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Abstract

According to functional or anatomical modalities, medical imaging provides
a visual representation of complex structures or activities in the human body.
One of the most common processing methods applied to those images is seg-
mentation, in which an image is divided into a set of regions of interest.
Human anatomical complexity and medical image acquisition artifacts make
segmentation of medical images very complex. Thus, several solutions have
been proposed to automate image segmentation. However, most existing so-
lutions use prior knowledge and/or require strong interaction with the user.
In this paper, we propose a multi-agent approach for the segmentation of
3D medical images. This approach is based on a set of autonomous, inter-
active agents that use a modified region growing algorithm and cooperate to
segment a 3D image. The first organization of agents allows region seed place-
ment and region growing. In a second organization, agent interaction and
collaboration allow segmentation refinement by merging the over-segmented
regions. Experiments are conducted on magnetic resonance images of healthy
and pathological brains. The obtained results are promising and demonstrate
the efficiency of our method.
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1. Introduction

Medical imaging plays an important role in medicine. It has generated
significant research interest and imaging-based healthcare solutions. Medical
image segmentation is one of the most challenging tasks in this field. It
is a crucial non-invasive technique that can provide information regarding
structures in the human body.

Several segmentation algorithms and methods have been developed. The
proposed solutions include thresholding [1], region growing [2, 3], and more
sophisticated computing methods, such as those using Markov random fields
[4] and deformable models [5]. Most existing segmentation solutions [6, 7] are
not democratized because they require user interaction and/or considerable
computing time.

Recently, the research community has significantly improved the perfor-
mance of medical image segmentation systems using advances in machine
learning, particularly in deep learning [8, 9], which provides promising re-
sults. However, new concerns related to the learning process have been raised,
such as the need to build large volumes of manually segmented data, time
and energy required for learning, and risk of over-fitting. To prevent these
problems, researchers are exploring the possibilities offered by multi-agent
systems (MASs).

A MAS is composed of a population of software entities called agents,
which are situated in an environment and capable of making autonomous
decisions in this environment, to meet their local objectives and the global
purpose of the system [10]. MASs provide a distributed and collective de-
cision process that allows segmentation of medical images with flexibility,
autonomy, and robustness. Thus, they have been used for medical image
segmentation [11] during the prior decades. However, these approaches still
suffer from several drawbacks, such as the excessive number of parameters
and the need for user interaction. Moreover, most existing approaches have
been designed for one type of image and cannot be easily reused for another
type. Therefore, we propose a new multi-agent approach for medical image
segmentation. This approach is based on a population of situated agents,
which move, interact, and coordinate their actions in an image (agent envi-
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ronment) to perform segmentation. This allows a novel distributed segmen-
tation tool to be built for segmenting brain magnetic resonance (MR) images.
Moreover, the method combines locality and stochasticity to overcome the
intensity non-uniformity (INU) artifact. Locality is insured by using situated
agents, where each agent processes a sub-region of the image using its specific
parameters. Stochasticity is insured by the randomness of agents when they
move within the image using a random walk search. The proposed approach
relies on two steps without any user interaction.

• In the first step, a set of agents start partitioning voxels in the image
into edge voxels and non-edge voxels based on the magnitude of the
gradient between voxels.

• In the second step, another set of agents use the obtained voxel partition
to detect and extract homogeneous regions in the image.

The aim of this study is to present the proposed approach and illustrate
its effectiveness in segmenting medical images. The remainder of the paper
is organized as follows. The context of this study and related research are
described in Section 2. The proposed multi-agent approach is introduced
in Section 3. Details regarding implementation and experimental results for
both tissue segmentation and tumor detection in magnetic resonance imaging
(MRI) are presented in Section 4. Finally, some perspectives and conclusions
are offered in the last section.

2. Related Work

Automated medical image segmentation is very challenging due to the
complexity of acquisition methods and the inherent artifacts in medical im-
ages. Several solutions have been proposed (see [12]). An overview of medical
image segmentation challenges and related works are introduced in this sec-
tion.

2.1. Medical Image Segmentation

Segmentation of functional or anatomical medical images provides in-
formation of interest about structures or activities in the human body. It
helps radiologists and physicians visualize and study the anatomy of those
structures. The obtained information is used for different purposes, such as
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pathology diagnostics, pre-operative planning, image-guided surgical proce-
dures, disease progress tracking, and treatment planning [13].

Accurate segmentation is vital in medical imaging, but ensuring accurate
segmentation is difficult. The difficulty of segmenting such images comes from
different factors including: 1) acquisition and sampling methods (e.g., CT
scans and magnetic resonance images) generate noise, non-uniform intensity
(at acquisition), and partial volume effect (at sampling); 2) the complexity
of human anatomical structures; 3) the closeness in gray level of different
soft tissues (low contrast) [12].

A wide range of medical image segmentation approaches has been intro-
duced for segmenting different types of images for several pathologies. Those
approaches use different techniques, such as thresholding [1], region growing
[2, 3], Markov random fields [4], fuzzy and hard clustering [14, 15], and de-
formable models [5]. They often require pre-processing tasks to reduce noise
and correct artifacts, and some require manual initialization [16].

Execution of these existing segmentation algorithms depends on the visual
primitives that must be extracted, such as specific regions or contours. There
are several literature reviews of the most recent approaches ([17, 18, 19]).

Gray level thresholding allows differentiation of various areas in an image,
leading to segmentation. However, the presence of noise in medical images
and intensity inhomogeneity within the tissue make the direct thresholding
of gray levels inapplicable to medical image segmentation.

Moreover, region growing techniques suffer from the problem of seed se-
lection. Without the use of prior knowledge, it is difficult to define a criterion
to select a given voxel of the image as the starting point of the growing pro-
cess. Some medical image segmentation systems have changed the initial
region growing algorithm by introducing different enhancements. In [20], the
authors define some criteria for growing algorithms to be independent of the
seed regions and the order of region treatment. In the approach presented
by [21], the contrast of a region is defined in terms of the gradient across its
border. This definition provides significantly higher segmentation accuracy.

Voxel classification allows different regions corresponding to tissues of in-
terest in the image to be obtained. Voxel classification methods are either
statistical or fuzzy. The parameters of a statistical model are estimated ei-
ther from a set of labeled data or using a given heuristic, such as expectation
maximization. In both approaches, an estimator, such as maximum a pos-
teriori (MAP), is used to calculate the most likely class to which the voxel
belongs [22, 23]. The exploitation of local links between voxels via Markovian
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models provides segmentation with higher accuracy [24, 25]. Classification
methods are also used to analyze voxels in a medical image, with the fuzzy
C-means (FCM) algorithm being the most popular [26, 27].

