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Abstract
Many solar photovoltaic (PV) energy projects are currently being planned and/or developed in
West Africa to sustainably bridge the increasing gap between electricity demand and supply.
However, climate change will likely affect solar power generation and the atmospheric factors that
control it. For the first time, the state-of-the-art CMIP climate models (CMIP6) are used to
investigate the potential future evolution of solar power generation and its main atmospheric
drivers in West Africa. A multi-model analyses carried out revealed a decrease of solar PV potential
throughout West Africa in the 21st century, with an ensemble mean reduction reaching about 12%
in southern parts of the region. In addition, the variability of future solar PV production is
expected to increase with a higher frequency of lower production periods. The projected changes in
the solar PV production and its variability are expected to be predominant in the June to August
season. We found the decrease in the solar PV potential to be driven by a decrease of surface
irradiance and an increase of near-surface air temperature. However, the decrease of the surface
irradiance accounted for a substantially larger percentage of the projected solar PV potential. The
decrease in surface irradiance was further linked to changes in both cloud cover and aerosol
presence, although generally much more strongly for the former.

1. Introduction

In West Africa (WA), the conversion of solar irradi-
ance into electricity with photovoltaic (PV) panels is
gradually increasing inmany countries. To reduce the
energy deficit due to increasing populations and elec-
tricity demand in the region, solar electricity gener-
ation is further projected to increase significantly in
the coming years (DeGhetto et al 2016). The interest
in solar electricity generation became apparent after
the Paris Agreement during which many WA coun-
tries committed to develop and utilize solar energy in
the region. Although expected to increase, the present

contribution of solar PV power (PVP) to total electri-
city generation is less than 1% in all of sub-Saharan
Africa (IEA 2019). By the end of 2015, the total solar
PV installation in all of Africa stood at just 2100 MW
with more than 60% in southern Africa (IRENA
2016). Nevertheless, there are plans to construct large
solar farms across the region (Moner-Girona et al
2017).

While the solar resource is abundant in WA
(Hermann et al 2014), climate factors may reduce
it or affect its conversion to energy (Dajuma et al
2016, Danso et al 2020). Intense cloudiness, higher
temperatures, and dust which negatively affect solar
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PVP are all abundant in WA (Knippertz and Todd
2012, Gbobaniyi et al 2014, Danso et al 2019). Some
recent studies have investigated the current potential
(e.g. Yushchenko et al 2018) of solar PVP as well as
the direct impacts of atmospheric conditions on the
solar resource over historical periods in the region
(e.g. Bonkaney et al 2017). However, climate change
is expected to modify the atmospheric conditions
that influence solar PVP. It is therefore important
to account for the potential climate change impacts
in the long-term solar PVP development, generation,
and management planning in the region.

Presently inWAand even across the entire African
continent, only a few studies have attempted to
address the issue of climate change impacts on solar
energy potential (Bichet et al 2019, Soares et al
2019, Sawadogo et al 2020). These studies estim-
ated a decrease in the future solar PVP potential in
WA. Most of them were based on the historical and
some representative concentration pathway (RCP)
future scenarios from climate models included in
the Coupled Model Intercomparison Project Phase 5
(CMIP5) (Taylor et al 2012). However, climate model
projections are evolvingwith the inclusion of updated
andmore inclusive future emission and land use scen-
arios (Riahi et al 2017, Meinshausen et al 2020). In
the new CMIP6 (Eyring et al 2016), future projec-
tions produced in the Scenario Model Intercompar-
ison Project (ScenarioMIP) (O’Neill et al 2016) are
based on human and societal development possibilit-
ies incorporated into the RCPs. The new set of human
and societal development possibilities known as the
shared socioeconomic pathways (SSPs) (O’Neill et al
2014) are based on updated data on recent emission
trends. Moreover, CMIP6 has been shown to per-
form better than CMIP5 in the representation of the
historical climate in many regions around the world
(Gusain et al 2020, Luo et al 2021, Thorarinsdottir
et al 2020, Wang et al 2021), although this has not
been shown yet in WA.

In addition, most of the previous studies are
only focused on estimating changes in the solar PVP
potential. For example, solar PVP potential in WA
is projected to decrease by about 4% in an extreme
warming scenario (Sawadogo et al 2020). However,
the physical atmospheric drivers associated with the
projected changes are not investigated.

