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Actions of diagonalizable groups and algebraic

attractors associated to monoids

Arnaud Mayeux

July 28, 2022

Abstract. For a diagonalizable group scheme D(M)S acting on an algebraic space X over a
scheme S, we introduce for any submonoid N of M an attractor space XN . We then extend and
refine the study of Gm-actions on algebraic spaces to actions of diagonalizable group schemes and
general monoids. We expect that this formalism will shed light on some primordial objects, as
an evidence we observe that root groups are natural from the view point of attractors associated
to monoids.
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1. Introduction

Contents. Let S be a scheme. Let M be an abelian group and let D(M)S be the associated
diagonalizable group scheme over S. Let N ⊂ M be a submonoid and let N∗ be the face of
invertible elements of N . Let A(N)S be Spec(Z[N ]) ×Spec(Z) S, this is a monoid scheme over S
with a canonical action of D(M)S . Let X be an algebraic space over S with an action of D(M)S .
Our main idea is to introduce the following definition.

Definition 1.1. Let XN be the functor from schemes over S to Sets given by

(T → S) 7→ Hom
D(M)T
T (A(N)T , XT )

where Hom
D(M)T
T (A(N)T , XT ) is the set of D(M)T -equivariant T -morphisms from A(N)T to

XT = X ×S T . The functor XN is called the attractor associated to the monoid N under the
action of D(M)S on X.

If Z is a subgroup of M seen as a monoid, we prove that XZ equals the space of fixed points
XD(M/Z)S under the action of D(M/Z)S on X. The following Theorems hold.

Theorem 1.2. Assume that X is S-affine. Then the attractor XN is representable by a closed
subscheme of X.

Theorem 1.3. Assume that M is finitely generated. Assume that X is quasi-compact and
separated over S, then there exists a finitely generated submonoid N ′ of N such that XN = XN ′

.
In particular XN is representable by the following Theorem.

Theorem 1.4. Assume that M is finitely generated. Assume that X is locally of finite pre-
sentation and quasi-separated over S. Assume that N is finitely generated as monoid, then the
attractor XN is representable by a quasi-separated and locally finitely presented S-algebraic
space. Moreover the following assertions hold.

(i) If X/S is separated, then XN/S is separated.

(ii) If X/S is quasi-compact then XN/S is quasi-compact.

(iii) If X/S if of finite presentation, then XN/S is of finite presentation.

(iv) If X/S is smooth, then XN/S is smooth.

(v) If X is a scheme then XN is a scheme.

(vi) Let πN∗
: XN → XN∗

be the canonical morphism coming from the fact that N∗ is a face
of N , then πN∗

is affine and induces a bijection on the sets of connected components of
underlying topological spaces. Note that XN∗

is the space of fixed points XD(M/N∗)S .

(vii) Let Y be an other separated and locally finitely presented algebraic space over S. Let
f : X → Y be a morphism of algebraic spaces and let fN : XN → Y N be the canonical
morphism obtained on attractors. Then

(1) if f is an open immersion, then fN is an open immersion,
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(2) if f is a closed immersion, then fN is a closed immersion.

In our paper, we also state several elementary Propositions that we do not recall in this
introduction. We show that attractors are highly functorial. We show that attractors are com-
patible with tangent spaces and Lie algebras. We show that root groups of reductive groups are
well interpreted in the langage of attractors (cf. Section 14 and Proposition 14.3). We show that
attractors are compatible with dilatations.

Relation with other works. To prove our results, we adapt the strategy used by Drinfeld
and Richarz in [Dr13] and [Ri16] in the case of Gm. Let us recall briefly the situation for
Gm(= D(Z)). Richarz [Ri16] works with an algebraic space X endowed with an étale locally
linearizable action of D(Z)S . This means that there exists an equivariant étale atlas
{Ui → X}i∈I such that each Ui is S-affine. Then Richarz proves that for any equivariant étale
morphism U → X, there is a canonical isomorphism UN = XN ×X0 U0 (cf. [Ri16, Lemma
1.11]). Richarz also proves that for any equivariant étale morphism U → X from an S-affine
scheme to X, we have a canonical isomorphism U0 = X0 ×X U (cf. [Ri16, Lemma 1.10]). Using
that being étale is stable by base change, Richarz obtains that {UN

i → XN}i∈I is an étale atlas
of XN and that XN is representable (cf. [Ri16, Th. 1.8]) by an algebraic space. Note that
Richarz and Drinfeld use the notations

X+ X− X0 Gm,S (A1
S)+ (A1

S)−

where in our formalism we write

XN X−N X0 D(Z)S A(N)S A(−N)S .

Richarz uses in his proof that there exists a canonical map XN → X0. However in our general
situation where M is a finitely generated abelian group and N is an arbitrary submonoid, we
do not have a canonical map XN → X0. Moreover it is not true that U0 = X0 ×X U for any
D(M)S-equivariant étale morphism from an S-affine scheme U to X. In our proof, instead of
using the map XN → X0, we use the canonical map πN∗

: XN → XN∗
. Note that XN∗

is a
fixed points space of X, namely the fixed points under D(M/Z)S . In our paper we say that a
D(M)S-equivariant morphism U → X is fixed point-reflecting (FPR) relatively to a subgroup
Z ⊂ M if the identity UZ = XZ ×X U holds. We prove in this paper the existence of étale
FPR atlas for any subgroup Z using [AHR21]. We show that for any equivariant étale morphism
U → X, we have UN = XN ×XN∗ U . Altogether and using the representability in the S-affine
case, we deduce the representability of attractors. To prove the listed properties, we often adapt
arguments of [Ri16] or [Dr13].

We are pleased to indicate in this introduction general and powerful results of Alper-Hall-
Rydh and Halpern-Leistner-Preygel. The content of [AHR21, Corollary 14.10] gives a powerful
representability result and can be used to deduce the representability by algebraic spaces of our
attractors in the case where S is excellent. The content of [HP19, Introduction and Theorem
5.1.1] gives also a powerful representability result over specific bases. Our method (in the spirit
of [Dr13] and [Ri16]), taking into account the explicit description of attractors in the S-affine
case and using methods and results of [AHR21] (for the existence of FPR-atlas), allows to prove
all assertions contained in Theorem 1.4 over arbitrary bases. We expect that our attractors make
sense for stacks and could lead to a generalization of [AHR20, §5.4 §5.5].

In [JS18], over fields, the authors generalize in some sense [Dr13] to actions of much more
general groups than Gm and prove the existence of Bialynicki-Birula decompositions [Bi73] in
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this context. Our construction goes in a different generality than [JS18] for two main reasons.
Firstly, in the case of Gm (i.e M = Z), monoids that are reminiscient in the construction of
[JS18] are the same than those in [Dr13] or [Ri16] (i.e. 0, N or −N), whereas we can also consider
monoids like 0 ∪ N⩾k, aN, aN + bN or N \ {1, 2, 4, 5, 7, 10, 13}. Secondly, we allow bases that
are not fields. To our knowledge, in the Gm-case, the definition of attractors as functors using
equivariant morphisms appeared first in the works of Hesselink [He80, §4] and Jurciewick [Ju85,
§1.2.10].

2. Rings associated to monoids and their spectra

We refer to [Og] for a detailed and beautiful introduction to monoids and related structures.
We recall in this section some basic definitions and facts that we frequently use in our work. In
this article, monoids and rings are always commutative. Readers unfamiliar with monoids should
read [Og, I.1]. Let us recall some very basic notations, again we refer to [Og, I] for a more general
and conceptual presentation. Let P be a monoid and N ⊂ P and L ⊂ P be two submonoids.
Then N ∩L is a submonoid of N,L and P . Let N +L be {n+ l ∈ P |n ∈ N, l ∈ L}. Then N +L
is a submonoid of P . Let P be a monoid and let Σ be a subset of P , then we denote by NΣ or
by [Σ) the smallest submonoid of P containing Σ, this is the intersection of all monoids of P
containing Σ. Similarly if M is a group and Σ is a subset of M , we denote by (Σ) the subgroup
of M generated by Σ. Let M be an abelian group and let N be a submonoid of M . The subgroup
generated by N in M is denoted Ngp, in fact Ngp = N − N . We have an obvious notion of
finitely generated monoids. The monoid (N⩾1 × N) ∪ (0, 0) is not finitely generated and it is a
submonoid of the finitely generated abelian group Z× Z.

Definition 2.1. Let R be a ring and let N be a monoid, then we denote by R[N ] the associ-
ated R-algebra whose underlying R-module is ⊕n∈NR.Xn and multiplication is induced by the
operation of the monoid: Xn ×Xn′

= Xn+n′
. By convention we have X0 = 1.

Definition 2.2. Let N be a monoid, then we define A(N) to be the scheme Spec(Z[N ]). If S
is a scheme, then we put A(N)S = A(N) ×Spec(Z) S. This is a monoid scheme over S. If M is
an abelian group, then A(M) is denoted D(M) and is a group scheme called the diagonalizable
group scheme associated to M [SGA3, Exp 1, §4.4].

If N ′ ⊂ N , then we obtain morphisms of monoid schemes A(N)S → A(N ′)S , for every scheme
S.

Remark 2.3. Let us recall the augmentation and the comultiplication of the monoid scheme
A(N) for any monoid N . The augmentation is the map Z[N ] → Z sending Xn to 1 for every
n ∈ N . The comultiplication is the map Z[N ] → Z[N ] ⊗ Z[N ] that sends Xn to Xn ⊗ Xn for
n ∈ N . Moreover, if N = M is a group the antipode is the map Z[M ] → Z[M ] that sends Xm

to X−m for every m ∈ M .