Manually segmented images are used in several new segmentation meth-
ods, such as Atlas methods [28]. Atlas methods allow radiometric and spatial
knowledge to be represented in a given type of image. They were initially in-
troduced in [29]. Although they have been very successful, different improve-
ments and combinations with other methods have been proposed [30, 31].

Machine learning techniques are also used for classifying medical images
as part of segmentation using a dataset of manually labeled images. Ma-
chine learning approaches are first trained on these manually labeled data,
and segmentation is performed using the trained model. Many machine
learning-based medical image segmentation approaches have been proposed
in the literature, such as decision tree [32], support vector machine [33], ran-
dom forest [34], and more recently, deep learning methods [35]. Similar to
machine learning approaches, medical image segmentation techniques using
manually annotated data offer outstanding results particularly when deep
learning methods are used. However, several challenges hamper their de-
mocratization, such as the lack of manually labeled medical images, class
imbalance inside training datasets, and overfitting [35].

Despite the advances made in the last few years within the medical imag-
ing research community, correct identification and segmentation of all tissues
present in a medical image remains a complex task, and its automation re-
mains a challenge. Rather than attempting to segment all the tissues present
in a medical image, researchers have focused on identifying and isolating
pathological tissues (e.g., detection of Alzheimer lesions or tumors), provid-
ing valuable information for medical staff. Tumor segmentation is one of the
most active areas in the medical image segmentation field, and many studies
have been published on tumor segmentation in MR brain images. A brief
overview of these earlier studies is presented in the next section.

2.2. Tumor Segmentation

MRI is a non-invasive in vivo imaging technique that uses a radio fre-
quency magnetic field to excite target tissues, and an image is generated
from the magnetic field produced by certain tissues at different frequencies
[36]. MRI is commonly used for brain tumor imaging and diagnosis. Using
different MRI sequences (also known as modalities), medical professionals
can analyze images and collect crucial structural information regarding the
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condition of brain tissues to detect possible brain tumors and, in such cases,
monitor evolution of the disease. This analysis is mainly conducted by seg-
menting MR images with the aim of identifying the tumor from the rest of
the tissues. Manual segmentation of a brain tumor is a time-consuming and
challenging task, even for domain experts. Therefore, the development of
a technique for automatic segmentation of brain tumors in MRI is a major
challenge as it accelerates and improves patient treatment by reducing prac-
titioner workloads. However, automatically segmenting a brain tumor is a
complicated task due to the variability in tumor shapes, textures, sizes, and
locations; image variations due to intrinsic differences in acquisition proto-
cols and devices; and MRI well-known artefacts (i.e., noise, low contrast, and
partial volume effect).

During the prior decades, many methods have been proposed for brain tu-
mor segmentation in MRI. Classical segmentation methods were used in early
studies to extract tumors in MR brain images. They have allowed exploration
of this application domain, despite their limitations. New approaches use a
combination of several existing techniques in the same system with the intent
of improving the segmentation quality by putting these techniques in compe-
tition. Some of those approaches are reviewed in [37, 38, 39, 40, 41]. Another
type of approach relies on machine learning. Instead of using different al-
gorithms to isolate the tumor from the rest of the image, machine learning
techniques use training datasets to generate models based on pattern match-
ing and similarities. Those techniques have generated considerable interest
in medical image segmentation and tumor segmentation in brain MRI.

Several machine learning approaches have been proposed and can be clas-
sified into two main categories: generative models and discriminative models.
The latter have emerged from democratization of deep learning and convolu-
tional neuronal networks (CNN) [42]. Unlike traditional classification meth-
ods, where images with manually tagged features are used for training, CNNs
automatically learn complex representative features directly from the data
itself. Research on CNN-based brain tumor segmentation mainly focuses on
network architecture design rather than image processing to extract features
[36]. This focus is motivated by the results obtained with these methods us-
ing available segmentation benchmarks. As an example, during the last Brain
Tumor Segmentation (BraTS) challenge [43], a well-known dataset and chal-
lenge for MRI brain tumors segmentation, first place was exclusively won
using deep learning-based approaches. Despite their effectiveness in dealing
with benchmarks, deep learning-based approaches suffer from the following
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limitations [44]:

• Lack of training datasets: Training deep networks with imbalanced
data can produce biased models [44]. Thus, with the brain tumor seg-
mentation (BraTS) dataset, where all provided images (training, val-
idation, and testing) contain tumors, deep learning-based approaches
offer substantial results for tumor segmentation. Nevertheless, these
results do not ensure the accuracy of deep learning approaches when
dealing with a healthy brain or tissues affected by a disorder unrelated
to a tumor.

• Lack of appropriately tagged data: Deep learning approaches are de-
signed to learn from a vast amount of training data, while the set of
available manually segmented medical images is limited.

• Overfitting: An excessive training phase applied to a highly specific
dataset may lead to a model that is suitable to these data but cannot
be generalized to other data.

Most of the approaches listed above employ a monolithic, sequential,
centralized process to perform tumor segmentation [45]. Furthermore, they
use a unidirectional execution, where backtracking is impossible during the
segmentation process. Thus, these approaches ignore other segmentation
choices that can be more significant than the considered one. Some novel
approaches for increasing the efficiency of a segmentation system, regardless
of the used classification technique being used, have been proposed. They
are based on a collaborative problem-solving paradigm called MASs. Those
studies are reviewed in the next section.

2.3. Multi-Agent Segmentation Approaches

MASs have been successfully used for automated imaging-based diagnos-
tics [11], where image segmentation is a critical step. Several multi-agent
approaches have been proposed for medical image segmentation. We distin-
guish these into two categories. In the first category, each agent encapsulates
one of the various existing methods (e.g., edge detection [46], region detec-
tion [47], or meta heuristic [48]). A MAS aims to improve segmentation
using different mechanisms such as distribution and information diffusion.
The second category aims to use MASs by using the underlying mechanisms.
The solutions in this category rely on social coordination mechanisms, such
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as ant colonies and social spider colonies [49]. For instance, Djemame et
al. [50] used self-organization and adaptation of social spiders in a MAS to
extract homogeneous regions in an image. Liu and al.[51] used agents with
unicellular living-beings behavior to extract brain structures in a computed
tomography (CT) image. Richard et al. [52] use cooperative and interac-
tive behaviors to respectively distribute the classification task and propagate
information among agents to segment medical images.