In the context presented above, the goal of this
study is to assess the changes in potential solar PVP
in WA based on a relatively large variety of CMIP6
climate models. We will focus on the changes to the
mean, and to some extent, the variability of solar
PVP. We will also investigate changes in some of the
main climate factors (irradiance, temperature, cloud
cover, and dust.) that may influence the projected
PVP changes.

A description of the study area, data, andmethod-
ology is presented in section 2. Section 3 will present

the different global climatemodel (GCM) projections
of solar PVP changes and their associated climate
drivers in WA. Section 4 will discuss the results and
conclude the study.

2. Data andmethodology

2.1. Study area
This study is performed over the whole of WA
(figure 1); however, we emphasize some results over
specific areas in the region (rectangular windows
in figure 1). These areas are located in the Guinea
(also called Guinea Coast) and Sahel climate zones
of WA; these two areas are chosen for their dis-
tinct climate conditions (Gbobaniyi et al 2014) and
because they contain numerous solar PV energy pro-
jects (Moner-Girona et al 2017).

Solar PV energy is seen as a viable option to supply
part of the rising electricity demand inWA.While the
current contribution of solar PVP to total electricity
generation is significantly lower than 1%,manywork-
ing scenarios, including the African Agenda 2063
(DeGhetto et al 2016) project a significant increase in
its share by the middle of the 21st century.

2.2. Data
Fourteen CMIP6 climate models (table 1) are selec-
ted to assess the potential impact of climate change
on future solar PVP and its atmospheric drivers in
WA. The selection of the 14 climate models was
primarily based on the availability of the main vari-
ables used in the estimation of solar PVP at a three-
hourly temporal resolution for both the historical
and future periods. The 14-model ensemble size
has been deemed large enough in a similar study
for wind energy in WA (Akinsanola et al 2021).
The main variables used in PVP estimation are
the global horizontal irradiance, GHI (in Wm−2)
and the near-surface air temperature, Ta (in ◦C).
We first performed an evaluation of these variables
with satellite and reanalysis data for all models and
the multi-model ensemble mean (hereafter ensemble
mean) in the historical period (see figures S1 and
S2 in supplementary material available online at
stacks.iop.org/ERL/17/044016/mmedia). We further
analyse some cloud and aerosol variables to invest-
igate the drivers of the solar PVP change. However,
these additional variables were available at monthly
timescale.

The future solar PVP potential is estimated under
the new SSP5-8.5 scenario. This scenario is an update
of the RCP8.5 in CMIP5, which was used in many cli-
mate impacts studies over WA in the last decade (e.g.
Ajayi and Ilori (2020); Diedhiou et al (2018); Klutse
et al (2018)). With a radiative forcing trajectory close
to the highest RCP8.5, the SSP5-8.5 is at the upper end
of all the CMIP6 scenarios in terms of fossil fuel use,
energy consumption, food demand and greenhouse
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Figure 1.Map of West Africa showing selected key areas for further analysis.

Table 1. Selected CMIP6 GCMs used for the study, and their
resolutions.

Model Resolution Reference

ACCESS-CM2 1.875◦ × 1.25◦ Bi et al (2020)
AWI-CM-1-1-MR 0.938◦ × 0.935◦ Semmler et al

(2020)
BCC-CSM2-MR 1.125◦ × 1.121◦ Wu et al (2019)
CanESM5 2.812◦ × 2.791◦ Swart et al (2019)
CMCC-CM2-SR5 1.25◦ × 0.942◦ Cherchi et al

(2018)
CMCC-ESM2 1.25◦ × 0.942◦ Cherchi et al

(2018)
CNRM-CM6-1 1.406◦ × 1.401◦ Voldoire et al

(2019)
EC-Earth3 0.703◦ × 0.702◦ Döscher et al

(2021)
GFDL-ESM4 1.25◦ × 1◦ Dunne et al

(2020)
IITM-ESM 1.875◦ × 1.905◦ Krishnan et al

(2019)
MPI-ESM1-2 h 0.938◦ × 0.935◦ Müller et al

(2018)
MRI-ESM2-0 1.125◦ × 1.121◦ Yukimoto et al

(2019)
NESM3 1.875◦ × 1.865◦ Yang et al (2020)
TaiESM1 1.25◦ × 0.942◦ Lee et al (2020)

gas emissions, leading to high socio-economic chal-
lenges to be addressed with more ambitious climate
targets. According to Kriegler et al (2017), the SSP5-
8.5 scenario provides useful reference points for the
study of future climate change and its impact, and for
assessing adaptation and mitigation measures.

