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Abstract. Anticipating risks related to climate extremes often relies on the quantification of large return lev-
els (values exceeded with small probability) from climate projection ensembles. Current approaches based on
multi-model ensembles (MMEs) usually estimate return levels separately for each climate simulation of the
MME. In contrast, using MME obtained with different combinations of general circulation model (GCM) and
regional climate model (RCM), our approach estimates return levels together from the past observations and all
GCM–RCM pairs, considering both historical and future periods. The proposed methodology seeks to provide
estimates of projected return levels accounting for the variability of individual GCM–RCM trajectories, with a
robust quantification of uncertainties. To this aim, we introduce a flexible non-stationary generalized extreme
value (GEV) distribution that includes (i) piecewise linear functions to model the changes in the three GEV
parameters and (ii) adjustment coefficients for the location and scale parameters to adjust the GEV distributions
of the GCM–RCM pairs with respect to the GEV distribution of the past observations. Our application focuses
on snow load at 1500 m elevation for the 23 massifs of the French Alps. Annual maxima are available for 20 ad-
justed GCM–RCM pairs from the EURO-CORDEX experiment under the scenario Representative Concentration
Pathway (RCP) 8.5. Our results show with a model-as-truth experiment that at least two linear pieces should be
considered for the piecewise linear functions. We also show, with a split-sample experiment, that eight massifs
should consider adjustment coefficients. These two experiments help us select the GEV parameterizations for
each massif. Finally, using these selected parameterizations, we find that the 50-year return level of snow load
is projected to decrease in all massifs by −2.9 kN m−2 (−50 %) on average between 1986–2005 and 2080–2099
at 1500 m elevation and RCP8.5. This paper extends the recent idea to constrain climate projection ensembles
using past observations to climate extremes.

1 Introduction

The use of climate model simulations is the main scientific
paradigm to anticipate extreme climate events. In particu-
lar, multi-model general circulation model (GCM) and re-
gional climate model (RCM) ensembles are widely used to
quantify the changes in climate extremes and their uncertain-
ties (IPCC, 2021). GCMs represent key processes of the cli-
mate system relevant at the global scale and provide input for

RCMs used to downscale and refine the climate projections
at the local to regional scale.

Climate extremes are often assessed within the statistical
framework of extreme value theory (EVT) by focusing on
either annual maxima or values exceeding a high threshold
(Coles, 2001). EVT makes it possible to estimate return lev-
els, i.e., extreme quantiles that occur on average once every
T years, where T is the corresponding return period. Return
levels play a key role in the design of structures (dams, pro-
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Table 1. Temporal non-stationary GEV-based approaches for GCM ensembles and GCM–RCM ensembles. An asterisk (∗) indicates that the
ensemble is an initial condition ensemble, i.e., each ensemble member consists of the same GCM–RCM pair with different initializations.

Ensemble
members
are fitted

Reference Adjustment coefficients
for the GEV parameters
of ensemble members

Non-stationary
functions for the
GEV parameters

Extreme variable

Separately

Fowler et al. (2010) × Linear Precipitation
Hanel and Buishand (2011) × Linear Precipitation
Kharin et al. (2013) × Linear Temperature and precipitation
Brown et al. (2014) X Linear Temperature and rainfall
Um et al. (2017) × Nonlinear Precipitation
Tramblay and Somot (2018) × Linear Precipitation

Together

Kharin and Zwiers (2004) ×
∗ Linear Temperature and precipitation

Wang et al. (2004) ×
∗ Linear Significant wave height

Aalbers et al. (2018) ×
∗ Linear Precipitation

Fix et al. (2018) ×
∗ Linear Precipitation

Wehner (2020) × Linear Temperature and precipitation
Our approach X Piecewise linear Snow load

tections, roofs) to withstand the effects of natural hazards
(floods, avalanches, wildfires, snow loads); see, e.g., Rao and
Hamed (2000), Eckert et al. (2008), Evin et al. (2018), and
Le Roux et al. (2020).

Most approaches using EVT to study climate extremes
from multi-model ensembles (MMEs) rely on stationary gen-
eralized extreme value (GEV) distributions estimated sepa-
rately on each climate simulation of the MME, i.e., with each
ensemble member (Kharin et al., 2007; Beniston et al., 2007).
Specifically, for each ensemble member, annual maxima are
assumed stationary for two time periods of 20 or 30 years:
one in the historical period representing the late 20th century
climate and one in the future period. For instance, Fowler
et al. (2007) opted for two 30-year time periods: 1961–1990
and 2071–2100, a 30-year time window corresponding to the
usual duration that is used to describe the statistical proper-
ties of a climate according to World Meteorological Organi-
zation (WMO) standards. Next, stationary 20- or 30-year re-
turn levels are estimated for each time period with a GEV dis-
tribution. Finally, average changes, i.e., differences in return
levels between time periods averaged on all ensemble mem-
bers, are usually reported (Kharin et al., 2013; O’Gorman,
2014). However, such approaches based on stationary GEV
distributions have several drawbacks. First, the assumption of
stationarity for 20 or 30 consecutive annual maxima can be
debatable, and the possibility of a trend within the 20- or 30-
year time periods is often not checked (Kharin and Zwiers,
2004). In addition, the choice to rely only on 20 or 30 max-
ima implies that the estimated GEV parameters have large
uncertainties due to the small number of values used. In this
case, large return levels, e.g., the 50-year (or even larger) re-
turn periods that are usually considered to design structures
(see, e.g., Table 1 of Cabrera et al., 2012), can be highly un-
certain.

Temporal non-stationary GEV approaches address these
limitations by taking into account all the available annual
maxima for each ensemble member, i.e., all the historical
and future annual maxima are fitted with a single statistical
model (Kharin and Zwiers, 2004). Such approaches combine
a stationary random component (a fixed extreme value distri-
bution) with non-stationary deterministic functions that map
each temporal covariate (such as the years or the global mean
temperatures) to the changing parameters of the distribution.
Another advantage of temporal non-stationary approaches is
that they allow return levels to be estimated conditionally on
each temporal covariate (Kharin et al., 2013).

A majority of temporal non-stationary approaches for
MMEs rely on the GEV distributions estimated separately
with each climate simulation of the MME (Table 1), with
some exceptions (Caires et al., 2006; Kyselý et al., 2010;
Roth et al., 2014; Winter et al., 2017), and report return levels
(conditionally on a given covariate) averaged on all ensemble
members. We believe that such approaches are sub-optimal
because they estimate one non-stationary GEV distribution
with each climate simulation of the MME, i.e., with fewer
than roughly 200 maxima values, which often implies a sim-
ple parameterization (linear) for the non-stationary functions
(Table 1).