The region growing method is well suited for multi-agent medical image
segmentation systems in the aforementioned categories [53]. This success is
due to the robustness, rapidity, and simplicity of the region growing algorithm
[54]. Multi-agent exploitation of the region growing algorithm also permits
the drawbacks of seed selection and region characteristics definition to be
overcome. Some systems use this technique to label pixels from a set of
known classes in sub-regions within an image; such a technique was used
with brain MRI [55] and CT image scans [56]. Other multi-agent approaches
combine region growing and other segmentation methods, such as the fuzzy
C-mean method for segmenting brain MR images [57], region fusion in the
same type of image, or region fusion for micro aneurysm detection in fundus
images [58].

Existing multi-agent approaches have been successfully used for image
segmentation. Most of those multi-agent approaches are either based on cen-
tralized agents or a set of agents encapsulating segmentation algorithms and
acting on portions of the image. The second category of approaches uses
agents to distribute the segmentation process, but most of those approaches
do not use a coordination mechanism. So, they do not exploit the full advan-
tages of MASs, such as decision distribution, coordination, and interaction.

2.4. Discussion

In the current section, we reviewed several interesting and innovative seg-
mentation approaches. Most of those approaches provide promising results.
However, they suffer from one or more of the following drawbacks [59]:

• Most of those approaches require user intervention for defining param-
eters, thresholds, or where segmentation starts.

• The best approaches, in terms of segmentation accuracy, require a long
time (several hours in some studies). Thus, they cannot be used by
physicians in real time.
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• Learning-based approaches require a considerable amount of manually
segmented 3D MRI images, which is hard to find or to produce.

Furthermore, and to overcome computational complexity, especially for
3D images, several methods proceed by partitioning the volume of voxels into
subsets, primarily into sub-cubic volumes [52] or slices [51]. Such techniques
reduce processing complexity and allow classical operators developed for 2D
images to be used. However, interaction among neighboring voxels that
belong to adjacent sub-volumes are omitted, resulting in information loss,
and concerned voxels can be incorrectly categorized.

To overcome some of these drawbacks, we developed an adaptive multi-
agent approach for tumor segmentation in 3D MRI of the brain. The pro-
posed approach is described in the following section.

3. MAMES: A Multi-Agent approach For MEdical image Segmen-
tation

Our multi-agent approach for medical image segmentation (MAMES) is
introduced in this section. MAMES relies on an evolution of the multi-agent
approach presented in [59]. A population of rationally situated agents is
launched to perform image segmentation. The agents are situated in an
environment that represents the 3D image. Each voxel in the 3D image
contains the gray level intensity and the local gradient vector. The latter is
obtained by applying a 3D Sobel filter to the processed image (see [60] for
more details). The 3D version of the Sobel filter allows edge voxels to be
detected in 3D images.

Agents first classify image voxels into two categories: region and non-
region voxels. This classification is used to select seeds for the next region
growing step. Starting from the selected seeds, agents initiate then region
growing by iteratively assimilating neighboring voxels. In the last step, the
agents interact with each other to merge homogeneous neighboring regions
when needed. The following sections describe these two tasks (partition and
region growing) and show how they are performed according to different
agent behaviors.

3.1. Voxel Partitioning

Fig.1 illustrates how agents are distributed in the 3D volume. At each
time step, the system considers slices from each orthogonal plane in the image
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(axial, coronal, and sagittal). Each slice represents a two-dimensional gray
level image in that series, where voxels are processed as pixels. Then, agents
are uniformly dispersed in each slice, as demonstrated in Fig.1. Thus, an area
of voxels is assigned to each agent. This area represents the set of voxels to
be processed by the agent after activation, with the aim of identifying pixels
along contours in those of regions.

Slicing
Axial 

Slicing

Agents

Input Image
Thresholded

Image

Coronal 
Slicing

Sagittal

Fig. 1: Agent distribution during thresholding

After activation, an agent analyzes the gray magnitude (GD) in its local
area. The agent uses a classical k-means clustering algorithm to perform
classification of those voxels according to their gradient magnitude, where k
= 2 (the number of desired classes). Two classes are thus considered (edge
voxel or inside-region voxel):

• Class (C1): voxels with high magnitude gradient (edge voxels and their
neighbors),

• Class (C2): voxels with low magnitude gradient (voxels inside regions).

Thus, each voxel is thresholded three times (along the three planes) to
maximize the chance of detecting neighboring pixels. Also, a voxel is finally
assigned to (C2) if it was classified accordingly in the three planes. Mean-
while, a voxel is assigned to (C1) if it was classified accordingly just by one
agent (one plane).
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The set of the voxels labeled as belonging to borders (C1) with the k-
means algorithm is discarded from the set of area voxels inside the agent
processing zone. The remaining cluster of region voxels (C2) is either com-
posed of continuously adjoining voxels or partitioned into several sub-parts.
In the latter case, the agent creates a new agent for each contiguous part of
voxels, then it disappears.

At the end of this step, each new agent has its own set of C2 voxels.
This set may be composed of all the voxel inside the agent’s area, or a sub-
region after discarding the edge voxels and partitioning the region voxels in
contiguous sub-regions.

(a) (b)

Fig. 2: Sub-area partitioning for region seed selection: (a) raw image, and (b) partitioned
image

Fig.2 shows an image composed of two homogeneous regions separated
by a fuzzy outline (circle). Agents a1, ..., a16 are uniformly scattered on the
image. Any agent having a non-homogeneous area decomposes its set of
voxels into two homogeneous partitions:

• C2: belonging to the inside of the regions,

• C1: forming the contours between regions and their respective neigh-
bors (thick circle in Fig.2), represented by agents a6, a7, a10, and a11.

Each of these agents creates an agent for each partition of contiguous vox-
els. For example, agent a6 creates agents a′6 and a′′6, then it self-destructs.
In the given example, this results in a population of 20 agents following
the creation of 8 agents and destruction of 4 agents. This process produces
two sub-graphs corresponding to the two homogeneous regions in the im-
age. This result consists respectively in the sub-graphs {a1, a2, a3, a4, a5,
a′6, a

′
7, a8, a9, a

′
10, a

′
11, a12, a13, a14, a15, a16} and {a′′6, a′′7, a′′10, a′′11}.
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3.2. Seed Selection

At the end of the partitioning task, the agents are connected in an ad-
jacency graph, where two agents are adjacent if there is a linear sequence
of C2 voxels connecting them in the image. Therefore, for each connected
sub-graph, the agent with the highest number of adjacent peers is selected to
start region growing from its seed voxel. With the graph partitioning results
presented in Fig.2, only two agents (one for each sub-graph) will be in charge
of region growing. Considering the first region (R1), only one agent will be
randomly chosen among agents a′6, a

′
7, a
′
10, anda

′
11, and its position will be-

come the seed of this region because each region is adjacent to three others.
Similarly, an agent will be selected among agents a′′6, a

′′
7, a
′′
10, anda

′′
11 as each

agent is adjacent to 2 others, regarding the second region (R2).