Let eS be the trivial monoid scheme over S, it is a group scheme over S, isomorphic to S
as scheme. So for any monoid N , we have a canonical closed immersion eS → A(N)S called the
neutral section. We also denote by eA(N)S the corresponding closed submonoid of eA(N)S .

Let M be an abelian group and N be a submonoid of M . Then we have an algebraic action
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of D(M) on A(N) over Z given by:

Z[N ] −→ Z[N ] ⊗ Z[M ]

Xn 7→ Xn ⊗Xn.

By base change, we obtain an action of D(M)S on A(N)S for every scheme S. Remark that
the action of D(M)S on A(N)S comes from the morphism of monoid schemes D(M)S → A(N)S .

Remark 2.4. We have A(N ×L)S = A(N)S ×S A(L)S for any pair of monoids and any scheme.

Definition 2.5. Let N be a submonoid of a monoid L. We say that N is a face of L if the
projection map

Z[L] → Z[N ], X l 7→ 0 if l ∈ L \N and X l 7→ X l if l ∈ N

is a morphism of rings.

Remark that if N is a face of L, then the associated morphism of schemes A(N)S → A(L)S
is D(M)S-equivariant for any scheme S.

Proposition 2.6. Let N ⊂ L be monoids. Then N is a face of L if and only if for all x, y ∈ L

x + y ∈ N ⇔ x ∈ N and y ∈ N.

Proof. Let ϕ denote the projection and assume it is a morphism of rings. Let x, y ∈ L. Then
x+y ∈ N ⇔ ϕ(Xx+y) = Xx+y = ϕ(Xx)ϕ(Xy) is not zero ⇔ both x and y are in N . Reciprocally
assume that for all x, y ∈ L, x + y ∈ N ⇔ x ∈ N and y ∈ N , then we have ϕ(XxXy) =
ϕ(Xx)ϕ(Xy).

Proposition 2.7. Let N be a monoid in M . Let N∗ = {x ∈ N | ∃y ∈ N such that x + y = 0},
then N∗ is a submonoid of N and a group, moreover N∗ is a face of N .

Proof. Take x, y ∈ N . Assume x+ y ∈ N∗, then there exists z ∈ N such that x+ y + z = 0, this
shows that x and y are in N∗. Now apply Proposition 2.6.

3. Attractors associated to monoids and properties

Let X be an algebraic space over a base scheme S. Let M be an abelian group and let D(M)S
be the associated diagonalizable S-group scheme. Assume that D(M)S acts on X, this means
that we have a morphism of algebraic spaces D(M)S ×S X → X satisfying the usual axioms.
Let N be a submonoid of M and consider A(N)S with the canonical action of D(M)S as in the
previous section. We now introduce the attractor XN associated to the monoid N under the
action of D(M)S on X.

Definition 3.1. Let XN be the functor

(Sch/S) → Sets, (T → S) 7→ Hom
D(M)T
T (A(N)T , XT )

where Hom
D(M)T
T (A(N)T , XT ) is the set of D(M)T -equivariant T -morphisms from A(N)T to

XT = X ×S T .

Remark 3.2. There are several ways to generalize this definition. First of all we can consider an
algebraic space with the action of A(M)S where M is just a monoid instead of an abelian group
and consider XN for submonoids N ⊂ M , this definition leads to reasonable statements in the
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affine case and some of our results remain true in this generality. Secondly we can remove the
assumption that N ⊂ M and consider not necessarily injective morphisms of monoids N → M ,
however this second generalization leads to a degenerate theory because in the case M = 0
and N = N, this leads to call for any scheme X (endowed with the trivial action of the trivial
group) the functor T 7→ Hom(A1

T , XT ) an attractor space. This is not representable in general.
So this second naive generalization is not interesting to us. A third possible generalization is
to try to find a formalism covering both [JS18], [JS20] and our formalism. We would like to
mention [AHR21, Corollary 14.10] as a possible ingredient for generalization. However we think
that the case of diagonalizable groups works well and is very convenient for many applications
and interpretations of many objects. Note that algebraic actions of diagonalizable groups appear
very often in many parts of mathematics.

Remark 3.3. In the context of Definition 4.1, when we want to indicate that we take the attractor
XN relatively to the diagonalizable group D(M)S , we also use the notation XN⊂M .

Remark 3.4. We have an identification X ≃ XM . For all scheme T → S and x ∈ XM (T ), we
associate the morphism T = eT

ε−→ D(M)T
x−→ XT ∈ X(T ) where ε is the neutral section.

Remark 3.5. Let N ⊂ L be submonoids of M . For T → S, we have a morphism

Hom
D(M)T
T (A(N)T , XT ) → Hom

D(M)T
T (A(L)T , XT )

obtained using the morphism A(L)T → A(N)T corresponding to the morphisms of rings Z[N ] ⊂
Z[L]. So we get a morphism of functors ιN,L : XN → XL.

Remark 3.6. We have an action of the group scheme D(M)S on XN given as follows. For any
S-scheme T , we have an action of D(M)(T ) on XT (for any t ∈ D(M)(T ), we have an arrow

XT
t·−→ XT ). Now let f ∈ XN (T ) = Hom

D(M)T
T (A(N)T , XT ) and t ∈ D(M)(T ). We define t · f

to be A(N)T
f−→ XT

t·−→ XT . The morphism XN → X is D(M)S-equivariant.

Remark 3.7. We have an action of the monoid scheme A(N)S on XN given as follows. For any
S-scheme T , we have an action of A(N)(T ) on itself by multiplication (for any t ∈ A(N)(T ),

we have an arrow A(N)T
t·−→ A(N)T ). Now let f ∈ XN (T ) = Hom

D(M)T
T (A(N)T , XT ) and

t ∈ A(N)(T ). We define t · f to be A(N)T
t·−→ A(N)T

f−→ XT . The morphism of monoid schemes
A(Ngp)S → A(N)S implies that we also have a natural action of D(Ngp)S on XN .

Proposition 3.8. If X is a group algebraic space over S and the action of D(M)S is by group
automorphisms, then XN is a group functor.

Proof. Let T be a scheme over S. Let A(N)T
g→ XT and A(N)T

h→ XT be two elements in
XN (T ). Then we define gh as the composition

A(N)T → A(N)T ×T A(N)T → XT ×T XT → XT

where the first morphism is the diagonal morphism, the second is g × h, and the third is the
multiplication morphism coming from the group structure on X. The two first are equivariant
by definitions and the third is equivariant because D(M)S acts on XS by group automorphisms.
This defines a group law on XN .

Definition 3.9. Let N and L be submonoids of an abelian group M and assume that N is a
face of L. Let X be an S-algebraic space with an action of D(M)S . Then for all T → S the
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morphism A(N)T → A(L)T induces a morphism

Hom
D(M)T
T (A(L)T , XT ) → Hom

D(M)T
T (A(N)T , XT ).

So we obtain a morphism of functors XL → XN , that we denote pN,L.

When N is a face of L, the morphism p satisfies p ◦ ι = Id.

Remark 3.10. If X → Y is a D(M)S-equivariant morphism of algebraic spaces, then for any
submonoid N of M , we have a morphism of functors XN → Y N .

Proposition 3.11. Let M be a finitely generated abelian group. Let S be a scheme and let X
be an algebraic space with a D(M)S-action. Let f : M → Z be a morphism of abelian groups.
Let Y ⊂ Z be a submonoid and let N be f−1(Y ). Then we have an isomorphism of functors
XN ≃ XY , where on the left-hand-side X is seen as a D(M)S-space and on the right-hand-side
as a D(Z)S-space. In other words, with notation of Remark 3.3, we have XN⊂M = XY⊂Z .

Proof. Let T → S be a scheme. We have a canonical map θ : Hom
D(M)T
T (A(N)T , XT ) →

HomD(Z)T (A(Y )T , XT ) obtained by precomposition with A(Y )T → A(N)T . Let us show that θ is
an isomorphism. We construct the reciprocal map. Let f : A(Y )T → XT be a D(Z)T -equivariant
map. We get a map f ′ : D(M)T ×T A(Y )T → XT given on points by (g, x) 7→ g · f(x). Let K be
f(M)+Y gp, this is a subgroup of Z. We have a morphism of groups ϕ : f(M)×Y gp → f(M)+Y gp

given by (f(m), y) 7→ f(m) + y. The morphism ϕ induces a closed immersion of group schemes
D(f(M) + Y gp)T → D(f(M) × Y gp)T = D(f(M))T ×T D(Y gp)T . Let us consider the action of
D(f(M))T ×T D(Y gp)T on D(M)T ×T A(Y )T given by (g, h) ·(g′, x) = (g ·g′, h−1 ·x), remark that
this action is free. So we obtain by composition a free action ⋆ of D(K)T on D(M)T ×T A(Y )T .
Let us consider the morphisms

ξ⋆, ξ : D(K)T ×D(M)T ×T A(Y )T → XT

where ξ⋆ is given by (k, g, y) 7→ f ′(k ⋆ (g, y)) and ξ is given by (k, g, y) 7→ f ′(g, y). Let us prove
that ξ⋆ = ξ. Let us consider the canonical morphism

p : D(Z)T ×D(M)T ×T A(Y )T → D(K)T ×D(M)T ×T A(Y )T

induced by the inclusion K ⊂ Z. Then p◦ξ = p◦ξ⋆, and so ker(ξ, ξ⋆) = D(K)T×D(M)T×TA(Y )T
because the schematic image of p is D(K)T ×D(M)T ×T A(Y )T . This finishes the proof of the
claim ξ = ξ⋆. So we have f ′(k⋆(g, x)) = f ′((g, x)) for all T ′ → T , k ∈ D(K)T (T ′), g ∈ D(M)T (T ′)
and x ∈ A(Y )T (T ′). So the map f ′ induces by factorization a map (D(M)T×TA(Y )T )/D(K)T →
XT where (D(M)T ×T A(Y )T )/D(K)T is the fpqc quotient as in [SGA3, VIII Th. 5.1]. Now
let A be the quasi-coherent algebra of the T -affine scheme (D(M)T ×T A(Y )T ). Consider the
K-grading on A associated to the action of D(K)T on (D(M)T ×T A(Y )T ). Now by [SGA3,
VIII Th. 5.1], (D(M)T ×T A(Y )T )/D(K)T is affine with quasi-coherent algebra the degree zero
part A0 in A. Now the K-graduation on A is given locally by deg(X(m,y)) = f(m) − y ∈ K.
This implies that A0 ≃ OT [f−1(Y )]. This identifies (D(M)T ×T A(Y )T )/D(K)T with A(N)T .
So the map f induces a map A(N)T → XT . This map is D(M)T -equivariant. The obtained map
HomD(Z)T (A(Y )T , XT ) → HomD(M)T (A(N)T , XT ) is the reciprocal map of θ.