Since the focus of the study is on changes in
solar PVP, we base our computations on only peri-
ods when solar radiation is available. As a result,
only daytime hours are used in the computations of

solar PVP. The computations are made for the his-
torical (1980–2014) and future (2015–2084) periods.
The future period is divided into two: the near-future
from 2015 to 2049 and the far-future from 2050 to
2084.

2.3. Estimation of changes in potential solar PVP
generation
There are many models for estimating solar PVP
generation, ranging from simple models that take a
few climate parameters as inputs (e.g. Perpiñan et al
(2007)) to more complex models that take more than
a few parameters (e.g. Jerez et al (2015)). Here, we
implement a model that estimates the solar PVP gen-
eration using the effective surface irradiance received,
Is (Wm−2), at an optimal tilt angle and near-surface
air temperature Ta (◦C) (François et al 2016). Is is
computed using the CMIP6models’ GHI and follow-
ing the method described by McPherson et al (2017).
At a given time t in a grid box i, solar PVP is given as:

PVP(i, t) =BIs (i, t)(1−µ(Ta (i, t)−Tc,STC)

−µCIs (i, t)) (1)

where B is an efficiency coefficient defined as the
product of the surface area (m2) of the solar PV array
and the efficiencies of the solar PV generator and
inverter. µ and C are the temperature and radiation
dependent efficiency reduction factors respectively.
These two are specific to a given PV technology and
ensure that PV cell efficiency changes due to temper-
ature and irradiance are accounted for. Tc,STC (25 ◦C)
is the PV cell temperature corresponding to standard
test conditions. We note that B, µ, and C are likely to
change in future due to technological developments.
However, without any specific information on future
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development, we maintain these parameters con-
stant; the results here are thus independent of tech-
nological advances.

Solar PVP was estimated for a generic PV array
with a peak power of 1 kW (characteristics provided
in supplementary material). For our analysis, the
solar PVP time series from 1980 to 2084 is normal-
ized such that the mean value for the entire period is
1 (i.e. each element is divided by the mean of the time
series). Relative to the historical period, the change
in potential future solar PVP generation (∆PVP) is
estimated as:

∆PVP=
PVPfut−PVPhist

PVPhist
× 100% (2)

where, PVPhist andPVPfut are the historical and future
solar PVP generations respectively. The statistical sig-
nificance of the estimated changes is assessed using
the student’s t-test. The absolute (unnormalized)
annual mean solar PVP produced with the generic
solar PV array for the historical and future periods as
well as their differences are provided in the supple-
mentary material.

The individual contributions of Is and Ta to the
future changes in PVP are also estimated. This is
simply achieved by computing the future PVP gener-
ation by keeping either of Is andTa fixed to the histor-
ical period (i.e. using its historical time series) while
the future time series of the other variable is used. In
other words, to estimate the individual contribution
of Is, the historical Is and the future scenario Ta are
used for the future scenario PVP computation. Then,
for the individual contribution ofTa, the historicalTa

and the future scenario Is are used for the future scen-
ario PVP computation:

∆PVP∆Is =
PVP∆Is −PVPhist

PVPhist
× 100% (3)

∆PVP∆Ta =
PVP∆Ta −PVPhist

PVPhist
× 100% (4)

where ∆PVP∆Is and ∆PVP∆Ta are the first order
future changes in PVP generation due to changes in
irradiance (PVP∆Is) and air temperature (PVP∆Ta)
respectively. These are estimated as:

PVP∆Is (i, t) =BIsFUT (t, i)(1−µ(TaHIST (i, t)−Tc,STC)

−µCIsFUT (t, i)) (5)

PVP∆Ta (i, t) =BIsHIST (t, i)(1−µ(TaFUT (i, t)−Tc,STC)

−µCIsHIST (t, i)) (6)

where IsHIST and IsFUT are the historical and future irra-
diance time series respectively and TaHIST and TaFUT are
the historical and future air temperature time series
respectively.