3.3. Region Growing

The remaining population of agents allows the extraction of the regions
composing the image. Those agents use a modified version of the region
growing method (proposed in [61] and used in [59]) and were adapted for 3D
images. An agent starts growing its region from its seed voxel (set in the
previous stage) in two phases: initial and final region growing.

3.3.1. Initial Region Growing

This first phase allows the characteristics of the region to be computed.
Starting from the seed voxel, each agent uses a random walk and adds to its
initial region Rinit any voxel P classified as C2 and with a gray level close
to the gray level of the growing region. In other words, a voxel P is added
to the initial region Rinit during the random walk if it satisfies the following
conditions:

G(P ) ∈ [Tupper, Tlower]
∧

P ∈ C2 (1)

with Tupper = Md(Rinit) + ((σu(Rinit)× w) + c(Rinit)) (2)

and Tlower = Md(Rinit)− ((σl(Rinit)× w) + c(Rinit)) (3)

where G(P ) is the gray level of P , C2 is the class of region voxels,
Md(Rinit) is the median gray level value of Rinit, σl(Rinit) and σu(Rinit)
are respectively the lower and upper standard derivations of Rinit, w and
c(Rinit) allows the homogeneity of Rinit to be adjusted.
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The first condition in Eq.(1) uses Tupper and Tlower proposed in [61]. We
add the second term to account for the intensity and prevent the agent from
crossing a contour, which would cause the agent to overflow into another
region during this initial step of region growing and exploration. The agent
stops its random walk when it performs several walks without adding any
voxels or the execution time limit is reached. In both cases, the agent goes
back to the initial voxel (seed) and starts the next step.

Use of a classical recursive random walk for voxel browsing and region
growing allows diversification of voxels during the initial region growing. The
set of voxels reached by a random walk does not necessarily form a small
region around the seed voxel. However, when those voxels have the same main
characteristics, they are representative of the entire region. Additionally, the
random walk ensures voxels in the initial region kernel are contiguous; they
are obtained by random walking within the neighborhood. Such a process
ensures the continuity, the compactness, and the uniformity of the browsed
set of voxels. Besides, the agent uses this set to compute the explored region’s
statistics when finishing its exploration.

Algorithm 1 presents our 3D version of the random walk algorithm in
spherical coordinates. MaxTime is the number of steps to be walked by an
agent before stopping and then computing the initial region features. The
spherical coordinates x, y, and z are expressed as follows: x = r × cos(θ)×
sin(φ), y = r× sin(θ)× sin(φ), and z = r× cos(θ) with r =

√
x2 + y2 + z2.

For one step within the unit cube (dr = (1, 1, 1)), an agent computes its
direction in the horizontal plane in terms of θ and with respect to the z
axis in terms of φ. The three components of one step are then expressed
as follows: dx = dr × cos(θ) × sin(φ), dy = dr × sin(θ) × sin(φ), and
dz = dr × cos(θ), where dr =

√
12 + 12 + 12 =

√
3. In the implementation,

θ and φ are calculated according to the execution time; therefore, they vary
strongly at the beginning of the move, allowing the agent to browse most of
the voxels around the seed. The increase of the execution time leads to a
reduction in θ and φ fluctuations, causing the agent to explore regions that
are increasingly distant from its seed pixel (Fig.3).

3.3.2. Final Region Growing

In this step, and to finalize region growing, each agent uses the region
statistics computed in the previous phase. These statistics consist of the
mean and standard-derivation (ERinit

(G),σ(Rinit)) of the voxel gray level
browsed during the random walk. They are used to evaluate the predicate of

13



Algorithm 1 Method 3D Random Walk(int xa, ya, za)

path← {(xa, ya, za)}
Time←MaxTime
while Time > 0 do
θ ← 2π × random× Time/MaxTime
φ← π × random× Time/MaxTime
dx←

√
3× cos(θ)× sin(φ)

dy ←
√

3× sin(θ)× sin(φ)
dz ←

√
3× cos(φ)

xa ← xa + dx
ya ← ya + dy
za ← za + dz
path← path+ {(xa, ya, za)}
Time−−

end while

Fig. 3: Path produced by a random walk where the agent progressively enlarges its scope
around its initial position
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voxel assimilation (Eq.(4)) during the remaining final region growing phase.

Predicate(P ) =


true if G(P ) ∈ [ERinit

(G)± (σ(Rinit)× α)]

false otherwise
(4)

Starting from the seed voxel, the agent extracts its final region using
the computed mean, standard deviation, and α (an assimilation tolerance
parameter) according to their prior classification (C1 or C2). At each step,
the agent browses the set of contour voxels surrounding its region. It then
assimilates all voxels that satisfy the assimilation predicate. This growing
process is repeated while there are absorbable non-allocated voxels (voxels
that satisfy the region assimilation predicate) surrounding the current region.

3.4. Merging

The previous phases allow agents to detect regions, where an agent is
associated with each region. In this new phase, the agents use a region
neighborhood concept to merge the already-detected regions. Indeed, as an
intensity non-uniformity correction has not been performed, a homogeneous
region may be split into several regions obtained by region growing starting
from their own seed. Two regions are considered neighbors if they have
adjacent borders. Thus, each agent aims to expand its region by integrating
other regions from its neighbors. However, merging requires the approval of
the neighboring agents.

A high number of merging combinations is to be considered according to
the region’s characteristics. To address such merging problem, we propose
to endow the agents with 1) an interaction protocol that is based on the
contract net protocol (CNP), and 2) a decision strategy that is based on a
social welfare (see subsection 3.4.2) [62].

3.4.1. Interaction Protocol

To communicate with their respective neighbors, the agents use the CNP
[63] to select which agents will be attached. According to this selection,
agents update their neighborhood and restart looking for other agents to
attach. The process is repeated until no more agents can be attached after
a timeout. The main steps of this communication protocol are as follows
(Fig.4):
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ParticipantInitiator

Call	For	Proposal	(CFP)

Refuse

Not	understood

Propose

Reject

Accept

Confirm

Failure

Fig. 4: Contract net protocol

- CFP: First, each agent computes its standard deviation and sends an
attachment request with a “call for proposal” message with this value
and a timeout to all its neighbors.