The present study introduces an alternative approach that
relies on a temporal non-stationary GEV model fitted to all
ensemble members. This approach enables us to quantify un-
certainties using standard tools from non-stationary extreme
value analysis. Such an approach has mainly been proposed
for initial condition ensembles (Table 1), i.e., ensemble mem-
bers that consist of replicates from the same GCM–RCM pair
(or the same GCM for GCM ensembles) simulated with dif-
ferent initial conditions. For initial condition ensembles, this
alternative approach estimates a single non-stationary distri-
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bution on all ensemble members by assuming that they are
independent and identically distributed (iid). However, this
alternative approach is inadequate for GCM–RCM ensem-
bles with several GCMs because the iid assumption, i.e., that
all GCM–RCM pairs follow the same non-stationary distri-
bution, is unlikely to hold in all the cases. Our study fills this
gap with a novel non-stationary extreme value approach in-
spired by the recent trend of statistical methods that constrain
climate projections using past observations (Brunner et al.,
2020). We propose to fit a non-stationary GEV distribution
to past observations and all GCM–RCM pairs without nec-
essarily assuming that all GCM–RCM pairs follow the same
distribution. To this end, we introduce parameters (so-called
adjustment coefficients) for the location and scale parameters
of the GEV distribution that can account for systematic dif-
ferences between the different climate trajectories. Different
parameterizations of these adjustment coefficients are tested
in order to describe the variability between the climate trajec-
tories, the best parameterization being selected using split-
sample tests on past observations.

Besides, non-stationary GEV-based approaches for cli-
mate projection ensembles usually consider linear functions
for the non-stationary functions, with the exception of the
study by Um et al. (2017) that applies nonlinear functions
(Table 1). In this study, we extend these approaches by con-
sidering piecewise linear functions for the non-stationary
functions.

We illustrate the proposed methodology with an applica-
tion to snow load data, which corresponds to the pressure
exerted by accumulated snow on the ground (proportional
to the snow water equivalent). The probabilistic assessment
of ground snow load is of major interest for the structural
design of buildings (Croce et al., 2018), for water resource
management (Marty et al., 2017), or for the prevention of
large-scale environmental or infrastructure damage caused
by snow storms (e.g., damage to forests, transportation net-
works and electricity networks). Since annual means of snow
loads are expected to decrease under future climate change,
it could be expected that extreme snow load would also de-
crease. However, in cold regions (high-elevation regions for
instance) extreme snowfall is expected to increase with cli-
mate change (O’Gorman, 2014), and this increase in extreme
snowfall can possibly lead to an increase in extreme snow
load. This application verifies whether snow load extremes
are expected to decrease in the French Alps, a quantifica-
tion of these decreases being of prime interest to the study of
compound extremes, e.g., extreme snow load combined with
extreme wind, or to adapt structures standards, e.g., to de-
crease the constraints used to design new structures (Le Roux
et al., 2020).

Section 2 presents our data, i.e., the 20 GCM–RCM
pairs for Representative Concentration Pathway (RCP) 8.5
adjusted from EURO-CORDEX, and the S2M reanalysis
set as the reference observational dataset (Vernay et al.,
2019, 2022). In Sect. 3, we detail our statistical methodol-

ogy. Finally, results, discussions and conclusions are intro-
duced in Sects. 4, 5 and 6, respectively.

2 Data

Our application focuses on snow loads at 1500 m elevation in
the 23 massifs of the French Alps, i.e., between Lake Geneva
to the north and the Mediterranean Sea to the south (Fig. 1).
This region, home to the largest ski resorts in the world, is
prone to snow-related hazards, such as avalanches (Favier
et al., 2016; Dkengne Sielenou et al., 2021), which are heav-
ily impacted by ongoing warming (Eckert et al., 2013; Caste-
brunet et al., 2014). This study estimates potential changes
in snow load (i.e., the pressure exerted by the snow) haz-
ard for a high-emission scenario (RCP8.5) as a case study,
although it could also be applied to other scenarios and vari-
ables. Snow load can be defined as the gravitational accel-
eration (g = 9.81 m s−2) times the snow water equivalent (in
kg m−2) and is often expressed in units of kN m−2. Snow
water equivalent corresponds to the mass of snow per unit
surface area, which also corresponds to the observed depth
of accumulated snow (in m) multiplied by the snow density
(in kg m−3). Following the block maxima approach to esti-
mate the hazard of snow load (Sect. 3.1), we compute annual
maxima of daily snow load at 1500 m centered on the win-
ter season, e.g., an annual maximum for the year 1959 is the
maximum from 1 August 1958 to 31 July 1959 (Fig. 1).

The S2M reanalysis (Durand et al., 2009; Vernay et al.,
2019, 2022) combines large scale reanalyses and forecasts
with in situ meteorological observations to provide daily val-
ues of snow load from 1959 to 2019. The S2M reanalysis
has been evaluated with both in situ temperature and precip-
itation observations (Durand et al., 2009) and various snow
depth observations (Vionnet et al., 2016; Quéno et al., 2016;
Revuelto et al., 2018; Vionnet et al., 2019; Vernay et al.,
2022). The S2M reanalysis focuses on the elevation depen-
dency of meteorological conditions. Indeed, this reanalysis
is not produced on a regular grid but provides data for each
massif every 300 m of elevation between 600 and 3600 m.

ADAMONT (Verfaillie et al., 2017) is a bias-correction
and downscaling method that aims to adjust daily climate
projections from a regional climate model against a regional
reanalysis of hourly meteorological conditions using quan-
tile mapping. This method was used to adjust the EURO-
CORDEX dataset (Jacob et al., 2014) against the S2M re-
analysis to provide daily values of snow load that spans his-
torical (1951–2005) and future (2006–2100) time periods.
Specifically, the EURO-CORDEX dataset consists of RCMs
forced over Europe by GCMs from the CMIP5 ensemble
(Taylor et al., 2012) for the historical scenario and several
representative concentration pathway (RCP) scenarios (Moss
et al., 2010). We focus on the RCP8.5 emission scenario and
consider a total of 20 GCM–RCM pairs, with 6 GCMs and
11 RCMs total (see Supplement, Table S1). Finally, adjusted
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Figure 1. (a) Topography and delineation for the 23 massifs of the French Alps, e.g., the Vanoise Massif corresponds to the purple region
(Durand et al., 2009). (b) Time series of annual maxima of daily snow load from 1951 to 2100 for the Vanoise Massif at 1500 m elevation.
Annual maxima from the S2M reanalysis (1959–2019) are displayed in black, while annual maxima from the 20 adjusted GCM–RCM pairs
(1951–2100) under a historical and a high-emission scenario (RCP8.5) are displayed with brighter colors.