3. Results

3.1. Changes in future solar PVP generation
Relative to the historical period, solar PVP generation
is projected to decrease over the 21st century across
the entire WA (figure 2). The ensemble mean (for all
14 models) change for the two future periods indic-
ates that the reduction in solar PVP will be stronger
during the second part of the century and especially
over the southern part of the region where it is pro-
jected to decrease between 10%–12% in some places
(figures 2(a) and (b)); note that projections of annual
average change made by the individual climate mod-
els over the entire region can be found in the supple-
mentary material (figures S3 and S4). Although the
reduction of solar PVP agrees with previous studies
(Bichet et al 2019, Soares et al 2019, Sawadogo et al
2020), it is important to note that the magnitude of
the estimated decrease in this study is at least twice.
This can be attributed to the new and updated emis-
sion trends used in the CMIP6 climate models.

Across the individual climate models, the sign of
the annual average change in solar PVP is largely
consistent over the land areas of WA. This is shown
by the 5th and 95th interpercentile range of change
across the different models (figures 2(c)–(f); bounds
of the 90% confidence interval). In both future peri-
ods, the CMIP6 climate models project solar PVP
decreases over most parts of the region except a few
areas in southwestern WA where an increase of up
to 1% can be seen in some models (figures 2(e) and
(f)). On the other hand, the results show that the
decrease in annual average solar PVP potential can
be much intense in some models than the ensemble
mean (figures 2(c) and (d)). This is especially notice-
able in the second part of the 21st century during
which solar PVP reduction in southernWA can reach
more than 22% in some models.

We further analysed the evolution of solar PVP
in two key sub-regions. Figures 3(a)–(c) show the
temporal evolution of the ensemble mean solar PVP
potential in the Guinea and Sahel areas respect-
ively. From 1980 to 2084, solar PVP potential in
both areas steadily decreases, presenting significant
downward trends. However, the Guinea area presents
a slightly steeper downward trend, reducing at a
rate of 0.001 yr−1 (normalized value) compared to
0.0008 yr−1 in Sahel.

In addition, figures 3(b)–(d) show the distribu-
tion of the normalized monthly mean solar PVP
with violin plots for the three periods. This choice
of graphical representation was used since it makes
it possible to compare the distributions of PVP for
the different periods and regions, (i.e. the overlaid
density plots on the boxplots) in addition to having a
normal boxplot. The downward trends as shown pre-
viously lead to a decrease in the mean and median
values (white star and dot) in both areas, moving
from historical to the future periods. In general, the
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Figure 2.Multi-model ensemble (14 models) mean annual potential solar PVP change (%) for the (a) near-future (2015–2049)
and (b) far-future (2050–2084) under the SSP5-8.5 relative to the historical period (1980–2014). Areas where changes are
significant at a 95% confidence interval are indicated with a dot. Also shown are the interpercentile range of the change,
(c), (d) Q05 and (e), (f) q95 across all models in the ensemble.

Figure 3. Time evolution including trend lines (top row) and violin plots showing the distribution (bottom row; for the historical,
near- and far-future periods) of the normalized solar PVP in the Guinea and Sahel areas of West Africa. The white dot and ∗

symbols on the violin plots represent the distributions’ median and mean values respectively. The green box is the interquartile
range.

shape of the distribution does not change so much
from one period to the other. In the Guinea area for
instance, the upper limit of the monthly solar PVP
production is notmuch different for all three periods.

In addition, the skewness of the distribution is con-
served from the historical to future periods (i.e. mean
is always less than the median in Guinea (negatively
skewed); opposite for the Sahel area). However, the
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Figure 4. Same as figures 3(b)–(d) but for the MAM (March to May) and JJA (June to August) seasons.

lower limit for the historical period is much higher
when compared to the future periods. This indic-
ates that the frequency of periods with lower produc-
tions will increase in the future; it explains the lower
mean and median values in the future. This is also
true for the Sahel area. It is also interesting to note
that the length of the interquartile range (green box)
increases from the historical to future period, indicat-
ing an increasing variability of solar PVP production.
It should however be noted that the observed increase
in solar PVP variability could be due to increased
variations in the inter-annual and/or annual cycles
but could be dominated by the latter. This is because
the monthly solar PVP values which have a strong
annual variation (see figure S5), were normalized
with respect to the long-term mean of all months.