- Refuse/Propose: When receiving an attachment request, an agent
analyzes the standard derivation of its region when merging with that
of the participant. If this merging increases its standard deviation, it
then sends a propose message; otherwise, it sends a refuse message to
the sender.

- Accept/Reject: After the time out, the initiator analyzes the propos-
als. It selects the proposal that satisfies the social welfare (see Section
3.4.2). The agent then sends an accept message to the associated agent,
which will be attached, and a reject message is sent to the other agents.

- Failure/Confirm: When receiving an accept message, an agent sends
a confirm message if it has not accepted another attachment request;
otherwise a failure message is sent.
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- Attachment: When receiving a confirm message, the agent attaches
the participant and waits for the next iteration.

Each agent repeats the process while it has proposals from its neighbors.
Otherwise, the agents consider the current solution to be optimal.

3.4.2. Merging decision

When receiving several proposals for merge requests, an agent A (manag-
ing region R) can use several strategies to select one of those proposals. This
individual decision has an important impact on global image segmentation.
So, an important question is, what is the best individual strategy that gener-
ates efficient segmentation? Furthermore, how should efficient segmentation
be characterized given the individual objectives? This question is addressed
in social choice theory (SCT) [64],[65] and welfare engineering [66].

In SCT, a society of agents is considered, where each agent expresses
preferences over a set of alternatives. This theory studies the so-called “so-
cial welfare functions.” Such functions aggregate individual preferences to
produce a social preference over the alternatives. Each agent can thus select
a strategy that optimizes the social welfare function.

Social welfare functions are analyzed w.r.t. the utilitarian/egalitarian
axes. In this study, we focus on egalitarian welfare, which maximizes the
welfare of a less satisfied agent [67] (Eq.5). Agent welfare is defined as the
standard deviation of the voxel intensities within its region. Therefore, when
receiving one or several proposals to merge, an agent A (managing region R)
chooses to merge with agent Aj (managing region Rj) that satisfies:

σ(R ∪Rj) = min
Ri∈Adj(R)

(σ(R1 ∪Ri)) (5)

where Adj(R) represents the set of agents adjacent to A and σ(R) is the
standard-deviation of region R.

Region merging is the final phase of our approach. Thus, the image
segmentation results contain a set of homogeneous regions, regardless of what
they may represent.

To measure the efficiency of MAMES and ensure its robustness, we per-
formed experiments with healthy and pathological brain MR images. Imple-
mentation and experimental results are described in the following section.
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4. Experiments and Results

This section provides an overview of our implementation, and the ex-
perimental results are introduced and analyzed. These experiments were
performed on a computer equipped with an Intel I7-6500U processor (2.5
GHz frequency, two physical cores, four threads) and 16 GB RAM.

4.1. Implementation

Our MAMES experiments were implemented using C# and MS Net. The
latter allows medical images to be easily segmented with acceptable accuracy
and execution time. All entities used in the system were implemented as
C# classes, including the agents. The framework is developed as a desktop
application with a simple and convivial interface (Fig.5). It can process both
standard 2D and 3D image formats. It can also extract 2D slices from image
volumes. The framework offers the following features:

• Visualizing 2D images;

• Visualizing 3D volumes and extracting 2D slices for segmentation;

• Segmenting an image with MAMES;

• Viewing classification results obtained after distributed thresholding
(first step);

• Viewing regions detected by the system;

• Viewing the characteristics (size, average gray level, standard deriva-
tion) of the detected regions;

• Viewing the detected contours.
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Fig. 5: MAMES interface

To evaluate the efficiency of our multi-agent image segmentation approach
and to insure its robustness, we conducted multiple experiments with differ-
ent types of brain MR images.

The evaluation metric was the Dice similarity coefficient [68], also known
as κ coefficient (kappa). This coefficient is commonly used in medical im-
age processing to evaluate the performance of segmentation algorithms by
comparing the obtained results with predefined reference information. It is
calculated using the following formula [59]:

Dice =
2× TP

2× TP + FP + FN
(6)

where TP , FP , and FN are the true positive, false positive, and false neg-
ative rates of pixel labeling, respectively. The value of the Dice coefficient
sufficiently expresses segmentation accuracy.
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4.2. Experimental Results on 2D MR Phantom Images

The first series of experiments was performed on brain MRI 2D phan-
tom image slices extracted from 3D brain MR images. Those images were
generated from the BrainWeb platform, a phantom database provided by
the McConnell Brain Imaging Center at Montreal Neurological Institute
(https://brainweb.bic.mni.mcgill.ca/brainweb/) [69].

According to Collins [69], simulated phantom images are an effective tool
for validating the results of a segmentation algorithm. They also permit
a comparison with results obtained from other published methods. More-
over, we chose the simulated images generated by BrainWeb because this
tool allows the efficiency and robustness of MAMES to evaluated despite the
presence of image artifacts, such as noise and INU, in a quantitative evalua-
tion. Consequently, we used MR Simulator (MRISIM) to generate realistic
brain MR images with the T1 modality for our experiments.

MRISIM allows the user to generate a brain MR image by combining
three different modalities ((T1-, T2-, and Proton-Density), five slice thickness
values, six levels of noise (0%, 1%, 3%, 5%, 7%, and 9%), and three INU
levels. For our tests, we used the T1 modality and 1 mm thickness as fixed
values, and we varied the INU (0%, 20%, and 40%) and noise (0%, 1%, 3%,
5%, 7%, and 9%), giving a total of 18 MR images. Moreover, each volume is
stored as a 3D matrix of 181 × 217 × 181 voxels. The segmentation results
are summarized in Table 1 and illustrated in Fig.6.