EURO-CORDEX meteorological data are used as input to
the snow cover model Crocus (Vionnet et al., 2012) every
300 m of elevation for each massif. This provides estimates
of the time evolution of the snow cover (Verfaillie et al.,
2018), enabling us to compute the maximum annual value
of snow load at 1500 m elevation. For simplicity, we often
refer to the S2M reanalysis as our observation reference. We
note that we discard the two most southern massifs because
many projected annual maxima are equal to zero.

The anomaly of global mean surface tempera-
ture (GMST) with respect to the pre-industrial period
(1850–1900) is chosen as the temporal covariate for our
statistical methodology. In practice, we smooth this anomaly
with cubic splines to obtain a covariate that does not depend
on the internal variability of GMST (Fig. 2). For each
GCM–RCM pair we rely on the GMST corresponding GCM
as a covariate, while we rely on GMST from HadCRUT5
(Morice et al., 2021) as a covariate for the observations.
For simplicity, we refer to +1 ◦C of smoothed anomaly of
GMST as +1◦ of global warming.

3 Statistical methodology

3.1 Generalized extreme value distribution

Following the block maxima approach of extreme value
theory (Coles, 2001), we model annual maxima with the
GEV distribution. Indeed, similarly to the central limit the-
orem that motivates to model means obtained from differ-
ent samples using a normal distribution, the Fisher–Tippett–

Figure 2. Raw output (dotted lines) and smoothed output (plain
lines) for the anomaly of global mean annual temperature with re-
spect to industrial levels (1850–1900). For the six GCMs, we show
the anomaly of global mean surface temperature using historical
emissions until 2005 and projected emissions (RCP8.5). Years cor-
respond to periods centered on each winter (August–July).

Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko,
1943) encourages to model maxima using the GEV distri-
bution. In practice, if Y represents an annual maximum,
a natural choice to model the distribution of Y is Y ∼
GEV(µ,σ,ξ ), which implies that

Earth Syst. Dynam., 13, 1059–1075, 2022 https://doi.org/10.5194/esd-13-1059-2022
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P (Y ≤ y)=


exp

[
−
(
1+ ξ y−µ

σ

)− 1
ξ

+

]
if ξ 6= 0 and

where u+ denotes max(u,0),
exp

[
−exp

(
−
y−µ
σ

)]
if ξ = 0,

(1)

where the three parameters are the locationµ, the scale σ > 0
and the shape ξ . Three subfamilies of distribution (reversed
Weibull, Gumbel and Fréchet) can be derived depending on
the sign of the shape parameter (ξ < 0, ξ = 0 and ξ > 0),
respectively.

In theory, the GEV distribution is adequate when maxima
are computed over blocks of infinite size. In practice, the
GEV distribution is usually applied to annual maximal val-
ues and has been shown to provide reliable estimates of re-
turn levels in many hydrometeorological applications (Coles,
2001; Katz et al., 2002; Cooley, 2012; Papalexiou and Kout-
soyiannis, 2013). The T -year return level, which is defined as
a daily value yp exceeded each year with probability p = 1

T
,

corresponds to the 1−p quantile of the GEV distribution
P (Y ≤ yp)= 1−p↔ yp = µ−

σ
ξ
[1− (− log(1−p))−ξ ]. In

this study, we set p = 1
50 as it corresponds to the 50-year re-

turn period that is widely used for the designed working life
of buildings (Cabrera et al., 2012), specifically for the build-
ing standards regarding snow load (Croce et al., 2019).

3.2 Non-stationary distribution

Let Y obs
t denote an observed annual maximum for the year t

between 1959 and 2019 and T obs
t represent the smoothed

anomaly of global mean surface temperature (GMST) from
HadCRUT5 for the same year t (Sect. 2). We rely on a non-
stationary distribution where each GEV parameter is a piece-
wise linear function of T , which is the smoothed anomaly of
GMST. A log link function for the scale parameter is intro-
duced to ease the numerical optimization.

Y obs
t |θ ∼GEV

(
µ
(
T obs
t

)
, σ

(
T obs
t

)
, ξ
(
T obs
t

))
with

µ(T ) = µ0+
L∑
i=1
µi × (T − κi)+,

logσ (T ) = σ0+
L∑
i=1
σi × (T − κi)+,

ξ (T ) = ξ0+
L∑
i=1
ξi × (T − κi)+,

(2)

where θ is the vector of parameters {µi,σi,ξi, i = 0, . . ., L}
for the piecewise-linear functions µ(.),σ (.),ξ (.), 1≤ L≤
4 corresponds to the number of linear pieces, κi = Tmin+
(i−1)×(Tmax−Tmin)

L
, and Tmin and Tmax are the minimum and

maximum smoothed anomaly of GMST for the period 1951–
2100 (Fig. 2). In other words, κ2, . . . , κL are fixed and
equally spaced between Tmin and Tmax and correspond to
the L− 1 anomalies of smoothed GMST where the line
breaks, i.e., where the slope of the piecewise linear functions
changes.

Table 2. The five parameterizations of the adjustment coefficients
µ̃k and σ̃k considered for the location and scale parameters, respec-
tively. When there is only one coefficient for all GCM–RCM pairs
k, µ̃k = µ̃ and σ̃k = σ̃ for any pair k. When there is one coeffi-
cient per GCM (per RCM), µ̃k = µ̃g and σ̃k = σ̃g (µ̃k = µ̃r and
σ̃k = σ̃r ), where g and r are subscripts referring to the GCM and
RCM of the pair k, respectively.

Parameterization of the Adjustment Number of adjustment
adjustment coefficients coefficient coefficients S

for a pair k

µ̃k σ̃k

Zero 0 0 0
One for all GCM–RCM pairs µ̃ σ̃ 2
One for each GCM µ̃g σ̃g no. of GCMs
One for each RCM µ̃r σ̃r no. of RCMs
One for each GCM–RCM pair µ̃k σ̃k no. of GCM–RCM pairs

For a GCM–RCM pair k between 1 and 20, let Y kt repre-
sent an annual maximum for the year t between 1951 and
2100 and T kt represent the smoothed anomaly of GMST
(Sect. 2) for the corresponding GCM.

