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Abstract: This paper proposes an H∞ Non Linear Parameter Varying (NLPV) observer for
fault estimation in semi-active Electro-Rheological (ER) suspensions. The damper fault (a loss-
of-efficiency factor) is modeled as a lost force of unknown/free dynamics to be estimated.
Thanks to the parameter-dependent descriptor-form system modeling, there is no assumption
made on the fault dynamics, thus making this method applicable to all considered types of
damper faults. The nonlinearity in the damper model is bounded by its Lipschitz property,
while the road disturbance and the measurement noise are handled using the H∞ condition.
The observer is parameterized and then designed by solving Linear Matrix Inequalities (LMIs)
and is implemented in a polytopic gain scheduling approach. Synthesis results including Bode
plots and simulations illustrate the method in both the frequency and the time domains.

Keywords: Descriptor form, NLPV observer, fault estimation, semi-active suspension, Lipchitz
condition.

1. INTRODUCTION

In the automotive field, semi-active (SA) suspension sys-
tems are a potential candidate since they offer advantages
in improving driving comfort with better performance
than passive suspension and reduced energy consumption
compared to active ones. There have been a lot of research,
development, and implementation of such SA suspensions
proposed in the literature (see (Savaresi et al., 2010) and
references therein). Thorough reviews about these systems
can be found in (Sename, 2021; Poussot-Vassal et al.,
2012). It is worth noting that the loss of effectiveness
of the SA suspension due to an electrical fault, physical
deformation, or oil leakage may significantly reduce vehicle
performances (Hernández-Alcántara et al., 2016; Morato
et al., 2020). Therefore, fault detection of this system is of
paramount importance for reliability.

For those purposes, a few studies have been concerned with
the modeling of loss of effectiveness of the SA damper,
as seen in (Hernández-Alcántara et al., 2016; Morato
et al., 2020). Furthermore, some recent works have been
dedicated to the study of damper fault estimation (Morato
et al., 2019; Nguyen et al., 2016; Do et al., 2018; Tran
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et al., 2022). In these works, the loss of effectiveness of
the damper is represented in the multiplicative or additive
fault representations to develop a fault observer; however,
the time derivative of the fault is assumed to be zero, which
simplifies the theoretical problem but is not realistic for
the considered system. Among fault estimation methods,
the Proportional Integral (PI) observer (Do et al., 2018;
Guzman et al., 2021) is interesting given that the fault
varies very slowly and can then be modeled as a constant
extra state. Besides, it is important to notice that the two
main requirements concerning the development of the fault
detection methods for the SA suspension are as follows: i)
The schemes have to be able to deal with the bi-viscous
nonlinearity in the SA suspension model; ii) The method
must be able to handle the effect of unknown road profile
disturbances and sensor noise on the estimation error.

To avoid making the slow-variation assumption of the
fault dynamics and handle the requirements mentioned
above, robust observers for descriptor Lipschitz systems
are an interesting approach since the nonlinear function
in the SA suspension model satisfies the global Lipschitz
condition (see (6)). For the last two decades, many theoret-
ical contributions to designing the observers for descriptor
Lipschitz nonlinear systems have been proposed in the
literature (Koenig, 2006; Darouach et al., 2011; Darouach
and Boutat-Baddas, 2008; Darouach et al., 2017; Osorio-



Gordillo et al., 2019; Ha and Trinh, 2004; Delshad et al.,
2016). Those methods also account for disturbance mini-
mization by mean of the H∞, H2, or mixed H∞/H2 crite-
rion. Thus an H∞ robust observer for singular nonlinear
parameter-varying (NLPV) systems has been presented in
(Do et al., 2020), but that method may be conservative due
to assumptions such as bounded energy noise derivative.

