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Abstract

In many cases, the dynamic correlation can be calculated quite accurately and at a

fairly low computational cost in Kohn-Sham Density-Functional Theory (KS-DFT), using

current standard approximate functionals. However, in general, KS-DFT does not treat

static correlation effects (near-degeneracy) adequately which, on the other hand, can be

described in Wave-Function Theory (WFT), for example with a Multi-Configurational Self-

Consistent Field (MCSCF) model. It is therefore of high interest to develop a hybrid model

which combines the best of both WFT and DFT approaches. The merge of WFT and DFT

can be achieved by splitting the two-electron interaction into long-range and short-range

parts. The long-range part is then treated by WFT and the short-range part by DFT. In

this work we consider the so-called "erf" long-range interaction erf(µr12)
r12

, which is based

on the standard error function, and where µ is a free parameter which controls the range

of the long/short-range decomposition. In order to formulate a general method, we pro-

pose a recipe for the definition of an optimal µopt parameter, which is independent of the

approximate short-range functional and the approximate wave function, and we discuss

its universality. Calculations on a test set consisting of He, Be, Ne, Mg, H2, N2 and H2O

yield µopt ≈ 0.4 a.u. A similar analysis on other types of test systems such as actinide

compounds is currently in progress. Using the value of 0.4 a.u. for µ, encouraging re-

sults are obtained with the hybrid MCSCF-DFT method for the dissociation energies of

H2, N2 and H2O, with both short-range LDA and PBE-type functionals.
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1 Introduction

Density-Functional Theory (DFT) is widely used nowadays in quantum chemistry, in

particular because it is computationally relatively cheap and thus can be used for large scale

calculations. However, even if current standard approximate functionals in many cases pro-

vide a satisfactory description of the short-range dynamic correlation (Coulomb hole), the

static correlation effects (degeneracy or near-degeneracy) and the dispersion interaction ef-

fects are in general not treated adequately. On the other hand, the static correlation effects

can be described in Wave-Function Theory (WFT), for example with a Multi-Configurational

Self-Consistent Field (MCSCF) model [1], but then an important part of the dynamic correla-

tion has to be neglected. It can be recovered with perturbation-theory based methods like for

example CASPT2 [2, 3] or NEVPT2 [4], but their computational complexity prevents large

scale calculations.

It is therefore of high interest to develop a hybrid WFT-DFT model which combines the

best of both approaches. Different formulations have been proposed to merge WFT and

DFT. One approach consists in calculating the dynamic correlation from the density of an

MCSCF wave function (see for example Refs. [5, 6]). The correlation functional must then

be adapted to the active space to avoid double-counting of the dynamic correlation, which

is technically not trivial. This complication can be overcome by splitting the two-electron

interaction into long-range and short-range parts as proposed by Savin (see for example

Ref. [7]). In this approach the long-range interaction is treated within WFT and the short-

range interaction treated within DFT. As we have to use approximate wave functions and

approximate short-range functionals the following question arises : Can we define an optimal

long/short-range separation and is it universal ?

The present work is an attempt to answer this question. It is organized as follows : in

Sec. 2 we present the hybrid WFT-DFT model based on a long/short-range decomposition

of the two-electron interaction controlled by the parameter µ. The definition of an optimal
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µ parameter µopt is then investigated. In Sec. 3.1 we show that system- and geometry-

dependency problems occur when approximate short-range functionals and approximate

wave functions are involved in this definition, preventing us to formulate a general method.

A new definition, based on a clear and natural criterion for the assignment of the dynamic

correlation to the short-range interaction and the static correlation (and dispersion interac-

tion) effects to the long-range interaction is then given in Sec. 3.2. After discussing the uni-

versality of this definition, we perform in Sec. 3.3 a numerical investigation of µopt on a small

selected set of atoms and molecules chosen to represent both systems without and with sig-

nificant static correlation. Finally, the dissociation energies of H2, N2, and H2O (fixed at the

equilibrium angle) calculated at the hybrid MCSCF-DFT level are presented and compared

to standard WFT and DFT results in Sec. 4.

