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Abstract  12 

Autonomous micro-grids based on solar photovoltaic (PV) are one of the most promising solutions to 13 
provide electricity access in many regions worldwide. Different storage/PV capacities can produce the 14 
same level of quality service, but an optimal design is typically identified to minimize the levelized cost 15 
of electricity. This cost optimization however relies on technical and economic hypothesis that come 16 
with large uncertainties and/or spatial disparities. 17 

This article explores the sensitivity of the optimal sizing to variations and uncertainties of such 18 
parameters. Using data from Heliosat and ERA5, we simulate the solar PV production and identify the 19 
least cost configurations for 200 locations in Africa. 20 

Our results show that the optimal configuration is highly dependent on the characteristics of the 21 
resource, and especially on its co-variability structure with the electric demand on different timescales. 22 
It is conversely rather insensitive to cost hypotheses, which allow us to propose simple pre-sizing rules 23 
based on the only characteristics of the solar resource and electricity demand. 24 

The optimal storage capacity can be estimated from the 75th percentile of the daily nocturnal demand 25 
and the optimal PV capacity from the mean demand and the standard deviation of the daily power 26 
difference between solar production and demand.  27 

Keywords: PV microgrids, microgrid sizing, Rural electrification, Levelized Cost of Electricity 28 
(LCOE), Africa 29 
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1 Introduction 31 

The seventh Sustainable Development Goal of the United Nations is to "ensure access to affordable, 32 
reliable, sustainable and modern energy for all” [1]. Almost 550 million inhabitants do not have access 33 
to electricity in Sub-Saharan Africa and this number will increase with the fast demographic growth in 34 
this area [2]. Most of them are located in rural areas and in many cases, an affordable and sustainable 35 
electricity supply could help improving living conditions and developing local economies [1]. Fostering 36 
electricity access there requires large electrification programs, such as SE4all (Sustainable energy for 37 
all), the International Solar Alliance, the Terawatt Initiative or the Power Africa plan [3]–[6].  38 

Such programs require governments and stakeholders (investors, researchers, manufacturers, …) to 39 
be guided toward the most interesting electrification strategy – which is expected to be region 40 
dependant [7]. In the recent years, a number of works have then estimated the cost-optimal options 41 
for different regions worldwide [8]–[12]. The choice, typically to be made between grid extension and 42 
micro-grid (MG) installation, is often based on the levelized cost of electricity (𝐿𝐶𝑂𝐸) [8], [13]–[16]. 43 

The 𝐿𝐶𝑂𝐸 of a MG depends on many different features. It relies first on the technical configuration, 44 
e.g. the type of energy source or mix (e.g. diesel, photovoltaic, wind, hydroelectricity) and the required 45 
storage capacity of battery if any. Different MG configurations with different energy mix are then 46 
typically compared to identify the least-cost one. The cost-optimal configuration is expected to vary 47 
from one site to the other. When the MG is based on renewable sources, this configuration depends 48 
on the available resource and its variability (seasonality, day-to-day variability and low resource 49 
periods). This has been illustrated for 100% photovoltaic solar MG by Huld et al. [10] and Plain et al. 50 
[17]. 51 

The cost-optimal configuration for a site also depends on the socio-economical features of the system, 52 
for instance, the temporal profile expected for the electricity load, mainly determined by the different 53 
types of uses expected for the system. In a photovoltaic (PV) MG with batteries, less storage capacity 54 
is needed if the nocturnal load decreases, which is typically found when productive uses increase 55 
compared to domestic ones [9]. For a given PV installed capacity, a lower storage capacity results in a 56 
lower 𝐿𝐶𝑂𝐸. The cost-optimal configuration also depends on the relative costs of the different 57 
technical components of the MG, e.g. costs of PV panels, converters, batteries.  58 

A potentially critical problem for the identification of the cost-optimal configuration is that many 59 
features come with large variabilities, uncertainties or spatial disparities. The cost-optimal MG 60 
configurations, which have been estimated in a number of previous works, especially regarding 61 
electrification planning, are obtained using mean values for PV and battery costs. However, large costs 62 
variations are observed from one region to the other resulting from different country regulations, 63 
distribution circuits or local terrain constraints [18], [19]. Looking at a specific location, part of the unit 64 
costs can be well estimated but some other can come with large uncertainties: this is for instance 65 
expected to be the case for installation costs related to civil engineering, transportation or for 66 
maintenance costs related to the lifetime of the components, especially batteries as highlighted by 67 
[20], [21].  68 

On the other hand, the costs of the different MG components can also significantly evolve with time, 69 
because of changes in country-specific costs due to regulations and taxes [22] and/or because of 70 
learning by doing: the large deployment and maturation of photovoltaic panels for instance led its 71 
price to be divided by almost 4 in 5 years [23]–[25]. These costs evolutions are expected to depend on 72 
the component of the MG. Learning rates for instance, defined as the relative unit cost reduction when 73 
doubling the installed capacity, were estimated around 23% for PV panels, 12% for on-shore wind 74 
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turbines and between 6% and 9% for lithium batteries [26], [27]. These evolutions are in turn expected 75 
to change the cost ratio between the components. 76 

To our knowledge, the sensitivity of the cost-optimal configurations to cost hypothesis has not been 77 
characterized so far. Our first objective is to evaluate, for a generic 100% solar MG project in rural sub-78 
Saharan Africa, the sensitivity of the cost-optimal MG configuration to the costs of the main MG 79 
technical components, namely the battery and the PV panels. In particular, this will allow to assess 80 
how the lowest cost MG configurations targeted for electrification or obtained in existing studies are 81 
modified with alternative component cost assumptions. 82 

On the other hand, determining cost-optimal configurations is not straightforward. This is typically 83 
achieved with computation demanding simulations of the MG behaviour under a rather large number 84 
of different MG configuration scenarios requiring ad-hoc weather data, namely long time series of local 85 
weather and ad-hoc simulation models [28]. Such a simulation-based design process is not accessible 86 
to all operators especially in the context of a government or rural electrification agency tender where 87 
the profitability of MG over large areas needs to be estimated quickly. Simple pre-sizing rules, 88 
bypassing the need for simulations, are thus of high interest, for instance to discriminate between 89 
different solutions (MG, national grid, Solar Home Systems) or to assess a large portfolio of sites in  90 
rural electrification planning [8]. ECOWAS Centre for Renewable Energy and Energy Efficiency 91 
(ECREEE), International Energy Agency (IEA) and the Institute of Electrical and Electronics Engineers 92 
(IEEE) propose such rules for West Africa based on simple estimates of the demand and of the mean 93 
solar resource. These rules do however only target solar / diesel hybrid MGs [29], [30] or stand-alone 94 
PV systems [31].  95 

The second objective of this paper is to test the possibility for simple rules for the pre-sizing of 100% 96 
PV MG systems. In Africa, the solar resource is indeed abundant and the large reduction in PV costs 97 
observed in the last decades makes such systems potentially highly competitive. 100% PV MGs 98 
produce moreover low greenhouse gases and air pollutant emissions compared to diesel generator 99 
and are not subject to fuel price volatility and supply difficulties [32]–[34]. This makes 100% PV MGs 100 
also very attractive as they will help countries to achieve the Nationally Determined Contributions 101 
(NDCs) they committed to fulfil during the 2015 Paris’ Agreement [35]. However, contrary to solar / 102 
diesel hybrid MGs, where the electricity production can be adjusted at any time with less or more 103 
genset production, the quality service level that can be achieved with a 100% solar system, i.e. its 104 
ability to satisfy the demand at any time, fully depends on its design. To ensure reliable energy with 105 
such systems, the development of robust sizing rules is thus obviously key. 106 