In this paper, we consider the problem of estimating addi-
tive damper faults, represented by a loss of effectiveness,
using accelerometers as inputs of the proposed observer
only (to limit the cost over deflection sensors). To reduce
the conservatism in (Do et al., 2020), an extension of
(Delshad et al., 2016) is proposed using the S-procedure to
integrate the Lipschitz condition into the H∞ condition.
Our main contributions are summarized as follows:

• The semi-active suspension system is modeled as a de-
scriptor NLPV formulation without any assumption
on the fault dynamics;

• The results presented in (Delshad et al., 2016) to de-
sign a reduced-order observer are extended to a class
of descriptor NLPV systems, for fault estimation;

• The proposed approach has been simulated on a
quarter-car model built from our suspension testbed
presented in (Pham et al., 2019). The observer per-
formances are then assessed with simulation results
in the time and frequency domain.

2. SEMI-ACTIVE SUSPENSION MODELING

An Electro-Rheological (ER) suspension system is illus-
trated in Fig. 1. More details about this system, as the
model parameters given below and used for simulations
are presented in (Pham et al., 2019).

Fig. 1. Quarter-car model with semi-active suspension.

The well-known quarter-car model in Fig. 1 consists of
the sprung mass ms, the unsprung mass mus, and the
suspension components located between these masses and
the tire which is modeled as a spring of stiffness kt. From
Newton’s second law of motion, the system dynamics
around the equilibrium are{

msz̈s = −Fs − F f
d

musz̈us = Fs + F f
d − Ft,

(1)

where Fs = kszdef is the spring force (zdef = zs −
zus is the deflection); Ft = kt(zus − zr) is the tire

force; the faulty damper force F f
d is given in (3); zs and

zus are the displacements of the sprung and unsprung
masses, respectively; zr is the road displacement input.
The damper force Fd in the healthy case is as follows

Fd = k0zdef + c0żdef︸ ︷︷ ︸
Fpassive

+Fer

Ḟer = −1

τ
Fer +

fc
τ

· u · tanh(k1zdef + c1żdef ),

(2)

where u ∈ [0, 1] is the control input signal representing the
electric field supplied to the ER damper. Taking the loss
of efficiency of the damper into account, the faulty damper
force is

F f
d = Fd − αFd = Fd − f, (3)

where α ∈ [0, 1] is the loss of effectiveness factor; f is the
lost damper force to be estimated. It is remarkable that α
is used to generate the lost damper force in the simulations.
Substituting (3) into (1), we obtain the system dynamics
considering the loss of effectiveness of the damper{

msz̈s = −Fs − Fd + f

musz̈us = Fs + Fd − f − Ft.
(4)

Choosing the state x = (x1, x2, x3, x4, x5, x6)
⊤ = (zs −

zus, żs, zus − zr, żus, Fer, f)
⊤ ∈ R6, the measured output

y = (z̈s, z̈us)
⊤ ∈ R2, the scheduling variable ρ = u ∈ [0, 1],

we rewrite the system dynamics in the descriptor NLPV
form as {

Eẋ = Ax+B(ρ)Φ(Ex) +D1ω

y = Cx+D2ω,
(5)

where ω = (żr ωn)
⊤
, in which żr is the road profile

derivative and ωn is the sensor noise.
The system nonlinearity Φ(Ex) = tanh(k1x1 + c1(x2 −
x4)) = tanh(Γex), with Γe = (k1 c1 0 −c1 0 0), is glob-
ally Lipschitz, i.e., for all (x, x̂) ∈ R6 × R6,

∥Φ(Ex)− Φ(Ex̂)∥ ≤ ∥Γe(x− x̂)∥. (6)

The matrices in (5) are (with k = ks + k0):

E =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 , B(ρ) =


0
0
0
0

fc
ρ

τ

 , D1 =


0 0
0 0
−1 0
0 0
0 0

 ,

A =



0 1 0 −1 0 0
−k

ms

−c0

ms
0

c0

ms

−1

ms

1

ms
0 0 0 1 0 0
k

mus

c0

mus

−kt

mus

−c0

mus

1

mus

−1

mus

0 0 0 0
−1

τ
0

 , D2 =

(
0 10−2

0 10−3

)
,

C =

 −k

ms

−c0

ms
0

c0

ms

−1

ms

1

ms
k

mus

c0

mus

−kt

mus

−c0

mus

1

mus

−1

mus

 .