2 Theory

The hybrid WFT-DFT models discussed in the present paper are based on the separation

of the regular two-electron Coulomb interaction Wee into long- and short-range parts [7] :

Wee = W lr,µ
ee + W sr,µ

ee ,

W lr,µ
ee = 1

2
∑

i6=j

erf(µrij)
rij

,
(1)

where erf is the standard error function and µ a free parameter in [0,+∞[ which determines

the long/short-range separation. Thus the universal functional F [n] introduced by Hohen-

berg and Kohn [8] can be decomposed into long-range and short-range contributions :

F [n] = F lr,µ[n] + Esr,µ
H [n] + Esr,µ

xc [n],

F lr,µ[n] = Min
Ψ→n

{
〈Ψ|T̂ + Ŵ lr,µ

ee |Ψ〉
}
,

(2)

where Esr,µ
H [n] and Esr,µ

xc [n] denote respectively the Hartree and the exchange and correlation

energies related to the short-range interaction. In this approach the density is therefore

obtained from a fictitious long-range interacting system whereas in Kohn-Sham DFT (KS-

DFT) [9] it is obtained from a fictitious non-interacting one. The KS-DFT is recovered in the
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µ = 0 limit, while the pure WFT is obtained in the µ = +∞ limit as seen from Eqs. 1 and 2.

The ground-state energy, which is obtained according to the variational principle [8] by

E0 = Min
n

{
F [n] +

∫
dr vne(r)n(r)

}
, (3)

can then be expressed using Eq. (2) as

E0 = Min
Ψ

{
〈Ψ|T̂ + Ŵ lr,µ

ee |Ψ〉+ Esr,µ
H [nΨ] + Esr,µ

xc [nΨ] +

∫
dr vne(r)nΨ(r)

}
, (4)

where nΨ is the electron density related to the wave function Ψ and vne(r) the local nuclear

attraction potential. The minimizing wave function Φlr,µ in Eq. (4) also fulfills the following

self-consistent equation :

(T̂ + Ŵ lr,µ
ee + V̂ sr,µ)|Φlr,µ〉 = Eµ|Φlr,µ〉, (5)

where Eµ is the Lagrange multiplier related to the normalization of Φlr,µ and V̂ sr,µ is the

effective local potential operator defined as follows :

V̂ sr,µ =

∫
dr vsr,µ(r)n̂(r),

vsr,µ(r) = vne(r) +
δEsr,µ

H
δn

(r) +
δEsr,µ

xc
δn

(r),
(6)

n̂(r) denoting the density operator. If µ = 0, the long-range interaction W lr,µ
ee vanishes so that

the Kohn-Sham equation is recovered from Eq. (5). For µ → +∞ the short-range interaction

W sr,µ
ee vanishes and Eq. (5) reduces to the standard Schrödinger equation. For 0 < µ < +∞,

the model is hybrid since long-range effects are treated in WFT and short-range effects are

treated in DFT.

The theory is so far exact but, since the exact form of the short-range exchange and corre-

lation functional Esr,µ
xc [n] is unknown, an approximate form must be used in practical calcula-

tions. Two approximations have been considered : the short-range LDA (SRLDA) [7, 10] and

a short-range GGA, denoted PBEHSERI in the following, as an extension of the PBE func-

tional [11]. In the latter case the short-range exchange PBE functional of the Heyd, Scuseria

and Ernzerhof hybrid functional [12, 13] is used. The short-range correlation functional
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is obtained by a rational interpolation between the standard PBE correlation functional at

µ = 0 and the asymptotic expansion of the SRLDA correlation functional as µ → +∞. The

interpolation we use is the one of Eq. (29) in Ref. [14], except that the d1 coefficient is multi-

plied by
√

2 according to Ref. [15].

Moreover, since W lr,µ
ee is a two-body operator, the exact wave function Φlr,µ is not anymore

a single determinant (see Eq. (5)) as in KS-DFT. All standard approximations used in WFT

(HF, MP2, CI, MCSCF, CC, NEVPT2, ...) can therefore be adapted to the short-range DFT

(SRDFT) approach. The following have been implemented recently : HF-SRDFT [16, 17],

MP2-SRDFT [16, 18], CI-SRDFT [17, 19, 20], MCSCF-SRDFT [17], and CC-SRDFT [18]. In this

work we focus on the MCSCF-SRDFT method. Combining the MCSCF and DFT models is

envisaged to be an efficient way to treat simultaneously both static correlation (assigned to

the long-range effects) and dynamic correlation (assigned to the short-range effects), com-

pared to e.g. CASPT2 and NEVPT2. An MCSCF-SRDFT combination is computationally

interesting if the wave function has a rather short expansion. Our test calculations support

our presumption that this is usually achieved if the µ parameter is not too large (see Sec.