Section 2 details the data and hypothesis considered for the study as well as the methodology used to 107 
estimate the least cost MG configuration. The robustness of the least cost configuration to cost 108 
variations and their effects on the 𝐿𝐶𝑂𝐸 is presented for different shapes of load profiles in section 3. 109 
This section also presents and evaluates simple rules to design the storage capacity and the size of the 110 
PV field of 100% PV micro-grids. Results are discussed in section 4 and the main conclusions are 111 
summarized in section 5. 112 

2 Methodology 113 

In the following, we consider a fictious MG system, where the power production, obtained from PV 114 
panel only, can be temporarily stored in batteries. The analysis is carried out for 200 different locations 115 
randomly selected in Africa (Figure 1). Some of them will be used for illustrative purpose when 116 
relevant. 117 
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For each location, the MG configuration is optimized to achieve a prescribed level of quality service 118 
with the lowest possible 𝐿𝐶𝑂𝐸. The optimization is obtained thanks to simulations of the system 119 
behavior over a multiple year period. For any PV capacity/ storage capacity configuration, we simulate 120 
the PV production from local weather data and the storage cycles required to best meet a given 121 
demand profile, prescribed for the whole simulation period. The different steps of the 122 
simulations/optimization process are described in the following.  123 

 124 

 125 

Figure 1 : Mean annual Global Horizontal Irradiance (GHI) for the 200 randomly selected locations. The six numbered 126 
locations will be used as examples to illustrate some results in the following. They have been chosen for their different 127 

resource characteristics (seasonality, day-to-day variability).  128 

2.1 Load profile 129 

Load profiles for microgrid projects are difficult to estimate, even with surveys [36]. We consider two 130 
hypothetic daily load profiles, representing domestic and productive uses (Figure 2). These profiles are 131 
derived from generic profiles considered in previous publications [37]. The domestic use profile is 132 
characterized by two peaks (morning + evening) and a quite low demand during the day. Conversely, 133 
the electricity demand only occurs during working hours during the day for the productive profile.  134 

 135 

Figure 2 : Domestic and productive daily load profile 136 
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Seasonal variations in demand may occur especially for agricultural activities like irrigation or post-137 
harvest processing which are common in many rural areas of Africa [38]. For the sake of simplicity, we 138 
model the seasonal profile of the energy demand as a sinusoidal function of time.  139 

𝐷ഥௗ = 𝐷ഥ(1 + 𝐴 cos ൬2𝜋
𝑑 − 𝑑௠௔௫

365
൰) (1) 

 140 

Where 𝐷ഥௗ [𝑊ℎ] is the daily energy demand of calendar day 𝑑, 𝐷 ഥ [𝑊ℎ] is the annual mean daily energy 141 
demand, A is the half amplitude of seasonality and dmax is the calendar day for the maximum. In the 142 
following A is set to 0.5 and four seasonal profiles are in turn considered with a maximum daily demand 143 
occurring in January, April, July or October respectively. In addition, we also consider a non-seasonal 144 
profile, i.e. a profile where the daily electricity demand is the same throughout the year (cf. Figure 3). 145 

 146 

 147 

Figure 3 : The five seasonal patterns considered for the electricity demand 148 

 149 

2.2 PV power production 150 

The solar PV production in the MG is simulated at 15-min resolution for the 2008-2015 period using 151 
satellite derived solar irradiance from Heliosat SARAH2 [39] and temperatures from ERA5 152 
meteorological reanalyses [40]. Irradiance data are available with a 0.05°x0.05° spatial resolution and 153 
ERA5 data with a 0.5° grid.  154 

The electrical power delivered by the system (PAC [W]) at a given time (t) is estimated from Global Tilted 155 
Irradiance (𝐺𝑇𝐼 [𝑊/𝑚²] : global irradiance over an inclined panel) and module temperature Tm [°C] 156 
with the model of Lorenz et al. [41]. The model is described in equations (2) to (4): 157 

 𝑃஺஼ = 𝜂 ∙ (1 + 𝛼 (𝑇𝑚 − 25°𝐶)) ∙ 𝐶௉௏ ∙
𝐺𝑇𝐼

1000 𝑊/𝑚²
 (2) 

 158 

Where 𝐶௉௏ [𝑊௣] is the peak power of installed PV panels, 1000𝑊/𝑚ଶ corresponds to the irradiance 159 
at standard conditions, α is the sensitivity of panel efficiency to the module temperature 𝑇௠. The panel 160 
efficiency (𝜂) accounts for inverter efficiency and for losses of the PV production system. Global tilted 161 
irradiance, the irradiance received by PV panels, is calculated as: 162 

 𝐺𝑇𝐼 = 𝐷𝑁𝐼 ∙ cos(𝜃) + 𝐷𝐻𝐼 (3) 
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 163 

Where Direct Normal Irradiance (DNI: solar energy that reaches the surface in a straight line from the 164 
sun) and Diffuse Horizontal Irradiance (DHI: solar energy that has been scattered by particles in the 165 
atmosphere before reaching the surface) are derived from GHI based on the empirical method from 166 
Sandia National Laboratory [42] and where  is the “effectiveness” angle, a function of solar angles 167 
(azimuth and zenith) and solar panel inclination and orientation. In the present work, PV panels are 168 
assumed facing south in the northern hemisphere and facing north in the southern hemisphere. As a 169 
rule of thumb, the tilt angle (inclination) is set equal to the latitude of the location [43]. 170 

The panel efficiency is typically considered to be a decreasing function of the module temperature. 171 
The sensitivity of the panel efficiency to temperature is here set to that of crystalline silicon cells 172 
(𝛼 = −0.0035 /°𝐶 ). The temperature of the module (𝑇௠) is estimated as a function of the ambient 173 
temperature (𝑇௔௠௕) and GTI, expressed as:  174 

 𝑇௠ = 𝑇௔௠௕ + 𝛾 ∙ 𝐺𝑇𝐼 (4) 
Where  is a parameter related to the mounted type of the system (roof integrated, free standing…). 175 
We consider a mean value: γ = 0.04 °C. mଶ/W.  176 

2.3 Storage simulation  177 

The storage/discharge cycles in the batteries of the MG are simulated as follows: the battery is charged 178 
when (1) the power production from PV panels is higher than the demand and when (2) the state of 179 
charge is below 100%. The battery is discharged when (1) production is lower than demand and when 180 
(2) the state of charge is higher than a minimum value set to 20% of the storage capacity. The same 181 
efficiency (𝜂௦௧௢௥௔௚௘ = 0.95 [44]) is applied for charge and discharge sequences.  182 

2.4 The sizing curve for a given quality service level 183 

In our MG configuration, the demand is only supplied by the PV panels production and/or the batteries 184 
discharge. The multiscale variability of the solar resource makes it difficult to satisfy the demand at 185 
any time, one main challenge being to deliver electricity during periods with no solar resource (night) 186 
and with low solar resource (e.g. winter) (cf. [10], [17]). Satisfying the demand at any time would 187 
require provisioning significant storage and /or significant extra PV production capacity. This may in 188 
turn lead to costly and unaffordable systems. Following [10], [17], the design thus typically requires a 189 
compromise between the costs of the system and its reliability. In other words, a not fully reliable 190 
system, i.e. a system where the demand is not always fully satisfied, is targeted which allows reducing 191 
its size and thus its costs [17]. In this work, the systems are designed to achieve a prescribed reliability 192 
level; namely the hourly demand must be met 95% of the time. In other words, production may be 193 
lower than demand for 5% of the hours over the simulation period. This reliability level is based on the 194 
criteria of the Tier 5 in the multi-tier framework developed by ESMAP [45]. 195 

Different storage / PV panel configurations can produce the same level of quality service. The optimal 196 
design is identified to minimize the 𝐿𝐶𝑂𝐸.  197 