Note that here rank (E C)
⊤
= 6.

Remark: Thanks to the descriptor system representation,
the dynamics system taking the semi-active damper addi-
tive fault into account is presented without any assump-
tion on the fault dynamics (unlike in Tran et al. (2022)).



3. NLPV OBSERVER DESIGN

In this Section, the reduced-order observer definition for
descriptor systems (Delshad et al., 2016) is extended to a
class of descriptor NLPV systems (5) as follows{

ż = N(ρ)z + J(ρ)y +H(ρ)Φ(Ex̂)

x̂ = Rz + Sy,
(7)

where z ∈ Rnx−ny is the state variable of the reduced-
order observer, x̂ is the estimate of x ∈ Rnx , y ∈ Rny is
the measurement, and ρ ∈ Rnρ is the scheduling parameter
(here nx = 6, ny = 2, and nρ = 1). The observer matrices
N(ρ), J(ρ),H(ρ),R, and S of appropriate dimensions have
to be designed. Let us introduce the dynamic error

ϵ = z − TEx ∈ Rnx−ny , (8)

where the matrix T is an arbitrary matrix.

Differentiating (8) with respect to time and using (5) and
(7), one obtains

ϵ̇ = N(ρ)ϵ+ (N(ρ)T − TA+ J(ρ)C)x

+(J(ρ)D2 − TD1)ω + (H(ρ)− TB(ρ))Φ(Ex̂)

−TB(ρ)(Φ(Ex)− Φ(Êx))

x̂ = Rϵ+ (RTE + SC)x+ SD2ω.

(9)

It is obvious that if the decoupling conditions

N(ρ)TE − TA+ J(ρ)C = 0, (10)

H(ρ)− TB(ρ) = 0, (11)

RTE + SC = I, (12)

are satisfied, the system (9) becomes{
ϵ̇ = N(ρ)ϵ− TB(ρ)∆Φ + (J(ρ)D2 − TD1)ω

e = Rϵ+ SD2ω,
(13)

where e = x̂ − x is the state estimation error and ∆Φ =
Φ(Ex)− Φ(Ex̂).

The problem of the H∞ observer design is thus reduced to
determining the observer matrices N(ρ), J(ρ), H(ρ), R,
and S such that

• All the conditions (10)-(12) are satisfied;
• The effect of the combined disturbance-noise ω on
the state estimation error e is minimized while ∆Φ is
bounded by the Lipschitz condition (6).

3.1 Parameterization of the Observer Matrices

First note that from (11), we get

H(ρ) = TB(ρ).

Therefore, H(ρ) will be given when T is chosen. Now,
in order to determine T and the observer matrices N(ρ),
J(ρ), R, and S of the proposed observer satisfying all the
conditions equalities (10)-(12), parameterization is made
by using the general solution of (10) and (12).

First, from (10) and (12), one obtains(
N(ρ) J(ρ)
R S

)(
TE
C

)
=

(
TA
I

)
. (14)

The equation (14) is solvable if and only if

rank

TE
C
TA
I

 = rank

(
TE
C

)
= nx. (15)

Next, let M ∈ Rnx×nx be an arbitrary matrix of full row
rank such that

rank

(
M
C

)
= rank

(
TE
C

)
= nx. (16)

Then there always exists a parameter matrix K such that(
TE
C

)
=

(
I −K
0 I

)(
M
C

)
⇐⇒ TE = M −KC

⇐⇒ (T K)

(
E
C

)
= M. (17)

A solution for (16) is given by

(T K) = MΣ+, (18)

where Σ = (E C) where Σ+ is any general inverse of
matrix Σ satisfying ΣΣ+Σ = Σ. This is equivalent to

T = MΣ+

(
I
0

)
, K = MΣ+

(
0
I

)
. (19)

Besides, the solution set of (14) is given by(
N(ρ) J(ρ)
R S

)
=

(
TA
I

)(
TE
C

)+

+

(
Z1(ρ)
Z2

)(
I −

(
TE
C

)(
TE
C

)+
)
,

(20)

where

(
Z1(ρ)
Z2

)
is a free matrix of appropriate dimension.

