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Near-critical spreading of droplets
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CNRS, Université de Paris, F-75006, Paris, France.
9 Mechanics Division, Department of Mathematics, University of Oslo, 0316, Oslo, Norway.

We study the spreading of droplets in a near-critical phase-separated liquid mixture, using a
combination of experiments, lubrication theory and finite-element numerical simulations. The clas-
sical Tanner’s law describing the spreading of viscous droplets is robustly verified when the critical
temperature is neared. Furthermore, the microscopic cut-off length scale emerging in this law is
obtained as a single free parameter for each given temperature. In total-wetting conditions, this
length is interpreted as the thickness of the thin precursor film present ahead of the apparent contact
line. The collapse of the different evolutions onto a single Tanner-like master curve demonstrates
the universality of viscous spreading before entering in the fluctuation-dominated regime. Finally,
our results reveal a counter-intuitive and sharp thinning of the precursor film when approaching the
critical temperature, which is further attributed to the vanishing spreading parameter at the critical
point and the associated increasing role of critical Casimir forces in the thin precursor film.

PACS numbers:

The spreading of viscous droplets on solid substrates
has been extensively studied over the last decades [IH3].
For droplet sizes smaller than the capillary length [2],
the viscocapillary regime yields a self-similar asymptotic
dynamics, i.e. the so-called Tanner’s law [4], with the
droplet radius R increasing in time t as ~ /10, To estab-
lish this scaling, two ingredients are invoked: a global vol-
ume conservation, and a local balance at the contact line
between driving capillary forces and viscous dissipation
in the liquid wedge. However, such a continuous descrip-
tion implies a finite change of the fluid velocity over a van-
ishing height at the contact line, and thus leads to an un-
physical divergence of viscous stress and dissipation [5].
To solve this paradox, a microscopic molecular-like cut-
off length is required, and appears through a logarithmic
factor in Tanner’s law. In this spirit, theoretical [1, GHI2]
and experimental investigations introduced various pos-
sible regularization mechanisms [I3], including a gravito-
capillary transition [14HI7], surface roughness [16], ther-
mal effects [I8], Marangoni-driven flows [I9], or a slip
condition at the solid substrate [20]. In the particular
case of total wetting, the existence of a thin precursor film
ahead of the contact line has been proposed as a main
candidate [2IH23]. However, despite tremendous efforts
to measure the microscopic length, or to characterize the
associated logarithmic factor, the problem is still open.
Conversely, solving the free-interface dynamical evolu-
tion of a droplet-like perturbation on a thin liquid film
in the lubrication approximation showed that Tanner’s
law can be considered as a negligible-film-thickness limit
of capillary levelling [24]. Such a statement was further
comforted by its extension to the gravity-driven [25] and
elastic-bending-driven [26] cases. As such, it is possible
to unambiguously determine the microscopic precursor-
film thickness from the spreading of any droplet in total-
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FIG. 1: A Schematic phase diagram of the used binary liquid
mixture, where T is the temperature, ® the micelle concentra-
tion, and T, and ®. the coordinates of the critical point. B
Radiation-pressure-induced optical bending of the interface
separating the two coexisting phases at T" > T., where the
downward laser beam is represented by the arrows. C Image
sequence of the optical jetting instability with drop formation
at the tip. D Image sequences of a less-dense-phase droplet of
concentration @, coalescing and spreading over a borosilicate
substrate placed at the bottom of the cell, when surrounded
by the denser phase of concentration ®;. The temperature
distances to the critical point T, the initial droplet volumes
and the time intervals between images are: (a) AT = 8 K,
Vini = 30.3 pL, dt = 3 s; (b) AT = 1 K, Vin; = 21.5 pL,
dt = 20 s.

wetting and lubrication conditions.