Remark 3.12. If X is S-affine, Proposition 3.11 can de deduced easily from Theorem 5.1, cf.
[Ma22].

The next proposition shows that XN → XN ′
is a monomorphism if X is separated and

N ⊂ N ′.
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Proposition 3.13. Assume that X is separated and let N ⊂ N ′ be two submonoids of M . Then
the map of functors XN → XN ′

is a monomorphism, i.e for any scheme T over S we have an
inclusion XN (T ) ⊂ XN ′

(T ).

Proof. Since N ⊂ N ′, by [StP, Tag 01R8], the scheme theoretic image of A(N ′)T → A(N)T is
A(N)T for any scheme T over S. Now let f1, f2 be two elements in XN (T ) such that their images
in XN ′

(T ) coincide. Consider the schematic kernel of the maps (f1, f2) : A(N)T → XT . Since
XT is separated, ker(f1, f2) is a closed subscheme of A(N)T (the proof of [GW, Def./Prop. 9.7]
works in this context). So since the scheme theoretic image of A(N ′)T → A(N)T is A(N)T , we
have ker(f1, f2) = A(N)T and so f1 = f2.

Corollary 3.14. Assume that X is separated and let N be a submonoid ofM . Then the natural
map of functors XN → X is a monomorphism.

Proof. Combine Proposition 3.13 and Remark 3.4.

Remark 3.15. Assume X → Y is a D(M)S-equivariant monomorphism of S-algebraic spaces,
then XN → Y N is a monomorphism.

Proposition 3.16. Let L and N be submonoids of M , then we have canonical identifications

(XN )L = (XL)N = XN∩L.

Proof. Let us use [SGA3, VIII Th. 5.1] as follows. We remark that

(XN )L(T ) = Hom
D(M)T×TD(M)T
T (A(N)T ×T A(L)T , XT )

where D(M)T ×T D(M)T acts on XT via (g, h) · x = g · (h · x) and on A(N)T ×T A(L)T via
(g, h) · (a, b) = (g · a, h · b). Let us consider the action ⋆ of D(Ngp + Lgp)T on A(N)T ×T A(L)T
given by g ⋆ (a, b) = (g−1 ·a, g ·b). The action ⋆ is free because firstly the action of D(Ngp×Lgp)T
on A(N×L)T given by (λ, β) ·(a, b) = (λ ·a, β−1 ·b) is free and secondly because the morphism of
groups Ngp×Lgp → Ngp+Lgp given by (n, l) 7→ n+l is surjective and so D(Ngp+Lgp)T is a closed

subgroup scheme of D(Ngp×Lgp)T . Now let F ∈ Hom
D(M)T×TD(M)T
T (A(N)T ×T A(L)T , XT ), F :

A(N)T ×T A(L)T → XT . Then F (g ⋆ (a, b)) = F ((a, b)) for any T ′ → T , g ∈ D(Ngp +Lgp)T (T ′)
and (a, b) ∈ (A(N)T ×T A(L)T )(T ′). So F induces a morphism f from the fpqc quotient, f :(
A(N)T ×T A(L)T

)
/D(Ngp + Lgp)T → XT . We have A(N)T ×T A(L)T = Spec(Z[N × L]) ×Z T

and the degree zero part of Z[N×L] (relatively to the Ngp+Lgp-grading induced by the action ⋆
of D(Ngp +Lgp)) is Z[N ∩L]. So we have an identification

(
A(N)T ×T A(L)T

)
/D(Ngp +Lgp)T =

A(N ∩L)T . So F induces a natural morphism f : A(N ∩L)T → XT , that is D(M)T -equivariant.
Now let f ∈ XN∩L(T ), f : A(N ∩ L)T → XT and consider the composition

F : A(N)T ×T A(L)T → A(N ∩ L)T ×T A(N ∩ L)T → A(N ∩ L)T
f−→ XT

where the second morphism is the multiplication of A(N ∩ L)T . Then F is D(M)T ×T D(M)T -
equivariant. The previous maps F 7→ f and f 7→ F induce a canonical bijection between

Hom
D(M)T×TD(M)T
T (A(N)T ×T A(L)T , XT )

and Hom
D(M)T
T (A(N ∩ L)T , XT ).

Remark 3.17. If X is S-affine, Proposition 3.16 can de deduced easily from Theorem 5.1, cf.
[Ma22].
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Let Z ⊂ M be a subgroup, taking fixed points under the closed subgroup scheme D(M/Z)S
of D(M)S corresponds to taking the attractor associated to the monoid Z, as the following
proposition shows. So, in this context, we view attractors as a formalism generalizing fixed
points.

Proposition 3.18. Let Z ⊂ M be a subgroup. Then the attractor space XZ for the action of
D(M)S on X is identified with the fixed points XD(M/Z)S of X under the action of D(M/Z)S .

Proof. We have an exact sequence of abelian groups

0 → Z → M → M/Z → 0.

By [SGA3, Exp. VIII] we obtain an exact sequence of diagonalizable group schemes

1 → D(M/Z)S → D(M)S → D(Z)S → 1.

Let T → S be a scheme and let us prove that XZ(T ) = XD(M/Z)(T ). Note that we have a
D(M)S-equivariant identification of S-scheme A(Z)S = D(Z)S . We have

XZ(T ) = Hom
D(M)T
T (A(Z)T , XT )

= Hom
D(M)T
T (D(Z)T , XT )

= Hom
D(M)T
T (D(M)T /D(M/Z)T , XT )

= Hom
D(M)T
T (D(M)T , (XT )D(M/Z)T ).

Now Remark 3.4 finishes the proof.

Proposition 3.19. Let S be a scheme. Let M be an abelian group and let X/S be a D(M)S-
scheme. Let N,N ′, L and L′ be submonoids in M such that L ⊂ L′, N ′ ⊂ L′, N = L ∩ N ′ and
L′ = L + N ′. We assume that XE is representable by a scheme for all E ∈ {N,N ′, L, L′}. We
assume that L is a face of L′. Then N is a face of N ′. Assume that one of the following conditions
holds

(i) we have an equality N ′ = L′ \ (L \N)

(ii) S = Spec(R) and X = Spec(A) are affine, AlAn′ = Al+n′ for all l ∈ L \N and n′ ∈ N ′ (as
usual Am denote the m-graded part of A)

then the following diagram is a cartesian square in the category of schemes

XN ′

XL′
XN

XL

ιN′,L′

pN,N′

pL,L′

ιN,L

.

Proof. We refer to [Ma22, § Cartesian squares].

We conclude this section with a useful elementary Proposition.

Proposition 3.20. Let X1, X2, X3 be S-algebraic spaces endowed with actions of D(M)S . Let
X1 → X2 and X3 → X2 be two D(M)S-equivariant morphisms of S-algebraic spaces. Let N ⊂ M
be a monoid.
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(i) We have a canonical action of D(M)S on X1×X2 X3, the canonical maps X1×X2 X3 → X1

and X1 ×X2 X3 → X3 are D(M)S-equivariant and moreover the following is a cartesian
square in the category of S-algebraic space endowed with action of D(M)S (morphisms in
this category are D(M)S-equivariant morphisms of S-algebraic spaces)

X1 ×X2 X3

��

// X1

��

X3
// X2.

(ii) We have an isomorphism of functors

(X1 ×X2 X3)
N = X1

N ×XN
2
X3

N .

Proof. (i) Let T be a scheme. Then D(M)(T ) acts on X1(T ) ×X2(T ) X3(T ) via g.(x1, x3) =
(g.x1, g.x3) (recall that (X1 ×X2 X3)(T ) = X1(T ) ×X2(T ) X3(T ) = {(x1, x3) ∈ X1(T ) ×
X3(T )|x1 ≡ x3 in X2(T )}). This proves the first assertion. The projection maps on X1

and X3 are D(M)S-equivariant by definition. Now let Y be a D(M)S-algebraic space. A
D(M)S-equivariant morphism Y → X1×X2 X3 gives birth by composition with projections
to canonical D(M)S-equivariant morphisms Y → X1 and Y → X2. Reciprocally let Y → X1

and Y → X3 be D(M)S-equivariant. Then we get a morphism in the category of S-algebraic
spaces Y → X1 ×X2 X3. This morphism is D(M)S-equivariant by definitions.