Noise level

INU level 0% 1% 3% 5% 7% 9%

0% 90% 91% 93% 95% 94% 91%

20% 92% 91% 94% 95% 93% 87%

40% 89% 91% 91% 89% 86% 85%

Table 1: Dice coefficient for white matter extraction with different noise and INU levels
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Fig. 6: Dice coefficient as a function of noise level for different INU values

Fig.6 illustrates white matter segmentation results compared to reference
images. We notice that the curves first increase as noise in the unsegmented
image increases. Our experimental results are due to the fact that the region
growing phase with low noise becomes considerably discriminative (Eq.4).
Low noise corresponds to a low standard deviation, which results in nar-
row comparison intervals. Assuming the initial region growing step aims to
compute the characteristics of the region (region’s mean gray level and stan-
dard deviation), if an agent encounters only similar pixels during its random
walk, it produces a final region growing predicate (Eq.4) that cannot as-
similate any bordering pixels in the region that are affected by the partial
volume effect, as illustrated in Fig.7b. Therefore, increasing noise increases
the tolerance of the assimilation predicate, leading to segmentation where
bordering pixels are well aggregated in the region (Fig.7d). However, when
noise exceeds a certain threshold (5% for 0-20% INU and 3% for 40% INU),
it affects the accuracy of the detected region borders. This is due to the
increased standard deviation and alteration of the region’s mean gray lev-
els, which are caused by the augmentation of the proportion of noise pixels
inside the region. Changing the region’s mean gray levels results in wide
comparison intervals (Eq.4). Moreover, noise combined with the partial vol-
ume effect causes the borders between regions to have lower contrast, making
segmentation more complicated and decreasing segmentation accuracy. We
also think this process starts earlier with a 40% INU level because the image
becomes deteriorated (voxels belonging to the same tissues have disparate
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gray levels), knowing that the latter is affected by a combination of three
significant artefacts (partial volume effect, noise, and high INU).

(a) Initial Image
Noise = 0%

(b) WM Segmenta-
tion Noise = 0%

(c) Initial Image
Noise = 3%

(d) WM Segmenta-
tion Noise = 3%

Fig. 7: White matter (WM) segmentation examples of a brain slice with 0% INU level for
(7a) and (7b), and with 20% INU level for (7c) and (7d)

Experiments conducted with phantom MR images show the efficiency of
our segmentation approach. Our approach can be used to segment an image
and extract compact regions of interest, such as the white matter region.
The results presented in Table 1 and Fig.6 show the robustness of MAMES
as noise and INU increase. The Dice coefficient is always above 80%, even
when INU = 40% and noise = 9%.

These promising results led us to test the efficiency of MAMES with the
laborious task of tumor segmentation in 3D MRI, for which the experimental
results are introduced in the following section.

4.3. Experimental Results on 3D MR Tumoral Images

One of the main problems associated with the design of image segmenta-
tion methods is their evaluation process. This evaluation is generally based
on comparing the experimental results with reference results produced man-
ually by a human expert. However, achieving a set of manually segmented
images (ideally done by several experts) is not an easy task, and it is very
time-consuming (several hours to segment a single 3D MR image).

Existing work often uses small datasets produced by radiologists to eval-
uate their approaches. This procedure complicates the evaluation process
as no shared data is available to compare segmentation methods. Thus, the
BraTS challenge began in conjunction with the International Conference on
Medical Image Computing (2012) to address the brain tumor segmentation
issue.
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The BraTS challenge ([70]) offers a useful environment for evaluating au-
tomatic segmentation approaches of tumor extraction in multi-modal 3D MR
images. The BraTS dataset (BraTS2018) is composed only of pre-operative
images acquired in four modalities (T1, T2, FLAIR, and T1 with contrast
enhancement). It contains high-grade glioblastoma (HGG) and lower-grade
glioma (LGG) manually segmented by experts. In the BraTS dataset, voxels
in a reference image were divided into three different classes (labels), the en-
hanced tumor (label 4), peritumoral edema (label 2), and necrotic tumor core
(label 1). A fourth label (label 3) was initially used to define non-enhancing
tumor core, but it was eliminated afterward. This annotation was made
by several domain experts and validated by experienced neuro-radiologists.
Therefore, the MR images used in BraTS were acquired in different insti-
tutions with different equipment and protocols, making this dataset hetero-
geneous in terms of MRI rendering and quality (same tissue type can have
different gray level intensities from one acquisition device to another).

The BraTS dataset takes the form of a set of folders, one folder for each
human subject. Inside a folder, a multi-modal image is stored in five dif-
ferent files (four files for the MR image modalities and a file for the labeled
reference).

To conduct our experiments, we used eight 3D images from the BraTS
dataset. Considering that MAMES is designed for single modality images,
we focus on the FLAIR modality as it offers desirable contrast between the
tumoral area and the healthy tissues. The obtained tumor segmentation
results are detailed in Table 2 and Fig.8. In the latter and in addition to
the Dice coefficient, we include specificity (TNR), accuracy (ACC), precision
(PPV), and sensitivity (TPR) as common metrics used for evaluating tumor
segmentation.

TNR =
TN

TN + FP
(7)

ACC =
TP + TN

TP + TN + FP + FN
(8)

PPV =
TP

TP + FP
(9)

TPR =
TP

TP + FN
(10)

The quantitative evaluation presented in Table 2 and Fig.8 illustrate the
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effectiveness of our approach for tumor segmentation in 3D MRI. The results
of tumor segmentation exceed 80% for all eight volumes and an average of
86% Dice coefficient. These results are similar to those obtained by a segmen-
tation expert when compared to the consensus obtained during development
of the BraTS dataset [70].

Eudema Whole Tumor

3D Brain
MRI

TNR ACC PPV TPR Dice TNR ACC PPV TPR Dice

MRI 1 99% 99% 99% 63% 77% 99% 99% 99% 76% 86%
MRI 2 99% 99% 72% 92% 81% 99% 99% 82% 88% 85%
MRI 3 99% 99% 88% 89% 88% 99% 99% 90% 90% 90%
MRI 4 99% 99% 98% 83% 89% 99% 99% 98% 80% 88%
MRI 5 99% 99% 99% 83% 90% 99% 99% 99% 75% 85%
MRI 6 99% 99% 99% 83% 90% 99% 99% 99% 75% 85%
MRI 7 99% 99% 91% 71% 80% 99% 99% 94% 76% 84%
MRI 8 99% 99% 87% 84% 85% 99% 99% 89% 84% 86%

Table 2: Specificity, accuracy, precision, sensitivity, and Dice coefficients for edema and
whole tumor segmentation results using MAMES on the images in the BraTS dataset
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Fig. 8: Results for tumors segmentation in brain MR images from BraTS dataset
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Tables 3 and 4 show results obtained by MAMES for segmentation of LGG
and HGG tumors, respectively, in the axial, coronal, and sagittal planes.
The first line shows different slices for the T1 modality, while the second
line shows different slices for the FLAIR modality. From comparing these
two modalities, we observe that FLAIR modality has higher contrast than
the T1 modality; this is why the FLAIR modality was selected for tumor
segmentation. The third line shows the final tumor segmentation results,
which are highlighted in red in the T1 images. This illustration already
makes it possible to judge the effectiveness of our approach. Additionally,
rows four and five allow the obtained results to be compared with reference
results.

