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We study the spreading of droplets in a near-critical phase-separated liquid mixture, using a
combination of experiments, lubrication theory and finite-element numerical simulations. The clas-
sical Tanner’s law describing the spreading of viscous droplets is robustly verified when the critical
temperature is neared. Furthermore, the microscopic cut-off length scale emerging in this law is
obtained as a single free parameter for each given temperature. In total-wetting conditions, this
length is interpreted as the thickness of the thin precursor film present ahead of the apparent contact
line. The collapse of the different evolutions onto a single Tanner-like master curve demonstrates
the universality of viscous spreading before entering in the fluctuation-dominated regime. Finally,
our results reveal a counter-intuitive and sharp thinning of the precursor film when approaching the
critical temperature, which is attributed to the vanishing spreading parameter at the critical point.

The spreading of viscous droplets on solid substrates
has been extensively studied over the last decades [1–3].
For droplet sizes smaller than the capillary length [2],
the viscocapillary regime yields a self-similar asymptotic
dynamics, i.e. the so-called Tanner’s law [4], with the
droplet radius R increasing in time t as ∼ t1/10. To es-
tablish this scaling, two ingredients are invoked: a global
volume conservation, and a local balance at the contact
line between driving capillary forces and viscous dissi-
pation in the liquid wedge. However, such a continu-
ous description implies a finite change of the fluid ve-
locity over a vanishing height at the contact line, and
thus leads to an unphysical divergence of viscous stress
and dissipation [5]. To solve this paradox, a microscopic
molecular-like cut-off length is required, and appears
through a logarithmic factor in Tanner’s law. In this
spirit, theoretical and experimental investigations intro-
duced various possible regularization mechanisms [1, 6–
14], including a gravito-capillary transition [15–18], sur-
face roughness [17], thermal effects [19], Marangoni-
driven flows [20], diffusion [21, 22], or a slip condition
at the solid substrate [23]. In the particular case of to-
tal wetting, the existence of a thin precursor film ahead
of the contact line has been proposed as a main can-
didate [24–26]. However, despite tremendous efforts to
measure the microscopic length, or to characterize the
associated logarithmic factor, the problem is still open.
Conversely, solving the free-interface dynamical evolu-
tion of a droplet-like perturbation on a thin liquid film
in the lubrication approximation showed that Tanner’s
law can be considered as a negligible-film-thickness limit
of capillary levelling [27]. Such a statement was further
comforted by its extension to the gravity-driven [28] and
elastic-bending-driven [29] cases. As such, it is possible
to unambiguously determine the microscopic precursor-
film thickness from the spreading of any droplet in total-
wetting and lubrication conditions.

FIG. 1. A Schematic phase diagram of the used binary liquid
mixture (i.e. a micellar phase of microemulsion, see SI.1),
where T is the temperature, Φ the micelle concentration, and
Tc and Φc the coordinates of the critical point. B Radiation-
pressure-induced optical bending of the interface separating
the two coexisting phases at T > Tc, where the downward
laser beam is represented by the arrows. C Image sequence of
the optical jetting instability with drop formation at the tip.
D Image sequences of a less-dense-phase droplet of concen-
tration Φ2 coalescing and spreading over a borosilicate sub-
strate placed at the bottom of the cell, when surrounded by
the denser phase of concentration Φ1. The temperature dis-
tances to the critical point Tc, the initial droplet volumes
and the time intervals between images are: (a) ∆T = 8 K,
Vini = 30.3 pL, dt = 3 s; (b) ∆T = 1 K, Vini = 21.5 pL,
dt = 20 s.

In this article, we investigate droplet spreading in a
near-critical phase-separated binary liquid [30], with four
main objectives. First and most importantly, close to a
fluid-fluid critical point, an isotropic liquid belongs to
the {d = 3, n = 1} universality class of the Ising model,
where d and n are respectively the space and order-
parameter dimensions, so that the results are immedi-
ately generalizable to any fluid belonging to the same
universality class. Secondly, critical phenomena are of-
ten accompanied by a wetting transition at a tempera-
ture which might be either identical or distinct from the
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critical one [3], so that precursor films can also be inves-
tigated near the critical point. Thirdly, as many fluid
properties vary with the proximity to a critical point ac-
cording to power-law variations of the type ∼ (∆T/Tc)

α
,

with ∆T = T − Tc the temperature distance to the crit-
ical point Tc, and α some positive or negative critical
exponent, the spreading dynamics may be continuously
and precisely tuned by varying the temperature. Finally,
our study also provides evidence for droplet spreading in
a liquid environment, which was scarcely studied [31].