This is equivalent to

N(ρ) = TAα1 + Z1(ρ)β1, (21)

J(ρ) = TAα2 + Z1(ρ)β2, (22)

R = α1 + Z2β1, (23)

S = α2 + Z2β2, (24)

where α1 =

(
TE
C

)+(
I
0

)
, α2 =

(
TE
C

)+(
0
I

)
,

β1 =

(
I −

(
TE
C

)(
TE
C

)+
)(

I
0

)
, and

β2 =

(
I −

(
TE
C

)(
TE
C

)+
)(

0
I

)
.

Remark: If the matrices N(ρ), J(ρ), H(ρ), R, and S can
be chosen according to (21), (22), (11), (23), and (24),
respectively, then all conditions (10)-(12) are fulfilled.

From the results of the parameterization above, for brevity,
the matrices of the system (13) can be rewritten as

A(ρ) = N(ρ) = A11 + Z1(ρ)A12, (25)

B(ρ) = J(ρ)D2 − TD1 = B11 + Z1(ρ)B12, (26)

W(ρ) = −TB(ρ), (27)

C = R = C11 + Z2C12, (28)

D = SD2 = D11 + Z2D12, (29)

where A11 = TAα1, A12 = β1, B11 = TAα2D2 − TD1,
B12 = β2D2, C11 = α1, C12 = β1, D11 = α2D2, and
D12 = β2D2. Notice that all the matrices A11, A12, B11,
B12, C11, C12, D11, and D12 are known and the matrix
W(ρ) is known at each vertex of ρ. Therefore, the observer
design problem is reduced to determining Z1(ρ) and Z2,
which is discussed in the following part.



3.2 Polytopic H∞ Observer Design

Using (25)-(29), we rewrite the estimation error dynamics
(13) as {

ϵ̇ = A(ρ)ϵ+W(ρ)∆Φ + B(ρ)ω
e = Cϵ+ Dω.

(30)

After the parameterization step, while ∆Φ is bounded by
the Lipschitz condition (6), the observer design problem is
now to determine the matrices Z1(ρ) and Z2 such that

• The system (30) is asymptotically stable for ω(t) = 0;
• ∥e(t)∥L2

< γ∥ω(t)∥L2
for ω(t) ̸= 0; γ is minimized.

In this paper, the design of the observer will be carried
out using the polytopic method. It means that we assume
that Z1(ρ) depends in an affine way on the parameter ρ.
In such a case, the design method is restricted to solving
the given problem only to get the vertices Z1,i of Z1(ρ)
formed when ρ varies within its bounds (Apkarian et al.,
1995). Theorem 1 then solves the observer design problem
in an LMI framework.

Theorem 1. Consider the system model (5) and the ob-
server (7). The observer design problem is solved if there
exist matrices X = X⊤ > 0, Yi, Z2, and a scalar κ > 0
minimizing γ such that

Ω11,i XW(ρi) Ω13,i Ω14 Ω15

W⊤(ρi)X −κI 0 0 0
Ω⊤

13,i 0 −γ2I Ω34 Ω35

Ω⊤
14 0 Ω⊤

34 −I 0
Ω⊤

15 0 Ω⊤
35 0 −κI

 < 0, (31)

for ρi, i = 1, 2, . . . , 2nρ at the 2nρ vertices of ρ, where
Ω11,i = A⊤

11X +XA11 +A⊤
12Y

⊤
i + YiA12; Ω13,i = XB11 +

YiB12; Ω14 = C⊤
11 + C⊤

12Z
⊤
2 ; Ω15 = C⊤

11Γ
⊤
e + C⊤

12Z
⊤
2 Γe;

Ω34 = D⊤
11 + D⊤

12Z
⊤
2 ; Ω35 = D⊤

11Γ
⊤
e + D⊤

12Z
⊤
2 Γ⊤

e . Then,
Z1,i for each vertex of ρ is found as Z1,i = −X−1Yi.