In this Letter, we investigate droplet spreading in
a near-critical phase-separated binary liquid [27], with
three main objectives. First, as many fluid properties
vary with the proximity to a critical point according
to power-law variations of the type ~ (AT/T.)%, with
AT = T — T, the temperature distance to the critical
point T, and « some critical exponents, the spreading
dynamics may be continuously and precisely tuned by
varying the temperature. As a side outcome, this also



provides evidence for droplet spreading in a liquid envi-
ronment, which was scarcely studied [28]. Secondly, close
to a fluid-fluid critical point, an isotropic liquid belongs
to the {d = 3,m = 1} universality class of the Ising
model, where d and m are respectively the space and
order-parameter dimensions, so that the results are gen-
eralized to any fluid belonging to the same universality
class. Thirdly, critical phenomena are often accompanied
by a wetting transition at a temperature which might be
either identical or distinct from the critical one [3], so
that precursor films can also be investigated near the
critical point.

The experimental configuration is depicted in Fig.
We use a water-in-oil micellar phase of microemul-
sion [29, [30]. At the chosen critical composition (water,
9% wt, toluene, 79% wt, SDS, 4% wt, butanol, 17% wt),
it exhibits a low critical point at T, close to 38° C,
above which the mixture separates into two phases of
different micelle concentrations (see Fig. [JA). The mi-
croemulsion is enclosed in a tightly-closed fused-quartz
cell of 2 mm thickness (Hellma 111-QS.10X2) which is
introduced in a home-made thermally-controlled brass
oven with four side-by-side windows. As working in a
tight cell is mandatory with critical fluids, we use a con-
tactless optical method to create a wetting drop at the
bottom wall. Note that the microemulsion is transpar-
ent (absorption coefficient smaller than 5 - 10~4cm™1)
at the employed wavelength. The sample is set at a
temperature T > T, and a continuous frequency-doubled
Nd?*+* —YAG (wavelength in vacuum A = 532 nm, TEM
mode) laser beam is focused on the meniscus of the
phase-separated mixture using a x10 Olympus® mi-
croscope objective (N.A.=0.25). The photon momen-
tum mismatch between the two phases, proportional to
the refraction-index contrast, generates a radiation pres-
sure and the interface thus bends (see Fig. [IB) as a
result from the balance between the latter with hydro-
static and Laplace pressures [31]. As the interfacial ten-
sion 7 of near-critical interfaces vanishes at the criti-
cal point, with v = o (AT/T.)*", where v = 0.63 and
70 = 5.0 107°N/m in our case, the interfacial deforma-
tion can be made very large. When the beam propagates
downwards and with sufficient power, the interface can
become unstable (see Fig. ) due to total reflection of
light within the deformation. In this case, a jet is formed,
with droplets emitted at the tip [32, B3]. Note that the
jetting power threshold can also be used to measure the
interfacial tension [32]. The length of the jet can be tuned
with the laser power to bring its tip close to the bot-
tom of the cell, without touching it. Then, by reducing
the power, the jet breaks up into many droplets due to
the Rayleigh-Plateau instability. By increasing again the
power, below the jetting threshold, the laser beam forces
coalescence between several droplets to produce a large
one which can be further pushed by radiation pressure
towards a borosilicate substrate placed at the bottom
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FIG. 2: A Rescaled droplet volume V/Vj as a function of the
rescaled time 1 — ¢/¢¢, with Vj the initial volume and t; the
time of final evaporation, for four different distances to the
critical temperature. The dashed line indicates the empirical
power law (1 —t/t;)*"". Inset: corresponding raw data. B
Contact radius, divided by its initial value Ry, as a function
of time for the same temperatures. The 1/10 power-law expo-
nent of Tanner’s law is indicated with a slope triangle. Inset:
corresponding raw data. C,D Droplet profiles at different
times obtained from experiments (symbols) and compared to
the numerical solutions of Eq. (dashed/dotted lines) for
AT =8 K (C) and AT =4 K (D).

of the cell (see Fig. [[D). We turn off the laser just be-
fore contact, and follow the droplet spreading using x20
or x50 Olympus® microscope objectives, with resolu-
tions of 1.0 and 0.8 pum respectively, and a Phantom®
VEO340L camera for the frame grabbing. Note the ex-
istence of a prewetting film on the substrate, at least up
to AT =15 K [34].

