplication is induced by the structure of monoid on M . Let A(M) be Spec(Z[M ]), it is a
monoid scheme over Spec(Z). We consider the base change A(M)S = A(M)×Spec(Z)S, it is called
a diagonalizable monoid scheme over S (if M is moreover a group A(M)S is also denoted D(M)S
and is a diagonalizable group scheme). For any submonoid N of M , A(M)S acts canonically on
A(N)S . Let X be an algebraic space over S with an action a of A(M)S . The main idea in this
paper is to introduce the following definition, for any submonoid N of M :

Definition 1.1. Let XN be the contravariant functor from schemes over S to Sets given by

(T → S) 7→ Hom
A(M)T
T (A(N)T , XT )

where Hom
A(M)T
T (A(N)T , XT ) is the set of A(M)T -equivariant T -morphisms from A(N)T to

XT = X ×S T . The functor XN is called the attractor associated to the submonoid N under the
action of A(M)S on X.

1.2 Magnets and attractors

We proceed with the notation from §1.1 and assume that X → S is separated. If N ⊂ L are
submonoids of M , then we have a canonical monomorphism XN ⊂ XL. Moreover X0 identifies
with the fixed-points functor XA(M)S and XM identifies with X. So for any submonoid N ⊂M ,
we have monomorphisms X0 ⊂ XN ⊂ X. We now use the following terminology: a magnet for the
action a is a submonoid N of M . A magnet N ⊂M is thought as something which algebraically
attracts the subspace XN of X. For each attractor space XN there is a minimal magnet E such
that XN = XE , E is called a pure magnet. We have a bijection between attractor spaces and the
set 0(a) of pure magnets (cf. Theorem 15.3). Assume now moreover that X is finitely presented
over S, Theorem 15.4 says that the set of pure magnets 0(a) is finite (cf. Theorem 15.4 for our
precise assumptions).

1.3 Faces

We proceed with the notation from §1.2 and assume for simplicity that M is a finitely generated
abelian groups. We fix a submonoid N ⊂ M . A face of N is by definition a submonoid F of N
such that the canonical M -graded projection Z[N ]→ Z[F ] is a morphism of rings. Equivalently,
F ⊂ N is a face if for any two elements x, y ∈ N the following equivalence holds:

x + y ∈ F ⇔ x ∈ F and y ∈ F.
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Note that the only face of the group M is M itself, so faces matter only in the world of monoids.
Each face of N contains N∗, the face of invertible elements in N . Now if F ⊂ N is a face, we get
a canonical transformation of functor pN,F : XN → XF . Recall that on the other hand we have a
monomorphism XF → XN . The map pN,F : XN → XF could be thought as a directional limit.
Now if Z ⊂ XF is a monomorphism, we put XN

F,Z = XN ×XF Z and we call it the attractor
associated to N with prescribed limit Z relatively to the face F , if F = N∗ we also use the
notation XN

Z . We have a canonical monomorphism XN
F,Z → XN . The concept of attractors with

prescribed limits allows to reduce the fixed-points parts of attractors.

1.4 Summary of results

This article studies intrinsically algebraic magnetism, i.e. the formalism of attractors associated
to magnets. Consequently, we prove in this paper a large number of results. We list here the
most significant ones as informal slogans, with precise references.

(i) Attractors are compatible with fiber products and base changes (cf. Proposition 3.7, Propo-
sition 3.8 and Proposition 3.9).

(ii) Attractors preserve monoid and group structures (cf. Proposition 3.14).

(iii) Attractors are compatible with equivariant actions in a natural sense (cf. Proposition 3.29).

(iv) Attractors are representable in many cases (cf. Theorems 3.19 and 8.3, Remark 8.4 and
Proposition 3.29 (iii)).

(v) In the affine case, attractors are representable by explicit closed subspaces and intersections
of attractors correspond to intersections of magnets (cf. Theorem 3.19 and Proposition
3.22).

(vi) Inclusions of monoids give (mono)morphisms on attractors and face inclusions provide re-
tractions (cf. Remark 3.5, Fact 3.6, Fact 3.10, Fact 3.15, Proposition 3.27, Corollary 3.28).

(vii) Equivariant morphisms of spaces induce morphisms on attractors; moreover closed immer-
sions give closed immersions, open immersions give open immersions, smooth morphisms
give smooth morphisms, étale morphisms give étale morphisms, unramified morphisms give
unramified morphisms, monomorphisms give monomorphisms, locally finitely presented
morphisms give locally finitely presented morphisms (cf. Fact 3.16, Corollary 11.2, Corol-
lary 11.6, Corollary 11.4, Fact 3.17, Lemma 3.24, Proposition 12.2, Fact 3.18). However, flat
morphisms do not give flat morphisms on attractors in general (cf. Remark 11.10).

(viii) Attractors of attractors make sense and correspond to intersections of magnets (cf. Remarks
3.11 and 3.12 and Proposition 3.30).

(ix) Attractors associated to subgroups correspond to fixed-points under diagonalizable group
schemes (cf. Proposition 3.32).

(x) Faces and attractors allow to obtain easily non trivial cartesian diagrams (cf. Remark 16.9
and Proposition 3.33).

(xi) Attractors preserve smoothness in two different senses (cf. Section 11, e.g. Corollaries 11.2
and 11.9).

(xii) The morphism XN → XN∗
induces a bijection on the sets of connected components (cf.

Proposition 12.1).

(xiii) Attractors commute with tangent spaces and Lie algebras (cf. Propositions 16.2 and 16.4).

(xiv) Attractors make sense for ind-spaces and behave as one can expect (cf. Proposition 14.4).

(xv) Attractors commute with dilatations (cf. Proposition 13.1).
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1.5 Examples

Let us discuss some examples. We refer to §16 and Example 15.10 for some other examples.

Example 1.2. Assume that X = An
S =: V and A(M)S acts linearly so that the action induces

a direct sum decomposition in weight spaces V =
⊕

m∈M Vm, then VN =
⊕

n∈N Vn ⊂ V.

Example 1.3. (Magnetic point of view on reductive groups) Let G be a reductive group scheme
over S. Let T = D(M)S be a maximal split torus of G. Let a be the adjoint action of T
on G. The set of pure magnets is given by additively stable sets of roots. Algebraic attractors
associated to the action a give all the well-known classical objects of the theory of reductive groups
(Levi subgroups containing T , parabolic subgroups containing T , ”groupes de type R à fibres
résolubles” [SGA3, Exp. XXII §5.6]). Moreover attractors with prescribed limits give unipotent
radicals of such objects, namely root groups and unipotent radicals of parabolic groups. We
refer to §16.4, Proposition 16.14 and [ALRR22, §6.3] for some precise statements. It is natural
to elaborate further on the relation of our formalism with the study of the structure of more
general algebraic groups.

1.6 Relation with other works

Let us list the main sources of inspiration for our work.

(i) Our work is of a completely different nature than logarithmic algebraic geometry. However
it has in common with logarithmic algebraic geometry to use schemes associated to monoids
as background and [Og, Part I] were useful at some stages of the realization of our work
(cf. e.g. Proposition 2.8 and Fact 2.9).

(ii) If M = Z and N = N, then our attractors restrict to the well-known attractors associated
to Gm-actions. As a consequence, our work was highly inspired by the following beautiful
works that include studies of Gm-actions

[RefGm ] :=
{

[Bi73], [He80], [Ju85], [CGP10], [Dr15], [DG14], [Mar15], [Ri16], [HR21]
}
.

We now provide some examples of relations between statements in our work and in [RefGm ]:

(a) statement of Definition 3.1 was partly inspired by [Ri16, Definition 1.3], [Dr15, Definition
1.3.2], [He80, II.4.1], etc,

(b) statement of Theorem 3.19 was partly inspired by [CGP10, Lemma 2.1.4], [Dr15, §1.3.4],
[Ri16, Lemma 1.9], etc,

(c) statement of Proposition 5.1 was partly inspired by [Ri16, Lemma 1.11],
(d) statements of Propositions 6.3 and 8.1 and Theorem A.1 were partly inspired by [Ri16,

Lemma 1.10], [Ri16, Theorem 1.8 (i)], [Dr15, Proposition 1.2.2.], etc,
(e) statement of Theorem 8.3 was partly inspired by [Ri16, Theorem 1.8], [Dr15, Theorem

1.4.2], etc
(f) statement of Proposition 12.1 was partly inspired by [Ri16, Corollary 1.12],
(g) statement of Corollary 11.2 was partly inspired by [Mar15, Theorem 1.1], [Ri16, Theorem

1.8 (iii)], [HR21, Lemma 2.2 (ii)],
(h) statement of Corollary 11.9 was partly inspired by [Dr15, Proposition 1.4.20],
(i) statement of Proposition 12.2 was partly inspired by [HR21, Corollary 2.3].

Similarly, some of our proofs are also partly inspired by the proofs in [RefGm ]. Our proof
of smoothness results (Corollaries 11.2 and 11.9) use formal smoothness (Propositions 11.1
and 11.7) and was partly inspired by [SGA3, Exp. XII Théorème 9.7 (unpublished)]. We
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invite the interested reader to read [RefGm ] to form his own opinion. Of course, many
statements on attractors associated to monoids in our paper do not have analogs in [RefGm ]
cf. e.g. Proposition 3.24, Proposition 6.8, Fact 3.15, Proposition 3.22, Proposition 3.33,
Proposition 8.4, Proposition 13.1, Corollary 13.3, Theorem 15.3, Theorem 15.4, etc. We
note that Proposition 3.30 makes sense for Gm-actions (it says that (X+)− = (X−)+ = X0)
but we did not come across it in [RefGm ]. Let us mention that [JS18] and [JS20] generalize
attractors associated to Gm-actions in an orthogonal direction to our.

(iii) Of course this work is written in the language of Grothendieck schemes [EGA] and Artin’s
algebraic spaces [Ar71], we mainly use [StP] as treatment for this theory in the present text.
We use algebraic spaces instead of schemes for the same reasons than [Dr15] and [Ri16]:
some actions of group schemes that we are interested in are not Zariski locally linearizable
but are étale locally linearizable by deep results of Alpher-Hall-Rydh [AHR21]. This leads
to use étaleness as local notion instead of openess and so to use algebraic spaces instead of
schemes.

(iv) Our work was inspired by [SGA3] for many technical aspects around group schemes.

1.7 Organization of the paper

1.7.1 Sections 2-16. Section 2 introduces diagonalizable monoid schemes and often relies on
[Og]. Section 3 introduces algebraic attractors associated to monoids and prove several results.
Section 4 introduces attractors with prescribed limits. Sections 5-6-7-8 take care of several results
used to prove the representability of attractors in non-affine cases, in particular the notion of
Z-FPR and strongly-FPR atlases are introduced. Sections 9-10-11 deal with formal smoothness
and formal étaleness results. Section 12 is about topology of attractors. Section 13 shows that
attractors are compatible with dilatations. Section 14 takes care of ind-spaces. Section 15 studies
pure magnets. Section 16 is mainly about examples.

1.7.2 Appendix A. The important Appendix A, written by M. Romagny, is devoted to prove
the existence of Z-FPR atlases (cf. Theorem 6.8) using deep results of Alper-Hall-Rydh [AHR21].
Some important results of the paper are stated under the existence of Z-FPR atlases, cf. e.g
Theorem 8.3. One knows that such atlases exists for Sumihiro’s actions, but some actions are
not Sumihiro (cf. Section 7) and in this case one needs to know the existence of Z-FPR atlases
using other tools (this is also related to §1.6(iii)). This is why Appendix A is important. Appendix
A also contains interesting generalizations of some results stated in other sections (cf. Proposition
6.3, Proposition 8.1, and Theorem A.1).

1.8 Applications

We expect that our formalism and results could lead to applications, simplifications and con-
ceptual reformulations in most areas involving actions of diagonalizable group schemes. This
includes the following areas of mathematics: structure of algebraic groups, Bruhat-Tits theory,
representation theory, affine Grassmannians, geometric representation theory, geometric Satake
equivalence, Lie theory and physics, number theory, Langlands programs, etc. For example, the
reader is refered to [ALRR22, §6.3] for an application of an early version of the present work to
results on the structure of algebraic groups.

Acknowledgement. I am grateful to P. Gille, T. Richarz, S. Riche and M. Romagny for in-
terest, support and help. I thank A.-M. Aubert, S. Brochard, D. Calaque, J. P. dos Santos,
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D. Gaitsgory, T. Haines, B. Loisel, J. Lourenco and P. Scholze for stimulating or useful dis-
cussions. This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No
101002592).

2. Rings associated to monoids and their spectra

2.1 Reference for the language of commutative monoids

We refer to [Og] for a detailed and beautiful introduction to monoids and related structures.
We recall in this section some basic definitions and facts that we frequently use in our work. In
this article, monoids and rings are always commutative. Readers unfamiliar with monoids should
read [Og, I.1]. Let us recall some very basic notations, again we refer to [Og, I] for a more general
and conceptual presentation. Let P be a monoid and N ⊂ P and L ⊂ P be two submonoids. Let
N + L be {n + l ∈ P |n ∈ N, l ∈ L}. Then N + L is a submonoid of P . An arbitrary intersection
of submonoids is a submonoid. Let P be a monoid and let E be a subset of P , then we denote
by [E⟩ the smallest submonoid of P containing E, this is the intersection of all monoids of P
containing E. Similarly if M is a group and E is a subset of M , we denote by (E) the subgroup
of M generated by E. Let M be an abelian group and let N be a submonoid of M . The subgroup
generated by N in M is denoted Ngp, in fact Ngp = {x−y|x, y ∈ N}. We have an obvious notion
of finitely generated monoids. The monoid (N⩾1 ×N)∪ (0, 0) is not finitely generated and it is a
submonoid of the finitely generated abelian group Z× Z.

2.2 Diagonalizable monoid algebraic spaces

We fix in this section an arbitrary commutative monoid M . We will often work with submonoids
of M and will often use the symbols N,N ′, L,Q or F to denote them.

Definition 2.1. Let N be a commutative monoid. Let Z[N ] be the ring whose underlying
abelian group is

⊕
n∈N ZXn, where for any n the abelian group ZXn is a formal copy of Z, and

multiplication is induced by the operation of the monoid: Xn×Xn′
= Xn+n′

. We write X0 = 1.
The ring Z[N ] is called the ring associated to the monoid N .

Fact 2.2. Let N be a commutative monoid. The ring Z[N ] is a bialgebra over Z. The augmen-
tation is the map Z[N ]→ Z sending Xn to 1 for every n ∈ N . The comultiplication is the map
Z[N ] → Z[N ] ⊗ Z[N ] sending Xn to Xn ⊗Xn for n ∈ N . Moreover, if N is a group, Z[N ] is a
Hopf algebra over Z, the antipode being the map Z[N ] → Z[N ] sending Xn to X−n for every
n ∈ N .

Definition 2.3. Let N be a commutative monoid. Let R be a ring. Let B be an algebraic space
over a scheme S. Let OS be the structure sheaf of S (cf. [StP, Tag 01IJ] and [StP, Tag 0091]).
Let OB be the structure sheaf of B in the sense of [StP, Tag 04KD].

(i) We put R[N ] = Z[N ] ⊗Z R. Obviously, R[N ] =
⊕

n∈N RXn. The ring R[N ] is canonically
a R-bialgebra.

(ii) Let OS [N ] be the OS-algebra obtained by sheafification of the presheaf of algebras given by
OS(U)[N ] for any open subset U ⊂ S, this is a sheaf of algebras (cf. [StP, Tag 00YR]). Note
that the underlying OS-module is called the free OS-module with basis N . In particular, as
OS-module, OS [N ] is isomorphic to

⊕
n∈N OS . If U is a quasi-compact open subset of S,

then OS [N ](U) = OS(U)[N ] (cf. [StP, Tag 01AI]). The OS-algebra OS [N ] is canonically an
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OS-bialgebra.

(iii) Let OB[N ] be the OB-algebra obtained by sheafification of the presheaf of algebras given by
OB(T )[N ] for any T ∈ Bspaces,étale (cf. [StP, Tag 03G0] for the notation Bspaces,étale), this is
a sheaf of algebras (cf. [StP, Tag 00YR]). Note that the underlying OB-module is called the
free OB-module with basis N (cf. [StP, Tag 03DD]). In particular, as OB-module, OB[N ] is
isomorphic to

⊕
n∈N OB. If T ∈ Bspaces,étale is quasi-compact, then OB[N ](T ) = OB(T )[N ]

by [StP, Tag 0935]. The OB-algebra OB[N ] is canonically an OB-bialgebra.

(iv) Assume that moreover N is a group, then R[N ] (resp. OS [N ], resp. OB[N ]) is canonically
a Hopf algebra over R (resp. OS , resp. OB).

Definition 2.4. (Diagonalizable monoid schemes and algebraic spaces) Let N be a commutative
monoid. Let S be a scheme and let B be an algebraic space over S.

(i) Let A(N) be the scheme Spec(Z[N ]). This is a monoid scheme over Spec(Z).

(ii) We put A(N)S = A(N)×Spec(Z) S, this is canonically a monoid scheme over S.

(iii) We put A(N)B = A(N)S ×S B, this is canonically a monoid algebraic space over B.

(iv) The objects A(N), A(N)S and A(N)B are called diagonalizable monoid schemes and alge-
braic spaces. If N = M is an abelian group, then A(M) is denoted D(M) and is a group
scheme over Spec(Z) called the diagonalizable group scheme associated to M . We define
similarly D(M)S and D(M)B.

Remark 2.5. Let M be an abelian group and N be a monoid. The reference [SGA3] uses the
notation DS(M) where we use D(M)S . Similarly, the notation AB(N) can be used to denote
A(N)B. We like to use standard notation and see A(N)B and D(M)B as base change from
Spec(Z) to B of A(N) and D(M).

Fact 2.6. Let N be a commutative monoid. Let B be an algebraic space over a scheme S.

(i) The monoid scheme A(N)S is affine and flat over S, moreover its quasi-coherent OS-
bialgebra is OS [N ] (cf. Definition 2.3).

(ii) The monoid algebraic space A(N)B is affine and flat over B, moreover its quasi-coherent
OB-bialgebra is OB[N ] (cf. Definition 2.3).

Proof. Being affine and flat is stable by base change, so it is enough to prove that A(N) is affine
and flat over Spec(Z). It is obvious that A(N) is affine and flat over Spec(Z) and this proves
the first parts of both assertions. We claim that the OSpec(Z)-bialgebra of A(N) is OSpec(Z)[N ].

Let p = A(N)→ Z. We know that p∗OA(N) = Z̃[N ]. So by [StP, Tag 01ID], we have p∗OA(N) =⊕̃
n∈N Z =

⊕
n∈N Z̃ =

⊕
n∈N OSpec(Z) = OSpec(Z)[N ] and this finishes to prove the claim. Now

by [StP, Tag 01SA], we have that q∗OA(N)S = r∗(p∗OA(N)) where q : A(N)S → S and r : S → Z.
So by [StP, Tag 01AJ], we have q∗OA(N)S = OS [N ]. The last assertion is proved similarly using
[StP, Tag 03M1], [StP, Tag 081V] and [StP, Tag 03DC].

Fact 2.7. We have a canonical identification A(N × L) = A(N) ×Spec(Z) A(L) for any pair of
monoids N,L. If B is an algebraic space over a scheme S, then A(N × L)S = A(N)S ×S A(L)S
and A(N × L)B = A(N)B ×B A(L)B.

Proof. It is enough to prove the first assertion. This follows from the identity

Z[N × L] =
⊕

(n,l)∈N×L

ZX(n,l) =
( ⊕
n∈N

ZXn
)
⊗Z

(⊕
l∈L

ZX l
)

= Z[N ]⊗Z Z[L].
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Recall that a monoid N is cancellative if for all x, y, z ∈ N, x + y = x + z implies y = z. In
[Og], the word ”integral” is used instead of ”cancellative”, cf. [Og, Definition 1.3.1]. A monoid
is cancellative if and only if it identifies with a submonoid of a group.

Proposition 2.8. Let N be a cancellative commutative monoid. Let B be an algebraic space
over a scheme S.

(i) The morphism of rings Z[N ]→ Z[N ×N ], Xn 7→ X(n,n) is flat.

(ii) The multiplication m : A(N)×Spec(Z) A(N)→ A(N) of the monoid scheme A(N) is flat.

(iii) The multiplication morphism m : A(N)S ×S A(N)S → A(N)S is flat.

(iv) The multiplication morphism m : A(N)B ×B A(N)B → A(N)B is flat.

Proof. The monoid N acts freely on N ×N via n · (m, l) = (m + n, l + n). So the Z[N ]-module
Z[N × N ] is flat by [Og, Prop. 4.5.12 p.134], and so (i) holds. Now (ii) follows using Facts 2.2
and 2.7. Assertions (iii) and (iv) follow since flatness is preserved by base change.

Fact 2.9. Let N be a finitely generated monoid. Let B be an algebraic space over a scheme S.