3.3). However, in some systems like van der Waals complexes, the calculation of the dis-

persion energy requires large active spaces so that the long-range dispersion correlation can

be described properly. The MP2-SRDFT [16, 18] or CC-SRDFT methods [18] are in this case

obvious possibilities. But CC-SRDFT is still computationally expensive and unable to tackle

cases with static correlation effects since it is a single-reference method. For such cases a

multi-configurational and size-consistent extension of the MP2-SRDFT approach, such as

for exemple a NEVPT2-SRDFT method (where Eq. (5) is solved in perturbation theory us-

ing a NEVPT2-type [4] zeroth order Hamiltonian), could be a good alternative. Work is

currently in progress in this direction.

In this paper we use the HF-SRDFT and MCSCF-SRDFT methods, with both short-range

LDA and PBEHSERI spin-independent functionals mentioned previously, as implemented
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in a development version of the DALTON program package [21]. The computational imple-

mentation details are given in Ref. [17].

3 Definition of an optimal µ parameter

The µ parameter which defines the long/short-range separation of the two-electron in-

teraction can, in principle, be chosen arbitrarily. If the short-range exchange and correlation

functionals as well as the wave function were exact, one would get the exact ground-state

energy for any value of µ, but in practice the MCSCF-SRDFT energy depends on µ [17]. A

criterion for choosing an optimal parameter µopt should therefore be defined for practical

calculations. Different approaches can be adopted. A semi-empirical one defines µopt as the

minimum of the mean absolute error obtained on some properties. This type of calibration

study has been performed on a large set of molecules for KS-DFT calculations where the

long/short-range separation was used for the exchange functional [22, 23, 24, 25, 26], and

lead to a relatively narrow range of values (0.33 a.u. ≤ µ ≤ 0.5 a.u.). Another approach

consists in defining µopt from the minimum MCSCF-SRDFT energy [17], but then system-

and geometry-dependency problems occur as shown in Sec. 3.1. In order to overcome such

complications, we propose in Sec. 3.2 a new definition of µopt that optimizes the assign-

ment of the dynamic correlation to the short-range interaction and the static correlation to

the long-range interaction, and discuss its universality. A numerical investigation of µopt,

on a small set of atoms and molecules representing cases without and with significant static

correlation, is finally presented in Sec. 3.3.

3.1 System-dependency problem

Considering the error of the KS-DFT functional at µ = 0 and the N-electron ab initio wave

function configuration error at µ = +∞, we could define the optimal parameter µopt as the

mimimum along the MCSCF-SRDFT energy curve, ensuring thus for a given molecule the

optimal combination of a given approximate functional and approximate wave function.
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Pedersen and Jensen [17, 27] found that µopt is strongly system-dependent if the SRLDA

functional is used: the higher the core density of the system is, the larger µopt is. This can

be interpreted as follows. On one hand, as 1/µ is a measure of the r12 distance where the

model changes from short-range to long-range interaction as illustrated in Fig. 1, for SRLDA

(using the "erf" long-range interaction) to be a good approximation, 1/µ should be smaller

than the distance δ for which the density only varies slowly, and beyond this distance we

need gradient corrections. Since this distance in a valence shell δvalence is larger than its value

in core shells δcore, an optimal µ parameter common to both valence and core electrons must

fulfill

µ ≥ 1/δcore > 1/δvalence. (7)

As a result, the higher the density in the core region is, the larger µopt is. On the other hand,

the single configuration SRLDA approach is close to exact for the homogeneous electron gas

if all effects of the two-electron interaction are treated with DFT, that is, if 1/µ is larger than

the Wigner-Seitz radius [20] rs = [3/(4πn)]1/3 where n denotes the density. A smaller 1/µ

value would put some part of the two-electron correlation into the long-range correlation

and, thus, a longer configuration expansion would be required for the wave function. For

non-homogeneous systems, a short configuration expansion of the wave function is highly

desirable. Since the density is higher in the core shell than in the valence shell, the Wigner-

Seitz radius for the core rcore
s is smaller than the one for the valence rvalence

s , and µ is thus

optimal with respect to achieving a short configuration expansion of the wave function, for

both core and valence electrons, if it fulfills

µ ≤ 1/rvalence
s < 1/rcore

s . (8)

Since the core gives the highest contribution to the energy, the optimal µopt parameter ful-

fills 1/rcore
s ≥ µopt ≥ 1/δcore, which means that it is optimal for the core. However, 1/δcore is

in general larger than 1/rvalence
s , especially for many-shell atoms, and therefore, µopt cannot

also fulfill condition (8). Thus, it can only be optimal for the core, not for the valence, with

respect to both the SRLDA functional and the configuration expansion of the wave function.
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Note that the long/short-range separation for the valence thus becomes determined by the

core and, as a consequence, a significant part of the valence dynamic correlation has to be

treated by the MCSCF. In this respect this µopt, defined from the minimum MCSCF-SRDFT

energy, does not optimize the combination of the MCSCF method and DFT.