Y kt |2∼ GEV
(
µ
(
T kt

)
+ µ̃k, σ

(
T kt

)
+ σ̃k, ξ

(
T kt

))
, (3)

where 2 denotes the set of parameters θ and of additional
parameters µ̃k and σ̃k and where ξ (.) is given in Eq. (2). The
parameters µ̃k and σ̃k correspond to different adjustment co-
efficients defined in Table 2. For the K = 20 GCM–RCM
pairs, these adjustment coefficients are considered for the lo-
cation and scale parameters and aim at adjusting the distri-
bution of GCM–RCM pairs. Following Brown et al. (2014),
we assume that these adjustment coefficients are constant,
i.e., the same for historical and future climates. We consider
five parameterizations: zero adjustment coefficients, one ad-
justment coefficient for all GCM–RCM pairs, one adjust-
ment coefficient for each GCM, one adjustment coefficient
for each RCM and one adjustment coefficient for each GCM–
RCM pair. Figure 3 illustrates this concept for a fictive en-
semble composed of four different GCM–RCM pairs with
two different GCMs and two different RCMs. The right col-
umn shows how these adjustment coefficients improve the
agreement between the different climate simulations with re-
spect to the observations by removing these first-order dis-
crepancies. Obviously, the parameterization with one addi-
tional adjustment coefficient for each GCM–RCM pair leads
to a better agreement, but this is at the cost of a much higher
number of parameters.

Finally, the size of the entire vector of parameters 2 is
3+ 3×L+ S, corresponding to three parameters for the in-
tercepts (µ0,σ0,ξ0), 3×L parameters for the piecewise linear
functions describing the temporal evolution of the three GEV
parameters (see Eq. 2) and S parameters corresponding to the
adjustment coefficients (see Table 2).

We did not consider adjustment coefficients on the shape
parameter because it sometimes leads to prediction failures.

https://doi.org/10.5194/esd-13-1059-2022 Earth Syst. Dynam., 13, 1059–1075, 2022
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Figure 3. Illustration of the evolution of the location parameter µ(T ) on the y axis as a function of the global warming T on the x axis for
the different options of adjustment coefficients for a fictive ensemble composed of four different GCM–RCM pairs with two different GCMs
and two different RCMs. (a) Location parameter µ(T ) if the GEV model is fitted individually to each trajectory. (b) Location parameter
µ(T )+ µ̃k using adjustment coefficients.

This situation can happen when ξ (T )< 0, which means that
the predictive distribution has an upper bound, and when
some future annual maxima lies above this upper bound.

3.3 Maximum likelihood estimation

For each massif, a temporal non-stationary GEV distribution,
parameterized by a vector of coefficients 2, is estimated us-
ing the past observations and all GCM–RCM pairs. Let y =
(yobs

1959, . . ., y
obs
2019,y

1
1951, . . ., y

1
2100, . . ., y

20
1951, . . ., y

20
2100) rep-

resent a vector with all annual maxima of a given mas-

sif, i.e., annual maxima from the observations and from the
K = 20 GCM–RCM pairs (Sect. 2). The maximum likeli-
hood method provides the most likely parameters 2̂ with re-
spect to y. The maximum likelihood estimator 2̂ is obtained
from the past observations and all GCM–RCM pairs by max-
imizing the following likelihood p(y|2):

Earth Syst. Dynam., 13, 1059–1075, 2022 https://doi.org/10.5194/esd-13-1059-2022
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2̂= argmax2p(y|2) where p(y|2)

=

2019∏
t=1959

p
(
yobs
t |θ

)
︸ ︷︷ ︸

past observations

×

2100∏
t=1951

20∏
k=1

p
(
ykt |2

)
︸ ︷︷ ︸

20 GCM-RCM pairs

, with

p
(
yobs
t |θ

)
=

∂P
(
Y obs
t ≤y

obs
t |θ

)
∂yobs
t

,

p
(
ykt |2

)
=

∂P
(
Y kt ≤y

k
t |2

)
∂ykt

.
(4)

3.4 Evaluation experiments

Our first evaluation experiment is a model-as-truth exper-
iment, i.e., a perfect model experiment, which evaluates
long-term predictive performances using future projections
(Abramowitz et al., 2019). The observations from the S2M
reanalysis (Sect. 2) are discarded for this experiment. In-
stead, a simulation from a GCM–RCM pair is chosen as
pseudo-observations. The calibration set contains the “his-
torical” data (1959–2019) of the GCM–RCM pair chosen as
pseudo-observations and the 19 remaining GCM–RCM pairs
(1951–2100). The predictive performance is evaluated on an
evaluation set that contains the future data (2020–2100) of
the GCM–RCM pair chosen as pseudo-observations. In de-
tail, each GCM–RCM pair is successively regarded as being
pseudo-observations. Thus, a model-as-truth experiment can
be roughly regarded as a leave-one-out cross-validation with
respect to GCM–RCM pairs. We note that for GCM–RCM
pairs with the GCM HadGEM2-ES starts in 1982, while the
pairs with the RCM RCA4 starts in 1971. Therefore, we suc-
cessively regard the 12 GCM–RCM pairs (out of 20) that
start before 1959 as pseudo-observations, i.e., those that have
annual maxima for the period 1959–2019.

Our second evaluation experiment is a split-sample exper-
iment, i.e., a calibration–validation experiment, which en-
ables us to estimate the short-term predictive performance
of each parameterization. Specifically, for the calibration of
the non-stationary GEV distribution, we rely on the oldest
observations from the S2M reanalysis (Sect. 2) and all the
GCM–RCM pairs. We validate the predictive performance
on the most recent observations. For instance, if we choose
to keep 80 % of the observations for the calibration (1959–
2007), then the remaining 20 % of the observations are held-
out for the evaluation (2008–2019).

In these two evaluation experiments for GCM–RCM en-
sembles, we calculate the mean logarithmic score (LS)
on the evaluation set (the lower the better) to assess
the out-of-sample skill of a non-stationary distribution
parameterized with the parameter set 2̂ obtained with
the calibration set. The logarithmic score is a proper
score that can be used to evaluate the predictive per-
formance of the fitted model (Gneiting et al., 2007).
For N out-of-sample observations (or pseudo-observations
for the model-as-truth experiment) yobs

year1
, . . ., yobs

yearN
, we

have that LS= 1
N

N∑
n=1
− log[p(yobs

yearn
|2̂)]where p(yobs

t |2̂)=

∂P
(
Y obs
t ≤y

obs
t |2̂

)
∂yobs
t

.