(i) The monoid N is finitely presented.

(ii) The Z-algebra Z[N ] is finitely presented.

(iii) The structural morphism A(N)→ Spec(Z) is finitely presented.

(iv) The multiplication morphism A(N)×Spec(Z) A(N)→ A(N) is finitely presented.

(v) The morphisms A(N)S → S and A(N)S ×S A(N)S → A(N)S are finitely presented.

(vi) The morphisms A(N)B → B and A(N)B ×B A(N)B → A(N)B are finitely presented.

Proof. (i) This is [Og, Theorem 2.1.7].

(ii) This follows from (i).

(iii) This follows from (ii).

(iv) Since N is finitely generated, N × N is finitely generated and so A(N) ×Spec(Z) A(N) is
finitely presented over Spec(Z). Now the assertion follows using [StP, Tag 02FV].

(v) This follows using previous assertions and [StP, Tag 01TS].

(vi) This follows using previous assertions and [StP, Tag 049M].

Definition 2.10.

(i) Let eZ be the trivial monoid scheme over Spec(Z), it is a group scheme over Spec(Z) equal
to Spec(Z) as scheme. Note that eZ ≃ A(0) where 0 is the trivial monoid.

(ii) Let S be a scheme. We put eS = eZ ×Spec(Z) S, this is the trivial monoid scheme over S.

(iii) Let B be an algebraic space over a scheme S. We put eB = eS ×S B, this is the trivial
monoid algebraic space over B.

Fact 2.11. Let N be a submonoid of M . Let B be an algebraic space over S. Then we have an
algebraic action of A(M) on A(N) over Spec(Z) given by:

Z[N ] −→ Z[N ]⊗ Z[M ]

Xn 7→ Xn ⊗Xn.
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Equivalently, this action comes from the general Proposition 2.21 that we discuss below in this
section. Remark also that the action of A(M) on A(N) comes from the morphism of monoid
schemes A(M)→ A(N). By base change, we obtain actions of A(M)S on A(N)S and of A(M)B
on A(N)B.

Fact 2.12. Let N ′ ⊂ N be submonoids of M , let B be an algebraic space over S. Then we
have a canonical morphism of bialgebras over Z, Z[N ′] → Z[N ] (sending Xn′

to Xn′
for any

n′ ∈ N ′). This induces a canonical morphism A(N) → A(N ′) of monoid schemes over Z, this
morphism is A(M)-equivariant. We obtain canonical equivariant morphisms of monoid objects
A(N)S → A(N ′)S and A(N)B → A(N ′)B.

Proof. The inclusion morphism preserves M -gradings on Z[N ′] and Z[N ].

Definition 2.13. Let F ⊂ N be submonoids of M . We say that F is a face of N if the projection
map

Z[N ]→ Z[F ], Xn 7→ 0 if n ∈ N \ F and Xn 7→ Xn if n ∈ F

is a morphism of rings.

Fact 2.14. If F is a face of a submonoid N of M , then the associated morphism of schemes
A(F ) → A(N) is A(M)-equivariant. For any algebraic space B over any scheme S, A(F )S →
A(N)S is A(M)S-equivariant and A(F )B → A(N)B is A(M)B-equivariant.

Proof. The projection morphism preserves M -gradings on Z[F ] and Z[N ].

Proposition 2.15. Let F ⊂ N be submonoids of M . Then F is a face of N if and only if for all
x, y ∈ N

x + y ∈ F ⇔ x ∈ F and y ∈ F.

Proof. Let ϕ denote the projection and assume it is a morphism of rings. Let x, y ∈ N . Then
x+y ∈ F ⇔ ϕ(Xx+y) = Xx+y = ϕ(Xx)ϕ(Xy) is not zero⇔ both x and y are in F . Reciprocally
assume that for all x, y ∈ N , x + y ∈ F ⇔ x ∈ F and y ∈ F , then we have ϕ(XxXy) =
ϕ(Xx)ϕ(Xy).

Proposition 2.16. Let N be a monoid. Let N∗ = {x ∈ N | ∃y ∈ N such that x + y = 0}, then
N∗ is a submonoid of N and a group, moreover N∗ is a face of N . The group N∗ is the largest
subgroup of N , called the face of invertible elements.

Proof. We apply Proposition 2.15 as follows. Take x, y ∈ N . Assume x + y ∈ N∗, then there
exists z ∈ N such that x + y + z = 0, this shows that x and y are in N∗.

Fact 2.17. Let F be a face of a monoid N , then N∗ ⊂ F .

Proof. Let n ∈ N∗. Then n + (−n) = 0 belongs to F and so n belongs to F .

Proposition 2.18. Let N ⊂ L ⊂ L′ be submonoids of M . Assume that L is a face of L′. Then
N ′ := L′ \ (L \ N) is a submonoid of M and N is a face of N ′; moreover for any scheme S,
A(N ′)S is the push-out, in the category of schemes, of

A(L)S

A(L′)S A(N)S

.

9
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Proof. We have L′ \(L\N) = (L′ \L)⊔N and it is clearly a submonoid of M . It is also clear that
N is a face of N ′. Let us assume firstly that S = Spec(R) is affine. We have R[L′]×R[L] R[N ] ∼=
{(x, y) ∈ R[L′]×R[N ]|f(x) = g(y)} ∼= R[N ′], indeed an element x in R[L′] maps to an element in
R[N ] under the projection R[L′]→ R[L] if and only if x ∈ R[(L′\L)⊔N ]. The map R[N ′]→ R[N ]
is the projection morphism associated to the face inclusion N ⊂ N ′. The map R[N ′]→ R[L′] is
the morphism associated to the inclusion N ′ ⊂ L′. So by [StP, 0ET0] the scheme A(N ′)R is the
push-out, in the category of schemes, of the diagram

A(L)R

A(L′)R A(N)R

.

Now let us prove the general case. Let S = ∪i∈IUi be an affine open covering and write Ui =
Spec(Ri). Let Y be a scheme and let A(L′)S → Y and A(N)S → Y be two morphisms such that
the following diagram commutes

A(L)S

A(L′)S A(N)S

Y

.

We then obtain, for any i ∈ I, a commutative diagram

A(L)Ui

A(L′)Ui A(N)Ui

Y

.

Now since Ui is affine, we obtain a unique morphism fi : A(N ′)Ui → Y such that the following
diagram commutes

A(L)Ui

A(L′)Ui A(N)Ui

A(N ′)Ui

Y

fi

.

For i, j ∈ I, we have Ui×SUj = Ui∩Uj . Let Ui∩Uj = ∪q∈QVq be an affine open covering. We have
fi|A(N ′)Vq

= fj |A(N ′)Vq
for all q ∈ Q by the affine case done before. So we have fi|A(N ′)Ui∩Uj

=

fj |A(N ′)Ui∩Uj
by [GW, Prop. 3.5]. Thus using [GW, Prop. 3.5] again, we obtain a unique morphism

10
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f : A(N ′)S → Y such that the following diagram commutes

A(L)S

A(L′)S A(N)S

A(N ′)S

Y

f

.

This finishes the proof.

The category of so-called G-OS-module introduced in [SGA3, §4.7] for a group scheme G
over S naturally extends to monoid schemes over S. In particular A(M)S-OS-modules are well-
defined. For the convenience of the reader we recall the definition here. Recall that if F is an
OS-module, then W (F) is defined as a functor on Sch/S by the formula W (F)(T ) = (p∗F)(T )
where p : T → S is the associated morphism. Then W (F) is an OS-module where OS is the ring
functor on Sch/S given by the formula OS(T ) = OT (T ).

Definition 2.19. An A(M)S-OS-module is an OS-module F such that

(i) for any S-scheme T , the monoid A(M)S(T ) acts on W (F)(T ) and h·(x+λy) = h·x+λ(h·y)
for all h ∈ A(M)S(T ), x, y ∈W (F)(T ) and λ ∈ OS(T ),

(ii) for any S-morphism T → T ′ the actions of A(M)S(T ) on W (F)(T ) and of A(M)S(T ′) on
W (F)(T ′) are compatible with the morphisms A(M)S(T ′)→ A(M)S(T ) and W (F)(T ′)→
W (F)(T ).

In other words, it is an OS-module F with an OS-linear action of the S-monoid A(M)S on W (F).

Proposition 2.20. Let S be a scheme. The category of quasi-coherent A(M)S-OS-modules is
equivalent to the category of quasi-coherent M -graded OS-modules.

Proof. This is proved as [SGA3, Exp. I Proposition 4.7.3].

Proposition 2.21. Let S be a scheme and let X be a scheme over S such that X → S is affine.
Actions of A(M)S on X correspond to M -gradings of the quasi-coherent OS-algebra of X.

Proof. This is proved as [SGA3, Exp. I Corollaire 4.7.3.1].

3. Algebraic attractors associated to magnets and properties

Let us fix a base scheme S. In this paper, an S-space is an algebraic space over S. Let us fix an
S-space X. Let us fix a commutative monoid M and let A(M)S be the associated diagonalizable
monoid scheme over S (cf. Definition 2.4). We assume that A(M)S acts on X, this means that
we have a morphism of S-spaces

A(M)S ×S X
action−−−−→ X

11
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such that the following diagrams of S-morphisms commute

A(M)S ×S A(M)S ×S X A(M)S ×S X

A(M)S ×S X X

Id×action

m×Id

action

action

eS ×S X A(M)S ×S X

S ×S X X

Id×Id

ε×action

action

Id

where ε is the unit, i.e. the unique morphism of S-monoids from eS to A(M)S . In this section,
a magnet N is by definition a submonoid N ⊂ M , this terminology is specific to the purpose
of algebraic magnetism. For any magnet N ⊂ M , we consider A(N)S with the canonical action

of A(M)S as in Fact 2.11. For any scheme T → S, Hom
A(M)T
T (A(N)T , XT ) denotes the set of

A(M)T -equivariant T -morphisms from A(N)T to XT = X×S T . We now introduce the attractor
XN associated to a magnet N ⊂M under the action of A(M)S on X.

Definition 3.1. Let XN : (Sch/S) → Set be the contravariant functor that associates to an
object (T → S) the set

Hom
A(M)T
T (A(N)T , XT )

and that associates to the S-morphism T ′ → T the map

Hom
A(M)T
T (A(N)T , XT )→ Hom

A(M)T ′
T ′ (A(N)T ′ , XT ′)

(f : A(N)T → XT ) 7→ (fT ′ : A(N)T ×T T ′
f×Id−−−→ XT ×T T ′).

Proposition 3.2. The attractor XN is an object in the topos Sh
(
(Sch/S)fppf

)
, i.e. XN is a

sheaf on the site (Sch/S)fppf .

Proof. Let PSh((Sch/S)fppf ) be the category of all contravariant functors from (Sch/S)fppf to
Set. The functor XN is the equalizer, in the category PSh((Sch/S)fppf , Set), of

HomS(A(N)S , X) HomS(A(M)S ×S A(N)S , X)
Φ

Ψ

where Φ,Ψ are defined by: for any T/S and any f ∈ HomT (A(N)T , X), Φ(f)(h, a) = f(h · a)
and Ψ(f)(h, a) = h · f(a) for any T ′/T and any h ∈ A(M)T (T ′), a ∈ A(N)T (T ′). The topos
Sh

(
(Sch/S)fppf

)
is a full subcategory of PSh((Sch/S)fppf , Set). The functor HomS(X ′, X) :

T/S 7→ HomT (X ′T , XT ) is an fppf sheaf for any pair of S-schemes X,X ′, so it belongs to the
topos Sh

(
(Sch/S)fppf

)
. Equalizers in a category are unique when they exist. Equalizers exist in

any topos. The forgetful functor Sh
(
(Sch/S)fppf

)
→ PSh

(
(Sch/S)fppf

)
is a right adjoint (cf.

[StP, Tag 00WH]) so it preserves limits and in particular equalizers. We conclude that XN is
equal to the equalizer of (Φ,Ψ) in the category Sh

(
(Sch/S)fppf

)
, in particular XN belongs to

Sh
(
(Sch/S)fppf

)
.

Remark 3.3. Definition 3.1 makes sense for an arbitrary S-functor endowed with an action of
A(M)S . We sometimes use this implicitly.
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Remark 3.4. In the context of Definition 3.1, when we want to indicate that we take the attractor
XN relatively to the action of the monoid scheme A(M)S , we sometimes use the notation XN⊂M .

Remark 3.5. We have an identification X0 = XA(M)S where XA(M)S denotes the functor of
fixed-points (cf. Proposition 3.32 for an extension of this remark in the case where M is a finitely
generated group). This is tautological because A(0)S identifies with S endowed with the trivial
action. So the concept of attractors refines the concept of fixed-points.

Fact 3.6. We have an identification X = XM given as follows. Let T → S be a scheme. Let ϕ
be in XM (T ), we associate the morphism

T = eT
ε−→ A(M)T

ϕ−→ XT ∈ X(T )

where ε is the unit. Let φ be in X(T ), we associate the morphism

A(M)T = A(M)T ×T T
Id×φ−−−→ A(M)T ×XT

action−−−−→ XT .

Proposition 3.7. Let X1, X2, X3 be S-spaces endowed with actions of A(M)S . Let X1 → X2

and X3 → X2 be two A(M)S-equivariant morphisms of S-spaces. Let N ⊂M be a magnet.

(i) We have a canonical action of A(M)S on X1×X2 X3, the canonical maps X1×X2 X3 → X1

and X1 ×X2 X3 → X3 are A(M)S-equivariant and moreover the following is a cartesian
square in the category of S-spaces endowed with action of A(M)S (morphisms in this
category are A(M)S-equivariant morphisms of S-spaces)

X1 ×X2 X3

��

// X1

��

X3
// X2.

(ii) We have an isomorphism of functors

(X1 ×X2 X3)
N = X1

N ×XN
2
X3

N .

Proof. (i) Let T be a scheme. Then A(M)S(T ) acts on X1(T ) ×X2(T ) X3(T ) via g.(x1, x3) =
(g.x1, g.x3) (recall that (X1 ×X2 X3)(T ) = X1(T ) ×X2(T ) X3(T ) = {(x1, x3) ∈ X1(T ) ×
X3(T )|x1 ≡ x3 in X2(T )}). This proves the first assertion. The projection maps on X1

and X3 are A(M)S-equivariant by definition. Now let Y be an S-space with an action of
A(M)S . An A(M)S-equivariant morphism Y → X1×X2 X3 gives birth by composition with
projections to canonical A(M)S-equivariant morphisms Y → X1 and Y → X2. Reciprocally
let Y → X1 and Y → X3 be A(M)S-equivariant. Then we get a morphism in the category
of S-spaces Y → X1 ×X2 X3. This morphism is A(M)S-equivariant.

(ii) This is a direct consequence of the previous assertion.

Proposition 3.8. Let N ⊂ M be a magnet. Let Y and Z be two algebraic spaces over S
endowed with actions of A(M)S . Let A(M)S act componentwise on Y ×S Z. We have

(Y ×S Z)N = Y N ×S ZN .

Proof. This follows from Proposition 3.7.

Proposition 3.9. Let T → S be an S-scheme. The T -spaceXT = X×ST is canonically endowed
with an action of A(M)T . Let N ⊂M be a magnet. We have an identification of T -functors

XN ×S T = (XT )N .

13
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Proof. Indeed, if T ′ → T is a T -scheme, we have identifications of sets

(XN ×S T )(T ′) = HomT (T ′, XN ×S T )

= HomS(T ′, XN )

= Hom
A(M)T ′
T ′ (A(N)T ′ , XT ′) and,

(XT )N (T ′) = Hom
A(M)T ′
T ′ (A(N)T ′ , XT ×T T ′)

= Hom
A(M)T ′
T ′ (A(N)T ′ , XT ′).

Fact 3.10. Let N ⊂ L be magnets of M . For T → S, we have a morphism

Hom
A(M)T
T (A(N)T , XT )→ Hom

A(M)T
T (A(L)T , XT )

obtained using the morphism A(L)T → A(N)T (cf. Fact 2.12). This is functorial, so we get a
morphism of functors ιN,L : XN → XL.

Remark 3.11. Let N ⊂ M be a magnet. We have an action of the monoid scheme A(M)S on
XN given as follows. For any S-scheme T , we have actions of A(M)(T ) on XT and A(N)T , in

particular for any t ∈ A(M)(T ), we have arrows XT
t·−→ XT and A(N)T

t·−→ A(N)T . Now let

f ∈ XN (T ) = Hom
A(M)T
T (A(N)T , XT ) and t ∈ A(M)(T ). The composition A(N)T

f−→ XT
t·−→ XT

equals the composition A(N)T
t·−→ A(N)T

f−→ XT and is denoted t · f . This defines an action of
A(M)S on XN .

Remark 3.12. We proceed with the notation from Remark 3.11. We have an action of the

monoid scheme A(N)S on XN given as follows. Let f ∈ XN (T ) = Hom
A(M)T
T (A(N)T , XT ) and

t ∈ A(N)(T ). We define t · f to be A(N)T
t·−→ A(N)T

f−→ XT .

Remark 3.13. The action of Remark 3.11 can be obtained from the action of Remark 3.12 via the
canonical morphism of monoid schemes A(M)S → A(N)S . This follows from definitions and the
fact that the action of A(M)S on A(N)S comes from the canonical morphism of monoid schemes
A(M)S → A(N)S induced by the inclusion N ⊂M . Let us mention a sanitary check. If L ⊂M
is an other magnet, then under some working assumptions (XN⊂M )L⊂M = (XN⊂M )(N∩L)⊂N

(e.g. use directly 3.29, 3.30, 3.19 or 8.3).

Proposition 3.14. Let N ⊂M be a magnet.

(i) If X is a monoid algebraic space over S and the action of A(M)S is by monoid endomor-
phisms, then XN is a monoid functor.

(ii) If X is a group algebraic space over S and the action of A(M)S is by group automorphisms,
then XN is a group functor.

Proof. (i) Let T be a scheme over S. Let A(N)T
g→ XT and A(N)T

h→ XT be two elements in
XN (T ). Then we define gh as the composition

A(N)T → A(N)T ×T A(N)T → XT ×T XT → XT

where the first morphism is the diagonal morphism, the second is g × h, and the third
is the multiplication morphism coming from the group structure on X. The two firsts are

14
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equivariant by definitions and the third is equivariant because A(M)S acts on XS by monoid
endomorphisms. This defines a monoid law on XN .

(ii) By (i) we have a monoid law on XN . This law is a group law.

Fact 3.15. Let F and N be magnets of M and assume that F is a face of N . Then for all T → S
the A(M)T -equivariant morphism A(F )T → A(N)T (cf. Fact 2.14) induces a morphism

Hom
A(M)T
T (A(N)T , XT )→ Hom

A(M)T
T (A(F )T , XT ).

So we obtain a morphism of functors XN → XF , that we denote pN,F . The morphism pN,F

satisfies pN,F ◦ ιF,N = IdXF .

Proof. Clear.

Fact 3.16. If f : X → Y is an A(M)S-equivariant morphism of algebraic spaces, then for any
magnet N of M , we have a morphism of functors fN : XN → Y N .

Proof. For any T → S, send an equivariant arrow A(N)T → XT to A(N)T → XT → YT .

Fact 3.17. Let N ⊂M be a magnet. Assume X → Y is an A(M)S-equivariant monomorphism
of S-spaces, then XN → Y N is a monomorphism.

Proof. Let T → S be a scheme. Let A(N)T XT

f

g
be two equivariant S-morphisms and

assume the compositions A(N)T XT YT
f

g
are equal. Since XT → YT is a monomor-

phism, we get f = g.

Fact 3.18. Let N ⊂M be a magnet. Assume f : X → Y is an A(M)S-equivariant morphism of
S-spaces. If f is locally of finite presentation, then fN : XN → Y N is locally of finite presentation.

Proof. This follows from the definitions and [StP, Tag 04AK].

Theorem 3.19. Assume that X is affine over S. Let p : X → S be the structural morphism and
A = p∗OX so that X = SpecS(A). Let N be a magnet of M . The functor XN is representable
by a closed subscheme of X whose quasi-coherent ideal sheaf JN is the ideal sheaf generated
{Am|m ∈ M \ N} where Am is the component appearing in the direct sum decomposition
A =

⊕
m∈M Am coming from the action of A(M)S on X (cf. Proposition 2.21).

Proof. Since XN is a fppf sheaf by Proposition 3.2 and in particular a Zariski sheaf, the statement
is local on S using e.g. [StP, Tag 01JJ]. We assume S = Spec(B) and X = Spec(A), let A =⊕

m∈M Am be the decomposition coming from the action. Let J be the ideal of A generated by
{Am|m ∈M \N}. Let B′ be a B-algebra. It is enough to define functorial maps Θ and Ψ

HomB(A/J,B′)
Θ→←→
←
Ψ

HomM -graded
B (A,B′[N ])

such that Θ ◦ Ψ = Id and Ψ ◦ Θ = Id. Take A/J
F→ B′ on the left-hand-side and define a map

f = Θ(F ) on the right-hand-side as

A =⊕m∈M Am
f→ B′[N ]

am ∈ Am 7→ F ([am])Xm
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Let us check that this map Θ is well-defined. Since F ([am]) = 0 if m ∈ M \ N , the element
F ([am])Xm belongs to B′[N ]. We have to explain that f is a morphism of B-algebras. This is a
consequence of the identity

f(amam′) = F ([amam′ ])Xm+m′
= F ([am][am′ ])XmXm′

= f(am)f(am′).