We further investigated the seasonality of the dis-
tributions. Figure 4 presents the distributions of the
solar PVP for the MAM (March, April, May) and
JJA (June, July, August) seasons. We only focused on
these seasons because (1) the highest solar PVP pro-
duction in the entire WA occurs in MAM (figure S5)
due to the high incoming solar radiation (Danso et al
2020) and (2) the JJA season is the cloudiest in WA
which leads to the lowest solar PVP production in the
Guinea region (not necessarily in Sahel). In Guinea,
the mean and median appear to not change from the
historical to the future periodsMAM (figure 4(a)). In
addition, there is no clear change in the length of the
interquartile range between the three periods. On the

other hand, there are clear differences in themean and
median values during JJA (figure 4(b)). This is per-
haps an indication that cloud cover in the Guinea area
will increasemore in the future during JJA.Moreover,
the variability of solar PVP production will increase
more in future during JJA as shown by the longer
lengths of the interquartile range in the future peri-
ods. In the Sahel area, both seasons present a clear
decrease of themean andmedian values from the his-
torical to the future periods (figures 4(c) and (d)). In
JJA however, there is an obvious change in the shape
of the distribution as well as an increase in the vari-
ability of solar PVP production.

The large reduction in the JJA solar PVP poten-
tial is seen further in figure 5 which shows the pro-
jected ensemble mean change in the annual cycle
(solid curves) and the spread among the different
climate models (shaded areas). The ensemble mean
change is negative (decreasing potential) throughout
the cycle for both future periods in the Guinea and
Sahel areas. However, the largest reductions occur
from June through to October with a change of up
to about−15% (−7%) and−11% (−5%) during the
far-future (near-future) in Guinea and Sahel respect-
ively. This period also presents the largest uncertainty
of change as indicated by the large spread among
the individual climate models. On the other hand,
the spread is less and remains fairly constant for all
other periods in the average annual cycle. Although
some individual models may present positive change
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Figure 5. Relative changes in the mean annual cycle of
potential solar PV generation in the Guinea and Sahel areas
of West Africa under the SSP5-8.5. Solid curves represent
the multi-model ensemble mean whereas the shaded
regions represent the spread across all the models in the
ensemble (Q05 and q95).

projections in parts of the cycle, the amplitude of the
change’s spread is largely in the negative range.

Figure 6 presents the estimated annual average
change of solar PVP potential for the individual cli-
mate models in the two sub regions and the statist-
ical significance. All models project an overall aver-
age annual reduction for both future periods in the
two areas. Although all models agree on the sign of
change, there is a wide inter-model variability of the
magnitude. However, all models project statistically
significant reduction in the solar PVPpotential except
in the case of TaiESM1 in the Guinea region.

3.2. Drivers of projected changes in solar PVP
The projected change in future solar PVP is driven
by changes in the underlying atmospheric physical
parameters that could impact the production. Here,
we first explore the direct impacts of the changes
in incoming solar irradiance and air temperature on
future solar PVP production under the SSP5-8.5.
Changes in other atmospheric parameters such as
wind speed and humidity may also affect solar PVP
but their impacts in WA are very small as shown by
Bichet et al (2019) and Sawadogo et al (2020), hence,
they were not considered.We then explore the impact
of changes in cloudiness and aerosols on changes in
solar PVP.

3.2.1. Surface irradiance and temperature
Figure 7 presents the ensemble mean change in the
solar PVPpotential that is directly induced by changes
in near-surface air temperature (a–b) and surface
irradiance (c–d) over the entireWA for the two future
periods. Temperature changes in the near-future have
almost no impact the solar PVP potential over the
entire region. On the other hand, changes in surface
irradiance induce a larger impact, reducing the solar
PVP potential up to about 6% in the south and 2%
in the north of WA. In the far-future, the impact of
temperature changes on solar PVP potential is larger
than in the near-future, inducing a reduction of up
to 2% in the entire north of WA and large portions
of the south. Nevertheless, the change in the solar
PVP potential induced by solar irradiance is far lar-
ger. It is largest in southern WA where solar irradi-
ance changes can lead to a reduction upwards of 10%
in some areas.