Using Effective Core Potentials is a possible alternative [17, 19], but then the model en-

ables only the calculation of valence properties. On the other hand, µopt might be less

system-dependent if more accurate short-range functionals are used. Figs. 2 and 3 show

for both short-range LDA and PBEHSERI functionals, the HF-SRDFT (uppermost curve)

and MCSCF-SRDFT (lowest curve(s)) energies calculated with respect to µ on some selected

atoms and molecules. When several MCSCF-SRDFT active spaces are used, the lowest curve

corresponds, of course, to the largest one. As expected, the short-range GGA functional

PBEHSERI does provide a more accurate treatment of the core correlation in comparison to

LDA. Then µopt becomes smaller and less system-dependent. As shown in Fig. 2, it is in the

vicinity of 1 a.u. for He, Ne and Mg. Nevertheless µopt is twice this value for Be. Moreover,

such a minimum may not exist as observed for the stretched H2 molecule for example (see

Fig. 3). In this case the pure MCSCF model at µopt = +∞ gives the lowest energy, which

is exact in this special case. For N2 at the experimental equilibrium geometry, the lowest

energy is obtained with pure DFT (µopt = 0 ) when the short-range PBEHSERI functional is

used. A similar result was already obtained by Savin and Flad [28] for the He series, per-

forming CI-SRLDA calculations without the short-range exchange functional. Let us finally

mention that µopt can also be geometry-dependent. In H2 for example, it is equal to 0.5 a.u. at

the experimental equilibrium geometry and becomes +∞ for the stretched geometry, when

the short-range PBEHSERI functional is used (see Fig. 3).

In conclusion, these results show that it is currently impossible to define a universal optimal

µopt parameter from the minimum MCSCF-SRDFT energy. They also show that the system-

dependency is strongly related to the approximate short-range functional used, and thus can
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only be reduced by developing more complicated functionals, which is not trivial. Instead,

we now propose to address the possibility of defining a universal long-range/short-range

separation from a new angle of view. The initial motivation for merging WFT and DFT

was the lack of significant improvements in the derivation of approximate KS functionals

able to tackle long-range effects such as static correlation and dispersion interaction effects.

Thus, we would like to formulate a hybrid WFT-DFT method that is able to treat in DFT

the dynamic correlation, which can be described fairly accurately by current standard-type

functionals (LDA, GGA or hybrid), and able to treat in WFT the remaining (long-range) cor-

relation effects. A µ parameter which leads to maximal separation of the long-range and

dynamic correlations would be optimal in this respect.

3.2 Definition of a universal µopt parameter

The analysis of Sec. 3.1 shows that defining µopt from the minimum MCSCF-SRDFT en-

ergy involves the approximate short-range functional (SRLDA, SRPBEHSERI, ...) as well as

the approximate wave function (MCSCF), which leads to system- and geometry-dependency

problems. We advocate here that, instead of optimizing the combination of the two approxi-

mations (short-range functionals and wave function), the criterion for the long-range/short-

range separation should be chosen such that the static correlation (and dispersion interac-

tion) effects are assigned to the long-range interaction and the dynamic correlation effects

to the short-range interaction to the maximum possible extent. According to Eq. (5), this

means that the chosen long/short-range separation should ensure that the wave function

is multi-configurational only in systems where static correlation (or dispersion interaction)

effects are significant. With such a separation, the dynamic correlation could be calculated

with short-range extensions of the current standard KS-DFT functionals and the static cor-

relation within the MCSCF method, which is expected to be optimal with respect to the

computational effort as well as the feasibility of deriving adequate functionals. Note that,

in case of significant dispersion interaction effects, the MP2-, CC- or NEVPT2-SRDFT meth-

ods are more appropriate than the MCSCF-SRDFT (see Sec. 2). In the particular case of a
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long/short-range separation based on the "erf" long-range interaction of Eq. (1), the optimal