So Θ is well-defined. Now take A
f→ B′[N ] on the right-hand-side. Then f(am) = 0 for all

am ∈ Am for all m ∈M \N , so f vanishes on J , i.e f factors through A→ A/J
f→ B′[N ]. Now

we define F = Ψ(f) as the composition A/J
f→ B′[N ]

Xn 7→1→ B′, this is a morphism of B-algebras.
Let us prove that Θ ◦ Ψ = Id. Let f be a morphism on the right-hand-side. Let an ∈ An for
n ∈ N , we have f(an) = λnX

n. We have

((Θ ◦Ψ)(f))(an) = (Θ(Ψ(f)))(an) = (Ψ(f))([an]) ·Xn = (f(an))|Xn=1 ·Xn = λnX
n = f(an).

Now let am ∈M \N , then

((Θ ◦Ψ)(f))(am) = (Θ(Ψ(f)))(am) = (Ψ(f))([am]) ·Xm = 0 = f(am).

This proves that Θ ◦ Ψ = Id. Let us prove that Ψ ◦ Θ = Id. Let F be a morphism on the left-
hand-side, and let us look at the image of [an] for some an ∈ An with n ∈ N under (Ψ ◦Θ)(F ) =
Ψ(Θ(F )) :

A/J
Θ(F )−−−→ B′[N ]→ B′

[an] 7→ F ([an])Xn 7→ F ([an]).

This finishes the proof of Theorem 3.19.

Corollary 3.20. Assume X is affine over S. If N ⊂ L are magnets of M , then XN → XL is a
closed immersion.

Proof. With the notation of Theorem 3.19, we have JL ⊂ JN .

Remark 3.21. Corollary 3.20 does not generalize outside the S-affine case.

Proposition 3.22. Assume X is affine over S. Let {Ni}i∈I be magnets of M . Then⋂
i∈I

XNi = X∩i∈INi =
∏
i∈I

XXNi .

Here ∩ means the scheme theoretic intersection as in [StP, Tag 0C4H] and infinite products of
affine morphisms make sense by [StP, Tag 0CNI].

Proof. This follows from the description of affine attractors given in Theorem 3.19 and the
identity

∑
i∈I JNi = J∩i∈INi that follows from the identity ∪i∈I(M \Ni) = M \ (∩i∈INi).

Remark 3.23. The first equality in Proposition 3.22 does not make sense outside the S-affine
case in general. This is because XN is not a closed subspace of X in general if X is not S-affine.
Moreover in many non-affine cases XN∩L ̸= XN ×X XL (e.g. cf. [Dr15, Remark 1.6.3]).

Lemma 3.24. Let f : Z → Y be an A(M)S-equivariant closed immersion of S-affine schemes. Let
N be a magnet of M . Then the morphism ZN → Y N is a closed immersion, and more precisely
ZN = Z ×Y Y N .

Proof. This is local on S so we assume S = Spec(R) is affine, moreover we identify Z with a
closed subscheme of Y . Let A be the R-algebra of Y and I be the ideal of A defining Z. Let J
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be the ideal of A defining Y N , cf. Proof of Theorem 3.19 . Then the ideal of A/I defining ZN

is I + J/I using Theorem 3.19. So the ideal of A defining ZN is I + J . Now the isomorphism
A/I ⊗A A/J ∼= A/(I + J) finishes the proof.

Remark 3.25. Proposition 12.2 extends Lemma 3.24 outside the S-affine case. Note that the
proof of Proposition 12.2 uses Lemma 3.24.

Proposition 3.26. Let E be a quasi-coherent A(M)S-OS-module and let V(E) = SpecS(Sym E)
be the associated quasi-coherent bundle defined by E . Then A(M)S acts linearly on V(E). Let

N be a magnet of M . Then the attractor
(
V(E)

)N
associated to N is canonically isomorphic

to V(EN ) where EN is the N -graded component of E relatively to the A(M)S-action on E (cf.
Proposition 2.20).

Proof. Let p : T → S be a scheme over S. We have V(E) ×S T = V(p∗E). The quasi-coherent
OT -module inherits a M -grading and we have (p∗E)N = p∗(EN ). The following identifications
finish the proof

Hom
A(M)T
T (A(N)T ,V(p∗E)) = HomM -graded

OT -alg

(
Sym p∗E ,OT [N ]

)
= HomM -graded

OT -mod

(
p∗E ,OT [N ]

)
= HomM -graded

OT -mod

(
p∗EN ,OT [N ]

)
= HomOT -mod

(
p∗EN ,OT

)
= HomOT -alg

(
Sym p∗EN ,OT

)
= V(EN )(T ).

Proposition 3.27. Assume that X is separated and let N ⊂ N ′ be two magnets of M . Then
the map of functors XN → XN ′

is a monomorphism, i.e. for any scheme T over S we have a
canonical inclusion XN (T ) ⊂ XN ′

(T ).

Proof. Since N ⊂ N ′, by [StP, Tag 01R8], the scheme theoretic image of A(N ′)T → A(N)T is
A(N)T for any scheme T over S. Now let f1, f2 be two elements in XN (T ) such that their images
in XN ′

(T ) coincide. Consider the schematic kernel of the maps (f1, f2) : A(N)T → XT . Since
XT is separated, ker(f1, f2) is a closed subscheme of A(N)T (the proof of [GW, Def./Prop. 9.7]
works in this context). So since the scheme theoretic image of A(N ′)T → A(N)T is A(N)T , we
have ker(f1, f2) = A(N)T and so f1 = f2.

Corollary 3.28. Assume that X is separated and let N be a magnet of M . Then the natural
map of functors XN → X is a monomorphism.

Proof. Combine Proposition 3.27 and Remark 3.6.

Proposition 3.29. Let Z be a monoid and let f : M → Z be a morphism of monoids. Let Y
be a magnet of Z and let N be f−1(Y ). Then N is a magnet of M . Assume that one of the
following conditions holds

(i) X is affine over S,

(ii) M and Z are finitely generated groups,

(iii) M is cancellative, Z = Mgp, N = Y and X is separated,
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(iv) add more as needed,

then in each case we have an identification of functors XN = XY , where on the left-hand-side X
is seen as an A(M)S-space and on the right-hand-side as an A(Z)S-space (via A(Z)S → A(M)S
dual to f : M → Z). In other words, with the notation of Remark 3.4, we have XN⊂M = XY⊂Z .

Proof. (i) We reduce to the case where S and X = Spec(A) are affine. We have two compatible
gradings on A, one given by Z and one given by M . For any y ∈ Y , we have Ay =
⊕n∈f−1(y)An. So ⊕z∈Z\Y Az = ⊕n∈M\NAn. Then the ideal defining XN equals the ideal

defining XY , cf. Theorem 3.19.

(ii) Let T → S be a scheme. We have a canonical map

θ : Hom
D(M)T
T (A(N)T , XT )→ HomD(Z)T (A(Y )T , XT )

obtained by precomposition with A(Y )T → A(N)T . Let us show that θ is an isomorphism.
We construct the reciprocal map. Let f : A(Y )T → XT be a D(Z)T -equivariant map. We
get a map f ′ : D(M)T ×T A(Y )T → XT given on points by (g, x) 7→ g · f(x). Let K be
f(M) + Y gp, this is a subgroup of Z. We have a morphism of groups ϕ : f(M) × Y gp →
f(M) + Y gp given by (f(m), y) 7→ f(m) + y. The morphism ϕ induces a closed immersion
of group schemes D(f(M) + Y gp)T → D(f(M)× Y gp)T = D(f(M))T ×T D(Y gp)T . Let us
consider the action of D(f(M))T ×T D(Y gp)T on D(M)T ×T A(Y )T given by (g, h) ·(g′, x) =
(g · g′, h−1 · x), remark that this action is free. So we obtain by composition a free action ⋆
of D(K)T on D(M)T ×T A(Y )T . Let us consider the morphisms

ξ⋆, ξ : D(K)T ×T D(M)T ×T A(Y )T → XT

where ξ⋆ is given by (k, g, y) 7→ f ′(k ⋆ (g, y)) and ξ is given by (k, g, y) 7→ f ′(g, y). Let us
prove that ξ⋆ = ξ. Let us consider the canonical morphism

p : D(Z)T ×T D(M)T ×T A(Y )T → D(K)T ×T D(M)T ×T A(Y )T

induced by the inclusion K ⊂ Z. Then p ◦ ξ = p ◦ ξ⋆, and so ker(ξ, ξ⋆) = D(K)T ×T

D(M)T ×T A(Y )T because the schematic image of p is D(K)T ×T D(M)T ×T A(Y )T . This
finishes the proof of the claim ξ = ξ⋆. So we have f ′(k ⋆ (g, x)) = f ′((g, x)) for all T ′ → T ,
k ∈ D(K)T (T ′), g ∈ D(M)T (T ′) and x ∈ A(Y )T (T ′). So the map f ′ induces by fac-
torization a map (D(M)T ×T A(Y )T )/D(K)T → XT where (D(M)T ×T A(Y )T )/D(K)T
is the fpqc quotient as in [SGA3, VIII Th. 5.1]. Now let A be the quasi-coherent alge-
bra of the T -affine scheme (D(M)T ×T A(Y )T ). Consider the K-grading on A associated
to the action of D(K)T on (D(M)T ×T A(Y )T ). By [SGA3, VIII Th. 5.1], (D(M)T ×T

A(Y )T )/D(K)T is affine with quasi-coherent algebra the degree zero part A0 in A. The
K-grading on A is given locally by deg(X(m,y)) = f(m) − y ∈ K. This implies that
A0 ≃ OT [f−1(Y )]. This identifies (D(M)T ×T A(Y )T )/D(K)T with A(N)T . So the map
f induces a map A(N)T → XT . This map is D(M)T -equivariant. The obtained map
HomD(Z)T (A(Y )T , XT )→ HomD(M)T (A(N)T , XT ) is the reciprocal map of θ.

(iii) We have to show that for any T/S, Hom
D(Mgp)T
T (A(N)T , XT ) = Hom

A(M)T
T (A(N)T , XT ).

The inclusion ⊃ is clear. Reciprocally let ϕ : A(N)T → XT be D(Mgp)T -equivariant. We
use that X is separated and that the schematic image of

A(N)T ×T D(Mgp)T → A(N)T ×T A(M)T

is A(N)T ×T A(M)T to prove that ϕ is A(M)T -equivariant (cf. the proof of Proposition 3.27
for similar arguments).
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Proposition 3.30. Let L andN be arbitrary submonoids ofM . Assume that one of the following
conditions holds

(i) X is affine over S,

(ii) M is a finitely generated abelian group,

(iii) M is cancellative, Mgp is finitely generated as abelian group, and X and XN are separated
algebraic spaces,

(iv) add more as needed,

then we have canonical identifications

(XN )L = XN∩L,

cf. 3.11 for the actions of A(M)S on XN and XL that we used implicitely on the left-hand sides.

Proof. (i) We use the explicit description given in Theorem 3.19.

(ii) Let us use [SGA3, VIII Th. 5.1] as follows. We remark that

(XN )L(T ) = Hom
D(M)T×TD(M)T
T (A(N)T ×T A(L)T , XT )

where D(M)T ×T D(M)T acts on XT via (g, h) · x = g · (h · x) and on A(N)T ×T A(L)T via
(g, h)·(a, b) = (g ·a, h·b). Let us consider the action ⋆ of D(Ngp+Lgp)T on A(N)T ×T A(L)T
given by g ⋆ (a, b) = (g−1 · a, g · b). The action ⋆ is free because firstly the action of
D(Ngp × Lgp)T on A(N × L)T given by (λ, β) · (a, b) = (λ · a, β−1 · b) is free and sec-
ondly because the morphism of groups Ngp × Lgp → Ngp + Lgp given by (n, l) 7→ n +
l is surjective and so D(Ngp + Lgp)T is a closed subgroup scheme of D(Ngp × Lgp)T .

Now let F ∈ Hom
D(M)T×TD(M)T
T (A(N)T ×T A(L)T , XT ), F : A(N)T ×T A(L)T → XT .

Then F (g ⋆ (a, b)) = F ((a, b)) for any T ′ → T , g ∈ D(Ngp + Lgp)T (T ′) and (a, b) ∈
(A(N)T ×T A(L)T )(T ′). So F induces a morphism f from the fpqc quotient, f :

(
A(N)T ×T

A(L)T
)
/D(Ngp +Lgp)T → XT . We have A(N)T ×T A(L)T = Spec(Z[N ×L])×Z T and the

degree zero part of Z[N ×L] (relatively to the Ngp +Lgp-grading induced by the action ⋆ of
D(Ngp+Lgp)) is Z[N∩L]. So we have an identification

(
A(N)T×TA(L)T

)
/D(Ngp+Lgp)T =

A(N ∩ L)T . So F induces a natural morphism f : A(N ∩ L)T → XT , that is D(M)T -
equivariant. Now let f ∈ XN∩L(T ), f : A(N ∩ L)T → XT and consider the composition

F : A(N)T ×T A(L)T → A(N ∩ L)T ×T A(N ∩ L)T → A(N ∩ L)T
f−→ XT

where the second morphism is the multiplication of A(N∩L)T . Then F is D(M)T×TD(M)T -
equivariant. The previous maps F 7→ f and f 7→ F induce a canonical bijection between

Hom
D(M)T×TD(M)T
T (A(N)T ×T A(L)T , XT )

and Hom
D(M)T
T (A(N ∩ L)T , XT ).

(iii) Using three times Proposition 3.29 and one time (ii), we have

(XN⊂M )(L⊂M) = (XN⊂Mgp
)L⊂M

gp
= X(L∩N)⊂Mgp

= X(N∩L)⊂M .

Fact 3.31. Let {Ni}i∈I ⊂M be magnets such that XNi = XNj for all i, j ∈ I. Assume that X
is separated and that one of the following conditions holds
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(i) X is affine over S,

(ii) M is a finitely generated abelian group,

(iii) M is cancellative, Mgp is finitely generated as abelian group, and X∩l∈JNl is a separated
algebraic spaces for any finite subset J ⊂ I,

(iv) add more as needed,

then, for all i ∈ I,

XNi = X∩l∈INl .

Proof. If X is affine, we use Proposition 3.22. Now we prove (ii) and (iii). The inclusion ∩l∈INl ⊂
Ni induces a canonical morphism X∩l∈INl → XNi . Since X is separated, this canonical morphism
is a monomorphism by Proposition 3.27. So for any scheme T → S, X∩l∈INl(T ) ⊂ XNi(T ). We
now prove the reverse inclusion. We write I as a directed colimit of finite sets J . Then, in the
category of sets, ∩l∈INl = limJ⊂I ∩l∈JNl. Furthermore, in the category of rings, Z[∩l∈INl] =
limJ⊂I Z[∩l∈JNl]. So A(∩l∈INl)S = colimJ⊂IA(∩l∈JNl)S . By Proposition 3.30, X∩l∈JNl = XNi

for any finite subset J of I. We use these observations to obtain

X∩l∈INl(T ) = Hom
A(M)S
T (A(∩l∈INl)T , XT )

= Hom
A(M)S
T (colimJ⊂IA(∩l∈JNl)T , XT )

[StP, Tag 002H] and equivariance is clear ⊃ lim
J⊂I

Hom
A(M)S
T (A(∩l∈JNl)T , XT )

= lim
J⊂I

X∩l∈JNl(T )

= lim
J⊂I

XNi(T )

= XNi(T ).

This finishes the proof.

Proposition 3.32. Assume M is a finitely generated group. Let Z ⊂ M be a subgroup. Then
the attractor space XZ for the action of D(M)S on X is identified with the fixed-points space
XD(M/Z)S of X under the action of D(M/Z)S .

Proof. We have an exact sequence of abelian groups

0→ Z →M →M/Z → 0.

By [SGA3, Exp. VIII] we obtain an exact sequence of diagonalizable group schemes

1→ D(M/Z)S → D(M)S → D(Z)S → 1.

Let T → S be a scheme and let us prove that XZ(T ) = XD(M/Z)S (T ). Note that we have a
D(M)S-equivariant identification of S-scheme A(Z)S = D(Z)S . We have

XZ(T ) = Hom
D(M)T
T (A(Z)T , XT )

= Hom
D(M)T
T (D(Z)T , XT )

= Hom
D(M)T
T (D(M)T /D(M/Z)T , XT )

= Hom
D(M)T
T (D(M)T , (XT )D(M/Z)T ).

Now Remark 3.6 finishes the proof.
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Proposition 3.33. Assume that M is an abelian group and that X is a scheme. Let N,N ′, L
and L′ be magnets in M such that L ⊂ L′, N ′ ⊂ L′, N = L ∩N ′ and L′ = L + N ′. Assume that
XE is representable by a scheme for all E ∈ {N,N ′, L, L′}. Assume that L is a face of L′. Then
N is a face of N ′. Assume that one of the following conditions holds

(i) we have an equality N ′ = L′ \ (L \N)

(ii) S = Spec(R) and X = Spec(A) are affine, AlAn′ = Al+n′ for all l ∈ L \N and n′ ∈ N ′ (as
usual Am denote the m-graded part of A)

(iii) add more as needed,

then the following diagram is a cartesian square in the category of schemes

XN ′

XL′
XN

XL

ιN′,L′

pN,N′

pL,L′

ιN,L

.

Proof. The monoid N is clearly a face of N ′.

(i) Let T be a scheme and let T → XL′
, T → XN be two morphisms of schemes such that the

following diagram commutes

T

XL′
XN

XL

pL,L′ ιN,L

.

This corresponds to a diagram

A(L)T

A(L′)T A(N)T

XT

where all arrows are D(M)T -equivariant. By Lemma 2.18, we obtain a unique arrow A(N ′)T →
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XT such that the following diagram commutes

A(L)T

A(L′)T A(N)T

A(N ′)T

XT

.

It is enough to show that the arrow A(N ′)T → XT is D(M)T -equivariant. Consider the
diagram

A(L)T ×T D(M)T A(L)T

A(L′)T ×T D(M)T A(N)T ×T D(M)T A(L′)T A(N)T

A(N′)T ×T D(M)T A(N′)T

XT ×T D(M)T XT

obtained by fiber product with D(M)T . We have

A(E)T ×T D(M)T = (A(E)×Spec(Z) T )×T D(M)T = A(E)D(M)T

for E ∈ {N,N ′, L, L′}, so the left diamond is a push-out by Proposition 2.18. Now we want
to show that the lower rectangle is commutative. Consider the upper right composition in
this rectangle and precompose it with the right part of the left diamond, denote this arrow
by a1. Consider the lower left composition in the rectangle and precompose it with the left
part of the left diamond, denote this arrow by a2. Now using the commutative diagrams
coming from the D(M)T -equivariant morphisms on the right, we see that a1 and a2 are
both equal to the composition

A(L)T ×T D(M)T → A(L)T → A(N ′)T → XT .

Using the left push-out diamond, this now implies that the lower rectangle is commutative.
So the arrow A(N ′)T → XT is D(M)T -equivariant. This finishes the proof.

(ii) Let x ∈ XN ′
(R). Then x is a morphism A→ R[N ′]. Now we have an equality of compositions

(A→ R[N ′]→ R[L′]→ R[L]) = (A→ R[N ′]→ R[N ′ ∩ L]→ R[L]).

This shows that the diagram is commutative. Now let us prove that it is cartesian. Let
Y = Spec(B) be an affine R-scheme and let f : Y → XL′

and g : Y → XN be two
morphisms such that pL,L′ ◦ f = ιL,N ◦ g. So f is a morphism of graded algebras A→ B[L′]
and g is a morphism of graded algebras A → B[N ]. Let m ∈ L′ = L + N ′ and let Am

be the m-graded part of A. Let x ∈ Am and let λm such that f(x) = λmXm. Then since
pL,L′ ◦ f = ιL,N ◦ g, we obtain that λm = 0 for all l ∈ L \ (N ′ ∩ L). So we get f(x) = 0
for all x ∈ Am for all m ∈ L′ \N ′ (we use that AlAn′ = Al+n′ for all l ∈ L \ (N ′ ∩ L) and
n′ ∈ N ′). So we obtain a unique morphism h from Y to XN ′

with the cartesian property.
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Proposition 3.34. Assume that X is separated and locally of finite presentation over S. Let N
be a magnet of M . Write N = colimi∈INi as a directed colimit of submonoids of N . Let T → S
be a scheme, then

XN (T ) = colimi∈IX
Ni(T ).