(ii) This is a direct consequence of the previous assertion.

4. Attractors with prescribed limits

We introduce in this section an other functor. Let X be an algebraic space over a base scheme
S. Let M be an abelian group and let D(M)S be the associated diagonalizable S-group scheme.
Assume that D(M)S acts on X. Let F be a face of N . Let Z be an other S-algebraic space
with a monomorphism Z → XF . We now introduce the attractor XN

F,Z associated to the monoid
N under the action of D(M)S on X with prescribed limit in Z relatively to the face F . Since
Z(T ) ⊂ XF (T ) for any S-scheme T , the following definition makes sense.

Definition 4.1. Let XN
F,Z be the functor

(Sch/S) → Sets, (T → S) 7→ {f ∈ XN (T ) | the image of f in XF (T ) belongs to Z(T )}.

If F = N∗, we omit F from the notation.

Proposition 4.2. We have a canonical isomorphism XN
F,Z ≃ XN ×XF Z.

Proof. Clear since

XN
F,Z(T ) = {f ∈ XN (T ) | the image of f in XF (T ) belongs in Z(T )}

= {(f, g) ∈ XN (T ) × Z(T ) | f = g in XF (T )}
= XN (T ) ×XF (T ) Z(T ).
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5. Attractors in the affine case

Let us explain that attractors are representable in the affine case and state some useful results
about them. We follow [Ma22]. Let M be an abelian group and N be a submonoid of M . Let
S be a scheme and X an S-affine scheme endowed with an action of D(M)S . Let A be the
OS-quasi-coherent algebra of X. By [SGA3, SGA3.1 Corollaire 4.7.3.1], A is M -graded. So we
have a decomposition A = ⊕m∈MAm with each Am quasi-coherent.

Theorem 5.1. The functorXN is representable by a closed subscheme ofX whose quasi-coherent
ideal sheaf J is the ideal sheaf generated locally by homogeneous element in Am for m ∈ M \N .

Proof. This is [Ma22, Theorem 5.1].

Proposition 5.2. If N ⊂ L are submonoids in M , then ι : XN → XL is a closed immersion.

Proof. This is [Ma22, Proposition 5.3].

Remark 5.3. Proposition 5.2 does not generalize outside the S-affine case.

Proposition 5.4. [Ma22] Let N,L be two submonoids of M . Then XN∩L = XN ∩XL. Here ∩
means the scheme theoretic intersection as in [StP, Tag 0C4H].

Proof. This is [Ma22, Proposition 5.4].

Remark 5.5. Proposition 5.4 does not make sense outside the S-affine case in general. This is
because XN is not a closed subspace of X in general if X is not S-affine.

Lemma 5.6. Let S be a scheme and let f : X → Y be a D(M)S-equivariant closed immersion
of S-affine D(M)S-schemes. Let N be a submonoid of M . Then the morphism XN → Y N is a
closed immersion, and more precisely XN = X ×Y Y N .

Proof. This is [Ma22, Lemma 5.5]

Remark 5.7. Proposition 9.3 generalizes Lemma 5.6 outside the S-affine case. Note that the
proof of Proposition 9.3 uses Lemma 5.6.

Proposition 5.8. Let E be a quasi-coherent OS-module and let V(E) = SpecS(Sym E) be the
associated quasi-coherent bundle defined by E . Assume that D(M)S acts linearly on V(E). Let

N be a submonoid of M . Then the attractor
(
V(E)

)N
associated to N is canonically isomorphic

to V(EN ) where EN is the N -graded component of E relatively to the D(M)S-action on E .

Proof. This is [Ma22, Proposition 5.7]

6. Base change of affine étale morphisms along faces

Let S be a scheme and let X be an S-algebraic space with an action of D(M)S for some finitely
generated abelian group M . Let N be a finitely generated submonoid of M .

Proposition 6.1. Let Q be a face of N and let XN → XQ be the associated morphism on
attractors. Let U be an S-affine scheme. Let U → X be an étale, D(M)S-equivariant morphism
of algebraic spaces. Then the natural map UN → XN ×XQ UQ is an isomorphism.

Proof. Firstly, we remark that it is enough to treat the case Q = N∗. Indeed assume the Propo-
sition is true for the face of inversible elements. Since Q∗ = N∗, we have

XN ×XQ UQ = XN ×XQ (XQ ×XN∗ UN∗
) = XN ×XN∗ UN∗

= UN .
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So we assume Q = N∗. We now remark that we can assume N∗ = 0 and that N is fine and sharp
using the map M → M/N∗ and Proposition 3.11. So we now assume that Q = 0 and N is fine
and sharp. It is enough to construct the inverse morphism XN ×X0 U0 → UN . For this let T be
an S-scheme and let

T = A(0)T UT

A(N)T XT

f0

be a diagram corresponding to a T -point of XN ×X0 U0. We want to find a diagonal filling
A(N)T → UT . Let I be the kernel of OT [N ] → OT [0], i.e the ideal associated to N ∖ 0 in
OT [N ]. Let V (Ik) = SpecOT [N ]/Ik be the infinitesimal neighbourhoods of A(0)T inside A(N)T .
Since UT → XT is étale, it is smooth by [StP, Tag 04XX], and formally smooth by [StP, Tag
02H6], so by the infinitesimal lifting property the morphism f0 : T → UT lifts uniquely to a
compatible family of morphisms fk : V (Ik) → UT . These liftings are equivariant because the
two maps D(M)T × V (Ik) → UT , (g, x) 7→ fk(gx) and (g, x) 7→ gfk(x) are common liftings of
the map D(M)T × A(0)T → UT , (g, x) 7→ f0(gx) = gf0(x) hence by uniqueness they are equal.
Writing U = Spec(A) for a graded quasi-coherent OS-algebra A, we have a family of M -graded
morphisms AT → OT [N ]/Ik. This means that (AT )m goes to 0 when m ̸∈ N and to (OT [N ]/Ik)m
when m ∈ N . The induced morphism to the completion AT → OT [[N ]] has image in OT [N ],
yielding the desired lifting A(N)T → UT (cf. [Og, Chap. I,§3 Prop. 3.6.1] for the definition of the
completion OT [[N ]]).

7. Fixed-point reflecting atlases

We introduce and study fixed-point reflecting atlases in this section. We thank a lot Matthieu
Romagny for determining remarks, help and leading ideas giving birth to this section. Let M be
a finitely generated abelian group.

Definition 7.1. Let S be a scheme. Let X be an S-algebraic space endowed with an action of
D(M)S .

(i) Let f : U → X be a morphism of D(M)S-algebraic spaces. We say that f is fixed-point
reflecting (FPR) if the canonical morphism of functors UD(M)S → U ×X XD(M)S is an
isomorphim.

(ii) An FPR atlas for X under the action of D(M)S is a D(M)S-equivariant étale surjective
morphism f : U → X such that U =

∐
τ∈A Uτ is the disjoint union of S-affine schemes with

D(M)S-actions and such that f is FPR.

(iii) If Z is a subgroup of M , then a Z-FPR atlas for X under the action of D(M)S is an FPR
atlas for the action of D(M/Z)S on X. In particular, by Proposition 3.18, a Z-FPR atlas
for U → X satisfies UZ = XZ ×X U .

(iv) An FPR or Z-FPR atlas is finite if A may be chosen finite in (ii).

Remark 7.2. Since a finite disjoint union of S-affine schemes is S-affine, if an FPR atlas or a
Z-FPR atlas is finite then we can assume that A is a singleton. In other words a finite Z-FPR
atlas for X is a D(M)S-equivariant étale surjective morphism U → S where U is an S-affine
scheme such that UZ = XZ ×X U .
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Lemma 7.3. Let X,X ′ be S-algebraic spaces endowed with actions of D(M)S . Let Z be a
subgroup of M . Let X ′ → X be a D(M)S-equivariant affine morphism of S-algebraic spaces. Let
U → X be a Z-FPR atlas of X. Then

(i) The canonical morphism U ×X X ′ → X ′ is a Z-FPR atlas of X ′.

(ii) If U → X is a finite Z-FPR atlas of X, then U ×X X ′ → X ′ is a finite Z-FPR atlas of X ′.

Proof. (i) Since X ′ → X is an affine morphism, U ×X X ′ → U is affine and so the composition
U ×X X ′ → S is a disjoint union of S-affine schemes. The morphism U ×X X ′ → X ′ is étale and
surjective because U → X is so. By Proposition 3.20, we have canonical identifications

(X ′ ×X U)Z = X ′Z ×XZ UZ = X ′Z ×XZ (U ×X XZ) = X ′Z ×X U = X ′Z ×X′ (X ′ ×X U).

Assertion (ii) is now immediate.

Because we will assume that X is locally of finite presentation, we will be able to construct
FPR atlases. In order to build FPR atlases we rely on a result of Alper, Hall and Rydh [AHR21]
together with some results on actions of finite locally free group schemes which are the subject
of the following two lemmas.

Lemma 7.4. Let S be a scheme. Let X be an S-algebraic space with an action of a finite locally
free S-group scheme Ω and let x ∈ X be a point fixed by Ω. Then any étale neighbourhood
(U, u) → (X,x) has an Ω-equivariant étale refinement (V, v) → (U, u) → (X,x). Morever if S is
separated, one may choose for V an S-affine scheme.

For basics on points of algebraic spaces, we refer the reader to [StP, Tag 03BT].

Proof. Write f : U → X for the given morphism. Let V be the Weil restriction of the étale map
id×f : Ω ×S U → Ω ×S X along the action morphism Ω ×S X → X:

V := ResΩ×SX/X(Ω ×S U).