3.5 Workflow

First, for a set of past and projected annual maxima, we se-
lect one parameterization of the GEV distribution (number
of linear pieces, parameterization of the adjustment coeffi-
cients) using a two-step selection method: (i) we select the
number of linear pieces with a model-as-truth experiment us-
ing zero adjustment coefficients for the GEV parameters, and
(ii) we then select the parameterization of the adjustment co-
efficients with three split-sample experiments where the cal-
ibration set is composed of 60 %, 70 % and 80 % of the ob-
servations, using the number of linear pieces selected in the
model-as-truth experiment. Following this, we study trends
in the 50-year return level of snow load. For each massif we
rely on the parameterization of the GEV distribution selected
using the two-step selection method. We report RL50, the 50-
year return level that corresponds to Eq. (2), i.e., to the 50-
year return level of the observations and their adjusted pro-
jections with respect to GCM–RCM pairs. In other words, if
the selected parameterization has adjustment coefficients, we
do not add these coefficients to compute RL50, since adding
these coefficients would provide the 50-year return level of
the GCM–RCM pairs. The 90 % confidence interval is com-
puted using a semi-parametric bootstrap resampling method
adapted to non-stationary extreme value distributions (Ap-
pendix A). For every anomaly of global mean temperature T ,
we have that the 50-year return level RL50(T ) is

RL50(T )=y 1
50

(T )= µ(T )−
σ (T )
ξ (T )[

1−
(
− log

(
1−

1
50

))−ξ (T )
]
. (5)

4 Results

4.1 Selection of one parameterization of the GEV
distribution for each massif

In Fig. 4a, for each massif we illustrate the selected param-
eterization of the GEV distribution (number of linear pieces,
parameterization of the adjustment coefficients). Among the
23 massifs, Fig. 4b and c highlights the preferred parameteri-
zations after the application of the two-step selection method.

In the first step, we select the number of linear pieces that
minimizes the mean logarithmic score of a model-as-truth
experiment using zero adjustment coefficients for the GEV
parameters. The mean logarithmic score is averaged on the
hold-out pseudo-observations (2020–2100) for each of the
12 GCM–RCM pairs (which are set as pseudo-observations;
see Sect. 4.1). We find that the parameterization with three
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Figure 4. (a) Map of the selected parameterization of the GEV distribution at 1500 m. The selected parameterizations of the adjustment
coefficients are illustrated with colors, while the selected numbers of linear pieces are written on the map. (b) Distribution of the selected
number of linear pieces. (c) Distribution of the selected parameterization of the adjustment coefficients.

linear pieces minimizes the mean logarithmic score for 80 %
of the massifs, see Fig. 4b. The parameterization with two
linear pieces is selected for one massif, and the one with four
linear pieces is selected for two massifs. Thus, at least two
linear pieces are selected for the piecewise linear functions.
In the second step, we select the parameterization of the ad-
justment coefficients (Table 2) that minimizes the mean loga-
rithmic score for a split-sample experiment using the number
of linear pieces selected in the model-as-truth experiment.
The mean logarithmic score is averaged on the evaluation
observations for three split-sample experiments, where the
calibration set corresponds to 60 %, 70 % and 80 % of the
observations. Indeed, we observe that the split-sample ex-
periment is quite sensitive to the size of the calibration set.
Thus, we choose to average the mean logarithmic score on
three split-sample experiments to obtain more robust results.
We find that the parameterization with zero adjustment coef-
ficients minimizes the mean logarithmic score for two-thirds
of the massifs; see Fig. 4c. Otherwise, the parameterization
with one adjustment coefficient for all GCM–RCM pairs is
selected for two massifs, the parameterization with one ad-
justment coefficient for each GCM is selected for two mas-
sifs, the parameterization with one adjustment coefficient for

each RCM is selected for one massif and the parameteriza-
tion with one adjustment coefficient for each GCM–RCM
pair is selected for three massifs. Thus, for two-thirds of the
massifs, adjustment coefficients do not lead to a better pre-
dictive performance on the validation periods. This is pre-
sumably due to the fact that GCM–RCM pairs have already
been statistically adjusted.

A detailed analysis of the mean logarithmic scores of each
parameterization for each massif is provided the Supplement.

4.2 Trends in the 50-year return level of snow load

In this section, we rely on the parameterization of the GEV
distribution selected in Sect. 4.1 for each massif. In Fig-
ure 5, we illustrate changes in the 50-year return level be-
tween +1 and +4 ◦C of global warming for four massifs
where the selected parameterization is composed of three
linear pieces with one adjustment coefficient for all GCM–
RCM pairs (Fig. 5a), one coefficient for each GCM (Fig. 5b),
one coefficient for each RCM (Fig. 5c) or one coefficient for
each GCM–RCM pair (Fig. 5d). In addition, we also perform
individual fitting to each GCM–RCM pair, the corresponding
return levels being shown with thin gray lines. Note that these
estimates are shown for illustrative purposes only, and they
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Figure 5. Estimated 50-year return levels between +1 and +4 ◦C of global warming at elevation 1500 m under RCP8.5 for four massifs
with different preferred parameterizations for the adjustment coefficients: (a) one coefficient for all GCM–RCM pairs, (b) one coefficient
for each GCM, (c) one coefficient for each RCM and (d) one coefficient for each GCM–RCM pair. RL50 (Eq. 5) values without adjustment
coefficients are shown in cyan, and those with adjustment coefficients are shown in a warm color. The 90 % confidence intervals are shaded.
The 50-year return levels computed for each GCM–RCM pair (using a non-stationary GEV distribution with the selected number of linear
pieces for each GCM–RCM pair) and for the observation (using a non-stationary GEV distribution with one linear piece and a constant
shape parameter) are displayed with thin gray lines and thick dark lines, respectively. The probability density functions at+1,+2 and+3 ◦C
exemplify how adjustment coefficients can adjust the distribution.

do not contribute to the final return level estimates indicated
with warm colors.