Proof. For any scheme T , we have A(N)T = limi∈I A(Ni)T by [StP, Tag 01YW]. So X(A(N)T ) =
colimX(A(Ni)T ) by [StP, Tag 049J]. Let A(N)T → XT be an A(M)T -equivariant morphism. By

the previous assertion this factorizes through a morphism A(Ni)T
f−→ XT . We want to show that

f is A(M)T -equivariant. Consider the diagram

A(M)T ×A(Ni)T //
// XT

A(M)T ×A(N)T

OO 77

where the horizontal arrows (f1, f2) correspond to (g, x) 7→ f(gx) and (g, x) 7→ gf(x). Since X
is separated, the kernel of (f1, f2) is a closed subscheme of A(M)T ×A(Ni)T (the proof of [GW,
Def./Prop. 9.7] works in this context). Since the schematic image of the vertical morphism ϕ is
A(M)T ×T A(Ni)T and because f1 ◦ ϕ = f2 ◦ ϕ, we have an equality of schemes ker(f1, f2) =
A(M)T ×T A(Ni)T . So we have an equality of morphisms of schemes f1 = f2, and so f is
equivariant. We deduce that XN (T ) = colimi∈IX

Ni(T ).

4. Attractors with prescribed limits

We introduce in this section another functor. Let X be an algebraic space over a base scheme
S. Let M be a commutative monoid and let A(M)S be the associated diagonalizable monoid
scheme over S. Assume that A(M)S acts on X. Let N ⊂M be a magnet. Let F be a face of N .
Let Z be an other S-functor with a monomorphism Z → XF . We now introduce the attractor
XN

F,Z associated to the magnet N under the action of A(M)S on X with prescribed limit in Z

relatively to the face F . Recall that we have a canonical morphism XN → XF (cf. Fact 3.15).
Since Z(T ) ⊂ XF (T ) for any S-scheme T , the following definition makes sense.

Definition 4.1. Let XN
F,Z be the contravariant functor

(Sch/S)→ Set, (T → S) 7→ {f ∈ XN (T ) | the image of f in XF (T ) belongs to Z(T )}.

If F = N∗, we omit F in the notation, i.e. we put XN
N∗,Z =: XN

Z .

Proposition 4.2. We have a canonical isomorphism XN
F,Z ≃ XN ×XF Z.

Proof. Clear since

XN
F,Z(T ) = {f ∈ XN (T ) | the image of f in XF (T ) belongs in Z(T )}

= {(f, g) ∈ XN (T )× Z(T ) | f = g in XF (T )}
= XN (T )×XF (T ) Z(T ).

Fact 4.3. Assume that X is separated. Then we have a canonical monomorphism XN
F,Z → XN

of S-functors. In particular we have a canonical monomorphism XN
F,Z → X of S-functors.
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Proof. Clear by Corollary 3.28.

5. Base change of affine étale morphisms along faces

Let S be a scheme and let X be an S-algebraic space with an action of D(M)S for some finitely
generated abelian group M . Let N be a magnet of M .

Proposition 5.1. Let Q be a face of N and let XN → XQ be the associated morphism on
attractors. Let U be an S-affine scheme. Let U → X be an étale, D(M)S-equivariant morphism
of algebraic spaces. Assume that one of the following conditions hold

(i) N is finitely generated as monoid,

(ii) X is separated,

then the natural map UN → XN ×XQ UQ is an isomorphism.

Proof. We need some terminologies on monoids. Recall that a monoid is fine if it is cancellative
and finitely generated. Recall also that a monoid L is sharp if L∗ = 0. See [Og, §I] for more
details on monoids.

(i) Firstly, we remark that it is enough to treat the case Q = N∗. Indeed assume that Propo-
sition 5.1 is true for the face of invertible elements. Since Q∗ = N∗, we have

XN ×XQ UQ = XN ×XQ (XQ ×XN∗ UN∗
) = XN ×XN∗ UN∗

= UN .

So we assume Q = N∗. We now remark that we can assume N∗ = 0 and that N is fine and
sharp using the map M →M/N∗ and Proposition 3.29. So we now assume that Q = 0 and
N is fine and sharp and we adapt [Ri16, Lemma 1.11]. It is enough to construct the inverse
morphism XN ×X0 U0 → UN . For this let p : T → S be an S-scheme and let

T = A(0)T UT

A(N)T XT

f0

be a diagram corresponding to a T -point of XN ×X0 U0. We want to find a diagonal filling
A(N)T → UT . Let I be the kernel of OT [N ] → OT [0], i.e the ideal associated to N \ 0 in
OT [N ]. Let V (Ik) = SpecT (OT [N ]/Ik) be the infinitesimal neighbourhoods of A(0)T inside
A(N)T . Since UT → XT is étale, it is smooth by [StP, Tag 04XX], and formally smooth
by [StP, Tag 02H6], so by the infinitesimal lifting property the morphism f0 : T → UT

lifts uniquely to a compatible family of morphisms fk : V (Ik) → UT . These liftings are
equivariant because the two maps D(M)T × V (Ik) → UT , (g, x) 7→ fk(gx) and (g, x) 7→
gfk(x) are common liftings of the map D(M)T × A(0)T → UT , (g, x) 7→ f0(gx) = gf0(x)
hence by uniqueness they are equal. Writing U = SpecS(A) for a M -graded quasi-coherent
OS-algebra A, we have and U ×S T = SpecT (AT ) where AT = p∗A. Moreover we have a
family of M -graded morphisms AT → OT [N ]/Ik. This means that (AT )m goes to 0 when
m ̸∈ N and to (OT [N ]/Ik)m when m ∈ N . The induced morphism to the completion
AT → OT [[N ]] has image in OT [N ], yielding the desired lifting A(N)T → UT (cf. [Og,
Chap. I,§3 Prop. 3.6.1] for the local description of the completion OT [[N ]]).

(ii) Let T → S be a scheme. Write N = colimi∈INi as a colimit of finitely generated monoids.
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Using (i) and Proposition 3.34 we have

UN (T ) = colimi∈IU
Ni(T )

= colimi∈I
(
XNi(T )×XQ(T ) U

Q(T )
)

= colimi∈I
(
XNi(T )

)
×XQ(T ) U

Q(T )

= XN (T )×XQ(T ) U
Q(T )

= (XN ×XQ UQ)(T ).

6. Fixed-point-reflecting atlases

Let M be an abelian group. Let S be a scheme. Let X be a quasi-separated S-space endowed
with an action of D(M)S .

We discuss fixed-point-reflecting atlases in this section. Roughly, fixed-point-reflecting étale
atlases are atlases such that we can learn from the charts the fixed points of our space. This
concept makes sense for an action of an arbitrary group scheme and is well-studied. In this
section we introduce several related concepts and definitions, Z-FPR morphisms and strongly-
FPR morphisms, useful and motivated by algebraic magnetism (Z is a subgroup of M here).
A strongly-FPR atlas is Z-FPR for all subgroups Z ⊂ M . We formulate a theorem (Theorem
6.8) that provides the existence of Z-FPR atlases and a conjecture (Conjecture 6.9) about the
existence of strongly-FPR atlases. In this work, Z-FPR atlases are used to prove representability
results (Proposition 8.1 and Theorem 8.3) and strongly-FPR atlases are needed to study magnets
(Theorem 15.4). In the next section (Section 7), we will notice that Conjecture 6.9 is true in many
cases (namely for Zariski locally linearizable actions, e.g. Sumihiro’s actions 7.4) in particular
one has Z-FPR atlases in this case. Romagny’s appendix offers a proof of Theorem 6.8.

Definition 6.1. Let f : U → X be a D(M)S-equivariant morphism of S-spaces.

(i) We say that f is fixed-point reflecting (FPR) if the canonical morphism of functors UD(M)S →
U ×X XD(M)S is an isomorphim.

(ii) We say that f is Z-FPR if it is fixed-point reflecting for the induced action of D(M/Z)S ,
i.e. if the canonical morphism of functors UD(M/Z)S → U ×X XD(M/Z)S is an isomorphim.

(iii) We say that f is strongly-FPR if it is Z-FPR for all subgroups Z ⊂M .

(iv) We say that f is an equivariant atlas if f is étale and surjective and U =
∐

τ∈A Uτ is
the disjoint union of D(M)S-stable S-affine schemes; moreover in this case we say that the
equivariant atlas f is S-affine if A may be chosen finite.

(v) We say that f is a Z-FPR atlas if f is a Z-FPR equivariant atlas.

(vi) We say that f is a strongly-FPR atlas if f is a strongly-FPR equivariant atlas.

Remark 6.2. Since a finite disjoint union of S-affine schemes is S-affine, if an equivariant atlas
is S-affine then we can assume that A is a singleton. In other words an S-affine equivariant atlas
for X is a D(M)S-equivariant étale surjective morphism U → S where U is an S-affine scheme.

The following is an immediate generalization of [Ri16, Lemma 1.10].

Proposition 6.3. Assume that M ∼= Zr for some integer r and let U → X be an étale D(M)S-
equivariant morphism, then UD(M)S → XD(M)S ×X U is an isomorphism. In other words, if M
is torsion-free, then every étale morphism is FPR.
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Proof. The proof of [Ri16, Lemma 1.10] works replacing ”Gm” by ”D(Zr)”.

Remark 6.4. In his appendix, Romagny provides a generalization of Proposition 6.3 to arbi-
trary flat group schemes with connected fibers and in particular provides a detailled proof of
Proposition 6.3, cf. Theorem A.1 .

Remark 6.5. If M is not torsion-free, and U → X is an étale D(M)S-equivariant morphism, then
UD(M)S → XD(M)S ×X U is obviously not an isomorphism in general. For example, take M =
Z/2Z, S = Spec(Z), X = S endowed with the trivial action of D(M) and U = D(M) endowed
with the non-trivial action of itself by multiplication. Then the D(M)-equivariant morphism
U → S is smooth of relative dimension zero and so it is étale; but UD(M) = ∅, XD(M) = X and
therefore UD(M) ̸∼= XD(M) ×X U .

Remark 6.6. Let us provide an example of a space X endowed with an action of a diagonalizable
group D(M) and an FPR equivariant atlas U → X that is not strongly-FPR. Choose an exact
sequence of abelian groups 0 → Z → M → M/Z → 0 with Z ̸= M . Then f : D(M) → D(Z)
is étale, surjective and D(M)-equivariant. Put U = D(M) and X = D(Z). Since UD(M) =
XD(M) = ∅, f is FPR. Now f is not Z-FPR because UD(M/Z) = ∅ and XD(M/Z) = X.

Lemma 6.7. Let X,X ′ be S-algebraic spaces endowed with actions of D(M)S . Let Z be a
subgroup of M . Let X ′ → X be a D(M)S-equivariant affine morphism of S-algebraic spaces. Let
U → X be a Z-FPR atlas of X. Then

(i) The canonical morphism U ×X X ′ → X ′ is a Z-FPR atlas of X ′.

(ii) If U → X is an S-affine Z-FPR atlas of X, then U ×X X ′ → X ′ is an S-affine Z-FPR atlas
of X ′.

Proof. (i) Since X ′ → X is an affine morphism, U ×X X ′ → U is affine and so the composition
U ×X X ′ → S is a disjoint union of S-affine schemes. The morphism U ×X X ′ → X ′ is étale and
surjective because U → X is so. By Proposition 3.7, we have canonical identifications

(X ′ ×X U)Z = X ′
Z ×XZ UZ = X ′

Z ×XZ (U ×X XZ) = X ′
Z ×X U = X ′

Z ×X′ (X ′ ×X U).

Assertion (ii) is now immediate.

Theorem 6.8 was motivated by finding a generalization of Proposition 6.3 for general diago-
nalizable group schemes. Theorem 6.8 is essentially a theorem of Alper, Hall and Rydh [AHR21].
The present version of Theorem 6.8 was formulated by Mayeux. The proof of Theorem 6.8 could
be seen as a corollary of [AHR21]. Establishing Theorem 6.8 as a corollary of [AHR21] is due to
Romagny and is the topic of the appendix. Note that Theorem 6.8 is numbered as Theorem A.2
in the appendix.

Theorem 6.8. Assume that M is finitely generated as abelian group. Let X be a quasi-separated
S-algebraic space locally of finite presentation endowed with an action of D(M)S . Let Z ⊂ M
be a subgroup and assume that one of the following assertions holds:

(i) X is separated over S,

(ii) M/Z is torsion-free.

Then there exists a Z-FPR atlas U → X, which may be chosen quasi-compact (in particular
S-affine here) if X → S is quasi-compact.

Proof. The proof is given in the Appendix of this article, cf. Theorem A.2.
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In fact the author expects that the following stronger assertions should be true. We will study
the correct generality in which this holds. We think that this is an interesting problem.

Conjecture 6.9. Assume that M is finitely generated as abelian group. Let S be an arbitrary
scheme. Let X be a separated S-algebraic space locally of finite presentation endowed with an
action of G = D(M)S . The following assertions hold.

(i) There exists a strongly-FPR atlas U → X.

(ii) If X/S is quasi-compact, there exists an S-affine strongly-FPR atlas U → X.

Note that §7 already ensures the existence of strongly-FPR atlases for Sumihiro actions.

7. Zariski locally linearizable actions

We proceed with the notation from §6. We recall the definition of Zariski locally linearizable
actions and explain that they have strongly-FPR atlases. We recall that some actions are far
from being locally linearizable; this gives a reason to use étale atlases (cf. § 6) and the theory of
algebraic spaces.

Fact 7.1. Let U → X be a D(M)S-equivariant open immersion, then for any subgroup Z ⊂M ,

UD(M/Z)S → XD(M/Z)S ×X U

is an isomorphism. In other words, every D(M)S-equivariant open immersion is Z-FPR for all
subgroups.

Proof. This works for any equivariant monomorphism. For any scheme T over S, U(T ) ×X(T )

XD(M/Z)S (T ) = UD(M/Z)S (T ).

Definition 7.2. The action of D(M)S on X is Zariski locally linearizable if there are S-affine
open D(M)S-stable subspaces of X covering X. We also refer to these actions as Sumihiro actions
or Sumihiro spaces.

Fact 7.3. Let X be an S-space endowed with a Zariski locally linearizable action of D(M)S ,
then there exists a strongly-FPR equivariant atlas.

Proof. Let U be the disjoint union of S-affine open D(M)S-stable subspaces of X covering X,
then U → X is as required by Fact 7.1.

Remark 7.4. Assume that M is finitely generated. The result [Su75, Corollary 3.11] shows that
if D(M)S is smooth over S and if X is a scheme and satisfies the condition (N) (e.g. X is normal,
cf. [Su75, 3.4, 3.5]), then the action of D(M)S on X is Zariski locally linearizable.

Remark 7.5. There exists a simple example of an action of D(Z)S on a quasi-separated locally
finitely presented scheme X/S that is not Zariski locally linearizable (e.g. cf. [Ri16, §0.2]).

8. Representability and properties

Let M be an abelian group. Let S be an arbitrary scheme. Let X be an S-algebraic space endowed
with an action of D(M)S . We prove that attractors are representable once we know the existence
of FPR atlases. Recall that Theorem 6.8 or Section 7 provide FPR atlases in great generality, so
that our representabilty results hold in great generality.
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Proposition 8.1. Let Z ⊂ M be a subgroup. Assume that there exists a Z-FPR atlas for X
under the action of D(M)S (cf. Definition 6.1). Then the attractor space XZ (which identifies
with the fixed space XD(M/Z)S by Proposition 3.32) is representable by a closed subspace of X.

Proof. Let U be a Z-FPR atlas. We have a cartesian square

UZ //

��

XZ

��

U // X

.

By Proposition 3.20 the left vertical arrow is a closed immersion of schemes. The lower arrow is
surjective étale. So by [StP, Tag 03I2], XZ is an algebraic space and the right vertical arrow is a
closed immersion. We used that being a closed immersion is stable under base change, fppf-local
on the base and closed immersions satisfy fppf-descent.

Remark 8.2. Theorem A.1 of the appendix provides a result similar to Proposition 8.1 about
closedness.

Theorem 8.3. Let N ⊂ M be a magnet, i.e. an arbitrary submonoid. Let N∗ ⊂ N be the face
of intertible elements of N . Assume that there exists a N∗-FPR atlas for X under the action of
D(M)S (cf. Definition 6.1). Assume that one of the following conditions hold

(a) X is separated over S, or

(b) N is finitely generated as monoid,

then the attractor XN is representable by an algebraic space over S. Moreover

(i) The morphism of algebraic spaces XN → XN∗
is affine.

(ii) If X/S is quasi-separated, then XN/S is quasi-separated.

(iii) If X/S is separated, then XN/S is separated.

(iv) If X/S is locally of finite presentation, then XN/S is locally of finite presentation.

(v) If X/S is quasi-compact then XN/S is quasi-compact.

(vi) If X/S if of finite presentation, then XN/S is of finite presentation.

(vii) If X is a scheme then XN is a scheme.

Proof. Let U → X be a N∗-FPR atlas. Using Proposition 5.1, we obtain a diagram with cartesian
squares:

UN UN∗
U

XN XN∗
X.

The vertical maps are étale and surjective, and we know from Theorem 3.19 that UN is repre-
sentable by a disjoint sum of S-affine schemes. By Proposition 8.1, XN∗

is an S-algebraic space.
It follows from [StP, Tag 03I2] that XN is representable.

Now let us prove the listed properties. We have a cartesian square

UN //

��

XN

��

UN∗
// XN∗

.

28

https://stacks.math.columbia.edu/tag/03I2
https://stacks.math.columbia.edu/tag/03I2


ALGEBRAIC MAGNETISM

As explained before, the lower horizontal arrow is étale and surjective. The left vertical arrow is
affine because U is S-affine and UN and UN∗

are S-affine schemes by Theorem 3.19. Now, we
apply [StP, Tag 03I2] to conclude that the right vertical arrow is affine. We used that being affine
is preserved under base change, fppf local on the base and satisfies descent for fppf coverings.
Assume that X is locally of finite presentation, i.e. commutes with colimits of affine schemes
in (Sch/S)fppf , then the functor XN commutes with colimits of affine schemes in (Sch/S)fppf ,
i.e. XN is locally of finite presentation. Assume that X is separated (resp. quasi-separated,
quasi-compact, resp. is a scheme). Then XN∗

is separated (resp. quasi-separated, quasi-compact,
resp. is a scheme) because it is closed in X (cf. Proposition 8.1). Since XN → XN∗

is affine,
in particular representable, quasi-compact and separated it follows that XN is separated (resp.
quasi-compact, resp. is a scheme). Note that by definition X is of finite presentation if it is locally
of finite presentation, quasi-compact and quasi-separated.

Remark 8.4. Note that Proposition 3.29 (iii) and Theorem 8.3 together show representability
of many attractors under actions of diagonalizable monoid schemes outside affine cases.

Proposition 8.5. Assume that M is finitely generated as abelian group. Assume that X → S
is quasi-compact and separated. Then there exists a finitely generated submonoid Nc of N such
that XN = XNc and N∗ = N∗c .

Proof. Let κ : N→ N be a bijection. For any i ∈ N, let Ni be the submonoid of N generated by
{N∗∪κ(N⩽i)}. Then N∗i = N∗ and Ni is finitely generated for any i ∈ N, moreover

⋃
i⩾0Ni = N .

By Proposition 3.34 XN (T ) = colimXNi(T ). Let U → X be an S-affine N∗-FPR atlas as in
Theorem 6.8. Using that U is an S-affine scheme of finite presentation over S, there exists an
integer c such that UNc = UNi for all i ⩾ c. To see this, write U as the spectrum of a graded
OS-algebra, consider degrees of a finite set of generators of this OS-algebra and use that gradings
of OS-algebras are preserved under equivariant morphisms of S-affine schemes. Let i ⩾ c, and
consider the diagram

UNc //

��

XNc

��

UNi // XNi

.

The horizontal arrows are étale and surjective using Proposition 5.1. Moreover, the left vertical
arrow is an isomorphism since i ⩾ c. Furthermore, the diagram is a cartesian square because by
Proposition 5.1

UNi ×XNi X
Nc ≃ (UN∗ ×XN∗ XNi)×XNi X

Nc

≃ UN∗ ×XN∗ XNc

≃ UNc .

Using [StP, Tag 03I2] for the property ”isomorphism”, we deduce that for all i ⩾ c, XNi = XNc .
This implies that XN = XNc .

9. Hochschild cohomology for diagonalizable monoids via formulas

Let S be a scheme and B be an algebraic space over S. Let Bspaces,fppf be the small fppf site of
B (defined as in the case of schemes, e.g. cf. [Sc17]). In this section OB is the canonical sheaf of
rings on Bspaces,fppf .
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9.1 Affine morphisms and sheaves

Proposition 9.1. Let f : X → B be an affine morphism of algebraic spaces. Let A be the
quasi-coherent OB-algebra of X. Let F be a quasi-coherent OB-module. Then

f∗f
∗F = F ⊗OB

A.