While the temperature-induced future change in
solar PVP potential is small, this does not necessarily
imply that the future temperature change will not be
significant, especially for the far-future. Indeed, the
14-model ensemble mean projects increasing tem-
peratures over the entire region in the 21st century
(figure S6). In both near and far-future periods, the
northern part of the region will experience a higher
increase than the south. In the far-future, the air tem-
perature is expected to increase upwards of 3.5 ◦C
in large parts of northern WA under the SSP5-8.5.
In contrast, solar irradiance will decrease over the
entire region with the largest reduction over south-
ernWA.Both of these situations negatively affect solar
PVP production; higher temperatures reduce the effi-
ciency of the PV cells and the lower irradiance will
lead lower PV energy. However, as already shown
in figure 7 the projected surface irradiance decrease
will be the predominant cause of solar PVP poten-
tial reduction rather than the temperature increase.
The predominance of surface irradiance over temper-
ature on the projected changes in solar PVP potential
is true for most of the climate models included in the
ensemble (figure S7).

3.2.2. Cloudiness and aerosols
The irradiance received on the surface depends on
the variability of atmospheric reflectivity and/or
absorptivity due to cloud cover (Danso et al 2020) and
suspended aerosol particles (Papadimas et al 2012) in
the atmosphere. Future changes in the cloud and aer-
osol properties will thus drive the projected changes
in surface irradiance. For clouds, we explore the rela-
tionship between the change in the cloud water path
(CWP) and the change in surface irradiance. For
aerosols, we explored the relationship between the
change in the aerosol optical depth (AOD) at 550 nm
and the change in surface irradiance. CWP is directly
related to the optical depth of clouds that determines

7
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Figure 6. Annual mean solar PVP change (%) for all GCMs and the multi-model ensemble (MME) mean in the Guinea and Sahel
areas for the (a) near-future (2015–2049) and (b) far-future (2050–2084) under the SSP5-8.5 relative to the historical period
(1980–2014). Stars next to values show the levels of significance (i.e. (∗) p-value < 0.05, (∗∗) p-value < 0.01, (∗∗∗)
p-value < 0.001). Values with no stars are not significant.

Figure 7.Multi-model ensemble (14 models) mean annual potential solar PV power generation change (%) induced by projected
changes in the (a), (b) near-surface air temperature only, and (c), (d) surface irradiance only. The changes are estimated for the
near- (2015–2049) and far-future (2050–2084) periods under the SSP5-8.5 relative to the historical period (1980–2014). Areas
where changes are significant at a 95% confidence interval are indicated with a dot.

the amount of sunlight reflected by clouds. Thus,
increasingCWP is expected to decrease the amount of
incoming solar radiation. Similarly, aerosols directly
absorb and/or scatter part of the incoming radiation
(Kosmopoulos et al 2017) and also influence the radi-
ative properties of the clouds in the region through
the Twomey effect (Jose et al 2020).

We used multiple linear regression to determine
the relationship (at monthly timescale) that change
in solar irradiance has with changes in CWP and/or
AOD between the historical and future periods. It
was found that most models show a large adjusted
R2 (figure S8) indicating that changes in CWP and
AOD can largely explain the change in the incoming

8
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Figure 8. Coefficients (W m−2) estimated from multiple regression of cloud water path (βCWP) and aerosol optical depth (βAOD)
changes with surface irradiance change for the near- and far-future relative to the historical period for some GCMs in the (a), (b)
guinea and (c), (d) sahel areas. Only GCMs providing both AOD and CWP data are shown here.

radiation. The coefficients from the multiple regres-
sion were further examined to determine the most
dominant variable. Figure 8 presents the coefficients
(slopes) from the regression between changes in CWP
and AOD (predictor variables), and the change in
surface irradiance (response variable) in Guinea and
Sahel for the 7 climate models which have these vari-
ables for the historical period and SSP5-8.5. As expec-
ted, all models present negative coefficients between
CWP and AOD changes and the surface irradiance
changes in both future periods for the 2 sub-regions.
This suggests that a unit increase in either CWP or
AODwill lead to a reduction of the surface irradiance
to some extent.

Although the signs of the coefficients are the same
for the two variables across all models, the mag-
nitudes differ. The results reveal that the coefficients
of CWP have far larger magnitudes than AOD. This
means that an increase in the CWPwill generally trig-
ger a considerably greater reduction in the irradiance
than an increase in the AOD. These results suggest
a larger impact of cloudiness than the aerosol load
on the projected future decrease in surface irradiance.
This true for all models with the exception of GFDL-
ESM4 and MPI-ESM1-2HR which shows very sim-
ilar coefficients for the two variables in the Guinea
region in both future periods. There may be other
factors that contribute to changes in irradiance in the
future such as water vapour. Moreover, both the dir-
ect and indirect effects of aerosols could have different
impacts on the incoming radiation. These are how-
ever not assessed in this study.