If a configuration is found suitable for a prescribed quality service level, configurations obtained by 198 
either increasing the PV capacity (the surface area of the PV panel array) or the storage capacity are 199 
also suitable. A minimal storage capacity is needed for each possible PV capacity. Conversely, a minimal 200 
PV capacity is needed for each possible storage capacity. The set of the least equipment configurations 201 
allowing for a prescribed level of quality service defines what we will refer to as the “sizing curve” for 202 
this level.  203 
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In the following, to ease the comparison between sites, the sizing curve is normalized using the annual 204 
mean power demand 𝐷଴. The sizing curve will next describe the relationship between the (normalized) 205 
storage capacity S and the (normalized) PV production capacity 𝐶௉௏ required to satisfy a demand 𝐷଴ 206 
with the prescribed level of quality service. Thus, the storage capacity 𝑆 [ℎ𝑟𝑠௘௤] is expressed in hours 207 
of equivalent demand (1 ℎ𝑟𝑠௘௤ corresponds to the energy amount to supply one hour of electricity at 208 
the annual mean demand power 𝐷଴). 209 

Due to the multiscale variability of the solar resource, PV panels do not always produce power at their 210 
rated power. The PV capacity 𝐶௉௏

଴  [𝑊௣], that would be required to produce over the whole period, an 211 
energy amount exactly equal to the total energy of a constant demand D0 is thus greater than D0. It is 212 
actually proportional to the inverse value of the so-called capacity factor CF of the PV panels for the 213 
considered site: 𝐶௉௏

଴  = D0 / CF. Note also that the PV capacity 𝐶௉௏ [𝑊௣] required to achieve the desired 214 
level of quality service for a constant demand equal to D0 is expected to be even larger than the 215 
“reference” capacity 𝐶௉௏

଴  discussed above. This needed PV “oversizing” is actually required to allow for 216 
enough production during the periods of low solar resource. In the following, the ratio 𝑥 = 𝐶௉௏/𝐶௉௏

଴  217 
is named the oversizing ratio of the PV system. It is dimensionless. For the seek of normalisation and 218 
comparison between locations, the sizing curve will finally relate the normalized storage capacity S and 219 
the oversizing ratio x. This normalized sizing curve obtained for a configuration where a level of quality 220 
service 𝑄 is further referred to as the SQ(x) function. 221 

For any given location considered in the following, the sizing curve is identified from simulations. For 222 
a given normalized (PV capacity (oversizing ratio), storage capacity) configuration, a simulation consists 223 
of simulating 1) PV production, 2) storage operations (charge, discharge) over the whole period, and 224 
of 3) estimating the corresponding quality service level of the system. For different PV capacities in 225 
turn, simulations are used to identify the storage capacity value required to achieve the target quality 226 
service level (dichotomic identification). 227 

2.5 𝐿𝐶𝑂𝐸 calculation and cost optimal mini-grid configuration  228 

The least 𝐿𝐶𝑂𝐸 MG configuration is finally identified from the SQ(x) curve as follows. For each (PV 229 
capacity, storage capacity) configuration, we use a simple economic modelling to estimate the total 230 
costs over the whole project lifetime and then the 𝐿𝐶𝑂𝐸 of the system. The total costs of the project, 231 
TC in [€], have the following expression:  232 

𝑇𝐶 = 𝐶ௌ𝛼ௌ + 𝐶௉௏𝛼௉௏ 
 

(5) 

where 𝐶ௌ and 𝐶௉௏ are the installed storage [𝑊ℎ] and PV capacity [𝑊௣] respectively and where 𝛼ௌ 233 
[€/𝑊ℎ] and 𝛼௉௏  [€/𝑊௣], the full unit costs of storage and PV respectively, simply read: 234 

 𝛼ௌ =  𝐶𝑜𝑠𝑡ௌ.

⎝

⎜
⎛

෍
1

(1 + 𝑑)௞௅ೄ
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+ ෍
𝑃ை&ெ,ௌ
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𝛼௉௏ =  𝐶𝑜𝑠𝑡௉௏.
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where 𝐶𝑜𝑠𝑡ௌ[€/𝑊ℎ] and 𝐶𝑜𝑠𝑡௉௏ [€/𝑊௣] are the unit investment cost associated to storage and PV 236 
panels respectively, where 𝐿, 𝐿ௌ, 𝐿௉௏ are the project, storage and PV panel lifetime respectively [𝑦𝑟𝑠] 237 
and where 𝑑 is the discount rate [−]. The second term of each equation is related to the full cost 238 
contribution to cover maintenance and operation of the system where 𝑃ை&ெ is a proportionality 239 
coefficient between investment and cover maintenance costs [−] (maintenance and operation costs 240 
are assumed to be time invariant and proportional to investment costs of each components). 241 

Note that the total costs of the project can be also expressed as: 242 

𝑇𝐶 = 𝐶௦. 𝛼ௌ + 𝑥. 𝐶௉௏
଴ . 𝛼௉௏ = ቀ𝑆ொ. 𝛼ௌ +

𝑥

𝐶𝐹
. 𝛼௉௏ቁ . 𝐷଴ (8) 

Where 𝐷଴ [𝑊] is the mean demand power, where x [-] is the oversizing ratio, where 𝑆ொ [𝑊ℎ/𝑊] and 243 
𝐶଴ [𝑊௣/𝑊] are the normalized storage and reference PV capacities and where CF is the capacity factor 244 
introduced previously.  245 

The 𝐿𝐶𝑂𝐸 [€] for the considered MG has next the following expression:  246 

𝐿𝐶𝑂𝐸 =
𝑇𝐶

∑
𝐷௦௨௣௣௟௬

(1 + 𝑑)௞
௅
௞ୀଵ

 

 

(9) 

where 𝐷௦௨௣௣௟௬ [𝑊ℎ] is the mean demand energy supplied each year by the system. It reads: 247 
𝐷௦௨௣௣௟௬  = 𝑄. 𝐷଴ .8760 where 𝑄 is the quality service factor achieved with the system (Q = 0.95 in the 248 
following). Merging equation 7 and 8, the 𝐿𝐶𝑂𝐸 then simplifies to  249 

𝐿𝐶𝑂𝐸 =
ቀ𝑆ொ . 𝛼ௌ +

𝑥
𝐶𝐹

. 𝛼௉௏ቁ

𝑄 ∑
8760

(1 + 𝑑)௞
௅
௞ୀଵ

 

 

(10) 

The LCOE depends thus on 2 technical design variables, the normalized storage capacity 𝑆ொ and the PV 250 
oversizing factor 𝑥. For any given value of 𝑥, the sizing curve 𝑆ொ(𝑥) gives the normalized storage 251 
capacity required to achieve the target quality service level. The 𝐿𝐶𝑂𝐸 can also thus be expressed as 252 
a function of 𝑥 only. 253 

Two limiting configurations from the sizing curve are to be noticed. When 𝑥 tends to infinity, i.e. when 254 
the PV production capacity tends to infinity, the storage capacity tends to a minimum strictly positive 255 
value. Whatever the production capacity, a non-zero storage is indeed needed to move part of the 256 
diurnal production to the nocturnal electricity demand. As a result also, when 𝑥 tends to infinity, 𝐿𝐶𝑂𝐸 257 
thus tends to be a linear increasing function of 𝑥.  258 

If the battery system was perfect (with no energy losses in storage/discharge cycles), the other limiting 259 
configuration would roughly correspond to 𝑥 = 0.95. This would correspond to the configuration where 260 
all the production could be used to satisfy 95% of the demand. This configuration would obviously 261 
require that a huge (and unrealistic) storage capacity is available (e.g. seasonal storage) to allow for 262 
the temporal redistribution of the production from resource rich periods to resource poor ones. In 263 
practice, the minimum value of the oversizing ratio 𝑥 is greater than 0.95 because of storage losses 264 
that result from smaller than 1 storage efficiency. As mentioned above, for this minimum 𝑥 value, the 265 
storage gets a typically very large value.  266 