Proof. Let f∗f∗OX → OX be the canonical morphism coming from adjunction. It induces a
canonical morphism

f∗F ⊗OX
f∗f∗OX → f∗F .

Since A = f∗OX , we get obtain a canonical morphism f∗F ⊗OX
f∗A → f∗F . Now using [StP,

Tag 03EL], we obtain a canonical morphism

f∗(F ⊗OB
A)→ f∗F .

By adjunction, we finally get a canonical morphism F ⊗OB
A → f∗f

∗F . It remains to prove that
it is an isomorphism. For this, we reduce to the affine case and apply [StP, Tag 01I8].

9.2 Fppf Hochschild monoid cohomology over algebraic spaces

Let H be a monoid algebraic space over B. Let OB be the sheaf of rings of B on Bspaces,fppf .

Definition 9.2. A H-OB-module over Bspaces,fppf is an OB-module F in the sense of [StP, Tag
03CW] such that H acts OB-linearly on F , i.e:

(i) For any T → B ∈ Bspaces,fppf , H(T ) acts on F(T ). Moreover for any g ∈ H(T ), x, y ∈ F(T )
and a ∈ OB(T ), we have g · (x + ay) = g · x + a(g · y).

(ii) If T ′ → T is a morphism in Bspaces,fppf , the action of H(T ′) on F(T ′) is compatible with
the action of H(T ) on F(T ).

Remark 9.3. Note that Definition 9.2 is similar to Definition 2.19, but is different.

Definition 9.4. Let F be a H-OB-module over Bspaces,fppf . Let n ⩾ 0 be an integer. We put

Cn(H,F) = MorBspaces,fppf
(Hn,F) = The set of natural transformations from Hn to F ,

where Hn and F are seen as functors from Bspaces,fppf to Sets. The set Cn(H,F) is canonically
endowed with a structure of OB(B)-module via

for any Θ,Ψ ∈ Cn(H,F), a ∈ OB(B), T ∈ Bspaces,fppf ; (Θ + aΨ)(T ) = Θ(T ) + a |TΨ(T ).

We have a morphism of OB(B)-modules

∂ : Cn(H,F)→ Cn+1(H,F)

sending Θ to ∂Θ where ∂Θ is the transformation from Hn+1 to F such that for any T ∈
Bspaces,fppf , ∂Θ(T ) is the map sending g1, . . . , gn+1 ∈ Hn+1(T ) to

g1·
(

Θ(T )
(
g2, . . . , gn+1

))
+

n∑
i=1

(−1)iΘ(T )
(
g1, . . . , gigi+1, . . . , gn+1)+(−1)n+1f(g1, . . . , gn

)
∈ F(T ).

We also have an internal version of Cn(H,F) as follows.

Definition 9.5. Let F be a H-OB-module. Let n ⩾ 0 be an integer. We put for any V ∈
Bspaces,fppf

Cn(H,F)(V ) = Cn(H|V ,F|V ) = MorVspaces,fppf
(Hn|V ,F|V ).
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The functor Cn(H,F) is canonically endowed with a structure of OB-module. We have a mor-

phism of OB-modules ∂ : Cn(H,F)→ Cn+1(H,F) induced by ∂.

Remark 9.6. For any positive integer n the composition ∂ ◦ ∂ is the zero map.

Definition 9.7. Let F be a H-OB-module over Bspaces,fppf . We put

Zn
monoid(H,F) = ker(Cn(H,F)

∂−→ Cn+1(H,F)) for any n ⩾ 0

B0
monoid(H,F) = 0

Bn
monoid(H,F) = im(Cn−1(H,F)

∂−→ Cn(H,F) for any n ⩾ 1

Hn
monoid(H,F) =

Zn(H,F)

Bn(H,F)
for any n ⩾ 0.

Zn
monoid(H,F) = ker(Cn(H,F)

∂−→ Cn+1(H,F)) for any n ⩾ 0

B0
monoid(H,F) = 0

Bn
monoid(H,F) = im(Cn−1(H,F)

∂−→ Cn(H,F) for any n ⩾ 1

Hn
monoid(H,F) =

Zn(H,F)

Bn(H,F)
for any n ⩾ 0.

We finish this subsection with the description of Zn
monoid and Bn

monoid for n = 1.

Remark 9.8. We have

Z1
monoid(H,F) = {c ∈ C1(H,F) | ∀T ∈ Bspaces,fppf ,∀g, g′ ∈ H(T ), c(gg′) = c(g) + g · c(g′)}.

B1
monoid(H,F) = {b ∈ C1(H,F) | ∃v ∈ F(B);∀T ∈ Bsp.,fppf , ∀g ∈ G(T ), b(g) = g · vT − vT }.

9.3 Modules under affine monoid algebraic spaces

Let M be a finitely generated cancellative monoid. The structural morphism A(M)B → B and
the multiplication morphism A(M)B×B A(M)B → A(M)B are surjective, finitely presented and
flat by Proposition 2.8 and Fact 2.9.

Proposition 9.9. Let F ,G be two OB-modules (over Bspaces,fppf ). Assume G is quasi-coherent.
Let

X ′ = SpecB(A′) m−→ X = SpecB(A)
f−→ B.

be affine morphisms of S-spaces. Assume m and f are flat and finitely presented. Then we have
a canonical identification

HomOB
(F ,G)(X) = HomOB

(F ,G ⊗OB
A).

Moreover the map

HomOB
(F ,G)(X)→ HomOB

(F ,G)(X ′)

associated to m corresponds to the map

HomOB
(F ,G ⊗OB

A)→ HomOB
(F ,G ⊗OB

A′)

φ 7→ (F φ−→ G ⊗OB
A Id⊗ϕm−−−−→ G ⊗OB

A′)

where ϕm : A → A′ is dual to m via [StP, Tag 081V].
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Proof. Note that m and f are flat and finitely presented. The following identifications prove the
first assertion

HomOB
(F ,G)(X) = HomOX

(f∗F , f∗G)

= HomOB
(F , f∗f∗G)

= HomOB
(F ,G ⊗OB

A).

The second assertion also follows from these intermediate identifications.

Proposition 9.10. Let H = SpecB(A) be a monoid algebraic space over B such that H → B
is affine, flat and finitely presented. An H-OB-module structure (over Bspaces,fppf ) on a quasi-
coherent OB-module F corresponds to an OB-comodule structure on F , i.e a morphism of OB-

modules F δ−→ F ⊗OB
A such that (δ ⊗ IdA) ◦ δ = (IdF ⊗∆A) ◦ δ and (IdF ⊗ εA) ◦ δ = IdF .

Proof. Let us first remark that the set of H-OB-module structures on an OB-module F is a
subset of the set MorBspaces,fppf

(H,HomOB,fppf
(F ,F)). Using Proposition 9.9 we get

MorBspaces,fppf
(H,HomOB

(F ,F)) = HomOB
(F ,F)(H)

= HomOB
(F ,F ⊗OB

A).

The condition that F is an H-module means that the transformations of functors

T1 : H ×H
m−→ H

Ψ−→ HomOB
(F ,F)

and

T2 : H ×H
Ψ×Ψ−−−→ HomOB

(F ,F)×HomOB
(F ,F)

◦−→ HomOB
(F ,F)

are equal and that the composition

eB −→ H
Ψ−→ HomOB

(F ,F)

is the identity. The transformations T1 and T2 correspond to elements in

HomOB
(F ,F ⊗OB

A⊗OB
A),

namely T1 corresponds to (IdF ⊗∆A)◦δ (cf. Proposition 9.9) and T2 corresponds to (δ⊗ IdA)◦δ.
The composition

eB −→ H
Ψ−→ HomOB

(F ,F)

corresponds to an element in HomOB
(F ,F ⊗OB

OB), namely (IdF ⊗ εA) ◦ δ. This finishes the
proof.

Proposition 9.11. An A(M)B-OB-module (over Bspaces,fppf ) structure on a quasi-coherent
OB-module F corresponds to a collection (µm)m∈M ∈ HomOB

(F ,F) such that for all m, k ∈M ,

µm ◦ µk = µk if k = m, µm ◦ µk = 0 if k ̸= m and
∑
m∈M

µm = IdF .

Proof. Proposition 9.10 shows that an A(M)B-OB-module corresponds to a morphism of OB-
comodule

µ : F → F ⊗OB
OB[M ] =

⊕
m∈M

F .

Now µ gives a collection (µm)m∈M with µm ∈ HomOB
(F ,F). Saying that µ is a comodule is

equivalent to the conditions in the statement (cf. Fact. 2.2 and Def. 2.3 for the OB-coalgebra
structure on the quasi-coherent OB-algebra of the affine monoid algebraic space A(M)B, namely
OB[M ]).
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Proposition 9.12. Let F be a quasi-coherent A(M)B-OB-module over Bspaces,fppf . Let V ∈
Bspaces,fppf . We have

Cn(A(M)B,F)(V ) =
( ⊕

(m1,...,mn)∈Mn

FXm1 · · ·Xmn

)
(V )

where for every m = (m1, . . . ,mn) ∈ Mn, FXm1 · · ·Xmn = Fm is a formal copy of F . In
particular if V is quasi-compact we have

Cn(A(M)B,F)(V ) =
⊕

m∈Mn

Fm(V )

Moreover for any n ⩾ 0, the linear map ∂ : Cn → Cn+1 is given on the component
FXm1 · · ·Xmn and on quasi-compact objects by the formula

fm1,...,mnXm1 · · ·Xmn 7→µ(fm1,...,mn)Xm1 · · ·Xmn

+
n∑

i=1

(−1)ifm1,...,mnXm1 · · ·∆(Xmi) · · ·Xmn

+(−1)n+1fm1,··· ,mnXm1 . . . XmnX0

where ∆(Xmi) = XmiXmi .

Proof. Put p : A(M)nV → V and FV = F|V . The identifications

Cn(A(M)B,F)(V ) = MorVspaces,fppf
(A(M)nV ,FV )

= MorVspaces,fppf
(A(M)nV ,HomOV

(OV ,FV ))

= HomOV
(OV ,FV )(A(M)nV )

= HomOV
(OV ,FV ⊗OV

OV [M ]⊗OV
· · · ⊗OV

OV [M ])

=
(
FV ⊗OV

OV [M ]⊗OV
· · · ⊗OV

OV [M ]
)

(V )

=
(
F ⊗OB

OB[M ]⊗OB
· · · ⊗OB

OB[M ]
)

(V )

=
( ⊕

(m1,...,mn)∈Mn

FXm1 · · ·Xmn

)
(V )

prove the first assertion. The second assertion is now a consequence of Definition 9.5.

Proposition 9.13. Let F be a quasi-coherent A(M)B-OB-module over Bspaces,fppf , then

H1
monoid(A(M)B,F) = 0.

Proof. It is enough to prove that Z1
monoid(A(M)B,F) ⊂ B1(A(M)B,F). Let U be a quasi-

compact object in Bspaces,fppf . Put F = Γ(U,F) and R = Γ(U,OB). Let ξU =
∑

m∈M fmXm be
an element in Γ(U,F ⊗OS [M ]) =

⊕
m∈M FXm. Assume that ∂(ξU ) = 0, then

0 =
( ∑

(k,m)∈M2

µk(fm)X(k,m)
)
−
(∑

l∈M
flX

(l,l)
)

+
( ∑

n∈M
fnX

(n,0)
)
.

So µk(f0) = −fk for all k ∈ M with k ̸= 0 and µ0(f0) = 0. Put eU := −f0 ∈ F = Γ(U,F). We
have

∂(eU ) =
( ∑

k∈M
µk(eU )Xk

)
− eUX

0 =
∑

0̸=k∈M
fkX

k + f0X
0 = ξU .
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So ξU belongs to the image of Γ(U,F)
∂−→ Γ(U,F ⊗OB[M ]). Now let ξ ∈ Γ(B,F ⊗OB[M ]) and

assume ∂(ξ) = 0, i.e. ξ ∈ Z1
monoid(A(M)B,F). Let us consider the set {Ui}i∈I of all quasi-compact

objects in Bspaces,fppf , of course it provides an fppf covering of B. For each i ∈ I, ∂(ξ|Ui) = 0,
so the above computation gives us elements ei ∈ Γ(Ui,F) such that ∂(ei) = ξ|Ui . These ei are
compatible and there exists an element e ∈ Γ(B,F) such that e|Ui = ei for all i ∈ I. We have
∂(e) = ξ. So ξ ∈ B1

monoid(A(M)B,F). This finishes the proof.

Remark 9.14. We conjecture that our method will lead to a proof that Hn
monoid(A(M)B,F) = 0

also for n ⩾ 2. Note that [SGA3, Exp I. Théorème 5.3.3] proves that Hn(D(M)S ,F) = 0 (n ⩾ 1)
under the assumption that S is affine and that F is quasi-coherent, using derived functors. Our
computational method, highly inspired by formulas given –and unexploited– in [SGA3], shows
that the assumption that S is affine is unnecessary in [SGA3, Exp. I Théorème 5.3.3] (at least
in the case n = 1).

10. Equivariant infinitesimal deformations

Let S be a scheme. Let G be a group algebraic space over S.

Proposition 10.1. Let X,X ′, Y and Z be S-algebraic spaces endowed with S-actions of G. Let

X
a //

i
��

Y

f
��

X ′
φ
// Z

be a commutative diagram of G-equivariant S-morphisms where the left vertical morphism i is
a first order thickening, cf. [StP, Tag 05ZK]. Assume that Y → Z is formally smooth and

H1
monoid(G, p∗HomOX

(a∗ΩY/Z , CX/X′)) = 0,

where p∗ : Sh(X ′spaces,fppf )→ Sh(Sspaces,fppf ) (cf. [StP, Tag 00X6] for p∗, § 9.2 for H1
monoid(−,−)

and [StP, Tag 04CN] for CX/X′). Then there exists a G-equivariant morphism ϕ : X ′ → Y filling
the diagram, i.e. such that ϕ ◦ i = a and f ◦ ϕ = φ.

Proof. For an object U ′ of (X ′)spaces,fppf with U = X ×X′ U ′, consider morphisms a′ : U ′ → Y
such that

(1) a′ is a morphism over Z, and

(2) a′|U = a|U .
Then the arguments of [StP, Tag 061A] show that the rule U ′ 7→ {a′ : U ′ → Y ′ such that
(1) and (2) hold.} defines a sheaf of sets P on (X ′)spaces,fppf . Note that the condition (3) in
[StP, 061A] is empty because Y = Y ′ in our situation. By [StP, Tag 061C], there is an action
of the sheaf of abelian groups HomOX

(a∗ΩY/Z , CX/X′) on the sheaf P. Moreover, the action of
HomOX

(a∗ΩY/Z , CX/X′) on P is simply transitive for any object U ′ of (X ′)spaces,fppf over which
the sheaf P has a section. Let p : X ′ → S be the structural morphism. By [StP, Tag 00X6], p
induces a morphism of topoi p∗

p∗ : Sh(X ′spaces,fppf )→ Sh(Sspaces,fppf )

F 7→
(
(T → S) 7→ F(X ′ ×S T )

)
.

The action of HomOX
(a∗ΩY/Z , CX/X′)) on P induces an action of the sheaf of abelian groups

p∗HomOX
(a∗ΩY/Z , CX/X′) on the sheaf p∗P. We want to show that G acts on the sheaf of
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abelian groups p∗HomOX
(a∗ΩY/Z , CX/X′) and on the sheaf p∗P, in a compatible way. Let T

be an algebraic space over S and let g ∈ G(T ). An element a′ ∈ (p∗P)(T ) is by definition an
S-morphism X ′ ×S T → Y such that a′ is an S-morphism over Z and a′ |X×ST= a |X×ST .
In other words, an element a′ ∈ (p∗P)(T ) is by definition a T -morphism X ′ ×S T → Y ×S T
such that a′ is a T -morphism over Z ×S T and a′ |X×ST= a |X×ST . Let g−1 be the inverse of
g in G(T ). As usual, X ′T , XT , YT and ZT denote X ′ ×S T,X ×S T, Y ×S T and Z ×S T . The
element g−1 gives us elements g−1

X′
T
∈ AutT (X ′T ) and g−1XT

∈ AutT (XT ). The element g gives us

an element gYT
∈ AutT (YT ) and an element gZT

∈ AutT (ZT ). For any a′ ∈ (p∗P)(T ), we put

g ·a′ := gYT
◦a′◦g−1

X′
T

, this is a T -morphism X ′T → YT . Let us check that g ·a′ belongs to (p∗P)(T ).

Since a is G equivariant we have a = gYT
◦ a ◦ g−1XT

, this shows that g · a′ |XT
= a |XT

. Let us now
show that g · a′ is a T -morphism over Z ×S T . Let fT and ϕT denote the base change from S to
T of f and ϕ. We have

fT ◦ gYT
◦ a′ ◦ g−1

X′
T

=

because fT is equivariant = gZT
◦ fT ◦ a′ ◦ g−1X′

T

because a′ ∈ (p∗P)(T ) = gZT
◦ φT ◦ g−1X′

T

because φT is equivariant = φT .

This finishes the verification that g · a′ ∈ (p∗P)(T ). We now define the action of G on

p∗HomOX
(a∗ΩY/Z , CX/X′)

giving the action of g ∈ G(T ) on v ∈ (p∗HomOX
(a∗ΩY/Z , CX/X′))(T ). The diagram

YT

fT
��

gYT // YT

fT
��

ZT

gZT // ZT

,

whose horizontal arrows are isomorphisms, is commutative since fT is equivariant. So we obtain
an automorphism gΩT

of ΩYT /ZT
, e.g. by [StP, Tag 04CX]. Note that gΩT

◦ hΩT
= (hg)ΩT

,
e.g. by [StP, Tag 05Z7]. That induces similar automorphisms of a∗TΩYT /ZT

. Similarly, us-
ing [StP, Tag 04CP] and [StP, Tag 04G2], we get for any g, h ∈ G(T ) automorphisms
gCT of CXT /X′

T
such that gCT ◦ hCT = (hg)CT . Now let v ∈ HomOX

(a∗TΩYT /ZT
, CXT /X′

T
) =

(p∗HomOX
(a∗ΩY/Z , CX/X′))(T ) and g ∈ G(T ). We put g · v = g−1CT ◦ v ◦ gΩT

. The element g · v
belongs to (p∗HomOX

(a∗ΩY/Z , CX/X′))(T ). This defines a left action because

h · (g · v) = h−1CT ◦ g
−1
CT ◦ v ◦ gΩT

◦ hΩT
= (gCT ◦ hCT )−1 ◦ v ◦ gΩT

◦ hΩT
= (hg)−1CT ◦ v ◦ hgΩT

= hg · v.

Using [StP, Tag 0618], we obtain that the actions are compatible in the sense that

g · a′ + g · v = g · (a′ + v) for any g ∈ G(T ), a′ ∈ (p∗P)(T ), v ∈ (p∗HomOX
(a∗ΩY/Z , CX/X′))(T ).

We now define an element c in Z1
monoid(G, (p∗HomOX

(a∗ΩY/Z , CX/X′))). Let us fix a′ ∈ (p∗P)(S),
this is possible because Y → Z is formally smooth. For any T → S ∈ Sspaces,fppf , put c(T ) :
G(T )→ (p∗HomOX

(a∗ΩY/Z , CX/X′))(T ), g 7→ g · a′T − a′T . Then c is indeed a cocycle because for
any T ∈ Sspaces,fppf and g, g′ ∈ G(T ) we have

c(g) + g · c(g′) = g · a′T − a′T + g · (g′ · a′T − a′T ) = gg′ · a′T − a′T = c(gg′).
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By assumption, H1
monoid(G, (p∗HomOX

(a∗ΩY/Z , CX/X′))) = 0, so there is an element

v ∈ (p∗HomOX
(a∗ΩY/Z , CX/X′))(S)

such that c(g) = g · vT − vT for all T ∈ Sspaces,fppf and all g ∈ G(T ). So for any T ∈ Sspaces,fppf

and any g ∈ G(T ), we have g · a′T − a′T = g · vT − vT , so we have g · (a′T − vT ) = a′T − vT . We
now put ϕ := a′ − v ∈ (p∗P)(S) = P(X ′). Then ϕ is a morphism from X ′ to Y satisfying all the
required properties, this finishes the proof.

Remark 10.2. The structure of the proof of Proposition 10.1 is partly similar to the argument
sketched in [SGA3, Exp. XII proof of Lemma 9.4] (unpublished), though frameworks are different.

11. Formal étaleness, formal smoothness and formal unramifiedness

Let S be a scheme and let M be a finitely generated abelian group. Let X → Y be a D(M)S-
equivariant morphism of algebraic spaces over S. Let N ⊂M be a submonoid.

Proposition 11.1. Assume that f : X → Y is formally smooth and locally of finite presentation
(i.e. smooth by [StP, Tag 04AM]), then fN : XN → Y N is formally smooth as transformation
of functors (cf. e.g. [StP, Tag 049S]).