All 50-year return levels (for the non-stationary GEV dis-
tribution fitted on the observations, on each GCM–RCM pair,
and on the observations and all GCM–RCM pairs) are de-
creasing with the anomaly of global mean temperature. We
observe that RL50 with adjustment coefficients (shown in a
warm color) is closer to the 50-year return level of the ob-
servation (in dark gray) than RL50 without adjustment co-
efficients (in cyan). This figure also shows how adjustment
coefficients adjust the distribution toward the distribution of
the observations by illustrating the probability density func-
tions (with and without adjustment) at +1◦ of global warm-

ing. Nevertheless, we note that adjusted distributions do not
perfectly match the distributions of the observation, which
means that the adjusted RL50 does not match the 50-year re-
turn levels of the observation. This is probably because we do
not consider adjustment coefficients on the shape parameter.
For instance, in Fig. 5c, we observe that the shape parame-
ter is negative for the distribution of the observation (because
the density has an upper bound), while the shape parameter
is positive for the adjusted distribution in orange. We choose
to not consider adjustment for the shape parameter because
it enables us to constrain predictive distributions on the fu-
ture period and to avoid prediction failures (Sect. 5.2). Be-
sides, the 90 % confidence interval of RL50 is computed us-
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Figure 6. The 50-year return levels (RL50) of snow load at 1500 m for +1, +2, +3 and +4 ◦C of global warming under RCP8.5.

ing a semi-parametric bootstrap resampling method adapted
to non-stationary extreme distributions (Appendix A). We
note that confidence intervals are widening at the nodes of the
piecewise linear functions, i.e., at the anomaly of global tem-
perature where the slope of the GEV parameters changes (κi
in Eq. 2). This is presumably due to the fact that the vari-
ability of the three GEV parameters is more important at the
nodes than between them.

Figure 6 illustrates RL50 for the 23 massifs of the French
Alps at 1500 m elevation for+1,+2,+3 and+4 ◦C of global
warming, i.e., of smoothed anomaly of global mean surface
temperature. The return levels are larger in the northwest of
the French Alps, and this pattern persists with global warm-
ing. Over the whole area of the French Alps, the average
RL50 equals 5.7 kN m−2 at +1 ◦C of global warming and
3.3 kN m−2 at +4 ◦C.

Figure 7 details the relative change of RL50 for +2,
+3 and +4 ◦C of global warming at 1500 m elevation with
respect to +1 ◦C, which corresponds roughly to the cur-

rent level of global warming above industrial levels (see
Fig. 2). Over the French Alps, the average change of RL50
is equal to −0.6 kN m−2 (−10 %), −1.5 kN m−2 (−27 %)
and −2.5 kN m−2 (−43 %) for +2, +3 and +4 ◦C of global
warming, respectively. These relative changes are different
for other elevations, a smaller relative decrease being ob-
tained at 2100 m of elevation and a larger relative decrease
at 900 m of elevation (see Supplement B). This result is con-
sistent with the literature (Fig. 2.3 of Hock et al., 2022). At
1500 m, the relative decrease is lower in the central east-
ern side of the French Alps. For instance, for +4 ◦C of
global warming, the relative decrease roughly ranges be-
tween −33 % and −38 % in the central eastern side, while it
ranges between −40 % and −54 % in the rest of the French
Alps.

For each massif, it is also possible to compute the aver-
age 50-year return level for several time periods: 1986–2005,
2031–2050 and 2080–2099. For instance, for the time period
1986–2005, the average return level equals the average of the
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Figure 7. Relative changes in 50-year return levels (RL50) of snow load at 1500 m for +2, +3 and +4 ◦C of global warming under the
scenario RCP8.5 with respect to +1 ◦C of global warming.

return level found for the years 1986, 1987, . . . , 2005. In or-
der to compute the return level of a given year, e.g., 1986, we
rely on the relationship between the anomaly of global mean
surface temperature (GMST) and the years (Fig. 2). Specifi-
cally, we rely on the anomaly of GMST averaged on the six
GCMs to compute this relationship. Following this method,
we find that on average the 50-year return level is projected to
decrease by −0.8 kN m−2 (−14 %) between 1986–2005 and
2031–2050 and by −2.9 kN m−2 (−50 %) between 1986–
2005 and 2080–2099 under the scenario RCP8.5. Note that
this method could also provide the rate of change of other
RCPs for various lead times using their corresponding global
temperature values.

5 Discussion

5.1 Comparison of our results with the projected trends
at the scale of the European Alps

In Table 3, we compare our results with Fig. 2.31 of Hock
et al. (2022) that provides the trends in winter mean snow
water equivalent (SWE) at the scale of the European Alps
between 1000 and 2000 m under the scenario RCP8.5. As
detailed in Sect. 2, the snow load is proportional to the SWE,
as it is equal to the SWE times the gravitational acceleration
(g = 9.81 m s−2).

For the 23 massifs, the average return level for several
time periods (1986–2005, 2031–2050, 2080–2099) can be
obtained as explained in Sect. 4.2. Likewise, the mean an-
nual maxima can be expressed with a similar methodology as
the expectation of the non-stationary GEV distribution aver-
aged for each year of the time periods. We find a decrease in

1https://www.ipcc.ch/srocc/chapter/chapter-2/2-1introduction/
ipcc-srocc-ch_2_3/ (last access: 23 June 2022).

mean annual maxima of snow load of −30 % and −69 % for
the future periods 2031–2050 and 2080–2099, respectively,
compared to the reference period 1986–2005.

Figure 2.3 of Hock et al. (2022) relies on the raw (without
adjustment) EURO-CORDEX data. They also find decreas-
ing trends. For instance, between 1500 and 2000 m elevation,
the mean winter SWE (proportional to the mean winter snow
load) is expected to approximately decrease by −25 % and
−70 % for the periods 2031–2050 and 2080–2099, respec-
tively (Table 3). We observe that our mean annual maxima of
snow load has a decreasing rate comparable to the decreasing
rate of the mean value of snow load. These comparable rates
may stem from the fact that (i) both approaches rely (directly
or indirectly) on the EURO-CORDEX data or that (ii) the
annual maxima of snow load results from an accumulation
during the winter (December to May), which implies that we
can expect that the mean value will roughly decrease at the
same rate as the mean annual maxima.

5.2 Methodological choices, assumptions and
limitations

For the non-stationarity of the GEV parameters, we choose
piecewise linear functions because they can approximate
more complex functions with only a few parameters. This
makes our methodology widely applicable. One limitation
is that the nodes of the piecewise linear functions are fixed.
However, we are confident that these functions are well es-
timated, owing to the large number of maxima: each of the
K = 20 GCM–RCM pairs provides more than 100 maxima.
Otherwise, we rely on the anomaly of global mean tempera-
ture as a covariate (Sect. 2), as do the majority of references
cited in Table 1. Indeed, this anomaly is often thought as
a good proxy to measure the level of climate change (Fix
et al., 2018), which helps strengthen the global response to
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Table 3. Projected trends in snow water equivalent (SWE) and snow load under the scenario RCP8.5 using the EURO-CORDEX experiment.
In the first four rows of the table, we specify that the result is approximated because the trend was read from the Fig. 2.3 of Hock et al. (2022).