In practice, the minimum value for 𝐿𝐶𝑂𝐸 is therefore reached for 𝑥 = 𝑥∗ > 0.95 where:  267 
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𝜕𝐿𝐶𝑂𝐸

𝜕𝑥
(𝑥∗) =

൬
𝜕𝑆ொ

𝜕𝑥
(𝑥∗)𝛼ௌ +

𝛼௉௏
𝐶𝐹

൰

𝑄 ∑
8760

(1 + 𝑑)௞
௅
௞ୀଵ

= 0 

 

(11) 

The optimal 𝑥∗ value follows the equation: 268 

𝜕𝑆ொ

𝜕𝑥
(𝑥∗) = −

𝛼௉௏

𝛼ௌ. 𝐶𝐹
= −

𝑟

𝐶𝐹
 with 𝑟 =

𝛼௉௏

𝛼ௌ
 

 
(12) 

The optimal oversizing value 𝑥∗ and the optimal storage value 𝑆∗ =  𝑆ொ(𝑥∗) depend only on 𝐶𝐹 and 269 
on the full cost ratio 𝑟.  270 

It is not possible to derive an analytical expression for 𝑆ொ(𝑥). 𝑆ொ(𝑥) depends on the storage efficiency, 271 
the shape of the load profile, the temporal variability structure of the local solar resource and the 272 
chosen quality service level. As mentioned previously, 𝑆ଽହ(𝑥) was here estimated for each location by 273 
simulations. 274 

2.6 Statistical distributions of costs for PV and batteries 275 

The full costs of batteries and photovoltaic panels vary from one country to another due to different 276 
political, regulatory or institutional contexts, from one region to another due to local constraints and 277 
specific transport costs depending on access facilities. In addition, each type of investor has its own 278 
profitability objectives and its own perceptions of the risks inherent in each project. This leads to the 279 
use of specific discount rates that strongly impact the LCOE [18], [19], [46], [47]. The costs of batteries 280 
and photovoltaic panels are also expected to decrease over time as a result of learning by doing [23], 281 
[26], [48]. Cyclical effects may also occur, e.g. pressures on equipment production capacity or on 282 
materials that may drive prices up more or less temporarily. 283 

In the following, we explore how robust the optimal design is to economic hypotheses. To do this, we 284 
rely on a statistical distribution of full costs estimated via Monte-Carlo simulations. For storage, the 285 
values of the different variables in Eq. (6) (storage costs, battery lifetime, project lifetime, discount 286 
rate, proportionality coefficient for O&M costs) are randomly sorted from their respective statistical 287 
distributions allowing in turn to give one estimate of the storage full costs. This simulation process is 288 
repeated 10’000 times to produce a probability density function (PDF) of the full costs for storage. The 289 
same process is applied for calculating PV full costs. Due to the lack of information and for the sake of 290 
simplicity, the different variables in Eq. 6 (resp. Eq. 7) are assumed independent and the PDF of each 291 
variable is modelled with a normal distribution. The mean and variance of each PDF (cf. Table 1) have 292 
been estimated so that the 10th and 90th of the PDF correspond to the range of values given by the 293 
IRENA (International Renewable Energy Agency) for 2015 and 2025 [19], [25], [44]. These estimations 294 
are based on a bottom-up analysis of the different technologies implied in PV and storage systems and 295 
an estimation of the learning cost curve for these technologies. Due to the lack of information, the 296 
PDFs for the O&M costs proportionality coefficient and the discount rate are assumed to be the same 297 
for both periods.  298 



10 
 

 
Variable 

2015 2025 
Mean Standard 

deviation 
Mean Standard 

deviation 
Storage investment costs 𝐶𝑜𝑠𝑡ௌ [$/𝑊ℎ]  1.1 0.1 0.9 0.1 
PV investment costs 𝐶𝑜𝑠𝑡௉௏  [$/𝑊௣] 1.8 0.5 0.8 0.2 
Storage lifetime 𝐿ௌ [𝑦𝑟𝑠] 5 0.7 6.7 0.9 
PV lifetime 𝐿௉௏  [𝑦𝑟𝑠] 20 1.7 20 1.7 
Proportionality coefficient for O&M costs 𝑃ை&ெ  [−] 0.02 0.003 0.02 0.003 
Discount rate 𝑑 [−] 0.08 0.01 0.08 0.01 

Table 1 : Economic parameters and component lifetimes distribution. The PV related parameters (investment cost and lifetime) 299 
are obtained from [25] and the storage ones from [44]. Discount rate and Proportionality coefficient for operation and 300 
maintenance are obtained from [19]. 301 

The PDFs of the full costs for each unit of storage or PV (𝛼ௌ and 𝛼௉௏) and the PDFs of the cost ratio 𝑟 302 
resulting from the Monte Carlo simulations are presented in Figure 4. As highlighted in the figure, the 303 
full costs for both PV and storage are expected to decrease with time. The full costs for PV is however 304 
expected to decrease faster leading to a shift of the cost ratio distribution to lower ratio values. 305 

 306 

 307 

Figure 4 : Probability Density Functions of full PV costs (left), full storage costs (middle) and for the cost ratio r (PV/Storage) 308 
(right) as obtained from Monte Carlo simulations for two periods of time (2015 and 2025) 309 

3 Results 310 

3.1 Sizing curves for a 95% quality service level 311 

For the sake of concision, the following sections (3.1, 3.2 and 3.3) only present results obtained for the 312 
non-seasonal demand profiles. Results for the seasonal demand profiles are presented in the 313 
Supplementary Material (Figures SM 1-10).  314 

Figure 5 shows the S95(x) sizing curves obtained with the two daily load profiles of Figure 2, for 6 315 
locations in contrasted climates (see Supplementary Material SM1 and SM2 for other locations).  316 
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 317 

Figure 5 : Sizing curves S95(x) (normalized storage capacity S as a function of oversizing factor x) for six locations and for two 318 
demand profiles: domestic (blue) and productive (red) without seasonal variations. All MG configurations allow for a 95th 319 
quality service level. 320 

Whatever the location and the load profile, the storage need is very sensitive to the oversizing value 321 
when the latter tends to 1. The large to very large storage needs obtained for an oversizing value close 322 
to one depend on the location and on the demand profile. When the size of PV panels is just enough 323 
to produce the yearly energy demand (i.e. 𝑥 = 1) in average over the year, large to very large storage 324 
capacity is needed where the seasonality of the solar resource or of the demand is significant (cf. 325 
Supplementary Material SM1 and SM2). This allows to balance the energy from summer to winter or 326 
vice-versa (cf. Libya or South Africa). Much smaller storage values are needed for locations where the 327 
resource seasonality is small, as this is typically the case near the equator (cf. Central African Republic 328 
or Ivory Coast) (cf. Figure 5). This seasonal footprint is largely due to the latitude of the location, but 329 
this is not always the case. A significant resource seasonality is also observed in a number of equatorial 330 
locations because of significant seasonal variations of the nebulosity (cf. Uganda or Republic of Congo). 331 

 332 

Figure 6 : Normalized storage capacities [ℎ𝑟𝑠௘௤] for the 200 locations obtained with a large oversizing ratio (x = 2.5). (The 333 
normalized required storage capacity is the storage capacity [Wh] required per unit of mean power demand (i.e. 250 W) to 334 
satisfy the demand 95% of hours in a year. It is expressed in [Wh/W] or in [ℎ𝑟𝑠௘௤]. Left and middle maps: results for a domestic 335 
and a productive daily profile. Right: normalized storage capacities as a function of latitude (blue dots: domestic and red dots: 336 
productive, only a part of the abscissa (from 5 to 13) is not shown). 337 