Proof. Consider the Lyapunov function candidate

V = ϵ⊤Xϵ. (32)

Differentiating V along the solution of (30) yields

V̇ = ϵ̇⊤Xϵ+ ϵ⊤Xϵ̇

= (A(ρ)ϵ+W(ρ)∆Φ + B(ρ)ω)⊤Xϵ

+ ϵ⊤X(A(ρ)ϵ+W(ρ)∆Φ + B(ρ)ω). (33)

To satisfy the performance objective with respect to the
L2 gain disturbance attenuation, we must satisfy the
inequality

V̇ + e⊤e− γ2ω⊤ω < 0 ⇐⇒
ϵ⊤(A(ρ)⊤X +XA(ρ) + C⊤C)ϵ+∆Φ⊤W⊤(ρ)Xϵ

+ ϵ⊤XW(ρ)∆Φ + ω⊤(B(ρ)⊤X + D⊤C)ϵ
+ ϵ⊤(XB(ρ) + C⊤D)ω + ω⊤(D⊤D− γ2I)ω < 0. (34)

Defining η =

(
ϵ

∆Φ
ω

)
, one obtains

V̇ = η⊤Q1(ρ)η < 0, (35)

whereQ1(ρ) =

 Ω(ρ) XW(ρ) XB(ρ) + C⊤D
W⊤(ρ)X 0 0

B(ρ)⊤X + D⊤C 0 D⊤D− γ2I

,

where Ω(ρ) = A(ρ)⊤X +XA(ρ) + C⊤C.

From (6), the following condition is obtained

(Φ(Ex)− Φ(Ex̂))⊤(Φ(Ex)− Φ(Ex̂)) ⩽ e⊤Γ⊤
e Γee

⇐⇒ (∆Φ)⊤∆Φ ⩽ (Cϵ+ Dω)⊤Γ⊤
e Γe(Cϵ+ Dω)

⇐⇒ η⊤Q2η ⩽ 0, (36)

where Q2 =

−C⊤Γ⊤
e ΓeC 0 −C⊤Γ⊤

e ΓeD
0 I 0

−D⊤Γ⊤
e ΓeC 0 −D⊤Γ⊤

e ΓeD

.

By applying the S-procedure (Boyd et al., 1994) to the

inequalities (35) and (36), we have that V̇ +e⊤e−γ2ω⊤ω <
0 if there exists a scalar κ > 0 such that

V̇ + e⊤e− γ2ω⊤ω − κ(η⊤Qη) < 0

⇐⇒ η⊤(Q1(ρ)− κQ2)η < 0. (37)

The condition (37) is equivalent to

Q1(ρ)− κQ2 < 0

⇐⇒

 Ωa(ρ) XW(ρ) Ωb(ρ)
W⊤(ρ)X −κI 0
Ωb(ρ)

⊤ 0 Ωc

 < 0, (38)

where Ωa(ρ) = A(ρ)⊤X + XA(ρ) + C⊤C + κC⊤Γ⊤
e ΓeC,

Ωb = XB(ρ) + C⊤D + κC⊤Γ⊤
e ΓeD, and Ωc = D⊤D +

κD⊤Γ⊤
e ΓeD− γ2I.

Applying Schur’s complement to (38), one obtains
Ω1(ρ) XW(ρ) XB(ρ) C⊤ C⊤Γ⊤

e

W⊤(ρ)X −κI 0 0 0
B⊤X 0 −γ2I D⊤ D⊤Γ⊤

e
C 0 D −I 0

ΓeC 0 ΓeD 0 −κI

 < 0, (39)

where Ω1(ρ) = A(ρ)⊤X +XA(ρ).

Substituting (25)-(29) into (39) and letting Yi = −XZ1,i

with Z1,i = Z1(ρi) at each vertex ρi of ρ, we obtain the
LMI (31) at the vertex ρi.

If (31) is satisfied, from (36), (37) implies that

V̇ + e⊤e− γ2ω⊤ω < 0. (40)

Following the steps in (Darouach et al., 2011), we get

∥e(t)∥2L2
< γ2∥ω(t)∥2L2

. (41)

The proof is completed. □

After solving Theorem 1 for the 2 vertices of Z1(ρ) and for
Z2, we solve (21), (22), (11), (23), and (24) for the observer
matrices (at the vertices), then the polytopic convex
computation of the matrix gain is used in implementation
(Apkarian et al., 1995).