Source Variable Indicator Location Reference period Future period Trend

Hock et al. (2022) SWE Mean (Dec to May) European Alps, 1000–1500 m 1986–2005 2031–2050 ≈−35 %
2080–2099 ≈−75 %

European Alps, 1500–2000 m 2031–2050 ≈−25 %
2080–2099 ≈−70 %

Our results Snow Load Mean annual maxima French Alps, 1500 m 1986–2005 2031–2050 −30 %
2080–2099 −69 %

50-year return level French Alps, 1500 m 1986–2005 2031–2050 −14 %
2080–2099 −50 %

this threat (Masson-Delmotte et al., 2018). We choose to fo-
cus on the scenario RCP8.5 to have the broadest spectrum of
potential changes for the 50-year return level of snow load.
Also, to obtain Eq. (4) we assume that all annual maxima
are conditionally independent given the vector of parameters
2, which is a classical hypothesis. Following the principle
of parsimony, we assume that the adjustment coefficients are
constant, i.e., the same for historical and future climates. Be-
sides, as mentioned in Sect. 3.2, we did not consider adjust-
ment coefficients for the shape parameter because it some-
times leads to prediction failure, i.e., the predictive distribu-
tion gives a null probability to some future annual maxima.
This can happen when ξ (T )< 0, which means that the pre-
dictive distribution has an upper bound, and when some fu-
ture annual maxima lies above this upper bound. This illus-
trates the trade-off between (i) matching the distribution on
the past period with respect to the available observations and
(ii) having assumptions that help to constrain the predictive
distribution on the future period.

For the two-step selection method, we first rely on a
model-as-truth experiment to select the number of linear
pieces. It assesses the optimal number of linear pieces to pre-
dict annual maxima of the pseudo-observations for the eval-
uation set (2020–2100), i.e., to find a good trade-off between
underfitting and overfitting for the calibration set. In this first
step, adjustment coefficients are not considered, such that
this experiment does not depend on a specific parameteri-
zation.

Following this, the best parameterization of the adjustment
coefficients is selected with a split-sample experiment. It as-
sesses whether applying adjustment coefficients helps to pre-
dict observations of the evaluation set, i.e., whether it is rea-
sonable to assume that the observations do not follow the
same distribution as the GCM–RCM pairs. The evaluation
score is average for three split-sample experiments where the
evaluation set corresponds to the last 40 %, 30 % and 20 % of
the observations (Sect. 4.1). Thus, evaluation sets of the three
split-sample experiments contain 24, 17 12 annual maxima,
respectively, which is a limited amount of information to use
for the selection of the best parameterization of the adjust-
ment coefficients. As shown in Fig. 4, it tends to favor the

most parsimonious parameterization with no adjustment co-
efficient. Observed maxima have also a limited effect on the
estimated parameters because one observed maxima has the
same weight as a maxima from a climate model in the like-
lihood (Eq. 4). As models are fitted to 61 observed maxima
and 20× 150 maxima from the different climate models, the
selected non-stationary models mostly represent the distribu-
tion of the maxima simulated by the climate models. How-
ever, it can also be argued that 61 years of past observations
has a limited predictive power for long-term horizons where
the different trajectories shown by the climate projections
can possibly show a great variety of evolution after the ob-
served period. As a comparison, the recent study by Ribes
et al. (2021) relies on 170 years of past observations to con-
strain future climate projections at the global scale. In addi-
tion, the proposed methodology has been shown to perform
well on temperature projections, but the application to other
surface variables (e.g., precipitation, snowfall) needs to be
demonstrated.

The 90 % confidence intervals of return levels (Fig. 5) ac-
count for both the sampling uncertainty (Appendix A) and
the climate model uncertainty (distributions are fitted to-
gether from the past observations and all GCM–RCM pairs).
In contrast, approaches that estimate return levels separately
for each ensemble member usually do not account for the
sampling uncertainty, i.e., the sampling uncertainty of return
levels estimated on each ensemble, even if this uncertainty
can be large because return levels are estimated with only
one ensemble member. One limitation of our approach is
that, contrary to the climatological expectations, the width
of confidence intervals does not increase with global warm-
ing (Fig. 5). This is presumably a consequence of assuming
constant adjustment coefficients.

The goodness of fit of the selected models has been tested
with the application of the Anderson–Darling test (see Ap-
pendix A) to each GCM–RCM pair separately and the ob-
servations for each massif. The test is rejected for 20% of the
483 cases at a significance level of 5 % (23 massifs× 21 time
series). This relatively high number seems to be mainly ex-
plained by the small values reached at the end of the century
for many GCM–RCM runs. Indeed, the same tests applied
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at an elevation of 2700 m show a much smaller percentage
of rejections (7 %) and larger p values. The inadequacy of
the selected GEV models to represent these small values can
be related to the high proportion of zero snow load values
at the end of the century. In these cases, as annual maxima
represent maxima of a limited number of positive values, the
asymptotic nature of the extreme value theory might be not
respected. One alternative could be to consider larger block
sizes (maxima over several years). However, the smaller sam-
ple sizes would lead to more uncertain parameter estimates.
The application of extreme value models to bounded vari-
ables thus remains a substantial challenge, especially in a
context of climate change where this issue only affects a
small part of the dataset.

5.3 Related works

First, our methodology based on adjustment coefficients can
be seen as an extension of Brown et al. (2014), which esti-
mates non-stationary GEV distribution simultaneously with
both observations and a single GCM–RCM pair and intro-
duces constant bias terms for each GEV parameter. There
are also some links to a debiasing method proposed for an-
nual maxima from GCM–RCM projections (Fontolan et al.,
2019). For the location parameter, we consider additive ad-
justment coefficients that can be seen as bias terms, while
the adjustment coefficients of the scale parameter that are
multiplicative (due to the log link function) can be viewed
as bias-correction factors (Hosseinzadehtalaei et al., 2021).
In this paper, we choose the name “adjustment coefficients”
because we introduce them to improve the statistical ad-
justments. Our idea to add adjustment coefficients for each
GCM, RCM or GCM–RCM pair into the non-stationary ex-
treme value distributions (Table 2) comes from the ANOVA
framework, which can be applied to partition the uncertainty
of GCM–RCM projections by identifying the main effects of
GCMs and RCMs or GCM–RCM interactions (Hawkins and
Sutton, 2009; Evin et al., 2019, 2021).