As mentioned previously, the storage capacity is expected to tend to a minimum value for large 338 
oversizing values (cf. illustration in Figure 6). The limiting value per unit of energy demand highly 339 
depends on the type of use. Whatever the location, it is larger for domestic uses than for productive 340 
ones (cf. Figure 6). It is actually always smaller than 16 hours in the first case and smaller than a few 341 
hours in the other. The storage is thus almost only required to deal with the sub-daily resource / 342 
demand mismatch, e.g. to move the energy produced during the day to the evening/night-time in the 343 
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domestic case. Another interesting point is that this minimum required storage value is almost always 344 
already reached for rather small PV oversizing values (values below 2.5) (cf. results for the 6 locations 345 
of Figure 5). For larger oversizing values, the required storage capacity decreases but the decrease is 346 
small and almost always less than one hour at mean demand power. For many locations, the storage 347 
is thus used for long temporal scale redistributions only when the oversizing value is small to very 348 
small.  349 

For small oversizing values (below 1.5), the storage requirements are modified in a case of a seasonal 350 
demand. A larger seasonal resource / demand mismatch leads to a larger storage requirement (cf. 351 
Supplementary Material SM1 and SM2). For large oversizing values (above 2.5), the storage 352 
requirement almost no more depends on the demand seasonality.  353 

3.2 Least-cost configurations 354 

This section presents the least cost configurations obtained for the 200 locations with different 355 
demand profiles, a 20 years project lifetime and a cost ratio 𝑟 = 1. The case of  𝑟 = 1 is close to the 356 
most unfavourable cost configuration for PV for 2025 (𝑟 = 1 actually corresponds to the 99th percentile 357 
of the cost ratios distribution for this period). Estimating the oversizing values for 𝑟 = 1 gives thus 358 
almost the minimum possible value of the optimal oversizing. In other words, the oversizing of a given 359 
project is very unlikely to be smaller than this value, whatever the cost-ratio configuration for the 2025 360 
cost conditions.  361 

 362 

 363 

Figure 7 : Optimum oversizing 𝑥∗ obtained by simulation with a cost ratio r=1 and without seasonality as a function of the 364 
latitude for a domestic (blue dots) and a productive (red dots) demand profile. 365 

The PV optimal oversizing values as a function of latitude varies between 1.1 and 2 without major 366 
differences between the two daily load profiles. The optimal oversizing values are higher for regions 367 
with a high nebulosity (near the equator) or a high seasonality (north and south of Africa). The lowest 368 
values for optimal oversizing are obtained in the Sahelian part (around 15°N). Adding seasonality to 369 
the demand profile increases the optimal oversizing values but most of them stay below 2.1 (cf. 370 
Supplementary Material SM3 and SM4). This increase is larger when the peak demand occurs during 371 
the low resource period, which modify the shape obtained in Figure 7. When the peak demand occurs 372 
in the northern summer, the optimal oversizing values are lower in the north and higher in the south.  373 

The required (normalized) storage capacities for the domestic profile are around 15 to 18 hours 374 
depending on the location (Figure 7). They are around 4 to 7 hours for the productive profile. Even 375 
with a cost ratio that favours large storage capacities (𝑟 = 1), these values are relatively close to the 376 
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minimal storage requirements from Figure 6. As for the optimal PV oversizing values, the optimal 377 
storage capacities are increased when adding seasonality to the demand, especially for the domestic 378 
load profile (cf. Supplementary Material SM5 and SM6). The demand / resource seasonal mismatch 379 
has a similar effect: when the peak demand occurs in northern summer, the optimal storage values 380 
are lower in the north and higher in the south. Note that whatever the type of use and seasonality, the 381 
required storage is smaller than 24 hours. The storage capacities for the domestic load profile could 382 
be perceived high for electrochemical storage, however these storage levels can be found in existing 383 
solar MG and they are much lower than what is proposed by the IEEE rule [31]. 384 

 385 

Figure 8 : Optimal normalized storage capacity 𝑆∗ obtained by simulation with a cost ratio r=1 and without seasonality as a 386 
function of the latitude for a domestic (blue dots) and a productive (red dots) demand profile. Grey dots correspond to the 387 
limiting storage capacity requirement presented in figure 6 for x = 2.5. 388 

The 𝐿𝐶𝑂𝐸 values found here are in the same order of magnitude as the ones calculated by Nerini et 389 
al. [8] or by Szabo et al. in [13]. They are also logically higher than the 𝐿𝐶𝑂𝐸 for electricity delivered 390 
by national grids with values below 0.1$/kWh for Zambia to 0.6$/kWh for Liberia but below 0.35$/kWh 391 
for most of the countries in Sub-Saharan Africa [49]. The 𝐿𝐶𝑂𝐸 values we obtain are very sensitive to 392 
the sub-daily demand profile (cf. Figure 9). The 𝐿𝐶𝑂𝐸 for a productive profile can be two to three times 393 
lower than the one for a domestic profile. This logically follows the much lower storage requirements 394 
that are two to three times lower in the productive case whereas PV capacities are similar in both 395 
demand configurations. The 𝐿𝐶𝑂𝐸 evolution with the latitude is similar to the one found for the 396 
optimal oversizing values.  397 

If the 𝐿𝐶𝑂𝐸 is much less sensitive to the seasonality of the demand than to the sub-daily profile, a 398 
seasonal demand leads, for most locations, to larger oversizing values and storage capacities and, in 399 
turn to larger 𝐿𝐶𝑂𝐸 values (cf. Supplementary Material SM7 and SM8).  400 
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 401 

Figure 9 : Optimal LCOE obtained by simulation with a cost ratio r=1 and without seasonality as a function of the latitude 402 

 403 

3.3 Sensitivity of the optimal configurations to cost ratio 404 

As mentioned previously, the least-cost configuration depends on the cost ratio r. The PV oversizing 405 
level and the storage capacity of the least cost configuration is presented as a function of r for the six 406 
locations in Figure 10. Note that the variation range of cost ratios explored in the figure is larger than 407 
the variation ranges of the 2015 and 2025 distributions. For the sake of clarity, the 90% range of the 408 
2015 and 2025 distributions is highlighted by the yellow and cyan vertical bands. 409 

 410 

 411 

Figure 10 : Least LCOE configurations (normalized PV capacity (continuous lines; left scales); normalized storage capacity 412 
(dotted lines, right scales)) as a function of cost ratio (PV full costs / storage full costs, log scale) for six locations and for the 413 
domestic (blue lines) and the productive (red lines) load profiles. The 90% confidence interval of the cost ratio distribution is 414 
presented for 2015 (yellow vertical band) and 2025 (cyan vertical band). The green band corresponds to the overlap of cyan 415 
and yellow bands. All configurations allow for a 95th quality service level. 416 

Larger r values (i.e. larger PV/S cost ratios) logically lead to smaller PV oversizing values and larger 417 
storage capacities.  418 

For both variables, the range of the optimal design values is rather small. Considering the 200 locations, 419 
while the cost ratio varies by a factor of 8 (from 0.25 to 2), the optimal oversizing coefficient only varies 420 
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by a factor 1.5 for the domestic profile and of 1.7 for the productive one, for 90% of the locations. The 421 
ratio between the largest and the smallest possible PV oversizing value is always smaller than 2.  422 

The robustness of the sizing of the storage capacity is even larger. Whatever the type of use, its 423 
variation range is often less than 10%. For both variables, the variation range is even smaller when the 424 
cost ratio is kept in the 90% variation range of the 2025 distribution (cyan vertical band). The optimal 425 
configuration is actually much more sensitive to the daily load profile than to the cost hypothesis. Even 426 
if optimal storage capacities and oversizing values are higher when adding seasonality to the demand, 427 
the robustness of the optimal configuration is similar to the one described here (cf. Supplementary 428 
Material and SM10). 429 