Proof. Let ιT : T → T be a first order thickening of affine schemes, over S. Let D:

T
ϕ
//

ιT
��

XN

fN

��

T
φ
// Y N

be a commutative diagram of S-functors. We have to prove that there exists an S-morphism
ϕ : T → XN such that the diagram

T
ϕ
//

ιT
��

XN

fN

��

T

ϕ
>>

φ
// Y N

commutes. The diagram D corresponds to the following data (i), (ii)

(i) ϕ is a D(M)T -equivariant T -morphism A(N)T → XT

(ii) φ is a D(M)T -equivariant T -morphism A(N)T → YT

such that φ|T : A(N)T → YT equals the map A(N)T
ϕ−→ XT

fT−→ YT . Let us now consider the
commutative diagram

A(N)T

��

ϕ
// XT

// XT

fT
��

A(N)T
φ

// YT

.

The spaces A(N)T and XT are canonically endowed with actions of D(M)T , moreover all ar-
rows in the diagram are D(M)T -equivariant. By Propositions 10.1 and 9.13, we get a D(M)T -
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equivariant map ϕ : A(N)T → XT such that the diagram

A(N)T

��

ϕ
// XT

// XT

fT
��

A(N)T
φ

//

ϕ

66

YT

is commutative. The map ϕ corresponds to a morphism T → XN and satisfies all the required
properties to make the diagram

T
ϕ
//

ιT
��

XN

fN

��

T

ϕ
>>

φ
// Y N

commutative.

Corollary 11.2. Assume that X → Y is smooth and that XN and Y N are representable by
algebraic spaces. Then XN → Y N is smooth as algebraic spaces.

Proof. Trivial by Propositions 3.18 and 11.1, and [StP, Tag 060G].

Proposition 11.3. Assume that f : X → Y is formally unramified, then fN : XN → Y N is
formally unramified as transformation of functors (cf. e.g. [StP, Tag 049S]).

Proof. Let ιT : T → T be a first order thickening of affine schemes, over S. Let D:

T
ϕ
//

ιT
��

XN

fN

��

T
φ
// Y N

be a commutative diagram of S-functors. We have to prove that there exists a most one S-
morphism ϕ : T → XN such that the diagram

T
ϕ
//

ιT
��

XN

fN

��

T

ϕ
>>

φ
// Y N

commutes. Let ϕa, ϕb be two such morphisms, we have to prove that ϕa = ϕb. The diagram D
corresponds to the following data (i), (ii)

(i) ϕ is a D(M)T -equivariant T -morphism A(N)T → XT

(ii) φ is a D(M)T -equivariant T -morphism A(N)T → YT

such that φ|T : A(N)T → YT equals the map A(N)T
ϕ−→ XT

fT−→ YT . Let us now consider the
commutative diagram

A(N)T

��

ϕ
// XT

// XT

fT
��

A(N)T
φ

// YT

.
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The morphisms ϕa, ϕb provide two diagonals of the diagram above. Now using that fT if formally
unramified, we have ϕa = ϕb.

Corollary 11.4. Assume that X → Y is formally unramified and that XN and Y N are repre-
sentable by algebraic spaces. Then XN → Y N is formally unramified as morphism of algebraic
spaces.

Proof. Trivial by Proposition 11.3 and [StP, Tag 04G7].

Proposition 11.5. Assume that f : X → Y is formally étale and locally of finite presentation
(i.e étale by [StP, Tag 0616]), then fN : XN → Y N is formally étale as transformation of functors
(cf. e.g. [StP, Tag 049S]).

Proof. This follows from [StP, Tag 049S] and Propositions 11.3 and 11.1.

Corollary 11.6. Assume that X → Y is étale and that XN and Y N are representable by
algebraic spaces. Then XN → Y N is étale as morphism of algebraic spaces.

Proof. Trivial by Proposition 11.5, [StP, Tag 04GC] and [StP, Tag 0616].

Proposition 11.7. Assume that f : X → S is smooth, let F be a face of N , then fN,F : XN →
XF is formally smooth as transformation of functors (cf. e.g. [StP, Tag 049S]).

Proof. Let ιT : T → T be a first order thickening of affine schemes, over S. Let R and I ⊂ R
such that T = Spec(R) and T = Spec(R/I). Let D:

T
ϕ
//

ιT
��

XN

fN,F

��

T
φ
// XF

be a commutative diagram of S-functors. We have to prove that there exists an S-morphism
ϕ : T → XN such that the diagram

T
ϕ
//

ιT
��

XN

fN,F

��

T

ϕ
>>

φ
// XF

commutes. The diagram D corresponds to the following data (i), (ii)

(i) ϕ is a D(M)T -equivariant T -morphism A(N)T → XT

(ii) φ is a D(M)T -equivariant T -morphism A(F )T → XT

such that φ|T : A(F )T → YT equals the map A(F )T → A(N)T
ϕ−→ XT . We need to prove the

following fact.

Fact 11.8. The push-out of the diagram A(F )T ← A(F )T → A(N)T , in the category of algebraic
spaces over T , exists and is denoted

A(F )T
∐

A(F )T

A(N)T .

Moreover A(F )T
∐

A(F )T
A(N)T is an affine scheme over T and is in fact a push-out of

A(F )T ← A(F )T → A(N)T
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in the category whose objects are algebraic spaces over T and whose morphisms are D(M)T -
equivariant morphisms of algebraic spaces over T .

Proof. By [StP, Tag 0ET0], the push-out of A(F )T ← A(F )T → A(N)T exists in the category
of schemes and is given by

A(F )T
∐

A(F )T

A(N)T := Spec
(⊕
n∈F

R.Xn ⊕
⊕

n∈N\F

(R/I).Xn
)
.

Since D(M)T -equivariant morphisms of affine schemes correspond to M -graded morphisms, we
obtain that A(F )T

∐
A(F )T

A(N)T is endowed with an action of D(M)T and that

ν1 : A(F )T → A(F )T
∐

A(F )T

A(N)T

and

ν2 : A(N)T → A(F )T
∐

A(F )T

A(N)T

are D(M)T -equivariant. By [StP, Tag 0ET0], the push-out of

D(M)T ×T A(F )T ← D(M)T ×T A(F )T → D(M)T ×T A(N)T

exists in the category of schemes and the explicit formula allows us to identify it canonically with

D(M)T ×T

(
A(F )T

∐
A(F )T

A(N)T
)
.

We now remark that push-outs in the category of schemes over T give push-outs in the full
category of algebraic spaces over T by [StP, Tag 07SY]. Now let X be an algebraic space over
T with D(M)T -equivariant morphisms f1 : A(F )T → X and f2 : A(N)T → X such that the
diagram

A(F )T
f1
//

��

A(N)f2
T

��

A(F )T // X

commutes; we have to prove that the obtained morphism f1
∐

f2 : A(F )T
∐

A(F )T
A(N)T → X

39

https://stacks.math.columbia.edu/tag/0ET0
https://stacks.math.columbia.edu/tag/0ET0
https://stacks.math.columbia.edu/tag/07SY


ARNAUD MAYEUX

is D(M)T -equivariant. For this consider the diagram

D(M)T ×T A(F )T D(M)T ×T A(N)T

D(M)T ×A(F )T D(M)T ×T

(
A(F )T

∐
A(F )T

A(N)T
)

D(M)T ×T X

A(F )T A(N)T

A(F )T A(F )T
∐

A(F )T
A(N)T X

Id×ι
mA(F )

T

Id×i

mA(N)
T

Id×a2
Id×f2

Id×f1

mA(F )T

Id×a1 Id×(f1
∐

f2)

mA(F )T
∐

A(F )
T

A(N)
T

mX

ι

i

a2
f2

f1

a1 f1
∐

f2

where mS denote the multiplication morphism for any D(M)T -space S. We have to show that
mX ◦

(
Id× (f1

∐
f2)

)
= (f1

∐
f2) ◦mA(F )T

∐
A(F )

T
A(N)T

. Since, as we noted before, D(M)T ×T

(A(F )T
∐

A(F )T
A(N)T ) is the push-out of

D(M)T ×T A(F )T
Id×ι←−−− D(M)T ×T A(F )T

Id×i−−−→ D(M)T ×T A(N)T ,

it is enough to prove that

(i) mX ◦
(
Id× (f1

∐
f2)

)
◦ (Id× a1) = (f1

∐
f2) ◦mA(F )T

∐
A(F )

T
A(N)T

◦ (Id× a1)

(ii) mX ◦
(
Id× (f1

∐
f2)

)
◦ (Id× a2) = (f1

∐
f2) ◦mA(F )T

∐
A(F )

T
A(N)T

◦ (Id× a2).

These identities are easy to check on the diagram using that a1, a2, f1, f2 are equivariant and
that f1 = (f1

∐
f2) ◦ a1, f2 = (f1

∐
f2) ◦ a2.
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We now continue the proof of Proposition 11.7. Let us consider the diagram

A(F )T A(N)T

A(F )T A(F )T
∐

A(F )T
A(N)T

XT

A(N)T

XT

T

i

ι

ϕ

φ

Ψ

Φ

where

(i) Φ is the map obtained from the universal property of pushout from ϕ and φ.

(ii) Ψ is the map obtained from the universal property of pushout from the canonical morphisms
A(N)T → A(N)T and A(F )T → A(N)T .

By Fact 11.8, i and ι are D(M)T -equivariant and so Ψ and Φ are also D(M)T -equivariant. Now
we apply Propositions 10.1 and 9.13 to get a D(M)T -equivariant morphism ϕ : A(N)T → XT

such that the right lower quadrigone commutes. The morphism ϕ satisfies all required properties
to make the diagram

T
ϕ
//

ιT
��

XN

fN,F

��

T

ϕ
>>

φ
// XF

commutative.

Corollary 11.9. Let F be a face of a magnet N . Assume that X → S is smooth and that XN

and XF are representable by algebraic spaces. Then XN → XF is smooth as algebraic spaces.

Proof. Clear by Proposition 11.7, and [StP, Tag 060G].

Remark 11.10. If X → Y is flat, then XN → Y N is not flat in general (as we know that flatness
is not preserved by taking fixed-points, e.g. cf. Vistoli’s answer in Mathoverflow ”Under what
hypotheses are schematic fixed points of a flat deformation themselves flat?”).
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Remark 11.11. If X is Cohen-Macaulay, then XN is not Cohen-Macaulay in general (as we know
that being Cohen-Macaulay is not preserved by taking fixed-points, e.g. cf. Vistoli’s answer in
Mathoverflow ”Are schematic fixed-points of a Cohen-Macaulay scheme Cohen-Macaulay?”).

12. Topology of attractors

Let M be a finitely generated abelian group. Let X be an S-algebraic space locally of finite
presentation endowed with an action of D(M)S .

Proposition 12.1. Let N ⊂M be a submonoid. Assume that N is finitely generated and that
there exists a N∗-FPR atlas of X. Then the map XN → XN∗

(which is affine by Proposition 8.3)
has geometrically connected fibers and induces a bijection on the sets of connected components
π0(X

N ) ≃ π0(X
N∗

) of the underlying spaces.

Proof. We adapt [Ri16, Cor. 1.12]. Using Proposition 3.29 we can assume that N∗ = 0 and that
N is fine and sharp. Let K be a field, and let x : Spec(K)→ X0 be a point. Let XN

x = XN ×X0,x

Spec(K). We claim that its underlying topological space |XN
x | is connected. Let L be a field and

let y : Spec(L)→ XN
x be a point, and denote by xL the composition Spec(L)→ Spec(K)

x−→ X0.
Then xL and x define the same point of |XN

x |. Recall that we have a natural action of the monoid
scheme A(N)S on the attractor XN . The A(N)L orbit of y defines a map h : A(N)L → XN

x with
h(1) = y and h(0) = xL. Since N is sharp, L[N ] is integral. So A(N)L is connected. So x and y lie
in the connected set |h|(|A(N)L|). Since y was arbitrary, this shows that |XN

x | is connected. So
the continous map |XN | → |X0| has connected fibers, and the assertion on connected components
follows from the existence of a continous section |X0| ⊂ |XN |.

Proposition 12.2. Let N ⊂M be a magnet. Let f : X → Y be a D(M)S-equivariant morphism
of S-algebraic spaces such that XN and Y N are representable by S-algebraic spaces. Let fN :
XN → Y N be the canonical morphism obtained on attractors. The following assertions hold.

(i) If f is an open immersion, then fN is an open immersion.

(ii) If the following conditions hold

(a) f is a closed immersion,
(b) there exists a N∗-FPR atlas of Y ,
(c) N is finitely generated or X is separated,

then fN is a closed immersion, moreover XN ∼= Y N ×Y X.

Proof. (i) Since f is an open immersion, it is smooth and a monomorphism. By Corollary 11.2,
fN is smooth and in particular locally finitely presented and flat (cf. [StP, Tag 04TA]).
By Fact 3.17, fN is a monomorphism. Therefore, by [StP, Tag 05VH], fN is universally
injective and unramified. Consequently, by [StP, Tag 06LU], fN is étale. Finally, by [StP,
Tag 05W5], fN is an open immersion.

(ii) Assume f is a closed immersion. The canonical morphisms XN → Y N and XN → X
induces a canonical morphism i : XN → Y N ×Y X. We are going to prove that i is an
isomorphism. Let U be a N∗-FPR atlas of Y . By Proposition 6.7, the map U ×Y X → X is
a N∗-FPR atlas of X. So by Proposition 5.1 the canonical map (U ×Y X)N → XN is étale
and surjective. The canonical map UN → Y N (étale and surjective) induces an étale and
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surjective map (U ×Y X)×U UN = X ×Y UN → X ×Y Y N . So we get a diagram

(U ×Y X)N //

��

XN

��

(U ×Y X)×U UN = X ×Y UN // X ×Y Y N .

The left arrow is an isomorphism by Lemma 3.24 (write U as a disjoint union of stable
S-affine schemes Ui and use that Ui×Y X → Ui×Y Y = Ui is affine for all i). The horizontal
arrows are étale and surjective. The diagram is a cartesian square because

(X ×Y UN )×X×Y Y N XN = UN ×Y N XN = (U ×Y X)N

by Proposition 3.7. So by [StP, Tag 03I2] we obtain XN ∼= X ×Y Y N .

13. Attractors and dilatations

Let S be a scheme and let S′ be a closed locally principal subscheme of S. Let X be an algebraic
space over S with a D(M)S-action where M is an abelian group. Put D = XS′ . Let Y be a
closed subspace of XS′ . Then by [Ma23] (or [MRR20] if X is a scheme), we get a space BlDY X
called the dilatation of X with center Y along S′, and an affine morphism of spaces BlDY X → X.
Let N be a submonoid in M . Assume that Y is stable under the action of D(M)S′ on XS′ . Then
by Proposition 12.2 Y N → DN is a closed immersion. Moreover DN = (XS′)N = (XN )S′ (cf.

Proposition 3.9) is a locally principal closed subscheme of XN . So BlD
N

Y NXN is well-defined.

Proposition 13.1. Assume moreover that X → S, (BlDY X)N → S and BlD
N

Y NXN → S are flat.
Then D(M)S acts naturally on BlDY X, moreover we get a canonical isomorphism

Θ : (BlDY X)N ∼= BlD
N

Y NXN .

Remark 13.2. We refer to [MRR20, Prop. 2.16] for conditions ensuring flatness of dilatations.

Proof. Remark first that since D(M)S → S, X → S, BlDY X → S are flat, D(M)S , X and BlDY X

belong to SpacesS
′-reg

S (cf. [Ma23] for the definition of SpacesS
′-reg

S ), moreover by flatness any

products of these objects in the category Spaces/S or SpacesS
′-reg

S coincide. So to check that we
have an action of D(M)S on BlDY X it is enough to show that D(M)S(T ) acts on BlDY X(T ) func-

torially for any T ∈ SpacesS
′-reg

S . So let T ∈ SpacesS
′-reg

S . Let (g, x) ∈ D(M)S(T ) × BlDZ (X)(T ),

note that x corresponds to a morphism T
x−→ X such that T |S′ → XS′ factors through Y . We

define g.x as the composition

T
(g,x)−−−→ D(M)S ×X

action−−−−→ X.

Then g.x restricted to S′ factors through Y and so g.x ∈ BlDZX(T ). So D(M)S acts on BlDY (X).
We obtain the following two diagrams

(BlDY X)N → XN ,
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(BlDY X)N |S′ = (BlDY X|S′)N XN |S′ = (X|S′)N

Y N

.

By the universal property of dilatations, we obtain a morphism

Θ : (BlDY X)N → BlD
N

Y NXN .

We now prove that it is an isomorphism. Again, let T ∈ SpacesS
′−reg

S and let T ′ be T ×S S
′. Then

T ′ is a closed and locally principal subspace of T . Moreover, since A(N)T is flat over T , A(N)T
belongs to SpacesT

′−reg
T . Since BlDY X → S is flat, by [Ma23, §3.6], we have (BlDY X)T = Bl

DT ′
YT ′ XT .

So, on the one hand

(BlDY X)N (T ) = HomD(M)T (A(N)T , (BlDY X)T )

= HomD(M)T (A(N)T ,Bl
DT ′
YT ′ XT )

= {A(N)T
f−→ XT | f is D(M)T -equiv. and A(N)T |T ′

fT ′−−→ X|T ′ factors through YT ′},

moreover, on the other hand,

(BlD
N

Y NXN )(T ) = {T → XN | T |S′ → XN |S′ factors through Y N}

= {A(N)T
f−→ X| f is D(M)T -equiv. and A(N)T |T ′

fT ′−−→ X|T ′ factors through YT ′}.

Now since BlD
N

Y NXN and (BlDY X)N are flat over S, they belong to SpacesS
′reg

S . So by Yoneda

BlD
N

Y NXN = (BlDY X)N . This finishes the proof.

Corollary 13.3. Let S be a scheme and let S′ be an effective Cartier divisor on S. Let X be
a smooth scheme over S with a D(M)S-action where M is an abelian group. Put D = XS′ . Let
Y be a closed subscheme of XS′ such that Y → S′ is smooth. Let BlDY X be the dilatation of X
with center Y along S′. Let N be a submonoid in M . Assume that Y is stable under the action
of D(M)S′ on XS′ . Then D(M)S′ acts on BlDY X and we get a canonical isomorphism

Θ : (BlDY X)N ∼= BlD
N

Y NXN .

Proof. Since X → S,D → S′ and Y → S are smooth, by Corollary 11.2 XN → S,DN → S
and Y N → S are smooth. So by [MRR20, Proposition 2.16], BlDY X → S and BlD

N

Y NXN → S are
smooth. So using Corollary 11.2 again, (BlDY X)N → S is smooth. Now since smooth implies flat,
Corollary 13.3 follows from Proposition 13.1.

Remark 13.4. We note that the fact that dilatations commute with attractors may be used to
study valued root data as in Bruhat-Tits theory. Indeed by Section 16.5 root groups of reductive
groups are examples of attractors (cf. also Section 16.2) and dilatations allow to define filtrations.

14. Ind-algebraic spaces

Let S be a scheme and let (Aff/S) be the category of affine schemes over S. Its objects are
morphisms Spec(R) → S from affine schemes to S. We use [HR21] for the definition of ind-
algebraic spaces.

44



ALGEBRAIC MAGNETISM

Definition 14.1. An ind-algebraic space (resp. ind-scheme) over S is a functor (Aff/S)→ Set
which admits a presentation X ∼= colimi∈IXi as a filtered colimit of S-algebraic spaces (resp. S-
schemes) where all transition maps ϕij : Xi → Xj , i ⩽ j are closed immersions. The category of
ind-algebraic spaces (resp. ind-schemes) over S is the full subcategory of functors (Aff/S)→ Set
whose objects are ind-algebraic spaces (resp. ind-schemes) over S.

Any algebraic space (resp. scheme) over S is naturally an ind-algebraic space (resp an ind-
scheme) over S. Any ind-scheme over S is naturally an ind-algebraic space over S.

Remark 14.2. [HR21, §1.5] If X = colimiXi and Y = colimjYj are presentations of ind-algebraic
spaces (resp. ind-schemes) over S, and if each Xi is quasi-compact, then as sets Hom(X,Y ) =
limi colimjHom(Xi, Yj), because every map Xi → Y factors over some Yj by quasi-compactness
of Xi. The categories of ind-algebraic spaces and ind-schemes are closed under fiber product. If
P is a property of algebraic spaces (resp. schemes), then an S-ind-algebraic space (resp. S-ind-
scheme) X is said to have ind-P if there exists a presentation X = colimiXi where each Xi has
property P. A map f : X → Y of S-ind-algebraic spaces (resp. S-ind-schemes) is said to have
property P if f is representable and for all schemes T → Y, the pullback f ×Y T has property
P. Note that every representable quasi-compact map of S-ind-schemes is schematic.

Definition 14.3. Let G be a group scheme over S and let X be an ind-algebraic space over S.