µopt parameter should ensure, according to this new definition, that the wave function is a

single determinant in static correlation- and dispersion interaction-free systems. For suffi-

ciently small µ, so that µr12 << 1, where r12 denotes the average correlation distance be-

tween two electrons, the long-range interaction erf(µr12)
r12

equals approximately 2√
π

µ which

is constant. There are thus, in this case, no correlation effects related to the long-range inter-

action. As a result, we can find a range of suitable non-zero µopt values. On the other hand,

µopt should be chosen as large as possible in order to ensure that, when it is used on systems

with significant static correlation or dispersion interaction effects, those are fully treated in

WFT. Therefore the optimal µopt parameter can be defined as the largest µ value for which

the wave function is a single determinant in systems with no significant static correlation

and dispersion interaction effects. Note that this definition is, in principle, independent of

the approximate short-range functional and the approximate wave function used, since, as

shown in Eq. (5), the multi-configurational character of the wave function is only deter-

mined by the long-range interaction. It means that further improvements on the functionals

should not change the value of µopt. Moreover, µopt can be interpreted as the inverse of the

average dynamic correlation distance, rvalence
12 , between the valence electrons. Thus, the uni-

versality of the optimal µopt parameter depends only on the interval of the rvalence
12 distances

obtained in all the systems with no significant static correlation and dispersion interaction

effects. If this interval is not loo large, an averaged µopt value might be a good compromise

for assigning most of the static correlation to the long-range interaction. In addition, if we

consider for example rare-gas dimers [18], the averaged distance 1/µopt is expected to be

smaller than half of the interatomic distance, which means this µopt should also assign the

dispersion interaction effects to the long-range interaction. A numerical investigation of µopt

on some selected test systems containing light elements (He and Ne, as well as H2, N2 and

H2O at equilibrium) is presented in Sec. 3.3. Note that, in our approach, rvalence
12 is a measure

of the distance where the correlation changes from dynamic to long-range (static correlation

or dispersion interaction effects). So far, the definition of µopt ensures that the wave function
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is well approximated by a single determinant in systems with only dynamic correlation. In

order to ensure a maximal separation of the dynamic and long-range correlations, it should

also allow the wave function to be multi-configurational in systems with significant long-

range correlations. Numerical tests on such systems containing light elements (Be and Mg,

as well as the stretched H2, N2 and H2O molecules) are presented in Sec. 3.3. A similar

analysis on actinide compounds is currently in progress.

3.3 Numerical investigation of µopt

In order to get a first estimate of the optimal µopt parameter defined in Sec. 3.2, we con-

sider a set of five closed-shell systems with no significant static correlation and dispersion

interaction effects : two atoms (He and Ne) and three molecules at the experimental equilib-

rium geometry (H2, N2 and H2O). To investigate the multi-configurational character of the

wave function with respect to µ we first compare the HF-SRDFT and MCSCF-SRDFT ener-

gies. If the short-range LDA functional is used, the HF-SRDFT and MCSCF-SRDFT energy

curves split (within an accuracy of 10−3 a.u.) in the vicinity of 0.5 a.u. for the five systems

as shown in Figs. 2 and 3. As expected, a similar result is indeed obtained using the more

accurate short-range PBEHSERI functional. On the other hand, the occupation numbers of

the natural active orbitals in the MCSCF-SRDFT calculation indicate that the wave function

is a single determinant for µ ≤ 0.4 a.u. within an accuracy of 10−4 for He, Ne, H2 and H2O

and 10−3 for N2 (see Fig. 4). So far we can conclude that µopt should be in the vicinity of 0.4

a.u. Note that this value is in agreement with previous calibration studies, based on KS-DFT

calculations using the long/short-range separation for the exchange term only, which also

have been taken as reference for the choice of µ in SRDFT calculations such as MP2- [16, 29]

or CC-SRDFT [30]. Iikura et al. [22] have for example shown that the mean absolute error

on the 4s-3d interconfigurational energies of the first-row transition metals is minimal for

µ = 0.4 a.u. The recent calibration studies of Vydrov et al. [23, 24] also show that µ = 0.4

a.u. works well for enthalpies of formation, barrier heights and ionization potentials. Ger-
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ber and Ángyán [25] have reported a slightly larger optimal value (0.5 a.u.) based on the

calculation of enthalpies of formation for a set of 56 molecules, and Tawada et al. [26] found

a slightly smaller value (0.33 a.u.) minimizing the mean absolute deviation of the calculated

equilibrium distances for the dimers of the first to third-row atoms (except rare-gas dimers).