As shown in Figure 3, the cost ratio r is expected to decrease in the coming years, which will further 430 
favour cost-optimal configurations with higher PV oversizing [25], [44]. In a longer term however, the 431 
cost ratio could increase again to values above 1 due to the learning-by-doing effects which are still 432 
expected to be significant for storage technologies [47]. Considering the lower sensitivity of the 433 
optimal configuration in the right-side of the oversizing curves in Figure 10, this would lead in turn to 434 
an increased robustness of the optimal sizing.  435 

 436 

3.4 The possibility for simple pre-sizing rules 437 

As highlighted in previous sections, the optimal configuration reveals to be rather robust to cost 438 
assumptions and to almost only depend on the characteristics of the solar resource, the demand and 439 
their co-variability. This suggests that it might be possible to find simple sizing rules that would avoid 440 
the computationally demanding simulations of any simulation-based optimization process. 441 

We assess here the possibility for such a set of rules. These rules have been identified and tested from 442 
all the optimal configurations obtained, with the simulation methodology presented in section 2, for 443 
the 200 locations of Figure 1, the ten different load profiles presented in section 2.1 and four different 444 
cost ratios (namely 0.3, 0.5, 0.8 and 1 corresponding respectively to the quantiles 5%, 50%, 95% and 445 
99% of the cost ratio distribution for 2025). The rules have been first identified/calibrated from half of 446 
the locations and their validity has then been assessed on the other half. The evaluation consists in 447 
comparing, for each location and each demand profile/cost ratio, the estimated optimal configuration 448 
and the reference one, i.e. the optimal configuration obtained with simulations. The detailed 449 
procedure to apply these rules can be found in Supplementary Material. 450 

Two indicators are used for this evaluation: the normalized mean bias error (eq. (13)) and the 451 
normalized root mean square error (eq. (14)).  452 

𝑛𝑀𝐵𝐸 =
1

𝑌ത
෍
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𝑛𝑅𝑀𝑆𝐸 =
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(14) 

With 𝑌 and 𝑌௘௦௧  the design values obtained for the considered variable (e.g. storage capacity, PV 453 
production capacity) for the reference configuration and with the simple rules respectively and 𝑌ത the 454 
mean reference value obtained for the 𝑛 =100 evaluations stations. 455 
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The rules apply for the normalized PV oversizing factor and the normalized storage capacity. As 456 
mentioned in the “Method” section, the actual PV panel area and the storage capacity required for a 457 
given location can be simply obtained with those normalized variables from the mean daily demand 458 
and from the mean capacity factor of solar panels to be expected for the location. Whereas the mean 459 
capacity factor can be easily extracted from already published data sets (e.g. [50]), the mean daily 460 
demand has to be typically estimated from local surveys.  461 

As mentioned previously, the required PV oversizing factor is related to the resource / demand 462 
temporal mismatch. An indicator of this mismatch is the standard deviation (𝜎஽௜௙௙) of the daily power 463 
differences that can be estimated each day between the mean electricity demand and the mean PV 464 
production. This standard deviation obviously depends on both the mean daily difference and on the 465 
temporal variations of the difference. For the sake of simplicity, 𝜎஽௜௙௙ is here estimated from the time 466 
series of differences between the normalized daily demand (normalized by the mean annual daily 467 
demand D0), and the normalized daily PV production for this day (production achieved without any 468 
oversizing of the PV panel area (𝑥 = 1) and normalized by D0).  469 

As shown in Figure 11, the variation range of 𝜎஽௜௙௙ depends on the seasonal profile of the demand. In 470 
the case of a non-seasonal profile, 𝜎஽௜௙௙ simply refers to the coefficient of variation of the solar 471 
resource, which derives from the joint effects of the seasonality of the Top Of Atmosphere (TOA) 472 
radiation and of the day-to-day variations of the atmosphere characteristics (e.g. nebulosity, aerosols). 473 
In locations with both small TOA radiation seasonality and low day-to-day weather variability (e.g. in 474 
the Sahel and a part of Angola), low values of 𝜎஽௜௙௙  are obtained (< 0.25).  475 

In the case of a seasonal demand profile, the power difference variability is modulated. When the peak 476 
demand occurs in the high solar resource season, the value of 𝜎஽௜௙௙ can significantly decrease. For 477 
instance, a high energy demand in July in the Maghreb area makes 𝜎஽௜௙௙ decrease from 0.35 to 0.2. 478 
When the peak demand occurs in the low resource period, 𝜎஽௜௙௙ is expected to increase. In Maghreb, 479 
it can be higher than 0.5 for a high winter demand.  480 

 481 

Figure 11 : Optimum oversizing 𝑥∗ as a function of 𝜎஽௜௙௙, the normalized standard deviation of the daily production/demand 482 
differences (differences estimated each day between the mean production and the mean demand for this day (the production 483 
is estimated with an oversizing factor of 1) and normalized by D0). Results are presented for 5 different seasonal profiles of 484 
the demand (None: No Seasonality; Jan, Apr, Jul, Oct: Seasonality with a maximum in January; April, July and October 485 
respectively). This graph presents the optimum oversizing value for 𝑟 = 1 and for both the domestic and productive load 486 
profiles (no distinction is made here between the 2 profiles). 487 
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As highlighted in Figure 11, regardless of the seasonality of the demand, the relationship between 488 
𝜎஽௜௙௙ and the optimal oversizing 𝑥∗ turns out to be strong, and a linear relation is expected to be a 489 
relevant first-order approximation.  490 

𝑥∗
௘௦௧,௥ୀଵ = 0.83 + 2.12𝜎஽௜௙௙ (15) 

The nMBE and the nRMSE of this model stays respectively below 0.05 and 0.1 for each load profile (cf. 491 
Supplementary Material SM14). The global nRMSE for all categories is 0.07 which is quite good for such 492 
a simple rule. 493 

The optimal normalized storage capacity was found to mainly depend on the sub-daily 494 
resource/demand mismatch (cf. Figure 12). It thus depends on the actual power production and in turn 495 
on the oversizing factor chosen for the system. For the storage capacity, the sizing rule is then based 496 
on the statistical distribution of the normalized nocturnal energy difference 𝐸௡௢௖௧  [ℎ] estimated each 497 
day between the load profile and the PV production profile of this day, where the PV production is 498 
obtained with the optimal oversizing 𝑥∗

௘௦௧ estimated by the previous rule (eq. (15)) and both 499 
production and demand are normalized by D0. 500 

For any given day, this normalized nocturnal energy difference reflects the energy that must be 501 
delivered by the storage during night-time. The normalized nocturnal energy difference is calculated 502 
between mid-time and mid-time the day after using equations (16) to (18).  503 

𝐸௡௢௖௧(𝑑) = ෍ 𝑃௡௢௖௧(𝑡) ∙ 1ℎ𝑟

௛ୀଵଶ

௛ୀିଵଶ

 (16) 

 504 

Where 𝑃௡௢௖௧ [−] is the normalized nocturnal power difference for each day 𝑡 defined as: 505 

 

𝑃௡௢௖௧(𝑡) = ቊ
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(17) 

Where 𝑃஺஼
௫∗

 [𝑊] is the power produced by PV panels with the optimal oversizing 𝑥∗
௘௦௧ obtained from 506 

equation (15) and 𝐷 [𝑊] is the power demand. The sizing rule for the optimal normalized storage 507 
capacity 𝑆ଽହ

∗  is considered as: 508 

𝑆ଽହ
∗

௘௦௧,௥ୀଵ
= 0.93

𝑝଻ହ(𝐸௡௢௖௧)