Figure displays two image sequences corresponding
to the coalescence and spreading of droplets at AT = 8 K
and 1 K. The spreading time scale comparatively in-
creases by approximately one order of magnitude for
AT =1 K, as a result of the vanishing interfacial ten-
sion near T.. We also notice that the droplet volumes
reduce over time, indicating the presence of evaporation,
as expected for finite-size objects in an environment at
thermodynamic equilibrium. At the early stages, both
profiles display large curvature gradients. Since our fo-
cus here is on the long-term asymptotic spreading be-
havior, we define the temporal origin ¢t = 0 from a first
experimental image where the curvature is homogeneous,
except near the contact-line region, and a spherical-cap
fit is valid.

Each image sequence is then treated using a custom-
made automatized contour detection based on a Canny-
threshold algorithm, where the droplet profiles corre-
spond to the external maxima of the intensity gradi-
ents. Spherical-cap fits allow to extract the droplet
volume V(t), radius R(t), and apparent contact an-
gle 6(t), which are then averaged using a custom-
made exponentially-increasing time window to get a
logarithmically-distributed data set. In the inset of
Fig. 2A, we plot the experimental droplet volume as a
function of time, for four different values of AT. In all
cases, the volume decreases until the droplet is fully evap-



orated. By defining the time of final evaporation as ts,
we then plot in the main panel the same data in dimen-
sionless form, with V/V} as a function of 1 —t/t;. We ob-
serve a data collapse onto a unique power-law behavior,
with fitted exponent 1.77 which is close to the 11/7 value
theoretically predicted for evaporating droplets [11]. In
Fig.[2B, we further plot the contact radius R, normalized
by its initial value Ry, as a function of time, for all AT. A
Tanner-like power law systematically emerges at interme-
diate times, until evaporation eventually dominates the
evolution. This observation indicates that evaporation
is an quasi-static process compared to spreading, within
the explored temperature range.

To model the observed spreading dynamics, we con-
sider a large initial droplet-like interfacial perturbation
profile d(r,t = 0), with r the radial coordinate, atop a
flat thin film of thickness e, and describe its evolution
through the profile d(r,t) at all times, in the small-slope
limit within the lubrication approximation [2]. Therein, a
horizontal Newtonian viscous flow of viscosity 7 is driven
by the gradient of Laplace pressure. Since most of the dis-
sipation occurs in the wedge-like region near the apparent
contact line [B], we further neglect the influence of viscous
shear stresses in the surrounding phase. The evolution
is then described by the axisymmetric capillary-driven
thin-film equation [24]:

bt o, {m%r (1arh+azh>} =HA-R)f . (1)
3nr T

where h(r,t) = € + d(r,t) is the free-interface height
from the solid substrate, #(1 — R) is the Heaviside step
function with R(t) the advancing radius of the droplet,
and f(¢) is an added coefficient accounting for evapora-
tion. The latter is chosen in order to precisely mimic
the experimentally-measured evaporation (see Fig. 2JA).
Equation is numerically integrated using a finite-
element solver [35]. The experimental radial profiles
depicted in Fig. are chosen as initial profiles, after
angular averaging and smoothening using fourth-order
polynomials in order to avoid unphysical fluctuations re-
lated to the camera resolution and the contour-detection
algorithm. As shown in Figs. and D, the compar-
isons between the experimental and numerical evolutions
reveal an excellent agreement. As the capillary veloc-
ity veap = /7 is independently evaluated (see [29] for
the viscosity calibration), and typically varies between
22 and 1013 pm/s for near-critical droplets within the
AT =1 — 8 K range, the precursor-film thickness € re-
mains the only fit parameter in this comparison, and its
behaviour with temperature will be discussed after.
Tanner’s law [I, 4] can be obtained from the combina-
tion of: i) a local power balance between capillary driv-
ing and viscous damping near the contact line; and ii)
the global volume conservation. The former power bal-
ance reduces to the Cox-Voinov’s law for total-wetting
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FIG. 3: A Rescaled contact radius R'® — R~010 as a function
of rescaled time ¢, for various temperatures AT as indicated.
The dashed lines indicate fits to Eq. , with £ as a free
parameter for each temperature. B Contact angle 6 as a
function of capillary number Ca, for various temperatures AT
as indicated. The dashed lines indicate the predictions of
Eq. , using the ¢ values obtained from the fits in A.

conditions:
0% = 9¢Ca , (2)

where Ca = R/vcap is the capillary number, and ¢ =
In(L/e) is the logarithmic factor discussed in the intro-
duction relating the two cut-off lengths of the problem,
namely a typical macroscopic size L of the system and
a microscopic length which is identified to the precursor-
film thickness € in total-wetting conditions.