4. OBSERVER SYNTHESIS RESULTS

In this Section, the synthesis results of the NLPV observer
are shown. First, the observer proposed in Section 3 is
designed for the system presented in Section 2. Solving
Theorem 1, so the LMIs (31) with vertices ρ1 = 0 and
ρ2 = 1, we obtain the minimum L2-induced gain γ =
2.0078, κ = 160, and the matrices Z1,i, i = 1, 2 and Z2.
According to (21)-(24) the observer matrices at each vertex
are obtained as follows: Ni = TAα1+Z1,iβ1, Ji = TAα2+
Z1,iβ2, for i = 1, 2, R = α1 + Z2β1, and S = α2 + Z2β2.
Then the observer matrices N(ρ) and J(ρ) are deduced by
using convex interpolation.



In Fig. 2 and Fig. 3, the Bode diagrams of the estimation
error systems with respect to the road profile derivative
and sensor noise are shown for the two vertex observers
for parameter values ρ = {0, 1}. These results emphasize
the satisfactory attenuation level (typically of the range
-50 to -100 dB) of the unknown road profile derivative,
and of measurement noise appearing at high frequencies,
on the six estimation errors e with scheduling parameter
ρ1 = 0 (red dashed line) and ρ2 = 1 (blue line).
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Fig. 2. Transfer ∥e/żr∥—Bode diagrams of NLPV observer
with respect to the road profile derivative with ρ1 = 0
(red dashed line) and ρ2 = 1 (blue line).
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Fig. 3. Transfer ∥e/ωn∥—Bode diagrams of NLPV ob-
server with respect to the measurement noise with
ρ1 = 0 (red dashed line) and ρ2 = 1 (blue line).

5. SIMULATION RESULTS

To emphasize the effectiveness of the proposed approach,
simulations are now performed considering the nonlinear
quarter-car model (5). The initial conditions are x(0) =

(0 0 0 0 0 0)
⊤

for the system and z(0) = (0 0.01 0.2 1)
⊤

for the reduced-order observer.

Two simulation scenarios are used to evaluate the perfor-
mance of the observer as follows.

Simulation 1:

• The road profile is sinusoidal;
• The control u (recall ρ = u) is constant at u = 0.3;
• α (as in (3)) increases from 0 to 0.2 at 7s.

Simulation 2:

• An ISO 8608 road profile of Type C is used;
• The control u is obtained from a Skyhook controller.

It is important to note that in such a case, u varies
infinitely fast, which means that the use of the poly-
topic approach is justified;

• α increases from 0 to 0.2 at 5s and then to 0.4 at 10s.
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Fig. 4. Simulation 1: (a) Road profile, (b) Loss-of-efficiency
factor, (c) Fault estimation, and (d) Estimation error.
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Fig. 5. Simulation 2: (a) Road profile, (b) Loss-of-efficiency
factor, (c) Fault estimation, and (d) Estimation error.



The simulation results are shown in Fig. 4 and Fig. 5. It
can be seen that the asymptotic estimation is achieved
with small errors (see Table 1) and for various kinds of
variations in the fault, which highlights the advantage that
our method is appropriate for all fault dynamics.

Table 1. Normalized Root-Mean-Square Errors
(NRMSE).

Simulation NRMSE (-)

Scenario 1 0.0315
Scenario 2 0.0091

6. CONCLUSION

This paper presents an NLPV observer to estimate the
damper fault (modeled as the lost damper force) in SA
ER automotive suspensions. The descriptor NLPV mod-
eling avoids any assumption made on the fault dynamics,
making the approach suitable for any faults. While the
Lipschitz condition is used to bound the system nonlinear-
ity, the combined effects of unknown inputs (road profile
derivative and measurement noise) on the estimation error
are minimized using the H∞ condition. Both frequency-
domain analysis and time-domain simulations assess the
performance of the method.
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