𝜂௦௧௢௥௔௚௘
+ 0.14 

 

(18) 

Where 𝑝଻ହ(𝐸௡௢௖௧) [ℎ] is the 75th percentile of the normalized nocturnal energy difference distribution 509 
and 𝜂௦௧௢௥௔௚௘ [−] is the storage efficiency. 510 
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 511 

Figure 12 : Optimum normalized storage capacity 𝑆∗ as a function of the 75th percentile of the normalized nocturnal energy 512 
𝑝଻ହ(𝐸௡௢௖௧). Results are presented for 5 different seasonal profiles of the demand (None: No Seasonality; Jan, Apr, Jul, Oct: 513 
Seasonality with a maximum in January; April, July and October respectively). This graph presents the optimum storage 514 
capacity values for 𝑟 = 1 and for both the domestic and productive load profiles (no distinction is made here between the 2 515 
profiles). 516 

As highlighted previously in the manuscript, the storage requirement depends mainly on the load sub-517 
daily profile. If all hours would have to be satisfied (𝑄 = 100%), the storage requirement would be 518 
related to the maximum nocturnal energy difference. In this work, we set a quality service 𝑄 = 95%, 519 
which means that 5% of the hours can be unsatisfied. In this configuration, the 75th quartile of the 520 
nocturnal energy difference distribution turns out to be a very good predictor of the storage 521 
requirement.  522 

For the storage capacity, the good order of magnitude is reached with this simple rule whatever the 523 
load profiles. If relative errors are much higher for the productive profile than for the domestic one (as 524 
a result of smaller absolute values of the required storage), absolute errors are most of the time lower 525 
than 1 hour of storage. The estimations for the optimal storage are very satisfactory with a global 526 
nRMSE below 0.04. 527 

The level of quality service obtained with the estimated design does not always fit the level initially 528 
targeted (between 𝑄𝑆 = 92% and 𝑄𝑆 = 96% for 90% of the locations, cf. Supplementary Material 529 
SM13). An overestimated (underestimated) optimal storage capacity leads to a higher (lower) level of 530 
quality service and the same applies for the optimal oversizing factor. As the storage capacity is 531 
estimated from the estimated oversizing factor, the storage/PV under- and overestimations often 532 
compensate themselves. All in all, these compensations allow to have a good estimation of the 𝐿𝐶𝑂𝐸 533 
(cf. Figure 13). 534 
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 535 

Figure 13 : Comparison between optimal LCOE obtained by simulation and configurations estimated by the sizing rule for all 536 
load profiles and 𝑟 = 1 537 

3.5 Pre-sizing rules for over cost ratios 538 

The above results refer to a cost ratio of 𝑟 = 1. As highlighted previously, the storage optimal capacity 539 
was found to be almost independent on the cost ratio value (cf. Supplementary Material SM 12 and 540 
SM 15). Whatever the actual cost ratio value, the storage capacity estimated with equation (18), 541 
calibrated for 𝑟 = 1, is very satisfactory. The global nRMSE of estimates remains below 0.06.  542 

Results obtained for the PV optimal oversizing conversely significantly depend on the cost ratio value. 543 
Smaller cost ratios lead to more favourable configurations for PV and thus to higher oversizing values 544 
(cf. Supplementary Material SM 11 and SM 14). An efficient way to account for this in the pre-sizing 545 
rules is to multiply the optimal oversizing estimated for 𝑟 = 1 by a constant factor 𝑓(𝑟). This factor 546 
was estimated to be equal to 1.5, 1.2 and 1.1 for cost ratios equal to 0.3, 0.5 and 0.8 respectively. 547 

𝑥∗
௘௦௧,௥ = 𝑓(𝑟) .  𝑥∗

௘௦௧,௥ୀଵ (19) 

When no correction is considered, i.e. when the relation (15) is used for the pre-design of the PV 548 
optimal oversizing for any value of the cost ratio, the global nRMSE is 0.18. With the correction 549 
introduced in equation (19), it decreases to 0.08, which becomes also very satisfactory.  550 

Using equations (18) and (19), the level of quality service stays between 93% and 97% for 90% of all 551 
configurations (cf. Supplementary Material SM13).  552 

A detailed description of nMBE and nRMSE related to optimal oversizing factors, optimal storage 553 
capacities and LCOE estimation for each cost ratio and load profiles can be found in Supplementary 554 
Material SM16. Even if the deviations between the estimated and the reference optimal configurations 555 
for the storage, the PV oversizing and the level of quality service can be non-negligible, the errors 556 
obtained for the 𝐿𝐶𝑂𝐸𝑠 are small whatever the cost ratios and the load profiles (global nRMSE around 557 
0.02, cf. Figure 14). 558 
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 559 

Figure 14 : Comparison between optimal LCOE obtained by simulation and configurations estimated by the sizing rules for the 560 
four cost ratios (0.3, 0.5, 0.8, 1) and all load profiles. 561 

3.6 Summary of pre-sizing rules  562 

The data, calculations and rules finally proposed in the present work for the pre-sizing of 100% solar 563 
MGs are summarized in the diagram of Figure 15. The details of each step are given in the 564 
Supplementary Material.  565 

 566 

Figure 15 : Summary diagram of the procedure to apply the pre-sizing rules  567 
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 568 

4 Discussion 569 

4.1 Influence of the load profile choice 570 

As highlighted here and in some other publications, the load profile has an important influence on the 571 
optimal MG configuration. On the other hand, the load profile to be expected for a rural community is 572 
very uncertain a priori (cf. [36], [51], [52]). Having a good estimate of the load profile is thus obviously 573 
a key challenge and an important design issue. This however not modifies the relevance and impact of 574 
our analyses. On the one hand, an interesting finding of our work is indeed that the design is almost 575 
not sensitive to cost hypothesis. Our results additionally suggest that this applies whatever the load 576 
profile. Analyses with an intermediate daily profile (50% domestic/50% productive) give for instance 577 
similar (intermediate) results (cf. Supplementary Material SM 17 and SM 19). On the other hand, the 578 
simple design rules proposed here are expected to apply whatever the daily/yearly load profile. The 579 
characteristics of the load profile are indeed considered both (1) in the mean power difference 580 
between production and demand, that is used to estimate the optimal oversizing factor, and (2) in the 581 
mean nocturnal energy difference, that is used to calculate the optimal storage capacity.  582 

 583 

4.2 Influence of technical/economic hypothesis and choices 584 

Our results were obtained under a set of technical choices and economic hypothesis. How they might 585 
influence the optimal configuration, the LCOE and the robustness of the sizing rule would need to be 586 
studied.  587 

For instance, the targeted level of quality of service is expected to impact the optimal configuration. A 588 
lower level would decrease the storage requirements and /or the PV installation size and would 589 
decrease in turn the battery and/or PV costs [17], [53]. The way the quality of service is defined is also 590 
expected to impact the design. This would probably be an issue for specific research. 591 

Similarly, unit costs of PV and storage are expected to depend on PV panels and battery efficiency, on 592 
the minimum state of charge of the battery below which the battery should not fall. The possible 593 
effects of some of these features on the design are easily predictable. A higher value for the minimum 594 
battery state of charge would logically increase the storage requirement and in turn the storage costs. 595 
A smaller PV efficiency would similarly increase the required surface of PV panels and in turn PV costs.  596 

A modification of unit costs and of their respective variation ranges would change the PV/battery cost 597 
ratio and its variation range. If the influence of such modifications would be worth investigating, our 598 
results are not expected to be significantly modified. Results obtained in Figure 10 are very similar 599 
when the variation range of r is extended to the range [0.1 , 3]: the robustness of the optimal 600 
configuration to modifications of the cost ratio is slightly smaller on the range [0.1 , 0.25] but it is larger 601 
on the range [2 , 3] (cf. Supplementary Material SM 19). 602 