We now consider a set of five systems where static correlation effects are significant : two

atoms (Be and Mg) and three stretched molecules (H2, N2 and H2O). In all cases, the HF-

SRDFT and MCSCF-SRDFT energies are different for µ = 0.4 a.u. (see Figs. 2 and 3). It

means that the wave function is multi-configurational, as confirmed by the occupation num-

bers of the natural active orbitals of Be and Mg in the MCSCF-SRDFT (see Fig. 4). It is an

indication that a significant part of the static correlation is assigned to the long-range inter-

action. But we still have to check that, in those systems, most of the dynamic correlation is

assigned to the short-range interaction. We thus investigate the configuration expansion of

the wave function. Fig. 2 shows that the MCSCF-SRDFT energies obtained for Mg with two

different active spaces (2s2p3s3p and 2s2p3s3p4s4p) are identical for µ = 0.4 a.u. but still

differ from the HF-SRDFT energy. The same was observed for the symmetrically stretched

water molecule using three different active spaces (see Fig. 3). If we now compare with

static correlation-free systems like Ne or H2O at the experimental equilibrium geometry,

both HF-SRDFT energy curve and all the MCSCF-SRDFT energy curves (obtained with the

different active spaces) split from µ = 0.4 a.u. This clearly shows that for µ = 0.4 a.u. the

static correlation is treated within the MCSCF model and the dynamic correlation with DFT.

In this respect, choosing the optimal µopt parameter to be 0.4 a.u. ensures a maximal sepa-

ration of the dynamic and static correlations for all the systems considered in this work. In

order to discuss the universality of the 0.4 a.u. value, it is also of high interest to investigate

molecules with heavier elements. Work is currently in progress in this direction on actinide

compounds.
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4 Results and discussions

In this section the dissociation energies of H2 and N2, as well as the symmetric dissoci-

ation energy of H2O at the experimental equilibrium angle H-O-H = 104.5 ◦, are calculated

within the MCSCF-SRDFT method using cc-pVTZ basis sets [31, 32]. Both short-range LDA

and PBEHSERI spin-independent functionals are tested and the µ parameter is set to 0.4 a.u.

according to the analysis of Sec. 3.3. The results obtained for the diatomic molecules are

presented in Table 1. We note that the equilibrium bond distances obtained at the MCSCF-

SRDFT are in very good agreement with experiment, in particular when the PBEHSERI

functional is used. They are also very similar to the HF-SRDFT ones, which was expected

since, at the equilibrium geometry, there is very little static correlation (see Sec. 3.3). Sec-

ondly, the large difference between the HF-SRDFT and MCSCF-SRDFT dissociation energies

is a sign of the ability of the MCSCF-SRDFT to tackle the static correlation at dissociation, i.e.

to dissociate correctly. The occupation numbers of the active natural orbitals indicate that,

for both H2 and N2 at dissociation, the proper multi-configurational wave function is ob-

tained (see Fig. 5). The MCSCF-SRDFT dissociation energies are closer to experiment than

all the restricted KS-DFT values but they are still too high. The approximate short-range

functionals used are responsible for this overestimation. Let us consider the case of H2 for

example. At dissociation the wave function becomes |Φlr,µ〉 = 1√
2
(|σgσg〉− |σuσu〉) according

to Fig. 5, which means that H2 is dissociated into two neutral hydrogen atoms within the

MCSCF-SRDFT approach. The two electrons, both localized on one hydrogen, have there-

fore no long-range interaction at dissociation. Moreover, the short-range energy should be,

in principle, equal to zero unless the electron is self-interacting. With the LDA functional

for example, the short-range Hartree term equals 0.2306 a.u. and is not compensated by

the short-range exchange and correlation contribution (-0.1784 a.u.). Their sum (0.0522 a.u.)

corresponds essentially to the difference between the MCSCF-SRLDA energy and the exact

energy (see Fig. 6). For a single hydrogen atom, the short-range Hartree term, obtained at

the HF-SRLDA level, equals 0.1154 a.u. and is not compensated by the short-range exchange

and correlation contribution (-0.0892 a.u.). Their sum multiplied by two (0.0523 a.u.) is al-
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most identical to the energy error obtained for H2 at dissociation. The same conclusion can

be drawn for the short-range PBEHSERI functional. In this respect our energy error at dis-

sociation is a self-interaction error. On the other hand, although the MCSCF method, using

the σgσu active space, describes the dissociation properly, a significant part of the dynamic

correlation at the equilibrium is not included, and therefore the dissociation energy is un-

derestimated as shown in Table 1. It is clear from Fig. 6 that the MCSCF-SRDFT method

recovers much more dynamic correlation than the MCSCF.