When comparing the tumor segmentation results with reference results
(rows four and five in Table 3 and Table 4), we notice some small unde-
tected areas inside the segmented volume. This phenomenon is a common
issue that occurs when the region growing method is used in medical images
with textured regions [71]. In our experiments, those miss-detected regions
are due to the inhomogeneity of the tumors. The tumors are composed of
tissues (i.e., edema, necrotic core, and active tumor) that can have different
intensities inside an MR image. Differentiation of those textures requires the
use of multiple modalities (T1, T2, FLAIR, and T1e). Because our approach
only uses the FLAIR modality to segment a tumor, resulting in these small
undetected areas, this issue can be overcome by using some mathematical
morphology operations.

A comparative evaluation of these results is presented in Table 5 and
Fig.9. From the latter, we observe that our results are satisfactory when
compared to some state-of-the-art approaches using the BraTS dataset [42].
We also highlight the fact that our approach uses only one modality (FLAIR)
when most of the other presented methods use the four modalities provided
in the BraTS dataset. Unfortunately, we could not compare our results to
another multi-agent approach for 3D segmentation of brain tumors as this
has not been published in another paper to the best of our knowledge.

From our different experiments, we conclude that the best segmentation
results are obtained with an α ∈ [2, 2.5] for brain MR images.
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Axial Coronal sagittal

T1

FLAIR

Tumor on
T1

Extracted
Tumor

Reference

Table 3: LGG segmentation results in the axial, coronal, and sagittal planes
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Axial Coronal Sagittal

T1

FLAIR

Tumor on
T1

Extracted
Tumor

Reference

Table 4: HGG segmentation results in the axial, coronal, and sagittal planes
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Approach Year Method
Results
(Dice)

No of used
modalities

Jiang [72] 2013 Graph - cut 84% 4

Havaei [73] 2014 KNN + MRF 85% 4

Pedoia [74] 2015 Competitive EM and graph cut 70% 1

Zabir [75] 2015
Region growing and level set

evolution
81% 2

Kapás [76] 2015 Random forest 70% 4

Gupa [77] 2015
Intensity features of
multimodality MRI

77% 4

Kapas [76] 2016
Binary decision trees and
random forest technique

67% 4

Vishnu-
varthanan

[78]
2016

Self-organizing map + Fuzzy K
means

92% 4

Pei [79] 2017
Cell density patterns/tumor

growth modeling
82% 4

Dong [80] 2017
U-Net-based fully

convolutional networks
86% 4

Havaei [81] 2017 Deep neural networks 88% 4

Chen [82] 2018 Densely connected 3D CNN 72% 4

Zhao [83] 2018
Fully convolutional neural

networks+conditional random
fields

87% 3

Ma [84] 2018
Random forests + multiscale
patch-driven active contour

89% 4

Lim [85] 2018
Information theoretic rough

sets
70% 4

MAMES 2020
Multi-agent cooperation using

gradient thresholding and
adaptive region growing

86% 1

Table 5: Comparative evaluation of whole tumor segmentation results with other state-
of-the-art approaches

28



 60

 65

 70

 75

 80

 85

 90

 95

 100

Jiang
Havaei

Pedoia

Zabir
Kapas

Gupa
Kapas

Vishnuvarthanan

Pei
Dong

Havaei

Chen
Zhao

M
a

Lim M
AM

ES

D
ic

e 
C

oe
ff

ic
ie

nt

Approaches

Whole Tumor Segmentation
Average score

Fig. 9: Graphical representation of a comparative evaluation of whole tumor segmentation
results with other state-of-the-art approaches

4.4. Result Analysis and Discussion

The results obtained with Phantom MR images from the brain web show
that the MAMES results are reproducible despite the presence of artifacts,
namely noise and INU. For any combination of noise and INU, the Dice coef-
ficient remains above 85%, even in the worst case examined (Noise =9%, INU
= 40%). The obtained results were competitive with those of other methods
published in the literature. However, and unlike most of the other meth-
ods that have obtained good scores, MAMES does not require any learning
stage or manual segmentation of MR images. This is a major strong point
of MAMES that allows fast MRI segmentation without referring to any pre-
defined or acquired knowledge.

The robustness of MAMES regarding artifacts can be explained from two
perspectives:

• MAMES is distributed and cooperative owing to its multi-agent design;

• The locality and stochasticity of treatments.

These two aspects allow segmentation of MR images that contain INU.
The local treatments start randomly and the obtained local results are inte-
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grated, given that the INU artifact can be neglected within small areas or
volumes.

MAMES is a new approach derived from our method presented in [59],
however, it introduces many new ideas and improvements. First of all, the
approach presented in [59] uses only similarity detection with its multi-phase
region growing method, while MAMES combines discontinuity detection and
similarity detection in a sequential cooperative manner (see Section 3). This
makes the experimental results of MAMES more accurate, despite an increase
in noise. Unlike the approach presented in [59], MAMES does not need a
“border refining and noise removal” step. Thanks to the voxel partitioning
phase, the initial region growing process became more accurate for determin-
ing a regions’ parameters, making the final region growing step more efficient.
Finally, MAMES was used on healthy and pathological 3D brain MR images
without any pre-processing, where the approach in [59] involved segmenta-
tion of healthy brain MR images after a brain extraction pre-processing only
in two dimensions using the Fsl tool [86]. This significant difference confirms
the robustness of MAMES segmentation.

Using our equipment (described at the beginning of Section 4), the av-
erage segmentation time for 2D MR images is equal to 5 s, whereas 3D MR
images require 2 min 20 s. Even if this duration seems substantial at first,
especially for 3D segmentation, MAMES segments the entire image (not just
the object of interest) in a cooperative manner, and our implementation does
not use parallelization. Our current implementation uses pseudo-parallelism
during execution, which explains the segmentation duration. Therefore, one
direction of future research is implementation of a physically distributed ver-
sion of MAMES, allowing the processing time to be decreased.

Experimental results on the BraTS database have shown the efficiency
of MAMES for accurate segmentation of a brain tumor into its main parts,
namely the entire tumor and the edema. The Dice coefficient results show
that the proposed method provides segmentation accuracy that is close to the
accuracy found with other cited methods, despite the fact that most of those
methods are learning-based, and in some cases, require a massive training
dataset, such as for deep learning-based methods.

Furthermore, no specific assumption about the image content has been
considered. The only requirement is that the processed images be composed
of visually separable regions. Thus, MAMES presents significant results with
the extraction of compact areas as tumors or organs. However, MAMES faces
difficulties when segmenting narrow structures. Therefore, our approach is
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suitable for any type of medical images, such as CT scans and PET images,
where the aim is to extract regions based on some homogeneity criterion. All
the reviewed methods were designed for a specific type of image, thus they
require important modifications if they are to be used with other types of
images.