This is representable by an étale X-algebraic space, see e.g. [Ry11, Proposition 3.5]. The points
of V over some a : T → X are the morphisms α : Ω ×S T → U that lift the map Ω ×S T → X,
(g, t) 7→ g−1a(t). Otherwise said, as an S-functor, its T -points are the pairs (a, α) with a : T → X
and α a lifting as above. The space V is endowed with an action of Ω defined by h·α : Ω×ST → U ,
(g, t) 7→ α(h−1g, t) for all sections h ∈ Ω, α ∈ V . Moreover, there is a morphism V → U defined
by α 7→ α|{1}×T and the composition V → U → X is Ω-equivariant. To make V pointed we
choose representatives of x and u defined over a field K:

U

Spec(K) X

f
u

x

Since x is fixed by Ω, the composition

Ω × Spec(K) Spec(K) U
pr2 u

defines a point v ∈ V . Obviously v lifts u and this finishes the construction of an étale, equivariant
neighbourhood (V, v) → (U, u) → (X,x). Finally, since S is separated, shrinking the initial
scheme U if necessary we may assume that it is S-affine, in which case the Weil restriction V is
S-affine, see [Ry11, Proposition 3.5].
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A consequence of Lemma 7.4 is that equivariant étale (affine) neighbourhoods of x ∈ X form
a cofinal system among all étale (affine) neighbourhoods. In particular, the étale local ring

Oét
X,x = colim(U,u)→(X,x)OU (U)

can be computed using only equivariant affine pointed neighbourhoods. Thus the local scheme
Xx = Spec(Oét

X,x), called the local space of X at x, is canonically endowed with an Ω-action.

We will now take a look at the local space of the Ω-fixed points XΩ. That XΩ is an algebraic
space follows from general results on Weil restrictions as in [Ry11], because if φ : Ω ×S X →
X ×S X is the map given by the action and the second projection, then XΩ can be seen as the
Weil restriction of φ−1(∆X) → Ω ×S X along the projection pr2 : Ω ×S X → X. Thus XΩ → X
is a closed immersion, or an immersion, or etc, if X is separated, or locally separated, or satisfies
other separation axioms (as in [StP, Tag 03BR]).

Lemma 7.5. Let S be a separated scheme. Let X be an S-algebraic space with an action of a
finite locally free S-group scheme Ω, and x ∈ X a point fixed by Ω. Then Ω acts on the local
scheme Xx and there are isomorphisms

(Xx)Ω ∼−→
(i)

(XΩ)x
∼−→
(ii)

lim UΩ,

the limit being indexed by equivariant affine étale neighbourhoods (U, u) → (X,x).

Proof. The fact that Ω acts on Xx was proven before the lemma. To prove the first isomorphism,
observe that like any closed subscheme of a henselian local scheme, (Xx)Ω is a henselian local
scheme. Once this is noticed, it is easy to check that (Xx)Ω → XΩ is universal among morphisms
from a henselian local scheme to XΩ, that is, it satisfies the universal property of (XΩ)x → XΩ.
To prove the second isomorphism, observe that (Xx)Ω satisfies the universal property of the limit
of the system {UΩ}(U,u)→(X,x) in the category of schemes.

Recall that M is a finitely generated abelian group.

Proposition 7.6. Let S be an arbitrary scheme. Let X be a quasi-separated S-algebraic space
locally of finite presentation endowed with an action of G = D(M)S . Let Z ⊂ M be a subgroup.
The following assertions hold.

(i) There exists a Z-FPR atlas U → X.

(ii) If X/S is quasi-compact, there exists a finite Z-FPR atlas U → X.

Proof. (i) Since the assumptions and conclusion are local over S, we may assume that S is
affine. Because G → S is flat and finitely presented, the orbit in X of an open quasi-compact
subspace W ⊂ X is open and quasi-compact. Since the result to be proved is local over X,
we may replace X by one such orbit and hence assume that X is of finite presentation. By
standard results on limits (as in [StP, Tag 07SJ]), the space X and the G-action then come
from a finitely presented algebraic space X0 → S0 with G-action by a base change S → S0

where S0 is of finite type over Z. Changing notation, we may therefore assume that S and
X are of finite type over Z. In particular, the set of closed points |Xcl| ⊂ |X| is dense. It
will thus be enough to find an affine, G-equivariant étale neighbourhood U(x) → X of each
closed point x ∈ |Xcl| and to eventually consider U := ⨿x∈|Xcl|U(x) (or in fact, a finite
subcover, by quasi-compacity).
For such a closed point x with image s ∈ S, the residue field extension κ(x)/κ(s) is finite.
By [AHR21, Corollary 20.2], there exists an affine pointed scheme (U = Spec(A), u) and
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an étale, G-equivariant morphism (U, u) → (X,x) which induces an isomorphism of residue
fields κ(x) ≃ κ(u) and an isomorphism of stabilizers Gu ≃ Gx. Hence since x is fixed by
D(M/Z)S , then so is u. Write D(M/Z) = T × Ω as the product of a split torus with a
finite diagonalizable group scheme. We have an isomorphism XH = (XT)Ω. We need the
following Lemma

Lemma 7.7. Let T ∼= D(Zr)S be a split torus over S and let U → X be an étale morphism,
then UT → XT ×X U is an isomorphism.

Proof. The proof of [Ri16, Lemma 1.10] works replacing ”Gm” by ”T”.

According to 7.7, the morphism

UT → XT ×X U

is an isomorphism. Replacing X,U,H by XT, UT,Ω we reduce to the case where H = Ω is
finite locally free. Since (U, u) → (X,x) is étale with trivial residue field extension, the map
of local spaces Uu → Xx is an equivariant isomorphism. It follows from Lemma 7.5(i) that
the closed immersion UΩ → XΩ×XU is an isomorphism (UΩ)u

∼−→ (XΩ)x on the germs. By
7.5(ii) we know that there is an étale equivariant refinement (U ′, u′) → (U, u) → (X,x) such
that the previous isomorphism extends to an isomorphism U ′Ω ∼−→ XΩ ×X U ′. Choosing
U(x) = U ′ provides the sought-for atlas.

(ii) If X/S is quasi-compact, we extract a finite subcovering of a covering obtained with the
first assertion.

Corollary 7.8. Let X be a quasi-separated S-algebraic space locally of finite presentation
endowed with an action of D(M)S . Let Z ⊂ M be a subgroup. Then the attractor space XZ

(which identifies with the fixed space XD(M/Z)S by Proposition 3.18) is representable by a closed
subspace of X.

Proof. Let U be a Z-FPR atlas as in Proposition 7.6, in particular we have a cartesian square

UZ //

��

XZ

��

U // X

.

By Proposition 5.2 the left vertical arrow is a closed immersion of schemes. The lower arrow is
surjective étale. So by [StP, Tag 03I2], XZ is an algebraic space and the right vertical arrow is a
closed immersion. We used that being a closed immersion is stable under base change, fppf-local
on the base and closed immersions satisfy fppf-descent.

8. Representability and properties

Let M be a finitely generated abelian group. Let S be an arbitrary scheme. Let X be a quasi-
separated S-algebraic space locally of finite presentation endowed with an action of D(M)S .

Theorem 8.1. Let N ⊂ M be an arbitrary submonoid. The following assertions hold.

(i) Assume that N is finitely generated. Then the attractor XN is representable by an algebraic
space over S.
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(ii) Assume that X → S is quasi-compact and separated. Then there exists a finitely generated
submonoid Nc of N such that XN = XNc and N∗ = N∗

c .

Proof. Assume first that N is finitely generated. Choosing U → X as provided by Proposition
7.6 (with Z = N∗) and using Proposition 6.1, we obtain a diagram with cartesian squares:

UN UN∗
U

XN XN∗
X.

The vertical maps are étale and surjective, and we know from Theorem 5.1 that UN is repre-
sentable by a disjoint sum of S-affine schemes. By Proposition 7.8, XN∗

is an S-algebraic space.
It follows from [StP, Tag 03I2] that XN is representable.

Now let us assume that N is arbitrary and that X is separated and quasi-compact. It is enough
to find a finitely generated monoid Nc ⊂ N such that XN = XNc and N∗ = N∗

c . Let κ : N → N
be a bijection. For any i ∈ N, let Ni be the submonoid of N generated by {N∗ ∪ κ(N⩽i)}. Then
N∗

i = N∗ and Ni is finitely generated for any i ∈ N, moreover
⋃

i⩾0Ni = N . For any scheme T ,
we have A(N)T = limA(Ni)T by [StP, Tag 01YW]. So X(A(N)T ) = colimX(A(Ni)T ) by [StP,
Tag 049I]. Let A(N)T → XT be a D(M)T -equivariant morphism, by the previous assertion this

factorizes through a morphism A(Ni)T
f−→ XT . We want to show that f is D(M)T -equivariant.

Consider the diagram

D(M)T ×A(Ni)T //
// XT

D(M)T ×A(N)T

OO 77

where the horizontal arrows (f1, f2) correspond to (g, x) 7→ f(gx) and (g, x) 7→ gf(x). Since X
is separated, the kernel of (f1, f2) is a closed subscheme of D(M)T ×A(Ni)T (the proof of [GW,
Def./Prop. 9.7] works in this context). Since the schematic image of the vertical morphism ϕ is
D(M)T ×T A(Ni)T and because f1 ◦ ϕ = f2 ◦ ϕ, we have an equality of schemes ker(f1, f2) =
D(M)T ×T A(Ni)T . So we have an equality of morphisms of schemes f1 = f2, and so f is
equivariant. We deduce that

XN (T ) = colimXNi(T ). (8.1)

Let U → X be a finite N∗-FPR atlas as in Proposition 7.6. Using that U is an S-affine scheme
of finite presentation over S, there exists an integer c such that UNc = UNi for all i ⩾ c.