The experimental configuration is depicted in Fig. 1.
We use a water-in-oil micellar phase of microemul-
sion [32, 33], as described in details in the first sec-
tion of the Supplementary Information (SI.1). Briefly, at
the chosen critical composition (water, 9% wt, toluene,
79% wt, SDS, 4% wt, butanol, 17% wt), it exhibits a low
critical point at Tc close to 38◦ C, above which the mix-
ture separates into two phases of different micelle con-
centrations, Φ1 and Φ2 with Φ2 < Φ1 (see Fig. 1A).
The microemulsion is enclosed in a tightly-closed fused-
quartz cell of 2 mm thickness (Hellma 111-QS.10X2)
which is introduced in a home-made thermally-controlled
brass oven with four side-by-side windows. As work-
ing in a tight cell is mandatory with critical fluids, we
use a contactless optical method to create a wetting
drop at the bottom wall. Note that the microemul-
sion is transparent (absorption coefficient smaller than
4.6 · 10−4 cm−1) at the employed wavelength, which pre-
vents any laser-induced heating effect. The sample is
set at a temperature T > Tc and a continuous frequency-
doubled Nd3+−YAG (wavelength in vacuum λ = 532 nm,
TEM00 mode) laser beam is focused on the meniscus
of the phase-separated mixture using a ×10 Olympus®

microscope objective (N.A.=0.25). The photon momen-
tum mismatch between the two phases, proportional to
the refraction-index contrast, generates a radiation pres-
sure and the interface thus bends (see Fig. 1B) as a
result from the balance between the latter with hydro-
static and Laplace pressures [34]. As the interfacial ten-
sion γ of near-critical interfaces vanishes at the criti-
cal point, with γ = γ0 (∆T/Tc)

2ν
, where ν = 0.63 and

γ0 = 5.0 10−5N/m in our case, the interfacial deforma-
tion can be made very large. When the beam propagates
downwards and with sufficient power, the interface can
become unstable (see Fig. 1C) due to total reflection of
light within the deformation. In this case, a jet is formed,
with droplets emitted at the tip [35, 36]. Note that the
jetting power threshold can also be used to measure the
interfacial tension [35]. The length of the jet can be tuned
with the laser power to bring its tip close to the bot-
tom of the cell, without touching it. Then, by reducing
the power, the jet breaks up into many droplets due to
the Rayleigh-Plateau instability. By increasing again the
power, below the jetting threshold, the laser beam forces
coalescence between several droplets to produce a large
one which can be further pushed by radiation pressure

FIG. 2. A Rescaled droplet volume V/V0 as a function of the
rescaled time 1 − t/tf, with V0 the initial volumes and tf the
evaporation times of all droplets, for four different distances
to the critical temperature. The dashed line indicates the em-
pirical power law (1−t/tf)1.77. Inset: corresponding raw data.
B Contact radius, divided by its initial value R0, as a function
of time for the same temperatures. The 1/10 power-law expo-
nent of Tanner’s law is indicated with a slope triangle. Inset:
corresponding raw data. C,D Droplet profiles at different
times obtained from experiments (symbols) and compared to
the numerical solutions of Eq. (1) (dashed/dotted lines) for
∆T = 8 K (C) and ∆T = 4 K (D).

towards a borosilicate substrate placed at the bottom
of the cell (see Fig. 1D). We turn off the laser just be-
fore contact, and follow the droplet spreading using ×20
or ×50 Olympus® microscope objectives, with resolu-
tions of 1.0 and 0.8 µm respectively, and a Phantom®

VEO340L camera for the frame grabbing. Note the ex-
istence of a prewetting film on the substrate, at least up
to ∆T = 15 K [37].