4. Discussion and conclusion

Under the SSP5-8.5 scenario, this study finds that the
solar PVP generation in the 21st century overWAwill
decrease. This result is generally in agreement with
findings of previous studies in the region (Bichet et al
2019, Sawadogo et al 2020) although the magnitude
of the decreasing potential is substantially different.
For example, the 14-model ensemble mean reveals
up to about 12% decrease during the second part of
the 21st century in parts of southern WA which is
more than double when compared to previous find-
ings. Individually, all climate models also project an
annual average reduction in future solar PVP albeit a
large inter-model spread.

In current climate conditions, solar PV has
been shown to be cost-effective (Oyewo et al 2020,
Moner-Girona et al 2021) among other sources
in WA, although, the reliability can be location-
dependent (Plain et al 2019). Moreover, recent devel-
opment of PV markets in countries like Brazil, Chile,
Jordan,Mexico, Peru and SouthAfrica has shown that
solar PV can now compete with fossil fuels in terms of
levelized cost, even in the absence of financial support
(IRENA 2016) which is perceived as the major bar-
rier for large-scale PV installations in WA. Without
considering political factors, it is thus surprising that
with the abundance of solar resource, the current
installation of PV plants is very low in the region.
Additionally, it is unclear and presently an ongo-
ing debate, whether the presently low development
and utilization is due to current climate conditions
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or not. However, from the results of this study and
previous findings, a question that arises in discus-
sions is whether the projected changes in solar PVP
potential will affect the growth of solar energy in the
region.

It is of the view of the authors that the projec-
ted decreasing resource availability will not change
much the cost-effectiveness of solar-PVprojects in the
region—even for the model with the largest reduc-
tion. This is because WA receives far more solar radi-
ation than many regions in the world. In the cur-
rent climate conditions, most countries inWA receive
more than twice the solar radiation ofmany European
countries. Nevertheless, countries like Germany have
successfully implemented cost-effective utility-scale
PV projects. Additionally, PV conversion technolo-
gies will likely improve in the future, although this
was not considered. Therefore, we are of the view
that with the right policies, which remains a key
obstacle in the solar industry in WA (Adenle 2020),
and robust planning in place, successful implement-
ation can be made in future regardless of the projec-
ted decrease in the solar resource. These could mean
improving the predictability of the solar resource in
the region and investigating how it will change in the
future.

The impact of changing climate on the reliabil-
ity of PV production in future becomes one of the
critical points to consider. Danso et al (2020) showed
that moving from one year to another in the current
climate, the solar radiation received during JJAS is
associated with a higher uncertainty than other peri-
ods in the year. Our results have shown that in the
future, the variability of solar PVP will increase as
shown by a longer interquartile range with the fre-
quency of lower production periods further increas-
ing (figure 3). However, the increase in variability and
lower production frequency is mainly notable dur-
ing the JJA season as shown in figure 4. Such a result
implies that the reliability of solar PVP will decrease
further in future for the JJA season.

For offgrid and/or micro-grid standalone PV sys-
tems, especially in rural areas, this may create sig-
nificant challenges for power supply. This could be
mitigated by investing greatly in energy storage sys-
tems. Studies are needed to further investigate how
the persistence of low production periodsmay change
in future climates. For grid-connected utility-scale PV
systems, an increase in the power system flexibility
may be enough to deal with this situation. Power sys-
tem flexibility may come from energy storage and
transport, demand-side management, diversity, and
hydropower operations (Kies et al 2016, Weitemeyer
et al 2016, Danso et al 2021). In future studies, it could
thus be necessary to investigate how current system
flexibility potentialmay also be impacted in the future
climate. For both offgrid and grid-connected systems,
it is also important to investigate how electricity

demand, and its covariation with the multiscale vari-
ability of the solar resource will change in future.

This study is the first in WA to use the state-of-
the-art CMIP6 climate models to contribute to the
current portfolio of research on the future of solar
energy. Our results are based on the future projec-
tions of the SSP5-8.5 scenario—the high-end scen-
ario. Thus, the results provided here encapsulates the
worst possible future outlooks. It is therefore import-
ant to also explore the future outlook of solar PVP
based on other CMIP6 future scenarios in order to
have a complete assessment of the uncertainty in
future climate projections.
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