To disentangle evaporation, through the V() be-
haviour obtained in Fig.[2JA, from the spreading dynam-
ics, we introduce the following dimensionless variables:

R:R[Mf(t)r/g ’ f:”mpt[zf(t)rB' 2

Tanner’s law [Tl 4] is then written in dimensionless form
as:

~10 510 10
R Ry = Qét R (4)
with Ry = R(t = 0). In Fig. , we plot the rescaled
contact radius as a function of rescaled time, for vari-
ous temperatures. We systematically observe Tanner be-
haviours. Interestingly, from the fits to Eq. , we obtain
increasing values of ¢ as the critical point is neared. This
trend is further confirmed in Fig. BB, where we see Cox-
Voinov behaviours (see Eq. ) at large-enough Ca, with
an identical evolution of ¢ with AT. The departure from
Cox-Voinov’s law at low Ca is due to the evaporation-
induced non-monotonic behavior of R(t) (see Fig. 2B),
resulting in Ca crossing zero for finite values of 6.
Using the ¢ values obtained from the Tanner fits above,
we can then represent all the data onto a single master
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FIG. 4: A Dimensionless Tanner master curve including the
experiments at all temperatures. The dashed line corresponds
to Eq. , The values of the logarithmic factor ¢ were first ob-
tained by fitting the individual experimental data in Fig. [JA
to Eq. (4). B Extracted precursor-film thickness € as a func-
tion of the temperature distance AT to the critical point, as
obtained by fitting individual experimental profiles to numer-
ical solutions of Eq. (see Figs. and D). The dashed
line indicates the empirical power law € = a (AT/T.)*"® with
a = 2.55 mm.

curve, as shown in Fig. @JA. The observed collapse, over
more than two orders of magnitude in time and broad
ranges of material parameters, shows the surprising ro-
bustness of Tanner’s law in the vicinity of the critical
point, despite the increasing roles of evaporation, gravity
and fluctuations.

Finally, Fig. @B shows the extracted precursor-film
thickness € as a function of AT/T.. Strikingly, over
the considered temperature range, we observe a sharp
decrease of € from a fraction of micrometers down to
a nanometer, as the critical point is approached from
above. Over a decade in the considered temperature
range, this behaviour is consistant with the empirical
power law ¢ = a(AT/T.)*", where a = 2.55 mm.
Interestingly, the wetting transition in our system be-
ing located far above the largest temperature studied
here [34], we would have instead expected an increase of ¢,
since the precursor film is here made of the most-wetting
phase [3| [36]. This apparent contradiction may in fact
reveal the existence of an original scenario in the immedi-
ate vicinity of the critical point, with at least two possible
and non-exclusive ingredients. First, and provided that
one can extrapolate the definition of interfaces towards
the critical point, the spreading parameter [I] is expected
to strictly vanish at that point, since the two fluid phases
become indistinguishable media. Secondly, while the
macroscopic droplet spreading appeared above to be well
described by the classical Tanner’s law, critical Casimir
forces may become important in the near-critical and
ultra-thin precursor film. Indeed, Casimir thinning has
been experimentally and theoretically demonstrated [37-
39] when the critical point is neared from the two-phase

4

region, as soon as € ~ &, where & = & (AT/T,)" " is
the correlation length of density fluctuations. For our
micellar phase, £, = 2.1 nm, so that ¢/£ starts from 10
(AT = 8 K), reaches 1 (AT = 4 K), before decreasing to
0.16 (AT = 2 K) and even 0.01 (AT = 1 K). As such, be-
yond revealing the universality of viscous spreading near
a critical point, our results pave the way towards further
investigations closer to that point, with the aims of disen-
tangling the different mechanisms highlighted above, as
well as addressing the increasing contributions of gravity,
evaporation, and eventually thermal fluctuations [40H42].
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