Let i ⩾ c, and consider the diagram

UNc //

��

XNc

��

UNi // XNi

.

The horizontal arrows are étale and surjective. The left vertical arrow is an isomorphism since
i ⩾ c. Moreover the diagram is a cartesian square because by Proposition 6.1
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UNi ×XNi X
Nc ≃ (UN∗ ×XN∗ XNi) ×XNi X

Nc

≃ UN∗ ×XN∗ XNc

≃ UNc .

Using [StP, Tag 03I2] for the property ”isomorphism”, we deduce that for all i ⩾ c

XNi = XNc . (8.2)

Now 8.1 and 8.2 imply that XN = XNc .

Proposition 8.2. Let N ⊂ M be a finitely generated submonoid. Recall that X is a quasi-
separated and locally finitely presented algebraic space over S. The following assertions hold.

(i) The morphism of algebraic spaces XN → XN∗
is affine.

(ii) The attractor XN/S is quasi-separated and locally of finite presentation.

(iii) If X/S is separated, then XN/S is separated.

(iv) If X/S is quasi-compact then XN/S is quasi-compact.

(v) If X/S if of finite presentation, then XN/S is of finite presentation.

(vi) If X is a scheme then XN is a scheme.

Proof. Let U be a N∗-FPR atlas as in Proposition 7.6. We have a cartesian square

UN //

��

XN

��

UN∗
// XN∗

.

The lower horizontal arrow is étale and surjective. The left vertical arrow is affine because U is
S-affine and UN and UN∗

are S-affine schemes by Theorem 5.1. Now, we apply [StP, Tag 03I2]
to conclude that the right vertical arrow is affine. We used that being affine is preserved under
base change, fppf local on the base and satisfy descent for fppf coverings.

Since, as functor, X commutes with colimits of affine schemes in (Sch/S)fppf , the functor XN

commute with colimits of affine schemes in (Sch/S)fppf , i.e. XN is locally of finite presentation.

Assume that X is separated (resp. quasi-separated, quasi-compact, resp. is a scheme). Then
XN∗

is separated (resp. quasi-separated, quasi-compact, resp. is a scheme) because it is closed in
X. Since XN → XN∗

is affine, in particular representable, quasi-compact and separated it follows
that XN is separated (resp. quasi-compact, resp. is a scheme). Note that by definition X is of
finite presentation if it is locally of finite presentation, quasi-compact and quasi-separated.

Proposition 8.3. Let N ⊂ M be a finitely generated submonoid. Recall that X is a quasi-
separated and locally finitely presented over S. Assume X → S is smooth. Then XN → S is
smooth moreover XN → XN∗

is smooth.

Proof. Using [SGA3, Exp I Th 5.3.3], one adapts Drinfeld’s argument [Dr13, Proof of Proposition
1.4.20] (cf. also [SGA3, Exp XII §9]).

Remark 8.4. We expect that if X → Y is a smooth D(M)S-equivariant morphism of S-algebraic
spaces, then XN → Y N is also smooth. We will study this soon.

Remark 8.5. If X → S is flat, then XN → S is not flat in general.
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Remark 8.6. Let X be an S-algebraic space with and action of D(M)S . Let N be a submonoid
of the group M . Then in some cases the attractor space XN can be obtained as a succession of
attractors under Gm (cf. the introduction and [Ri16]) and fixed points. Let us gives two examples.

(i) Let α ∈ M and let us consider X [α), then by Proposition 3.16 we have X [α) =
(
X(α)

)[α)
.

By Proposition 3.18 X(α) identifies with the fixed point space XD(M/(α))S . So the operation
X ⇝ X(α) can be realized as taking fixed points. By Remarks 3.7 and 3.6, D((α))S and

D(M)S act on X(α), and using Proposition 3.11, we have
(
X(α)

)[α)⊂(α)
=

(
X(α)

)[α)⊂M

(cf. Remark 3.3 for the notation XN⊂M ). But
(
[α) ⊂ (α)

)
≃

(
N ≃ Z

)
, so the operation

X(α) ⇝
(
X(α)

)[α)
can be realized as taking attractor under Gm = D(Z)S . So X ⇝ X [α)

can be realized as fixed points followed by taking an attractor under Gm.

(ii) Assume that M = Z×Z and that N = N×N. Using Proposition 3.3 and Proposition 3.11,
we have

XN =
(
XN×Z⊂Z×Z)Z×N⊂Z×Z

=
(
XN×0⊂Z×0

)0×N⊂0×Z
.

This shows that X ⇝ XN can be realized as two stages of Gm-attractors.

(iii) If M = Zr and N = Nr then X ⇝ XN can be realized as r stages of Gm-attractors.

Remark 8.7. (Monoschemes and toric schemes) Let M be an abelian group and let N,L
be submonoids of M . Let us consider the attractors A(N)L associated to the monoid L under the
action of D(M)S on A(N). By Theorem 5.1 A(N)L equals Spec

(
Z[N ]/(Xn|n ∈ N \ (N ∩ L))

)
.

The ideal I := (Xn|n ∈ N \ (N ∩ L)) of Z[N ] equals
⊕

i∈I ZXi where I is the ideal of N
generated by N \ (N ∩ L). If I is a prime ideal of N (cf. [Og]) then N \ I is a submonoid
of N (and necessarily a face) and Z[N ]/I = Z[N \ I]. In this case, A(N)L is also a scheme
associated to a submonoid of M . For example if N ∩ L is a face of N , then N \ I = N ∩ L and
A(N)L = A(N ∩L). In general I is not a prime ideal and so N \ I is not a submonoid of N (e.g.
take M = Z2, N = [(1, 1), (1,−1), (1, 0)) and L = [(1, 0)), then N \ I = {(0, 0), (1, 0)}).

More generally, let N be a toric monoscheme whose associated finitely generated abelian
group Γ is M (cf. [Og, II §1.9]). Let A(N ) be the scheme asssociated to N (cf. [Og, II Prop.
1.9.1]), this is a toric scheme. Let {spec(Nτ )}τ∈A be an open affine covering of N (Nτ ⊂ M for
all τ). Then {A(Nτ )}τ∈A is an open affine covering of A(N ). Then

∐
τ A(Nτ ) → A(N ) gives an

FPR atlas of A(N ) (note that a D(M)-equivariant open immersion is Z-FPR for any subgroup
Z ⊂ M). Let L be a submonoid of M , then we obtain that {A(Nτ )L} is an affine open covering
of A(N )L.

9. Topology of attractors

Let M be a finitely generated abelian group. Let X be a quasi-separated S-algebraic space locally
of finite presentation endowed with an action of D(M)S .

Proposition 9.1. Let N ⊂ M be a submonoid. Assume that N is finitely generated. Then the
map XN → XN∗

(which is affine by Proposition 8.2) has geometrically connected fibers and
induces a bijection on the sets of connected components π0(X

N ) ≃ π0(X
N∗

) of the underlying
spaces.

Proof. Using Proposition 3.11 we can assume that N∗ = 0 and that N is fine and sharp. Let K
be a field, and let x : Spec(K) → X0 be a point. Let XN

x = XN ×X0,x Spec(K). We claim that
its underlying topological space |XN

x | is connected. Let L be a field and let y : Spec(L) → XN
x
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be a point, and denote by xL the composition Spec(L) → Spec(K)
x−→ X0. Then xL and x define

the same point of |XN
x |. Recall that we have a natural action of the monoid scheme A(N)S on

the attractor XN . The A(N)L orbit of y defines a map h : A(N)L → XN
x with h(1) = y and

h(0) = xL. Since N is sharp, L[N ] is integral. So A(N)L is connected. So x and y lie in the
connected set |h|(|A(N)L|). Since y was arbitrary, this shows that |XN

x | is connected. So the
continous map |XN | → |X0| has connected fibers, and the assertion on connected components
follows from the existence of a continous section |X0| ⊂ |XN |.

Proposition 9.2. Let N be a finitely generated submonoid of M . Then the canonical morphism
XN∗ → XN is a closed immersion.

Proof. By Proposition 3.16, we have XN∗
= (XN )N

∗
, now Corollary 7.8 finishes the proof.

Proposition 9.3. Let N ⊂ M be a finitely generated submonoid. Let f : X → Y be a D(M)-
equivariant morphism of quasi-separated S-algebraic spaces locally of finite presentations. Let
fN : XN → Y N be the canonical morphism obtained on attractors. The following assertions
hold.

(i) If f is an open immersion, then fN is an open immersion.

(ii) If f is a closed immersion, then fN is a closed immersion, moreover XN ∼= Y N ×Y X.

Proof. Assume f is an open immersion. Recall that XN∗
= XD(M/N∗)S . Since f is an open

immersion, we have XN∗
= X×Y Y

N∗
, so XN∗ → Y N∗

is an open immersion. Now by Proposition
6.1, we get XN = XN∗ ×Y N∗ Y N , and so fN : XN → Y N is an open immersion.