(i) A categorical action of G on X is an action of G on X seen as a functor. Equivalently by
Yoneda, a categorical action is a morphism in the category of ind-algebraic spaces over S
σ : G×S X → X satisfying the usual axioms, i.e.

(a) σ ◦ (IdG × σ) = σ ◦ (m× IdX) where m : G×S G→ G is the group law of G,
(b) σ ◦ (e× IdX) = IdX where e : S → G is the identity section of G.

(ii) A collection of actions σi : G×SXi → Xi such that for i ⩽ j we have ϕij◦σi = σj◦(IdG×ϕij)
gives birth to a categorical action of G on X. Such categorical actions are called ind-actions.

Let M be a finitely generated abelian group.

Proposition 14.4. Let X be an ind-algebraic space (resp. ind-scheme) over S. Assume that we
have a presentation X = colimiXi with Xi quasi-separated and locally finitely presented over S.
Assume that D(M)S acts on X via an ind-action on the presentation X = colimiXi. Let N ⊂M
be a monoid. Assume that N is finitely generated or that X is separated. Then the attractor
functor

(T → S) 7→ HomD(M)T (A(N)T , XT )

is representable by the ind-algebraic space (resp. ind-scheme) colimiX
N
i . Moreover the natural

morphism XN → X is representable by algebraic spaces (resp. schemes). If N = Z is a group
the natural morphism XZ → X is representable by a closed immersion.

Proof. The first assertion is a direct corollary of Proposition 12.2. To show that XN → X,
is representable by algebraic spaces, we notice that if T is an affine scheme and T → X is a
morphism, then there exists i such that this morphism is induced by a morphism T → Xi, and
then we have T ×X XN = T ×Xi Xi

N . If N = Z is a group, the last assertion follows from
Corollary 8.1.
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15. Pure magnets

Let M be an abelian monoid. Let X be a separated algebraic space over S endowed with an
action a of A(M)S . Let m(a) be the set of magnets of a, i.e. the set of all submonoids of M . We
also use the notation m(M) to denote m(a).

Proposition 15.1. Let N ∈ m(a), the following conditions are equivalent.

(i) For any L ∈ m(a), L ⊊ N ⇒ XL ⊊ XN .

(ii) For any L ∈ m(a), XN = XL ⇒ N ⊂ L.

Proof. Let us prove (i) ⇒ (ii). So let L ∈ m(M) and assume XN = XL. Then XN = XN∩L by
Proposition 3.30. Since N ∩L ⊂ N , (i) implies that N ∩L = N . So N ⊂ L. Reciprocally assume
(ii) holds. Let L ∈ m(a) such that L ⊊ N . By Proposition 3.27, we have XL ⊂ XN . It remains
to prove that XL ̸= XN . This is clear, indeed otherwise (ii) implies that N ⊂ L and so N ̸= N
which is absurd.

Definition 15.2. We use the following terminology.

(i) A pure magnet for the action a is a magnet N ∈ m(a) satisfying the equivalent properties
of Proposition 15.1.

(ii) The set of all pure magnets of the action a is denoted 0(a).

Theorem 15.3. We have a canonical bijection between 0(a) and the set

{XN ⊂ X|N ∈ m(M)}

with the convention that we identify XN and XL if and only if XN (T ) = XL(T ) ⊂ X(T ) for all
T/S (cf. Proposition 3.28). The bijection sends a pure magnet N ∈ 0(a) to the attractor XN .
The reciprocal bijection sends Y ∈ {XN ⊂ X|N ∈ m(M)} to the pure magnet

E(Y ) :=
⋂{

N ∈ m(M)|XN = Y
}
.

Proof. Let Y ∈ {XN ⊂ X|N ∈ m(M)} and let E(Y ) be the monoid defined in the statement, i.e.
E(Y ) =

⋂{
N ∈ m(M)|XN = Y

}
. By Proposition 3.31, we have Y = XE(Y ). Let us prove that

E(Y ) is a pure magnet. Let L ∈ m(M) such that XL = XE(Y ) = Y , by definition of E(Y ), we
have E(Y ) ⊂ L and so E(Y ) is a pure magnet. It remains to prove that for all N ∈ 0(a) and all
Y ∈ {XN ⊂ X|N ∈ m(M)}, we have E(XN ) = N and Y = XE(Y ). So let us first take N ∈ 0(a).

It is obvious that E(XN ) ⊂ N . On an other hand, by Proposition 3.31, we have XN = XE(XN )

and so N ⊂ E(XN ) because N is a pure magnet. Now let us take Y ∈ {XN ⊂ X|N ∈ m(M)},
Proposition 3.31 implies that Y = XE(Y ).

Theorem 15.4. Assume moreover that X is finitely presented over S. Assume additionally that
one of the following conditions is satisfied

(i) X is affine over S,

(ii) M is a group and there exists an S-affine strongly-FPR atlas for X (e.g. the action is Zariski
locally linearizable),

(iii) add more as needded,

then 0(a) is a finite poset.

Proof. The set 0(a) is a poset for the inclusion. It remains to show that 0(a) is finite. Assume
(i) holds. Write X = SpecS(A), then we have an M -grading A =

⊕
m∈M Am. Because of X is
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finitely presented over S, there exists a finite subset E ⊂ M such that A is generated locally
by homogeneous elements of degree in E. Now for any monoid N , we have XN = X [N∩E⟩. This
implies that 0(a) is finite. Case (ii) follows from case (i) and the following result:

Proposition 15.5. Let U → X be an S-affine strongly-FPR atlas. Let aU denote the action of
D(M)S on U . Then for all submonoids N,L of M , we have UN = UL ⇒ XN = XL; moreover

0(aX) ⊂ 0(aU ).

Proof. Note that XP is representable for any magnet P by Proposition 8.3. Let N,L be sub-
monoids of M and assume UN = UL. By Proposition 3.30 or Proposition 3.22, we have UN =
UN∩L = UL. So it is enough to prove that XN∩L = XL, in other words we can change notation
and assume N ⊂ L. Let us remark that U → S is of finite presentation, indeed U → S being
affine, it is quasi-compact and quasi-separated and U → X → S is locally of finite presentation
as compositions of two such morphisms. The map UN → XN is étale and surjective. Indeed since
u is strongly-FPR, by Proposition 5.1 we get a diagram

UN UN∗
U

XN XN∗
X

with Cartesian squares and U → X is étale and surjective. We get a commutative triangle

UN XN

XL

f

p

q
where f is surjective and étale, p is étale by Corollary 11.6 and q is

locally of finite presentation (e.g. by [StP, Tag 05WT] and Theorem 8.3). So q is étale by [StP,
Tag 0AHE] and in particular unramified. Now since X is separated, q is a monomorphism by
Proposition 3.27. Being an unramified monomorphism, q is universally injective by [StP, Tag
05W6]. So q being étale and universally injective, by [StP, Tag 05W5], it is an open immersion.
Now since p is surjective, we get that q is surjective. So q being a surjective open immersion,
it is an isomorphism. So we proved that XN = XL. Now let N ∈ 0(aX) and let us prove that
N ∈ 0(aU ). So let L ∈ m(M) such that UN = UL. We proved that XN = XL and so L ⊂ N
because N ∈ 0(aX). This finishes the proof.

Remark 15.6. Theorem 15.4 shows in particular that, under the same assumptions, the set
{XD(M/Z)S ⊂ X | Z ⊂ M is a subgroup of M} is finite. We did not know a reference for this
fact.

Conjecture 15.7. We conjecture that the conclusion of Theorem 15.4 remains true without
the additional assumption (i),(ii) or (iii).

Remark 15.8. Conjecture 6.9 implies Conjecture 15.7.

If N is a monoid, we denote by gen(N) the set of all subsets of N that generate N as monoid.
The emptyset generates the zero monoid.

Definition 15.9. The rank mk(N) (possibly infinite) of a monoid N is the cardinal defined by

mk(N) = min{#E|E ∈ gen(N)}.
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Understanding combinatorial aspects of 0(a), including ranks of pure magnets, is a funda-
mental invariant of the action a.

Example 15.10.

(i) Let a be the trivial action of A(M) on a space X, then 0(a) = {0}.
(ii) Let a be the action of D(Zn) on itself by multiplication. Then 0(a) = {0,Zn}.

Fact 15.11. We have mk(Zn) = n + 1.

Proof. Indeed, as monoid, Zn is generated by {{ei}i∈{1,...,n},−
∑n

i=1 ei}. Assume that Zn is
generated by n elements f1, . . . , fn, then there exists p1, . . . , pn > 0 such that −(f1 + . . . +
fn) = p1f1 + . . . + pnfn, this implies (p1 + 1)f1 + . . . + (pn + 1)fn = 0. So f1, . . . , fn are
linked and can not generate Zn as group. This is absurd. So Zn can not be generated by
only n elements.

(iii) Let a be the action of A(N) on itself by multiplication. Then 0(a) = {0,N}, note that
mk(N) = 1.

(iv) Let a be the action of D(Z) on A(N) by multiplication. Then 0(a) = {0,N}.
(v) Let a be the action of D(Z) on A(N) given by λ · x = λ2x. Then 0(a) = {0, 2N}, note that

mk(2N) = 1.

(vi) Let a be the action of D(Z) on P1, then 0(a) = {0,N,−N,Z}.
(vii) Let a be the action of D(Z2) on A(N2) by multiplication, then 0(a) = {0 × 0,N × 0, 0 ×

N,N× N}.
(viii) Let a be the action of D(Z/6Z) on D(Z/6Z)×D(Z/6Z)×D(Z/6Z) given by

λ · (x, y, z) = (λx, λ2y, λ3z).

Then 0(a) = {Z/6Z, 2Z/6Z, 3Z/6Z, 6Z/6Z}.
(ix) Let a be the adjoint action of a maximal split torus T = D(M) on a given reductive group

scheme G. Then N 7→ N ∩ Φ provides a bijection between 0(a) and the set of subsets of
Φ(G,T ) that are closed under addition. Pure magnets of rank 1 correspond to roots (cf.
§16.4 for more details about the example of reductive groups).

16. Complements and examples

16.1 Tangent spaces and attractors

Let S be a scheme. We denote by IS the scheme of dual numbers over S as in [SGA3, Exp. II
Définition 2.1]. For any scheme T over S, we have IT = IS×S T . Explicitly, IS = Spec(Z[ε])×ZS

where Z[ε]
ε=[T ]

= Z[T ]/(T 2). Let X be a functor over S. Let TX be the tangent space of X as in
[SGA3, Exp. II Définition 3.1]. This is a functor from SchS to Set sending a scheme R over S to

HomR(IR, XR).

Remark 16.1.

(i) For S-morphisms X → Y and Z → Y , we have TX×Y Z
∼= TX ×TY

TZ .

(ii) If X → Y is a monomorphism, then TX → TY is a monomorphism.

(iii) We have a canonical identification TS = S.
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Let M be an abelian group and assume that D(M)S acts on X. Then D(M)S acts naturally
on TX using the definition of TX . Let N be a submonoid in M .

Proposition 16.2. We have a canonical isomorphism

(TX)N ∼= TXN .

Proof. It is enough to show that (TX)N (S′) ∼= TXN (S′) for any S-scheme S′. We have

(TX)N (S′) = Hom
D(M)S′
S′ (A(N)S′ , TXS′ )

= Hom
D(M)S′
S′ (A(N)S′ ×S′ IS′ , XS′) where D(M)S′ acts trivially on IS′

= Hom
D(M)IS′
IS′ (A(N)IS′ , XIS′ )

= HomS′(IS′ , XN
S′)

= (TXN )(S′).

This shows that we have a canonical isomorphism.

16.2 Lie algebras and attractors

Let G/S be a group functor over a scheme S. Recall that in this case TG is a group functor over
S and we have two canonical morphisms of group functors G → TG and TG → G by [SGA3,
Exp. II]. Let eS be the trivial group over S, as S-scheme we have eS = S. The Lie algebra of G
is defined as the fiber product

Lie(G) = eS ×G TG
//

��

TG

��

eS // G

where eS −→ G is the canonical morphism of group functors from eS to G. As in the previous
section, let M be an abelian group and assume that D(M)S acts on G. We assume moreover
that this action is compatible with the group structure on G, i.e D(M)S acts by automorphisms
on G. Then the induced action of D(M)S on TG is by group automorphisms. We thus obtain an
action of D(M)S on Lie(G) by group automorphisms.

Remark 16.3.

(i) For S-group functors G,K,H with morphisms G → K,H → K, we have a canonical
isomorphism Lie(G×K H) ∼= Lie(G)×Lie(K) Lie(H).

(ii) If G→ H is a monomorphism, then Lie(G)→ Lie(H) is a monomorphism.

(iii) We have a canonical identification Lie(eS) = eS .

Proposition 16.4. We have a canonical isomorphism of group functors over S(
Lie(G)

)N ∼= Lie(GN )

Proof. Using Proposition 3.7 and Proposition 16.2, we have(
Lie(G)

)N
=

(
S ×G TG

)N ∼= SN ×GN TG
N ∼= S ×GN TGN = Lie(GN ).

Let us fix now a group functor H over S and a monomorphism H → GN∗
preserving the

group structures. Recall that GN
H is the attractor with prescribed limit H as in Definition 4.1.
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Proposition 16.5. We have a canonical isomorphism of group functors over S(
Lie(G)

)N
Lie(H)

∼= Lie(GN
H).

Proof. Using Proposition 16.4 and Remark 16.3 we have

Lie(G)NLie(H) = Lie(G)N ×Lie(G)N∗ Lie(H)

∼= Lie(GN )×Lie(GN∗ ) Lie(H)

∼= Lie(GN ×GN∗ H)

= Lie(GN
H)

This shows that we have the desired canonical isomorphism.

16.3 Relation to Gm-attractors

Let X be an S-algebraic space with and action of D(M)S . Let N be a submonoid of the group
M . Then in some cases the attractor space XN can be obtained as a succession of attractors
under Gm (cf. the introduction and [Ri16]) and fixed-points. Let us gives two examples.

(i) Let α ∈ M and let us consider X [α⟩. Under mild assumptions, by Proposition 3.30 we

have X [α⟩ =
(
X(α)

)[α⟩
. By Proposition 3.32 X(α) identifies with the fixed-points space

XD(M/(α))S . So the operation X ⇝ X(α) can be realized as taking fixed-points. By Remarks
3.12 and 3.11, D((α))S and D(M)S act on X(α), and using Proposition 3.29, we have(
X(α)

)[α⟩⊂(α)
=

(
X(α)

)[α⟩⊂M
(cf. Remark 3.4 for the notation XN⊂M ). But

(
[α⟩ ⊂ (α)

)
≃(

N ⊂ Z
)
, so the operation X(α) ⇝

(
X(α)

)[α⟩
can be realized as taking attractor under

Gm = D(Z)S . So X ⇝ X [α⟩ can be realized as fixed-points followed by taking the attractor
under an action of Gm.

(ii) Assume that M = Z× Z and that N = N× N. Using Propositions 3.30 and 3.29, we have

XN =
(
XN×Z⊂Z×Z)Z×N⊂Z×Z =

(
XN×0⊂Z×0)0×N⊂0×Z.

This shows that X ⇝ XN can be realized as two stages of Gm-attractors.

(iii) If M = Zr and N = Nr then X ⇝ XN can be realized as r stages of Gm-attractors.

16.4 Magnetic point of view on reductive groups

This section is devoted to the observation that parabolic and Levi subgroups of reductive group
schemes are easily described using attractors. We work with a split reductive group over a field
for simplicity and accessibility but similar results hold more generally (e.g. cf. Proposition 16.14
and [ALRR22, §6.3]). In fact, we expect attractors theory provide a natural framework to study
some aspects of the advanced theory of group schemes from the beginning, but this is not the
purpose of the present work. So let G be a split connected reductive group scheme over a field R.
Let T be a maximal split torus and choose a Borel B containing T . Let Φ = Φ(G,T ) ⊂ X∗(T )
denote the set of roots associated to (G,T ) and Φ+ = Φ(B, T ) the roots in B. Let B be the
basis of Φ determined by Φ+. For α ∈ Φ, let Uα be the associated unipotent root group and uα
be the root group associated to α in the Lie algebra of G. We refer to [SGA3, Exp. XXII] for
the definition of Uα and uα. Let U be the unipotent radical of B and let u ⊂ b ⊂ g be the Lie
algebras of U,B and G. Consider the adjoint action of T on G,U and u.

Proposition 16.6. There exists a T -equivariant isomorphism of R-schemes u ≃ U .
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Proof. This is a direct consequence of [SGA3, Exp. XXII Th. 1.1, Exp. XXVI Prop. 1.12], indeed
these results imply the following assertions. For each root α ∈ Φ+, we have a T -equivariant
isomorphism Uα ≃ uα. We have T -equivariant isomorphisms of schemes u = Πα∈Φ+uα and
U = Πα∈Φ+Uα. This finishes the proof.

Let us now fix α ∈ Φ+. Recall that [α⟩ ⊂ X∗(T ) is the submonoid generated by α.

Proposition 16.7. We have a canonical isomorphism uα ≃ u[α⟩ (resp. Uα ≃ U [α⟩), between root
group and [α⟩-attractor for the action of T = Spec(R[X∗(T )]) on u (resp. U).

Proof. By Proposition 16.6, we have a T -equivariant isomorphism u ≃ U , so it is enough to prove
the statement for u. Since G is split, Φ is reduced and Proposition 3.26 finishes the proof.

Recall that we have a bijection between parabolic subgroups of G containing B and subsets
of B, cf e.g. [Co14, Page 35, lines 4-5] or [CGP10, 2.2.8]. If Σ is a subset of X∗(T ), we also use
the notation NΣ to denote [Σ⟩, the monoid generated by Σ in X∗(T ).

Proposition 16.8. Let ζ ⊂ B. Let Θ be ζ ∪ −ζ. Let Σ be B ∪ −ζ.
(i) The attractor GNΘ is the Levi subgroup LΘ such that Φ(LΘ, T ) = NΘ ∩ Φ.

(ii) The attractor GNΣ is the associated parabolic subgroup, moreover LΘ is a Levi component
of P .

(iii) Let ξ ⊂ ζ. Let Γ = B ∪ −ξ. Let N be a submonoid of NΣ such that N ∩ Σ = Γ. Then
GN = GNΓ .

Proof. Let PΣ be the parabolic corresponding to ζ. By [CGP10, 2.2.8, 2.2.9], there exists a
λ ∈ X∗(T ) such that PΣ is the attractor associated to the monoid N relatively to the action of
Gm = D(Z)S on G via x.g = adλ(x)g and such that λ(β) ⩾ 0 for all β ∈ Σ and λ(β) = 0 for all
β ∈ Θ. The Levi subgroup LΘ corresponding to Θ is the fixed space in G under the action of λ
by conjuguation, i.e LΘ = G0. Now we prove the Proposition.

(i) Assume first that ζ = B. Then LΘ = G and NΘ = NΦ(G,T ). Using Prop. 16.7, we deduce that

the big cell Ω = Πα∈Φ−Uα×T ×Πα∈Φ+Uα is in GNΘ . Now we have inclusions Ω ⊂ GNΘ ⊂ G
with Ω dense in G and GNΘ closed in G. This implies GNΘ = G. Let us now prove the general
case, let ζ ⊂ B. By Proposition 3.29, we have Gf−1(0) = G0 = LΘ. We have Θ ⊂ f−1(0),
and so NΘ ⊂ f−1(0), consequently GNΘ ⊂ Gf−1(0). So we have proved that GNΘ ⊂ L and
let us now prove that this is an equality. We remark that NΘ = NΦ(LΘ,T ). Now since L ⊂ G

and using the first case done before, we have L = LNΦ(LΘ,T ) ⊂ GN
Θ . This finishes the proof.

(ii) Recall that λ : Gm → T corresponds to the morphism of abelian groups f : X∗(T ) →
Z, χ 7→ (λ, χ). Now we see G as a Gm-scheme and as a T -scheme. By Proposition 3.29,
we have GN = Gf−1(N). Since, for all β ∈ Σ, f(β) = λ(β) ⩾ 0, we have f(β) ∈ N and so
Σ ⊂ f−1(N), and so NΣ ⊂ f−1(N). Consequently, PΣ = GN = Gf−1(N) ⊃ GNΣ . Let us prove
that PΣ ⊂ GNΣ . We have PΣ = LΘ ×Ru(PΣ) where Ru(PΣ) is the unipotent radical of PΣ.
Using (i), we have LΘ = LNΘ

Θ ⊂ LNΣ
Θ ⊂ LΘ, and so LNΣ

Θ = LΘ. Using Proposition 16.7, one

has (Ru(PΣ))NΣ = Ru(PΣ). So PNΣ
Σ = PΣ, and so PΣ ⊂ GNΣ .