A more detailed modeling could be also considered to account for auxiliary costs such as costs of civil 603 
engineering, cost of the distribution grid and costs of distribution losses, etc. (cf. [54]). Some of those 604 
auxiliary costs are not expected to modify the optimal configuration of a 100% solar MG and are not 605 
expected to modify the pre-sizing rules discussed above. They would just result in the introduction of 606 
a fixed cost and increase in turn the 𝐿𝐶𝑂𝐸 by a constant value. Another issue could be the influence 607 
of economies of scales, with lower unit costs for larger project sizes [55], or the influence of the 608 
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component lifetimes, which are very sensitive to maintenance quality, local weather conditions, 609 
charge/discharge cycles for the battery, degradations,… [20], [21].  610 

4.3 Comparison with other sizing rules 611 

As stated in the introduction, some international organizations propose rules or guidelines to design 612 
isolated MG in Africa.  613 

In all cases, the load profile of the community has to be estimated based on the different appliances 614 
(light bulb, TV, fridge, …) to be used and on their respective consumption profiles. This allows in turn 615 
estimating the mean daily demand and the nocturnal energy consumption of the whole system. 616 

The Institute of Electrical and Electronics Engineers (IEEE) [31] proposes a rule to size 100% PV systems 617 
that can be compared to our rule. The PV array is sized using the mean daily demand and solar resource 618 
for the worst month (high monthly demand and low resource). For the storage capacity, the IEEE 619 
recommends 5 to 7 days of autonomy to deal with sequences of low resource days. This leads to much 620 
larger 𝐿𝐶𝑂𝐸𝑠 (with storage capacities at least 5-8 times larger than the ones estimated in the present 621 
work).  622 

Contrary to the IEEE, the International Energy Agency (IEA) [30] and the ECOWAS Centre for Renewable 623 
Energy and Energy Efficiency (ECREEE) [29] give rules to design hybrid PV/diesel MG. In such a 624 
configuration, the level of service quality that can be achieved is no more an issue, as the genset can 625 
supply the missing solar production at any time.  626 

Similarly to the IEEE rule, the rule proposed by ECREEE [29] uses the mean daily demand and solar 627 
resource for the worst month to size the PV array but they recommend a smaller storage capacity 628 
corresponding to 2 times the value of the nocturnal energy consumption.  629 

For the IEA [30], the design recommendations take the form of general guidelines: the installed PV 630 
capacity should be able to supply more than 20% of the daily energy demand and the storage capacity 631 
should be large enough to supply the nocturnal energy demand apart from the evening peak power 632 
that should be supplied by the diesel genset. A large part of the demand is thus expected to be supplied 633 
by the genset making the design of the PV / storage components rather simple. 634 

The two previous rules apply to hybrid PV / diesel systems. They are not necessarily suited for remote 635 
locations where fuel supply is not reliable enough or for MG operators who want to use only 636 
decarbonized technologies. The rules we propose in the present work apply to 100% solar systems that 637 
could fit with the above constraints/objectives. Our results show that a 95% level of quality service can 638 
be reached with such systems, without any diesel generator and with smaller storage capacities than 639 
those proposed by the ECREEE. Our work additionally shows that the least cost configurations for such 640 
systems, very robust to a set of economic hypotheses, have to be adapted from one location to the 641 
other depending on the local climate features and on the sub-daily demand profile.  642 

Our rules do not replace a more accurate sizing of a MG that could be done with HOMER [56] or any 643 
similar optimization software. It only aims at pre-assessing the regions where 100% PV MGs have a 644 
potential by quickly estimating the cost of power generation and compare it with other energy sources 645 
or other electrification solutions (national grid, solar home systems) for rural electrification planning. 646 
The sites for which this comparison favours a 100% PV MG will need to be studied in more detail. 647 
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5 Conclusion 648 

The optimal configuration and the 𝐿𝐶𝑂𝐸 of autonomous PV + battery systems is expected to depend 649 
on cost hypotheses. The robustness of the least cost configuration to cost assumptions is investigated 650 
for 200 African locations. The simulation-based design is carried out to achieve a prescribed level of 651 
quality service, namely to supply energy for 95% of the hours.  652 

Whatever the shape of the load profiles (domestic or productive), we show that different storage / PV 653 
oversizing configurations are suited to achieve a prescribed level of quality service. The large storage 654 
requirements usually recommended can be reduced by oversizing the PV production capacity. In most 655 
of the cases, an oversizing coefficient of 2.5 is enough and the storage energy requirements are close 656 
to the value that allows to deal with the sub-daily resource/demand mismatch.  657 

The least-cost configuration that allows to achieve a given level of quality service depends, among 658 
other drivers, on relative costs of PV and battery, but the sensitivity to the cost ratio is not large. The 659 
robustness of the configuration is thus rather good. When the cost ratio varies with a factor 8, the 660 
variations of the optimal oversizing factor are most of the time not larger than 70%, while the one for 661 
the required storage capacity are often smaller than 10%. The required storage capacity is thus highly 662 
robust to cost ratio variations. 663 

The 𝐿𝐶𝑂𝐸 for a productive load profile is two to three times lower than the one for a domestic load 664 
profile. This is an incentive for micro-grid designer to integrate as much productive uses as possible 665 
when assessing the electricity demand of a community. This definitively also calls scientists and 666 
practitioners to collect, share and publish demand data for a better knowledge of the temporal profile 667 
of the demand and its possible evolution through years. 668 

All in all, the optimal (PV capacity / storage) configuration almost only depends on the characteristics 669 
of the solar resource, the electricity demand and their co-variability. This allows to propose simple 670 
rules for a rapid but reliable design. The goal of these rules is not to find the accurate optimal 671 
configuration for one specific site, it is rather to evaluate quickly the cost of electricity from solar MG 672 
over a large area. Such estimation can then be used to compare solar MG to different electrification 673 
solutions in a preliminary planning. The optimal oversizing factor can be estimated using the standard 674 
deviation of the mean daily power difference between the solar power production and the power 675 
demand. The required storage capacity can be calculated using the 75th percentile of the daily 676 
nocturnal energy difference between the load profile and the solar power production. These rules give 677 
a good estimate of the optimal configurations whatever the load profile (domestic or productive, 678 
seasonal or not) and the cost ratio (between 0.3 and 1) considered.  679 

The approach used in this work and the results offer further research perspectives. A least 𝐿𝐶𝑂𝐸 680 
criterion was used to determine the optimal configuration. It could be interesting to compare the 681 
results for this criterion obtained with our rule and with the ones proposed by the IEEE, the IEA and 682 
the ECREEE. This comparison should also consider the environmental impact of the MG (for instance, 683 
the greenhouses gases emissions, the land use or the toxicity to human health and to ecosystems) and 684 
modified rules could be derived by including these criteria in the optimization. 685 

The methodology presented here was applied to identify the optimal (PV capacity/storage) 686 
configuration of 100% PV MGs. It could also be used for MGs based on other variable energy sources 687 
such as wind or hydroelectricity that are also promising renewable energy sources in many regions 688 
worldwide (e.g. [57]). For wind power and hydroelectricity, the important civil engineering works to 689 
be produced and the large variety of terrain configurations to be found would likely result in a large 690 
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variability of installation and in turn equipment costs. The robustness of the optimal design 691 
configurations is expected to be in turn rather low.  692 

The demand profiles considered in this article are constant from one year to the other, however the 693 
evolution of the electricity demand during the lifetime of the MG could change the performance of the 694 
system. A better knowledge of the processes involved in the evolution of the electricity demand are 695 
necessary to choose the most suitable profile on which the sizing rules must be applied. 696 
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