Assume f is a closed immersion. The canonical morphisms XN → Y N and XN → X induces
a canonical morphism i : XN → Y N ×Y X. We are going to prove that i is an isomorphism. Let
U be a N∗-FPR atlas of Y . By Proposition 7.3, the map U ×Y X → X is a N∗-FPR atlas of X.
So by Proposition 6.1 the canonical map (U×Y X)N → XN is étale and surjective. The canonical
map UN → Y N (étale and surjective) induces an étale and surjective map (U ×Y X) ×U UN =
X ×Y UN → Y N ×Y X. So we get a diagram

(U ×Y X)N //

��

XN

��

(U ×Y X) ×U UN = X ×Y UN // X ×Y Y N

The left arrow is an isomorphism by Lemma 5.6. The horizontal arrows are étale and sur-
jective. The diagram is a cartesian square because (X ×Y UN ) ×X×Y Y N XN = UN ×Y N XN =
(U ×Y X)N by Lemma 3.20. So by [StP, Tag 03I2] we obtain XN ∼= X ×Y Y N .

10. Tangent spaces and attractors

Let S be a scheme we denote by IS the scheme of dual numbers over S as in [SGA3, Exp. II
Définition 2.1]. For any scheme T over S, we have IT = IS ×S T . Explicitly, IS = Spec(Z[ε])×ZS

where Z[ε]
ε=[X]

= Z[X]/(X2). Let X be a scheme over S. Let TX be the tangent space of X as in
[SGA3, Exp. II Définition 3.1]. This is a scheme over S representing the functor from SchS to
Sets sending a scheme R over S to

HomR(IR, XR).

Remark 10.1. (i) For S-morphisms X → Y and Z → Y , we have TX×Y Z
∼= TX ×TY

TZ .
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(ii) If X → Y is a monomorphism, then TX → TY is a monomorphism.

(iii) We have a canonical identification TS = S.

Let M be an abelian group and assume that D(M)S acts on X. Then D(M)S acts naturally
on TX using the definition of TX . Let N be a submonoid in M .

Proposition 10.2. We have a canonical isomorphism

(TX)N ∼= TXN .

Proof. It is enough to show that (TX)N (R) ∼= TXN (R) for any S-scheme R. We can change
notation and assume R = S. We have

(TX)N (S) = Hom
D(M)S
S (A(N)S , TX)

= Hom
D(M)S
S (A(N)S ×S IS , X) where D(M)S acts trivially on IS

(TXN )(S) = HomS(IS , X
N )

= Hom
D(M)S×SIS
IS

(A(N)S ×S IS , X ×S IS).

This shows that we have a canonical isomorphism.

11. Lie algebras and attractors

Let G/S be a group scheme over a scheme S. Recall that in this case TG is a group scheme over
S and we have two canonical morphisms of group schemes G → TG and TG → G by [SGA3,
Exp. II]. Let eS be the trivial group over S, as S-scheme we have eS = S. The Lie algebra of G
is defined as the fiber product

Lie(G) = eS ×G TG
//

��

TG

��

eS // G

where eS −→ G is the canonical morphism of group schemes from eS to G. As in the previous
section, let M be an abelian group and assume that D(M)S acts on G. We assume moreover
that this action is compatible with the group structure on G, i.e D(M)S acts by automorphisms
on G. Then the induced action of D(M)S on TG is by group automorphisms. We thus obtain an
action of D(M)S on Lie(G) by group automorphisms.

Remark 11.1. (i) For S-group schemes G,K,H with morphisms G → K,H → K, we have a
canonical isomorphism Lie(G×K H) ∼= Lie(G) ×Lie(K) Lie(H).

(ii) If G → H is a monomorphism, then Lie(G) → Lie(H) is a monomorphism.

(iii) We have a canonical identification Lie(eS) = eS .

Proposition 11.2. We have a canonical isomorphism of group schemes over S(
Lie(G)

)N ∼= Lie(GN )

Proof. Using Proposition 3.20 and Proposition 10.2, we have(
Lie(G)

)N
=

(
S ×G TG

)N ∼= SN ×GN TG
N ∼= S ×GN TGN = Lie(GN ).
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Let us fix now a group scheme H over S and a monomorphism H → GN∗
of schemes preserving

the group scheme structures. Recall that GN
H is the attractor with prescribed limit H as in

Definition 4.1.

Proposition 11.3. We have a canonical isomorphism of group schemes over S

(
Lie(G)

)N
Lie(H)

∼= Lie(GN
H).

Proof. Using Proposition 11.2 and Remark 11.1 we have

Lie(G)NLie(H) = Lie(G)N ×Lie(G)N∗ Lie(H)

∼= Lie(GN ) ×Lie(GN∗ ) Lie(H)

∼= Lie(GN ×GN∗ H)

= Lie(GN
H)

This shows that we have the desired canonical isomorphism.

12. Ind-algebraic spaces

Let S be a scheme and let AffSchS be the category of affine schemes over S. Its objects are
morphisms Spec(R) → S from affine schemes to S. We use [HR21] for the definition of ind-
algebraic spaces.

Definition 12.1. An ind-algebraic space (resp. ind-scheme) over S is a functor AffSchS → Sets
which admits a presentation X ∼= colimi∈IXi as a filtered colimit of S-algebaic spaces where (resp.
S-schemes) all transition maps ϕij : Xi → Xj , i ⩽ j are closed immersions. The category of ind-
algebraic spaces (resp. ind-schemes) over S is the full subcategory of functors AffSchS → Sets
whose objects are ind-algebraic spaces (resp. ind-schemes) over S.

Any algebraic space (resp. scheme) over S, is naturally an ind-algebraic space (resp an ind-
scheme) over S. Any ind-scheme over S is naturally an ind-algebraic space over S.

Remark 12.2. [HR21, §1.5] If X = colimiXi and Y = colimjYj are presentations of ind-algebraic
spaces (resp. ind-schemes) over S, and if each Xi is quasi-compact, then as sets Hom(X,Y ) =
limi colimjHom(Xi, Yj), because every map Xi → Y factors over some Yj by quasi-compactness
of Xi. The category ind-algebraic spaces and ind-schemes are closed under fiber product. If P is a
property of algebraic spaces (resp. schemes), then an S-ind-algebraic space (resp. S-ind-scheme)
X is said to have ind-P if there exists a presentation X = colimiXi where each Xi has property
P. A map f : X → Y of S-ind-algebraic spaces (resp. S-ind-schemes) is said to have property P
if f is representable and for all schemes T → Y, the pullback f ×Y T has property P. Note that
every representable quasi-compact map of S-ind-schemes is schematic.

Definition 12.3. Let G be a group scheme over S and let X be an ind-algebraic space over S.

(i) A categorical action of G on X is an action of G on X seen as a functor. Equivalently by
Yoneda, a categorical action is a morphism in the category of ind-algebraic spaces over S
σ : G×S X → X satisfying the usual axioms, i.e.

(a) σ ◦ (IdG × σ) = σ ◦ (m× IdX) where m : G×S G → G is the group law of G,
(b) σ ◦ (e× IdX) = IdX where e : S → G is the identity section of G.
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(ii) A collection of actions σi : G×SXi → Xi such that for i ⩽ j we have ϕij◦σi = σj◦(IdG×ϕij)
gives birth to a categorical action of G on X. Such categorical actions are called ind-actions.

Let M be a finitely generated abelian group.

Proposition 12.4. Let X be an ind-algebraic space (resp. ind-scheme) over S. Assume that we
have a presentation X = colimiXi with Xi quasi-separated and locally finitely presented over S.
Assume that D(M)S acts on X via an ind-action on the presentation X = colimiXi. Let N ⊂ M
be a monoid. Then the attractor functor

(T → S) 7→ HomD(M)T (A(N)T , XT )

is representable by the ind-algebraic space (resp. ind-scheme) colimiX
N
i . Moreover the natural

morphism XN → X is representable by algebraic spaces (resp. schemes). If N = Z is a group
the natural morphism XZ → X is representable by a closed immersion.

Proof. The first assertion is a direct corollary of Proposition 9.3. To show that XN → X, is
representable by algebraic spaces, we notice that if T is an affine scheme and T → X is a
morphism, then there exists i such that this morphism is induced by a morphism T → Xi, and
then we have T ×X XN = T ×Xi Xi

N . If N = Z is a group, the last assertion follows from
Corollary 7.8.

13. Weights

Let M be a finitely generated abelian group. Let X be an algebraic space separated over S with
an action of D(M)S . We generalize in this section the notion of weights of an action of a torus
on a linear space to a more general setting using attractor functors. If m is an element in M , we
denote by [m) the submonoid generated by m in M .

Definition 13.1. An element m ∈ M is said to be

(i) a magnet if X [m) is distinct of X0 (where X0 is the attractor associated to 0, i.e the fixed
points),

(ii) a weight if it is a magnet and moreover for any m′ ∈ M such that [m′) ⊂
̸=

[m), we have

X [m′) ⊂
̸=
X [m).

We denote respectively by m(X) and w(X) the sets of magnets and weights.

Definition 13.2. Let w,w′ be two distinct weights in w(X). We say that w is multiple of w′

if [w) ⊂ [w′). If w is a multiple of w′, we also say that w′ is a divisor of w. We say that w is
indivisible if w does not have any divisor in w(X). We say that w is a tip if w as no multiple in
w(X).

Definition 13.3. Let w be a weight and assume it is a tip, then we define the associated weight
space as X [w).

Definition 13.4. A weight w ∈ w(X) is said to be reduced if it is indivisible and a tip.

Definition 13.5. The action on the space X is said to be reduced if all weights are reduced.

Definition 13.6. A chain of weights is a sequence w1, . . . , wi, . . . of distinct weights in w(X)
such that [w1) ⊃ . . . ⊃ [wi) ⊃ . . . A maximal chain of weight is a chain of weights that can not
be refined.
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Definition 13.7. Let w1, . . . , wi, . . . be a maximal chain of weights , then we define the associated
chain weight spaces as X [w1) ⊃ . . . ⊃ X [wi) ⊃ . . ..