(iii) We have a canonical closed immersion GNΓ ⊂ GN . We have N ∩NΘ = Nζ∪−ξ and N ∩NΘ

it is thus included in NΓ. By Proposition 3.22 we have GN = (GNΣ)N . By the previous
assertions we have GNΣ = GNΘ × Ru(GNΣ). Now by 3.22 we have(

GNΘ × Ru(GNΣ)
)N

= (GNΘ)N × (Ru(GNΣ))N = GNζ∪−ξ × Ru(GNΣ).
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This implies that GNΓ ⊃ GN and finishes the proof.

Remark 16.9. Proposition 16.8 implies that any parabolic or Levi subgroup of G containing
T can be obtained as an attractor under the conjuguation action of T on G. Moreover, assume
that B is a parabolic subgroup in a parabolic P and L is a Levi component of P. We assume
that B,P and L contain T . Let M be B ∩ L, this is a parabolic subgroup in L. Then one has a
cartesian square

B

P M

L

.

This square can be obtained using Proposition 3.33. Indeed let L′ be the submonoid generated
by Φ(P, T ), let L be the submonoid generated by Φ(L, T ) and N be the submonoid generated
by Φ(M, T ). Using Proposition 2.16, we deduce that L is a face of L′. Now let N ′ be L′ \ (L\N).
We have GL′

= P, GN = M and GL = L. Using Proposition 16.8 we have GN ′
= B.

For any root α ∈ Φ+ we denote by Hα ⊂ G the semidirect product T ⋉ Uα, this is a group
scheme whose unipotent radical equals Uα.

Proposition 16.10. We have a canonical isomorphism Hα ≃ G[α⟩.

Proof. Since [α⟩ ⊂ ΣΦ+ and by Proposition 16.8, we have a closed immersion G[α⟩ ⊂ B = GΣΦ+

where B is the Borel subgroup. So by Lemma 3.24, we get a closed immersion G[α⟩ ⊂ B[α⟩ and
thus an equality G[α⟩ = B[α⟩. Now we have a T -equivariant isomorphism of schemes B ≃ T ×U .
Using Proposition 16.7, we get

Uα = U [α⟩. (16.1)

It is obvious that

T = T [α⟩. (16.2)

Now equations 16.1 and 16.2 and Proposition 3.7 (ii) imply that B[α⟩ = Hα. This finishes the
proof.

Corollary 16.11.

(i) Let eG be the closed subscheme of G corresponding to the unit section. Then the attractors

G
[α⟩
eG with prescribed limit eG equals Uα.

(ii) We have a canonical isomorphism Uα = Ru(G[α⟩) where Ru means the unipotent radical.

Proof. Clear from Proposition 16.10 and Section 4.

16.5 Root groups

Let S be a scheme, let G be a group scheme over S. Let M be an abelian group. Assume that
D(M)S acts on G by group automorphisms. Then we get an action of D(M)S on Lie(G)S by
group automorphisms. Let N be a submonoid of M . Let GN

eS
be the attractor associated to N

with prescribed limit the trivial subgroup eS/S relatively to the face N∗.
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Definition 16.12. Let α ∈M . We call G
[α⟩
eS the root group associated to α under the action of

D(M)S on G. We call G[α⟩ the non prescribed root group associated to α.

Proposition 16.13. Let α ∈M .

(i) If G is affine over S, we have closed immersions of group schemes over S

G[α⟩
eS
⊂ G[α⟩ ⊂ G.

(ii) If G/S is smooth, then G
[α⟩
eS and G[α⟩ are smooth over S.

(iii) We have canonical isomorphisms Lie(G
[α⟩
eS ) =

(
Lie(G)

)[α⟩
eS

and Lie(G[α⟩⟩ = Lie(G)[α⟩.

Proof. (i) We know that G[α⟩ is a closed subgroup of G by Theorem 3.19. We have G
[α⟩
eS =

G[α⟩ ×G0 eS and so G
[α⟩
eS is a closed subgroup of G[α⟩.

(ii) By Corollary 11.9, G[α⟩ → S and G[α⟩ → G0 are smooth, this implies the claim.

(iii) These are special cases of Propositions 16.5 and 16.4.

We observe that our definition is compatible with the definition given by Conrad and SGA3.

Proposition 16.14. Let G → S be a reductive group scheme over a non-empty scheme S,
T ∼= DS(M) a split maximal torus, and α ∈ M a root. Let expα(W(gα)) ⊂ G be the α-root
group for (G,T,M) considered by B. Conrad in [Co14, Theorem 4.1.4], then

expα(W(gα)) = G[α⟩
eS

expα(W(gα))×S T = G[α⟩.

Proof. We remark that we have (W(gα) ×S T )[α⟩ = W(gα) ×S T . By [Co14, Theorem 4.1.4]
we have a closed immersion W(gα) ×S T → G. So Lemma 3.24 gives us a closed immersion
f : W(gα)×S T → G[α⟩. We now prove that f is an open immersion. Since f is of finite pre-
sentation by [StP, Tag 02FV], using [GW, Proposition 14.18] it is enough to prove that f is
flat. Since W(gα) ×S T → S is flat, it is enough to prove that for any s ∈ S, the morphism
fs :

(
W(gα)×S T

)
s
→

(
G[α⟩)

s
is flat (cf. [GW, Proposition 14.25]). Since all involved construc-

tions are compatible by base change, fs is an isomorphism (in particular flat) for any s ∈ S by
Corollary 16.11. Now f is an open and closed immersion that gives isomorphisms on fibers. This
implies that f is an isomorphism and proves the second equality. Now the first equality is clear
because [α⟩∗ = 0, G0 = T and so

G[α⟩
eS

= G[α⟩ ×G0 eS =
(
expα(W(gα))×S T

)
×T eS = expα(W(gα)).

Remark 16.15. Let us remark that, G[α⟩ =
(
GD(M/(α))S

)[α⟩⊂(α)
(e.g. by §16.3). So G[α⟩ can be

obtained as a first stage of fixed-points followed by a stage of Gm-attractor. Similarly G
[α⟩
eS =(

G
(α)
Tα

)[α⟩
eS

where Tα is defined in [Co14, Lemma 4.1.3] or [SGA3], this explains why [Co14] works
with small semisimple groups of rank one as a first stage in order to build root groups using
Gm-attractors. Note that [SGA3] also uses semisimple groups of rank one as a first stage [SGA3,
Exp. XX] before defining root groups in the general case [SGA3, Exp. XXII].
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16.6 Monoschemes and toric schemes

Let M be an abelian group and let N and L be submonoids of M . Let us consider the attractors
A(N)L associated to the monoid L under the action of D(M) on A(N). By Theorem 3.19 A(N)L

equals Spec
(
Z[N ]/(Xn|n ∈ N \ (N ∩ L))

)
. The ideal I := (Xn|n ∈ N \ (N ∩ L)) of Z[N ] equals⊕

i∈I ZXi where I is the ideal of N generated by N \ (N ∩ L). If I is a prime ideal of N (cf.
[Og]) then N \ I is a submonoid of N (and necessarily a face) and Z[N ]/I = Z[N \ I]. In this
case, A(N)L is also a scheme associated to a submonoid of M . For example if N ∩L is a face of
N , then N \ I = N ∩ L and A(N)L = A(N ∩ L). In general I is not a prime ideal and so N \ I
is not a submonoid of N (e.g. take M = Z2, N = [(1, 1), (1,−1), (1, 0)⟩ and L = [(1, 0)⟩, then
N \ I = {(0, 0), (1, 0)}).

More generally, let N be a toric monoscheme whose associated finitely generated abelian
group Γ is M (cf. [Og, II §1.9]). Let A(N ) be the scheme asssociated to N (cf. [Og, II Prop.
1.9.1]), this is a toric scheme. Let {spec(Nτ )}τ∈A be an open affine covering of N (Nτ ⊂ M for
all τ). Then {A(Nτ )}τ∈A is an open affine covering of A(N ). Then

∐
τ A(Nτ )→ A(N ) gives an

FPR atlas of A(N ) (recall that a D(M)-equivariant open immersion is Z-FPR for any subgroup
Z ⊂M). Let L be a submonoid of M , then we obtain that {A(Nτ )L} is an affine open covering
of A(N )L.

Appendix A. Fixed-point-reflecting morphisms, after Drinfeld and
Alper-Hall-Rydh.

by Matthieu Romagny

Let U → X be an equivariant morphism of S-algebraic spaces endowed with actions of an affine
S-group scheme G whose function algebra is free over OS (e.g. a diagonalizable S-group scheme).
It is classical that if U/S is separated then the fixed point functor is a closed subspace UG → U
([SGA3, Exp. VIII, § 6]). By étale descent, if U → X is étale, surjective and reflects the fixed
points, then the same conclusion follows for XG → X. This need not always hold: if X is the
affine line with doubled origin over the field of complex numbers, and V,W ⊂ X are the two
glued copies of the affine line, then the action of Z/2Z that permutes V and W induces an action
on X whose fixed point scheme is the complement of the two origins.

Thus there is a close relationship between the existence of FPR atlases and the closedness of
fixed points. In this appendix we present two situations where these properties occur. The first is
a useful generalization of an argument of Drinfeld, who in [Dr15, Prop. 1.2.2] considers the case
where S is the spectrum of a field and G is the multiplicative group Gm (cf. also [Ri16, Lemma
1.10] and Propositions 8.1 and 6.3).

Theorem A.1. Let G be a flat, finitely presented S-group scheme with connected fibres. Let
X,Y be locally finitely presented S-algebraic spaces endowed with G-actions. Assume either

(i) S is locally noetherian, or

(ii) X,Y are quasi-separated.

Then XG → X, Y G → Y are closed immersions of finite presentation and all étale equivariant
morphisms X → Y are fixed point reflecting.

Interestingly this gives a case where closedness of XG → X is ensured by an assumption on
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the group (connectedness) rather than on the space (separation). The second result, Theorem
A.2, is essentially a corollary of results of Alper, Hall and Rydh [AHR21] and the present version
was formulated by Mayeux (cf. Theorem 6.8).

Theorem A.2. Let X be a quasi-separated S-algebraic space locally of finite presentation en-
dowed with an action of a finitely presented diagonalizable group scheme G = D(M)S . Let
H = D(M/Z) be a subgroup scheme and assume that one of the following assertions holds:

(i) X is separated over S,

(ii) H has connected fibres.

Then there exists a Z-FPR atlas U → X (cf. Definition 6.1), which may be chosen quasi-compact
if X → S is.

Let us get the proofs started. We start with Drinfeld’s result on the closedness of fixed
points. We shall prepare the discussion with three preliminary lemmas. Let F = (F, e : S → F )
be a pointed S-algebraic space. An action of F on X is a morphism of S-algebraic spaces
F ×X → X, (f, x) 7→ fx through which the section e acts trivially. Examples are the projection
pr2 : F × X → X, called the trivial action, and the action induced when F is a subscheme of
an S-group scheme G acting on X in the usual sense. To any action is associated its stabilizer,
the pointed sub-X-algebraic space of F ×X defined by pulling back the map F ×X → X ×X,
(f, x) 7→ (x, fx) along the diagonal:

Stab F ×X

X X ×X.

φ

∆

Lemma A.3. Let F = (F, e) be a finite locally free, infinitesimal pointed S-algebraic space acting
on the S-algebraic space X. Then the functor of F -fixed points, whose values over an S-algebraic
space T are the F -equivariant maps u : T → X where T is endowed with the trivial action, is
representable by a closed subspace XF ⊂ X.

Proof. Note that XF is the Weil restriction of φ : Stab → F × X along the projection pr2 :
F ×X → X. In particular, its representability by an algebraic space is standard, for all F finite
locally free (see e.g. [Ry11, Th. 3.7]). To prove the closed immersion property in the infinitesimal
case, we argue as follows. Because the stabilizer is sandwiched as

X ↪→ Stab ↪→ F ×X

between two finite infinitesimal X-spaces, then also Stab → X is finite infinitesimal and φ is
a closed immersion. Let A be the OX -algebra of functions of F × X and I ⊂ A the defining
ideal sheaf of φ. Let u : T → X be a morphism. Saying that F acts trivially on T means that φ
restricts to an isomorphism above F × T . The latter assertion means that after the base change
u♯ : OX → u∗OT , the map I → A becomes the zero map. The OX -algebra A being finite locally
free, the formation of its linear dual commutes with base change; hence it is equivalent to say
that I ⊗ A∨ → OX becomes the zero map. Equivalently the OX -ideal J := im(I ⊗ A∨ → OX)
is contained in ker(u♯). This shows that the functor of fixed points is representable by the closed
subscheme V (J ) ⊂ X.

Lemma A.4. Let R → A be a ring map and x1, . . . , xd elements of A. Let In be the ideal of A
generated by the powers (x1)

n, . . . , (xd)n, for each n ⩾ 1. If A/I1 is finite over R, then A/In is
finite over R for all n ⩾ 1.
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Proof. Let (I1)
n be the powers of the ideal I1. By induction, using that (I1)

n/(I1)
n+1 is a finite

A/I1-module hence finite over R, we see that A/(I1)
n is finite over R for all n. The containments

(I1)
d(n−1)+1 ⊂ In ⊂ (I1)

n show that the sequences of ideals {In}n⩾1 and {(I1)n}n⩾1 are cofinal,
and the claim follows.

Lemma A.5. Let G be a flat, finitely presented S-group scheme with connected fibres. Then
for each point s ∈ S there is an étale neighbourhood S′ → S and a sequence of finite locally
free infinitesimal neighbourhoods of the unit section of G×S S′ which is cofinal to the canonical
sequence of n-th order thickenings.

Proof. Let e = e(s) be the unit section of the fibre Gs. Since the local ring OGs,e is Cohen-
Macaulay ([SGA3, Exp. VIIB, Corollaire 5.5.1]), it admits a regular sequence x̄ = (x̄1, . . . , x̄d)
of length d = dim(OGs,e). Let U be an open subscheme of G over which the germs x̄i extend to
local functions xi belonging to the augmentation ideal ker(e♯ : OU → OS). Because G → S is
flat and the sequence x̄ is regular, the closed subscheme F ⊂ U cut out by x1, . . . , xd is flat and
quasi-finite over S at the point e. Thus shrinking U is necessary, we may assume that F → S
is flat and quasi-finite; it is furthermore finitely presented. By [EGA, IV, Th. 18.12.1] there is
an étale extension S′ → S and an open neighbourhood V ′ of e′ = e(s′) in G ×S S′ such that
F ′ := (F ×S S′) ∩ V ′ is finite over S′, and therefore locally free. For each n ⩾ 1, the sequence
(x1)

n, . . . , (xd)n is again regular and it now follows from Lemma A.4 that its vanishing locus F ′n
in V ′ is also finite locally free over S′.

Remark A.6. If G→ S is smooth, the n-th order thickenings of the unit section are finite locally
free, hence they fit the bill.

We are ready to prove that “XG → X is closed when G is connected”.

Proof of Theorem A.1. We start with the statement about XG → X. The assumptions and
conclusion being local over S, we may assume that S is affine. Because G→ S is flat and finitely
presented, the orbit in X of an open quasi-compact subspace W ⊂ X is open and quasi-compact.
We may replace X by one such orbit and hence assume that X is quasi-compact. In the case when
X is assumed quasi-separated, it is then of finite presentation. By standard results on limits (as
in [StP, Tag 07SJ]), the space X and the G-action then come from a finitely presented algebraic
space X0 → S0 with G0-action by a base change S → S0 where S0 is of finite type over Z. Thus
in all cases we may assume that S is noetherian and X is locally noetherian.

The claims about XG → X are étale-local over S so using Lemma A.5 we can assume that
there exists a sequence {Fn} of finite locally free infinitesimal neighbourhoods of the unit section
of G which is cofinal to the canonical sequence of n-th order thickenings. By Lemma A.3 the
fixed points XFn are closed subspaces of X. Let X0 be the closed subspace of X equal to their
intersection. From the obvious inclusions XG ⊂ XFn follows that XG ⊂ X0. In order to prove
the opposite inclusion and conclude, it is enough to prove that the top map φ0 in the pullback
diagram

Stab0 G×X0

Stab G×X

φ0

φ

is an isomorphism. We view φ0 as a map of X0-group schemes. Note that φ0 is of finite pre-
sentation. We claim that φ0 is formally étale along the unit section. Since the target is locally

https://stacks.math.columbia.edu/tag/07SJ
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noetherian, argueing as in [EGA, IV, Prop. 17.14.2] it is enough to prove that each diagram

Stab0 G×X0

Spec(A) Spec(A′)

φ0

can be filled as indicated, where Spec(A) → Spec(A′) is a square-zero thickening of artinian
local schemes. Base-changing along Spec(A′) → X0 we reduce to the case where X0 is local
artinian, in which case the group schemes involved are separated ([SGA3, Exp. VIA, § 0.3]) and
Spec(A′)→ G×X0 is a closed immersion. Since Spec(A′) is artinian, it is included in one of the
Fn ×X0, and then the lifting result follows from the definition of X0.

This proves that the maximal open subscheme U ⊂ Stab0 where φ0 is étale contains the
unit section. Clearly U is stable by multiplication by local sections of U , and also by inversion.
Hence U is an open subgroup scheme of Stab0 and also (because φ0|U is étale) of G×X0. Since
G→ S has connected fibres, its only open subgroup scheme is itself, whence U = G = Stab0 and
the conclusion.

We now consider the statement about étale equivariant morphisms X → Y . Proceeding as
before we reduce to the situation where we have a family {Fn} with equalities XG = ∩n⩾0XFn

and Y G = ∩n⩾0Y Fn . Since the intersections commute with pullback along X → Y , it is enough
to prove that the natural map XFn → X×Y Y Fn is an isomorphism. For this it is enough to prove
that the action of Fn on the subspace X0 := X ×Y Y Fn of X is trivial. Consider the diagram:

X0 Fn ×X0

X X ×Y X.

e×id

∆

Here the right vertical map is (f, x) 7→ (x, fx) and the bottom arrow is the diagonal. The diagram
is commutative by the very definition of X0. The top arrow is a homeomorphism and the diagonal
is an open immersion, since X → Y is étale. Therefore we obtain a diagonal filling as indicated.
This proves our claim.

Remark A.7. If G → S is infinitesimal (understood, finite locally free) then as in the proof of
Lemma A.3 we see that the stabilizer of the action is finite infinitesimal over X. Then there is a
quotient algebraic space q : X → Y = X/G such that q is affine ([Ry13, Th. 5.3]). Let V → Y be
an étale surjective map whose source is a disjoint sum of affine schemes; then U = V ×Y X → X
has the same properties. Moreover U is endowed with a G-action such that U → X is equivariant,
and from the known affine case we see that UG ↪→ U is closed. Since UG ≃ XG ×X U , it follows
that XG ↪→ X is closed. Note that this proof may seem simpler than the one given above, but it
uses the existence of quotients.

Finally we provide the proof of the existence of FPR-atlases.

Proof of Theorem A.2. Proceeding as in the beginning of the proof of Theorem A.1, we reduce to
the case where S is affine and S,X are of finite type over Z. In particular, the set of closed points
|Xcl| ⊂ |X| is dense. It will thus be enough to find an affine, G-equivariant étale neighbourhood
U(x)→ X of each closed point x ∈ |Xcl| and to eventually consider U := ⨿x∈|Xcl|U(x).

For such a closed point x with image s ∈ S, the residue field extension κ(x)/κ(s) is finite.
By [AHR21], Corollary 20.2 there exists an affine pointed scheme (U0 = Spec(A), u0) and an
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étale, G-equivariant morphism (U0, u0)→ (X,x) which induces an isomorphism of residue fields
κ(x) ≃ κ(u0) and an isomorphism of stabilizers Gu0 ≃ Gx. Write

H = D(M/Z) = T × F

as the product of a split torus with a finite diagonalizable group scheme. In case (ii) where H
has connected fibres (which means that F is infinitesimal), it follows from Theorem A.1 that
UH
0 → XH ×X U0 is an isomorphism, in other words U(x) := U0 is the desired Z-FPR atlas at x.

It remains to consider the case (i) where X is separated. In this case the stabilizer of the action
of F is finite over X hence there is a quotient X → X/F which is a finite morphism (see [Ry13,
Th. 5.3 and Prop. 4.7]). Of course, the same is true for the stabilizer of the action of F on U0

so there exists also a quotient U0 → U0/F . Let U1 := U0/F ×X/F X and u1 := (u0, x) ∈ U1. The
following properties are seen to hold:

� the scheme U1 is a disjoint sum of affine S-schemes (because this is true for U0/F and its
pullback along the affine map X → X/F ),

� the group G/F acts on U0/F and on X/F , so G acts on the fibred product U1 diagonally
on the factors,

� the map of point stabilizers Gu1 → Gx is an isomorphism,

� the map UF
1 → XF ×X U1 is an isomorphism.

Moreover, by Theorem A.1 the morphism UT
1 → XT ×X U1 is an isomorphism. Since UH

1 =
UT
1 ∩ UF

1 and XH = XT ∩XF , we conclude that U(x) := U1 is a Z-FPR atlas at x.

The final claim that U → X can be chosen quasi-compact if X → S is quasi-compact is
obvious.
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