5. Conclusion

In this paper, we present a multi-agent approach, MAMES, for medical
image segmentation. MAMES allows simultaneous detection of different re-
gions without any input from the user related to the type of image, such as
the number of regions, thresholds, or some characteristics that are pre-defined
with a learning phase or a prior knowledge.

MAMES relies on a population of interactive agents that perform two
main tasks: voxel partitioning for seed selection, and region growing for
tissue extraction. After extracting all the regions, the agents start a coor-
dinated merging process. For this part of the work, we were inspired by
meta-heuristics to propose a distributed adaptation of the well-known sim-
ulated annealing algorithm, and adopt the concept of social welfare, where
agents consider both individual rationality and social rationality.

MAMES was used to segment several brain MR images. The segmenta-
tion experiments validated its implementation and targeted characteristics
performance, such as the segmentation quality. With only one modality, our
approach offers similar and, in some cases, more accurate results than other
approaches that use the four modalities provided by the BraTS dataset.

MAMES is a promising approach owing to the use of well-known segmen-
tation techniques and a multi-agent architecture. One of our future research
directions is to modify MAMES to consider several modalities in the same
image simultaneously. We believe that those modalities would provide higher
segmentation accuracy by producing a clearer distinction between different
tissues composing the tumor.

We aim to focus on using our approach to segment other anatomical
structures using other types of medical images (e.g., CT scans or functional
MRI). Finally, segmentation could be tested with other region-extraction
methods, such as machine-learning-based classification and clustering.
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reira, J. Monteiro, Using a multi-agent system approach for microa-
neurysm detection in fundus images, Artificial intelligence in medicine
60 (3) (2014) 179–188.

[59] M. T. Bennai, Z. Guessoum, M. Smaine, S. Cormier, M. Mezghiche,
Towards a Generic Multi-Agent Approach for Medical Image Processing,
in: The 20th International Conference on Principles and Practice of
Multi-Agent Systems (PRIMA 2017)., 2017, pp. 198–211.

[60] J. Toriwaki, H. Yoshida, Fundamentals of three-dimensional digital im-
age processing, Springer Science & Business Media, 2009.

[61] R. Pohle, K. D. Toennies, Segmentation of medical images using adap-
tive region growing, in: Medical Imaging 2001, International Society for
Optics and Photonics, 2001, pp. 1337–1346.

[62] Smith, Reid G, The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver, IEEE Transactions on
Computers C-29 (12) (1980) 1104–1113.

[63] R. G. Smith, The contract net protocol: High-level communication and
control in a distributed problem solver, IEEE Transactions on computers
C-29 (12) (1980) 1104–1113.

[64] S. Bouveret, J. Lang, Efficiency and envy-freeness in fair division of
indivisible goods: Logical representation and complexity, Journal of Ar-
tificial Intelligence Research 32 (2008) 525–564.

[65] D. Bouyssou, T. Marchant, P. Perny, Social Choice Theory and Mul-
ticriteria Decision Aiding, in: Decision-making Process Concepts and
Methods, ISTE / Wiley, 2009, pp. 741–770.

38



[66] U. Endriss, N. Maudet, Welfare engineering in multiagent systems,
in: International Workshop on Engineering Societies in the Agents
World IV. ESAW 2003. Lecture Notes in Computer Science, Vol. 3071,
Springer, 2003, pp. 93–106.

[67] S. Bouveret, M. Lemaundefinedtre, Computing Leximin-Optimal Solu-
tions in Constraint Networks, Artif. Intell. 173 (2) (2009) 343–364.

[68] A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, A. C. Palmer, Mor-
phometric analysis of white matter lesions in MR images: method and
validation, IEEE transactions on medical imaging 13 (4) (1994) 716–724.

[69] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani,
C. J. Holmes, A. C. Evans, Design and construction of a realistic digital
brain phantom, IEEE transactions on medical imaging 17 (3) (1998)
463–468.

[70] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Ger-
stner, M. Weber, T. Arbel, B. B. Avants, N. Ayache, P. Buendia, D. L.
Collins, N. Cordier, J. J. Corso, A. Criminisi, T. Das, H. Delingette,
C. Demiralp, C. R. Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes,
E. Geremia, B. Glocker, P. Golland, X. Guo, A. Hamamci, K. M.
Iftekharuddin, R. Jena, N. M. John, E. Konukoglu, D. Lashkari, J. A.
Mariz, R. Meier, S. Pereira, D. Precup, S. J. Price, T. R. Raviv,
S. M. S. Reza, M. Ryan, D. Sarikaya, L. Schwartz, H. Shin, J. Shot-
ton, C. A. Silva, N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor,
O. M. Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Wintermark,
D. H. Ye, L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes, K. Van
Leemput, The Multimodal Brain Tumor Image Segmentation Bench-
mark (BRATS), IEEE Transactions on Medical Imaging 34 (10) (2015)
1993–2024.

[71] X. Zhang, X. Li, Y. Feng, A medical image segmentation algorithm
based on bi-directional region growing, Optik 126 (20) (2015) 2398–
2404.

[72] J. Jiang, Y. Wu, M. Huang, W. Yang, W. Chen, Q. Feng, 3d brain tumor
segmentation in multimodal mr images based on learning population-

39



and patient-specific feature sets, Computerized Medical Imaging and
Graphics 37 (7-8) (2013) 512–521.

[73] M. Havaei, P.-M. Jodoin, H. Larochelle, Efficient interactive brain tumor
segmentation as within-brain kNN classification, in: 2014 22nd Interna-
tional Conference on Pattern Recognition, IEEE, 2014, pp. 556–561.

[74] V. Pedoia, S. Balbi, E. Binaghi, Fully automatic brain tumor segmenta-
tion by using competitive em and graph cut, in: International Confer-
ence on Image Analysis and Processing, Springer, 2015, pp. 568–578.

[75] I. Zabir, S. Paul, M. A. Rayhan, T. Sarker, S. A. Fattah, C. Shahnaz,
Automatic brain tumor detection and segmentation from multi-modal
MRI images based on region growing and level set evolution, in: 2015
IEEE International WIE Conference on Electrical and Computer Engi-
neering (WIECON-ECE), 2015, pp. 503–506.

[76] Z. Kapás, L. Lefkovits, L. Szilágyi, Automatic detection and segmenta-
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