Thus, our approach based on piecewise linear functions for
the non-stationarity of the GEV parameters can be viewed
as using linear splines. In the literature, there are many ex-
treme value theory approaches using splines. For instance,
linear splines have been applied to model the temporal non-
stationarity (Wilcox et al., 2018), while cubic splines are of-
ten considered to model spatial extremes (Chavez-Demoulin
and Davison, 2005; Gaume et al., 2013).

6 Conclusions and outlook

Following statistical methods that constrain climate projec-
tions using past observations (Brunner et al., 2020; Ribes
et al., 2021), we propose a novel approach for GCM–RCM
ensembles that aims at fitting a single non-stationary gener-
alized extreme value (GEV) distribution to past observations
and to the ensemble of GCM–RCM projections. Specifically,

we rely on a non-stationary GEV distribution with (i) piece-
wise linear functions to model the changes in the three GEV
parameters and (ii) adjustment coefficients for the location
and scale parameters in order to consider the GEV model
as adequate for the climate projections and the past observa-
tions up to systematic shifts for these two GEV parameters.
This wide set of GEV models aims to provide a more flexible
framework. In particular, piecewise linear functions can rep-
resent many possible future changes of the GEV parameters
and include linear trends as special cases.

In order to select the best parameterization of the non-
stationary GEV model (number of linear pieces, parameter-
ization of the adjustment coefficients), we design a two-step
selection procedure based on two evaluation experiments for
GCM–RCM ensembles: a model-as-truth experiment and a
split-sample experiment. The model-as-truth experiment is
first applied to select the number of nodes that are required
to adequately represent the evolution of the GEV parameters.
The split-sample experiment evaluates the added value pro-
vided by the adjustment coefficients for the different possible
parameterizations.

In this article, as a case study the proposed approach is
applied to snow load in the French Alps at 1500 m eleva-
tion using 20 GCM–RCM pairs that are statistically adjusted
from the EURO-CORDEX experiment under the scenario
RCP8.5. More generally, the proposed approach could also
be applied to other scenarios, climate variables, and climate
projection ensembles. In contrast with most applications of
non-stationary GEV models in the literature (which consider
linear trends), the piecewise linear functions proposed in our
approach are well suited to non-monotonic trends.

Many extensions of this work could be considered. First,
if adjustment coefficients are not included, our parameteri-
zation of the GEV model considers the same non-stationary
GEV distribution for the different GCM–RCM pairs. Even
in the case where adjustment coefficients are selected, the
distributions corresponding to the GCM–RCM pairs are still
constrained to have the same changes with global warm-
ing because adjustment coefficients are constant. In future
work, we could imagine adjustment coefficients that vary
with global warming being used to better account for dif-
ferent changes of distributions among the GCM–RCM pairs.
A second potential extension of this work could be to im-
prove the parameterization of the GEV distribution by adding
weights for each GCM–RCM pair. In our methodology,
GCM–RCM pairs are currently considered as equally plausi-
ble even though it is known that for each application some of
them can have a better agreement with the past observations.
Following the intuition of weighting schemes for climate en-
semble (Knutti et al., 2017), we could design a parameter-
ization of the GEV distribution that assigns more weight,
i.e., more confidence, to climate models that agree more with
the observations.

Finally, further work is needed to obtain a better agree-
ment between the non-stationary GEV model representing
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the ensemble of maxima from climate projections and past
observed maxima. Indeed, observed maxima are mainly used
to identify and correct strong disagreements between the
observed and simulated maxima using adjustment coeffi-
cients, and the fitted non-stationary GEV model is not re-
ally constrained to represent observed maxima. A Bayesian
approach representing the predictive distribution of climate
projections conditional on historical observations (Robin and
Ribes, 2020; Ribes et al., 2021) could be a possible approach
to better constrain a GEV model. However, it requires a long
series of past observations to identify the relationships be-
tween the forced climate responses to greenhouse gases ob-
tained from the climate models and from the observations.

Appendix A: Uncertainty assessment and
goodness-of-fit test

We estimate the uncertainties resulting from in-sample vari-
ability with a semi-parametric bootstrap resampling method
adapted to non-stationary extreme distributions (Efron and
Tibshirani, 1993; Kharin and Zwiers, 2004). This method re-
lies on a transformation fGEV→standard Gumbel to the standard
Gumbel distribution. Indeed, if Yx ∼ GEV(µ(x),σ (x),ξ (x)),
then fGEV→standard Gumbel(Yx)= 1

ξ (x) log(1+ ξ (x)Yx−µ(x)
σ (x) )∼

Gumbel(0,1). Let y = (y1, . . ., yS) denote a vector of annual
maxima, with S the size of the vector. The transformed vari-
ates are computed as εm = fGEV→standard Gumbel(ym), using
2̂ for µ(x), σ (x), ξ (x).

We generate B = 1000 bootstrap samples with a four-
step procedure. First, we compute the vector ε = (ε1, . . ., εS).
Then, for each bootstrap sample i, from these transformed
variates we draw with replacement a sample of size S de-
noted as ε̃(i)

1 , . . . , ε̃(i)
S . Further, we transform these boot-

strapped variates into bootstrapped annual maxima as fol-
lows: ∀m, ỹ(i)

m = f
−1
GEV→standard Gumbel

(
ε̃

(i)
m

)
. Finally, we es-

timate the GEV parameter 2̂
(i)

with the bootstrapped annual
maxima ỹi1, . . ., ỹ

i
S. To sum up, this bootstrap procedure pro-

vides a set {2̂
(1)
, . . ., 2̂

( i )
, . . ., 2̂

(B)
} of B GEV parameters

that represents the in-sample variability.
In addition to the sampling uncertainty, we also assess the

goodness of fit of the fitted GEV models with the Anderson–
Darling statistical test (Abidin et al., 2012). If the non-
stationary GEV model is adequate, this test assumes that the
transformed variates ε are drawn from a standard Gumbel
distribution. Let Femp and Fgum denote the cumulative distri-
bution functions of the empirical and standard Gumbel dis-
tributions, respectively. The Anderson–Darling test is based
on the following distance:

A2
= S

∫ (
Femp(x)−Fgum(x)

)2
w(x)dFgum(x)

≈−

S∑
i=1

2i− 1
S

{
log

[
Fgum (εi)

]
+ log

[
1−Fgum (εS+1−i)

]}
− S,

where w(x) assigns more weight on the tail of the standard
Gumbel distribution (see Abidin et al., 2012, for more de-
tails).
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