Figure 1D displays two image sequences corresponding
to the coalescence and spreading of droplets at ∆T = 8 K
and 1 K. The spreading time scale comparatively in-
creases by approximately one order of magnitude for
∆T = 1 K, as a result of the vanishing interfacial ten-
sion near Tc. We also notice that the droplet volumes
reduce over time, indicating the presence of evaporation,
as expected for finite-size objects in an environment at
thermodynamic equilibrium. We stress here that we em-
ploy the standard terminology “evaporation” all along
the article, despite the outer fluid is not a “vapour” but
another liquid-like system. At early stages, both profiles
display large curvature gradients. Since our focus here is
on the long-term asymptotic spreading behavior, we de-
fine the temporal origin t = 0 from a first experimental
image where the curvature is homogeneous, except near
the contact-line region, and a spherical-cap fit is valid.

Each image sequence is then treated using a custom-
made automatized contour detection based on a Canny-
threshold algorithm, where the droplet profiles corre-
spond to the external maxima of the intensity gradi-
ents (see SI.2). Spherical-cap fits allow to extract the
droplet volume V (t), radius R(t), and apparent contact
angle θ(t), which are then averaged using a custom-
made exponentially-increasing time window to get a
logarithmically-distributed data set (see SI.2). In the in-
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set of Fig. 2A, we plot the experimental droplet volume
as a function of time, for four different values of ∆T .
In all cases, the volume decreases until the droplet is
fully evaporated. By using the initial volumes V0 and
by extrapolating the times tf of final evaporation for
all droplets, we then plot in the main panel the same
data in dimensionless form, with V/V0 as a function of
1−t/tf. We observe a data collapse onto a unique power-
law behavior, with fitted exponent 1.77 which is close
to the 11/7 value theoretically predicted for evaporating
droplets [12]. In Fig. 2B, we further plot the contact ra-
dius R, normalized by its initial value R0, as a function
of time, for all ∆T . A Tanner-like power law systemat-
ically emerges at intermediate times, until evaporation
eventually dominates the evolution.

To model the observed spreading dynamics, we con-
sider a large initial droplet-like interfacial perturbation
profile d(r, t = 0), with r the radial coordinate, atop a
flat thin film of thickness ε, and describe its evolution
through the profile d(r, t) at all times, in the small-slope
limit within the lubrication approximation [2]. Therein, a
horizontal Newtonian viscous flow of viscosity η is driven
by the gradient of Laplace pressure. Since most of the
dissipation occurs in the wedge-like region near the ap-
parent contact line [5], we further make an approxima-
tion and neglect the influence of viscous shear stresses in
the surrounding phase. Note that this hypothesis would
not hold if the atmospheric fluid was much more viscous
than the droplet fluid [31]. Fortunately, this is not the
case near the critical point, where both viscosities are
almost equal. The evolution is then described by the
axisymmetric capillary-driven thin-film equation [27]:

∂th+
γ

3ηr
∂r

[
rh3∂r

(
1

r
∂rh+ ∂2rh

)]
= H(1−R)f , (1)

where h(r, t) = ε + d(r, t) is the free-interface height
from the solid substrate, H(1− R) is the Heaviside step
function with R(t) the advancing radius of the droplet,
and f(t) is an added coefficient accounting for evapora-
tion. The latter is chosen in order to precisely mimic
the experimentally-measured evaporation of the droplet
(see Fig. 2A). Note that the Heaviside function ensures
that the prewetting film – which is at thermodynamical
equilibrium in contrast to the droplet – does not evap-
orate. Equation (1) is numerically integrated using a
finite-element solver [38]. The experimental radial pro-
files depicted in Fig. 1D are chosen as initial profiles, after
angular averaging and smoothening using fourth-order
polynomials in order to avoid unphysical fluctuations re-
lated to the camera resolution and the contour-detection
algorithm. As shown in Figs. 2C and D, the compar-
isons between the experimental and numerical evolutions
reveal an excellent agreement. As the capillary veloc-
ity vcap = γ/η is independently evaluated (see [32] and
SI.1 for the viscosity calibration), and typically varies be-
tween 22 and 1013 µm/s for near-critical droplets within

FIG. 3. A Rescaled contact radius R̃10 − R̃0
10

as a function
of rescaled time t̃, for various temperatures ∆T as indicated.
The dashed lines indicate fits to Eq. (4), with ` as a free
parameter for each temperature. B Contact angle θ as a
function of capillary number Ca, for various temperatures ∆T
as indicated. The dashed lines indicate the predictions of
Eq. (2), using the ` values obtained from the fits in A.

the ∆T = 1 − 8 K range, the precursor-film thickness ε
remains the only fit parameter in this comparison, and
its behaviour with temperature will be discussed after.