The results obtained for the water molecule are given in Table 2. As already observed for

the diatomic molecules, the HF-SRDFT and MCSCF-SRDFT equilibrium bond distances are

almost identical and in very good agreement with experiment. As expected both HF-SRDFT

methods overestimate the symmetric dissociation energy significantly, because of the wrong

dissociation limit for a single determinant (O(1S) + H2(σ2
g)), whereas the MCSCF-SRDFT re-

sults (13.32 eV and 13.05 eV) are much closer to the experimental value (10.06 eV), but still

not satisfactory. Two problems can be identified: (1) the self-interaction error at dissociation

also needs to be corrected in this case and (2) the dissociation limit for the oxygen atom is the

1S state instead of the 3P state. Again, the MCSCF model dissociates correctly but neglects

a bigger fraction of the dynamic correlation at the equilibrium distance than at dissociation

and therefore underestimates the dissociation energy.

5 Conclusions

In order to formulate a general hybrid MCSCF-SRDFT method, we have investigated

the possibility of defining of an optimal and universal long/short-range separation of the

two-electron interaction, characterized by the µ parameter in Eq. (1). We advocate that this

parameter should be chosen so that the static correlation (and dispersion interaction) effects

are assigned to the long-range interaction and the dynamic correlation effects to the short-

range interaction. We thus propose to define the optimal µopt parameter as the largest µ

15



value for which the wave function is a single determinant in systems with no significant

static correlation and dispersion interaction effects. Such a definition is general because it

involves neither the approximate short-range functional (SRLDA, SRPBEHSERI, ...) nor the

approximate wave function (HF, MCSCF, CI, CC, ...). It is only determined by the form

of the short/long-range separation, for example the erfgau separation [14] would lead to

another optimal µ value. We have shown that its universality depends only on the interval

of the average dynamic correlation distances between the valence electrons obtained in all

the systems with no significant static correlation and dispersion interaction effects. If it is

not loo large, an averaged µopt value might be a good compromise. Calculations on He

and Ne, as well as H2, N2 and H2O at their experimental equilibrium geometries, all yield

µopt ≈ 0.4 a.u. Moreover, investigating Be and Mg, as well as the stretched H2, N2 and H2O

molecules, we observed that such a value leads to a maximal separation of the static and

dynamic correlations. In order to discuss the universality of the 0.4 a.u. value, a similar

analysis on actinide compounds is currently in progress.

Using the MCSCF-SRDFT method with µ = 0.4 a.u gives very encouraging results for the

dissociation energies of H2 and N2 as well as for the symmetric dissociation energy of the

water molecule. Improvements on the short-range functionals are nevertheless necessary,

in particular to correct the self-interaction of the unpaired electrons at dissociation. Note

that such improvements should not, in principle, modify the optimal µopt parameter since

its definition does not involve the approximate short-range functionals. It is also clear that

enhancements are needed for handling of open-shell systems, which cannot be completely

handled with the proposed spin-dependent short-range functionals [30], cf. the wrong state

obtained for the oxygen atom when investigating the symmetric dissociation of water.
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FIGURE CAPTIONS

Figure 1 : The "erf" long-range interaction wlr,µ
ee (r12) =

erf(µr12)
r12

plotted as a function of

r12 for µ equal to 2.0, 1.0, and 0.5 a.u.

Figure 2 : Total ground-state energies of He, Be, Ne, and Mg calculated by the HF-SRDFT

(uppermost curve) and MCSCF-SRDFT methods (lowest curve(s)) with respect to the µ pa-

rameter, with the short-range LDA and PBEHSERI functionals, and compared to the exact

energy [33]. The MCSCF-SRDFT active spaces are given in parentheses. Basis sets are cc-

pVTZ [31, 32], for He, Be and Ne, and 6-311++G(3df,3pd) [37], for Mg.