Definition 13.8. If N is a monoid we denote by N⊞ the monoid generated by N ∩m(X) and
N□ the monoid generated by N ∩ w(X). Obviously, N□ ⊂ N⊞ ⊂ N .

Remark 13.9. (i) The inclusions, in the sequence [w1) ⊃ . . . ⊃ [wi) ⊃ . . . associated to a chain
of weights, are strict by definitions.

(ii) The space X is reduced if and only if all chains of weights have lengths at most 1.

Remark 13.10. Assume X is finitely presented over S. Then we expect that m(X) and w(X)
are finite subsets of M . In particular, all chain of weights should be finite length. We plan to
study this expectation and the following more difficult question. Let N ⊂ M be a monoid. We
say that an algebraic space with a D(M)S-action is N -proper if XN = XN⊞ = XN□ . What can
we say about this notion ? Note that the multiplication of D(Z) is not N-proper.

Remark 13.11. Our notion of reduced actions is compatible with the notion of reduced root
systems associated to reductive groups.

14. General root groups

Let S be a scheme, let G be a group scheme over S. Let M be an abelian group. Assume that
D(M)S acts on G by group automorphisms. Then we get an action of D(M)S on Lie(G)S by
group automorphisms. Let N be a submonoid of M . Let GN

eS
be the attractor associated to N

with prescribed limit the trivial subgroup eS/S relatively to the face N∗.

Definition 14.1. Let α ∈ M . We call G
[α)
eS the root group associated to α under the action of

D(M)S on G. We call G[α) the non prescribed root group associated to α.

Proposition 14.2. Let α ∈ M .

(i) If G is affine over S, we have closed immersions of group schemes over S

G[α)
eS

⊂ G[α) ⊂ G.

(ii) If G/S is smooth, then G
[α)
eS and G[α) are smooth over S.

(iii) We have canonical isomorphisms Lie(G
[α)
eS ) =

(
Lie(G)

)[α)
eS

and Lie(G[α)) = Lie(G)[α).

Proof. (i) We know that G[α) is a closed subgroup of G by Theorem 5.1. We have G
[α)
eS =

G[α) ×G0 eS and so G
[α)
eS is a closed subgroup of G[α).

(ii) By Proposition 8.3, G[α) → S and G[α) → G0 are smooth, this implies the claim.

(iii) These are special cases of Propositions 11.3 and 11.2.

We show that our definition is compatible with the definition given by Conrad and SGA3.

Proposition 14.3. Let G → S be a reductive group scheme over a non-empty scheme S,
T ∼= DS(M) a split maximal torus, and α ∈ M a root. Let expα(W(gα)) ⊂ G be the α-root
group for (G,T,M) considered by B. Conrad in [Co14, Theorem 4.1.4], then

expα(W(gα)) = G[α)
eS

expα(W(gα)) ×S T = G[α).
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Proof. We remark that we have (W(gα) ×S T )[α) = W(gα) ×S T . By [Co14, Theorem 4.1.4]
we have a closed immersion W(gα) ×S T → G. So Lemma 5.6 gives us a closed immersion
f : W(gα) ×S T → G[α). We now prove that f is an open immersion. Since f is of finite pre-
sentation by [StP, Tag 02FV], using [GW, Proposition 14.18] it is enough to prove that f is
flat. Since W(gα) ×S T → S is flat, it is enough to prove that for any s ∈ S, the morphism
fs :

(
W(gα) ×S T

)
s
→

(
G[α)

)
s

is flat (cf. [GW, Proposition 14.25]). Since all involved construc-
tions are compatible by base change, fs is an isomorphism (in particular flat) for any s ∈ S
by [Ma22, Proposition 7.5]. Now f is an open and closed immersion that gives isomorphisms
on fibers. This implies that f is an isomorphism and proves the second equality. Now the first
equality is clear because [α)∗ = 0, G0 = T and so

G[α)
eS

= G[α) ×G0 eS =
(
expα(W(gα)) ×S T

)
×T eS = expα(W(gα)).

Remark 14.4. Let us recall that by Remark 8.6, G[α) =
(
GD(M/(α))S

)[α)⊂(α)
. And so G[α)

can be obtained as a first stage of fixed points followed by a stage of Gm-attractor. Similarly

G
[α)
eS =

(
G

(α)
Tα

)[α)
eS

where Tα is defined in [Co14, Lemma 4.1.3] or [SGA3], this explains why [Co14]
works with small semisimple groups of rank one as a first stage in order to build root groups
using Gm-attractors. Note that [SGA3] also uses semisimple groups of rank one as a first stage
[SGA3, Exp. XX] before defining root groups in the general case [SGA3, Exp. XXII].

15. Attractors and dilatations

Let S be a scheme and let S′ be a closed locally principal scheme in S. Let X be a scheme over S
with a D(M)S-action where M is an abelian group. Put D = XS′ . Let Y be a closed subscheme
of XS′ . Then by [MRR20], we get a scheme BlDY X called the dilatation of X with center Y
along S′, and a morphism of schemes BlDY X → X. Let N be a submonoid in M . Assume that
Y is stable under the action of D(M)S′ on XS′ . Then by Proposition 9.3 Y N → DN is a closed
immersion. Moreover DN = (XS′)N = (XN )S′ is a locally principal closed subscheme of XN . So

BlD
N

Y NXN is well-defined.

Proposition 15.1. Assume moreover that X → S, (BlDY X)N → S and BlD
N

Y NXN → S are flat.
Then D(M)S acts naturally on BlDY X, moreover we get a canonical isomorphism

Θ : (BlDY X)N ∼= BlD
N

Y NXN .

Remark 15.2. We refer to [MRR20, Prop. 2.16] for conditions ensuring flatness of dilatations.

Proof. Remark first that since D(M)S → S, X → S, BlDY X → S are flat, D(M)S , X and

BlDY X belongs in SchS′-reg
S , moreover by [MRR20, §1.2, §3.1] any products of these objects in

the category SchS or SchS′-reg
S coincide. So to check that we have an action of D(M)S on BlDY X

it is enough to show that D(M)(T ) acts on BlDY X(T ) functorially for any T ∈ SchS′-reg
S . So

let T ∈ SchS′-reg
S . Let (g, x) ∈ D(M)(T ) × BlDZ (X)(T ), note that x corresponds to a morphism

T
x−→ X such that T |S′ → XS′ factors through Y . We define g.x as the composition

T
(g,x)−−−→ D(M)S ×X

action−−−−→ X.

Then g.x restricted to S′ factors through Y and so g.x ∈ BlDZX(T ). So D(M)S acts on BlDY (X).
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We obtain the following two diagrams

(BlDY X)N → XN ,

(BlDY X)N |S′ = (BlDY X|S′)N XN |S′ = (X|S′)N

Y N

.

By the universal property of dilatations, we obtain a morphism

Θ : (BlDY X)N → BlD
N

Y NXN .

We now prove that it is an isomorphism. Again, let T ∈ SchS′−reg
S and let T ′ be T ×S S′. Then

T ′ is a closed and locally principal subscheme of T . Moreover, since A(N)Z is flat over Z because
Z[N ] is free as a Z-module, using [StP, Tag 01U9] we obtain that the scheme A(N)T is flat over

T . In particular A(N)T belongs in SchT ′−reg
T . Since BlDY X → S is flat, by [MRR20, Lemma 2.7],

we have (BlDY X)T = Bl
DT ′
YT ′ XT . So, on a first hand

(BlDY X)N (T ) = HomD(M)T (A(N)T , (BlDY X)T )

= HomD(M)T (A(N)T ,Bl
DT ′
YT ′ XT )

= {A(N)T
f−→ XT | f is D(M)T -equiv. and A(N)T |T ′

fT ′−−→ X|T ′ factors through YT ′},

moreover, on an other hand,

(BlD
N

Y NXN )(T ) = {T → XN | T |S′ → XN |S′ factors through Y N}

= {A(N)T
f−→ X| f is D(M)T -equiv. and A(N)T |T ′

fT ′−−→ X|T ′ factors through YT ′}.

Now since BlD
N

Y NXN and (BlDY X)N are flat over S, they belongs in SchS′reg
S . So by Yoneda

BlD
N

Y NXN = (BlDY X)N . This finishes the proof.

Corollary 15.3. Let S be a scheme and let S′ be an effective Cartier divisor on S. Let X be
a smooth scheme over S with a D(M)S-action where M is an abelian group. Put D = XS′ . Let
Y be a closed subscheme of XS′ such that Y → S′ is smooth. Let BlDY X be the dilatation of X
with center Y along S′. Let N be a submonoid in M . Assume that Y is stable under the action
of D(M)S′ on XS′ . Then D(M)S′ acts on BlDY X and we get a canonical isomorphism

Θ : (BlDY X)N ∼= BlD
N

Y NXN .

Proof. Since X → S,D → S′ and Y → S are smooth, by Proposition 8.3 XN → S,DN → S
and Y N → S are smooth. So by [MRR20, Proposition 2.16], BlDY X → S and BlD

N

Y NXN → S are
smooth. So using Proposition 8.3 again, (BlDY X)N → S is smooth. Now since smooth implies
flat, the Corollary follows from Proposition 15.1.

Remark 15.4. We note that the fact that dilatations commute with attractors may be used to
study valued root datum as in Bruhat-Tits theory. Indeed by Sections 14 root groups of reductive
groups are examples of attractors (cf. also Section 11) and dilatations allow to define filtrations.
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