Tanner’s law [1, 4] can be obtained from the combina-
tion of: i) a local power balance between capillary driv-
ing and viscous damping near the contact line; and ii)
the global volume conservation. The former power bal-
ance reduces to the Cox-Voinov’s law for total-wetting
conditions:

θ3 = 9`Ca , (2)

where Ca = Ṙ/vcap is the capillary number, and ` =
ln(L/ε) is the logarithmic factor discussed in the intro-
duction relating the two cut-off lengths of the problem,
namely a typical macroscopic size L of the system and
a microscopic length which is identified to the precursor-
film thickness ε in total-wetting conditions.

To disentangle evaporation, through the V (t) be-
haviour obtained in Fig. 2A, from the spreading dynam-
ics, we introduce the following dimensionless variables:

R̃ = R

[
π

4V (t)

]1/3
, t̃ = vcapt

[
π

4V (t)

]1/3
. (3)

Tanner’s law [1, 4] is then written in dimensionless form
as:

R̃10 − R̃0
10

=
10

9`
t̃ , (4)

with R̃0 = R̃(t = 0). In Fig. 3A, we plot the rescaled
contact radius as a function of rescaled time, for vari-
ous temperatures. We systematically observe Tanner be-
haviours. Interestingly, from the fits to Eq. (4), we obtain
increasing values of ` as the critical point is neared. This
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FIG. 4. A Dimensionless Tanner master curve including the
experiments at all temperatures. The dashed line corresponds
to Eq. (4). The values of the logarithmic factor ` were first ob-
tained by fitting the individual experimental data in Fig. 3A
to Eq. (4). B Extracted precursor-film thickness ε as a func-
tion of the temperature distance ∆T to the critical point, as
obtained by fitting individual experimental profiles to numer-
ical solutions of Eq. (1) (see Figs. 2C and D). The dashed
line indicates the empirical power law ε = a (∆T/Tc)

2.69 with
a = 5.54 mm.

trend is further confirmed in Fig. 3B, where we see Cox-
Voinov behaviours (see Eq. (2)) at large-enough Ca, with
an identical evolution of ` with ∆T . The departure from
Cox-Voinov’s law at low Ca is due to the evaporation-
induced non-monotonic behavior of R(t) (see Fig. 2B),
resulting in Ca crossing zero for finite values of θ.

Using the ` values obtained from the Tanner fits above,
we can then represent all the data onto a single master
curve, as shown in Fig. 4A. The observed collapse, over
more than two orders of magnitude in time and broad
ranges of material parameters, shows the surprising ro-
bustness of Tanner’s law in the vicinity of the critical
point, despite the increasing roles of evaporation, gravity
and fluctuations.

Finally, Fig. 4B shows the extracted precursor-film
thickness ε as a function of ∆T/Tc. Strikingly, over
the considered temperature range, we observe a sharp
decrease of ε from a fraction of micrometers down to
a nanometer, as the critical point is approached from
above. Over a decade in the considered temperature
range, this behaviour is consistant with the empirical
power law ε = a (∆T/Tc)

2.69
, where a = 5.54 mm. The

wetting transition in our system being located far above
the largest temperature studied here [37], we could have
instead expected an increase of ε, since the precursor film
is here made of the most-wetting phase [3, 39]. Neverthe-
less – provided that one can extrapolate the definition of
interfaces towards the critical point – the spreading pa-
rameter [1] is expected to strictly vanish at that point
since the two fluid phases become indistinguishable me-
dia, which might be the reason underlying the observed
behaviour. Beyond revealing the universality and pecu-

liarities of viscous spreading near a critical point, our re-
sults pave the way towards further investigations closer
to that point, with the aim of addressing the increas-
ing contributions of gravity, evaporation, and eventually
thermal fluctuations [40–42].
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critiques: instabilités, relaxation et évaporation, Ph.D.
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