Figure 3 : Total ground-state energies of H2, N2, and H2O calculated at both equilib-

rium (left side) and stretched (right side) geometries by the HF-SRDFT (uppermost curve)

and MCSCF-SRDFT methods (lowest curve(s)) with respect to the µ parameter, with the

short-range LDA and PBEHSERI functionals, and compared to the CCSD(T) for H2O or ex-

act energy [34] for H2 and N2. The MCSCF-SRDFT active spaces are for H2 1σg1σu , for N2

2σg2σu1πu3σg1πg3σu, and for H2O, given as number of orbitals of (a1.b1.b2.a2) symmetry :

3.1.2.0, 4.2.2.0, and 6.3.3.1. Basis sets are cc-pVTZ [31, 32].

Figure 4 : Occupation numbers of MCSCF-SRDFT natural orbitals of He, Be, Ne, Mg as

well as H2, N2, and H2O at the equilibrium geometry, calculated with respect to the µ pa-

rameter with the short-range LDA and PBEHSERI functionals. The active spaces are given

in Figs. 2 and 3. For Ne, Mg, and H2O the smallest ones have been used. Basis sets are

6-311++G(3df,3pd) [37] for Mg and cc-pVTZ [31, 32] for the other atoms.

Figure 5 : Occupation numbers of MCSCF-SRDFT natural orbitals of H2 and N2 calcu-

lated with respect to the bond distance using the short-range LDA and PBEHSERI function-

als and µ = 0.4 a.u. The active space is 1σg1σu for H2 and 2σg2σu1πu3σg1πg3σu for N2. Basis
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sets are cc-pVTZ [31, 32].

Figure 6 : Potential energy surfaces of H2 calculated by the RKS-DFT (with both LDA

and PBE functionals), MCSCF and MCSCF-SRDFT methods (with both short-range LDA

and PBEHSERI functionals and µ = 0.4 a.u.) using the active space 1σg1σu, and compared to

the exact surface [34]. Basis set is cc-pVTZ [31, 32].
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Figure 1: Fromager et al, Journal of Chemical Physics
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Figure 2: Fromager et al, Journal of Chemical Physics
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Figure 3: Fromager et al, Journal of Chemical Physics
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Figure 4: Fromager et al, Journal of Chemical Physics
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Figure 5: Fromager et al, Journal of Chemical Physics
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Figure 6: Fromager et al, Journal of Chemical Physics
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Method H2 N2

Re (Å) De (eV) Re (Å) De (eV)

MCSCF 0.755 4.13 1.106 9.18

RKS-LDA 0.766 6.72 1.096 17.69

RKS-PBE 0.751 6.79 1.103 16.85

RKS-B3LYP 0.743 7.75 1.092 20.44

HF-SRLDA 0.755 10.70 1.082 30.84

MCSCF-SRLDA 0.757 6.05 1.088 16.17

HF-SRPBEHSERI 0.742 10.85 1.086 30.41

MCSCF-SRPBEHSERI 0.744 6.17 1.092 15.73

Exp. [35] 0.741 4.75 1.097 9.91

Table 1: Equilibrium bond distances Re (Å) and dissociation energies De (eV) for the ground

states of H2 and N2 calculated by MCSCF, RKS-DFT, HF- and MCSCF-SRDFT (with the

short-range LDA and PBEHSERI functionals and µ = 0.4 a.u.) methods. The MCSCF and

MCSCF-SRDFT active spaces are 1σg1σu for H2 and 2σg2σu1πu3σg1πg3σu for N2. Basis sets

are cc-pVTZ [31, 32].
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Method Re (Å) De (eV)

MCSCF 0.963 8.31

RKS-LDA 0.970 16.06

RKS-PBE 0.969 15.14

HF-SRLDA 0.961 19.30

MCSCF-SRLDA 0.962 13.32

HF-SRPBEHSERI 0.958 18.82

MCSCF-SRPBEHSERI 0.959 13.05

Expt. 0.957a 10.06b

a Ref. [36], b Ref. [11]

Table 2: Equilibrium O-H bond distance Re (Å) and symmetric dissociation energy De (eV)

for the ground state of H2O (with a fixed H-O-H angle of 104.5 ◦) calculated by MCSCF,

RKS-DFT (with the LDA and PBE functionals), HF- and MCSCF-SRDFT (with the short-

range LDA and PBEHSERI functionals and µ = 0.4 a.u.) methods. The active space 3.1.2.0,

given as number of orbitals of (a1.b1.b2.a2) symmetry, has been used for both MCSCF and

MCSCF-SRDFT calculations. Basis sets are cc-pVTZ [31, 32].
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