
HAL Id: hal-03739737
https://hal.science/hal-03739737

Submitted on 19 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A safe dynamic access control providing mandatory
automotive cybersecurity

Vincent Hugot, Adrien Jousse, Christian Toinard, Benjamin Venelle

To cite this version:
Vincent Hugot, Adrien Jousse, Christian Toinard, Benjamin Venelle. A safe dynamic access control
providing mandatory automotive cybersecurity. 2021 International Conference on Computational
Science and Computational Intelligence (CSCI), Dec 2021, Las Vegas, United States. pp.848-851,
�10.1109/CSCI54926.2021.00199�. �hal-03739737�

https://hal.science/hal-03739737
https://hal.archives-ouvertes.fr


A safe dynamic access control providing mandatory
automotive cybersecurity

Vincent Hugot
LIFO

INSA Centre Val de Loire
Bourges, France

vincent.hugot@insa-cvl.fr

Adrien Jousse*
GEEDS

Valeo
Créteil, France

adrien.jousse@valeo.com

Christian Toinard
LIFO

INSA Centre Val de Loire
Bourges, France

christian.toinard@insa-cvl.fr

Benjamin Venelle
GEEDS

Valeo
Créteil, France

benjamin.venelle@valeo.com

Abstract—The recent computerization of automotive vehicles
offers new ways for attackers to penetrate critical systems. To
ensure their safety, cybersecurity is therefore required. Cyberse-
curity can be enforced with different mechanisms, such as access
control, thanks to reference monitors. However, systematic access
control may harm safety properties in certain scenarios. There-
fore, the integration of access control mechanisms in automotive
systems remains an open problem. Our paper provides a general
approach adding dynamic mandatory access control to enforce
security properties while guaranteeing their innocuousness with
respect to the vehicle’s safety. To achieve this, we start by formally
modeling the system. Then, a mandatory access control policy is
proposed with respect to the different vehicle’s states. Using a
dedicated model checking tool, the safety of the access control
mechanism is verified with respect to a formal attack model.
Using the attack paths produced by the verification tool, the
access control policy can be iteratively refined, thus improving
the availability and resilience of the system.

Index Terms—cybersecurity, automotive, reference monitor,
model checking, modelization

INTRODUCTION

In this paper, we propose to integrate reference monitors [1]
into automotive systems to enforce cybersecurity while guar-
anteeing safety. The safety of the integration is assessed using
model checking. Figure 1 summarizes our approach.

Today’s vehicles offer a large attack surface to intruders. By
exploiting it, they cross cybersecurity boundaries [2], interfere
with offered functionalities, and put at risk the safety of the
vehicle [3]. In [4], hackers successfully drove a car remotely
by sending commands to the vehicle’s Telematics and Com-
munication Unit (TCU). In this scenario, every command sent
to the TCU was executed, without any control. A reference
monitor embedded in the TCU would have blocked the attack
by enforcing specific cybersecurity properties (e.g. block ir-
relevant commands received by the TCU), thus preserving the
integrity of the system. As every vehicle is approved [5], its
safety should be guaranteed in any situation, even an attack,
making cybersecurity mandatory. However, why would one
trust that the addition of the reference monitor will actually
enforce the desired property? Furthermore, what guarantees
do we have that it does not interfere with the system’s safety

Short paper submitted to CSCI-ISCW

requirements or other functionalities? Our paper addresses
those questions.

Reference monitors are poorly used in the automotive
industry. For instance, the AUTOSAR consortium [6] does
not specify implementation standards for reference monitors in
automotive systems. Indeed, a reference monitor can interfere
with safety and functional aspects, leading to undesirable
effects. Previous works [7] on non safety-related systems
have shown that systematic access control can render the
system inoperative. Historical access control mechanisms [8]
unconditionally authorize or deny actions based on a static
policy. Hence, some actions may be denied because the control
does not take the states of the system into account, leading
to denial of service. With such mandatory access control,
the static policy must authorize all the actions the system
may need to perform, in every possible situation, loosening
the policy. In contrast, our reference monitors use a state
machine approach, where the authorised actions depend upon
the current state. The dynamic nature of this type of access
control makes it less permissive but harder to specify.

To avoid unwanted interference with safety properties,
which a faulty dynamic access control might cause, we pro-
pose to formally verify the cybersecurity mechanisms with
respect to the vehicle’s safety properties, and against a given
attack scenario. If the model checking tool detects violations
of the requested integrity properties, the access control policy
is inadequate with respect to the attack scenario. In that
case, the policy must be improved accordingly. Our solution
enumerates the threats, thus guiding the evolution of the
mandatory control.

This paper describes our model, built with a tool devel-
oped by V. Hugot [9]. This tool uses Computational Tree
Logic (CTL) formulæ. Compared to SPIN [10], [11], it has
the advantage of featuring a graphical representation of the
remaining threats, and is thus more user-friendly for industrial
usage.

Our approach is a mixture of offline [12], [13] and on-
line [14] verification. The main thrust is the online component:
the reference monitor, which reacts to runtime events, may
raise warnings, or even block certain messages depending on
the vehicle state. The role of the offline phase is to make sure
that the mandatory control does not interfere with the safety



Fig. 1. Graph summarizing our approach

of the system — the functional properties are preserved. The
offline phase , which provides a user-friendly view of available
attack paths, is a valuable tool for improving the monitor.
Several iterations can be necessary to optimize the design.
This is, however, much more practical than testing the access
control in a prototype or a simulator, which is more common
practice in the automotive industry.

In practice the diversity of actors and suppliers makes a
full formal specification difficult. This is not as much an
obstacle for our mixed approach as it would be for pure offline
verification: we need only focus on the aspects of the system
which the monitor might interfere with.

We will illustrate our approach with an automotive exam-
ple: an intelligent steering wheel (ISW). This steering wheel
enables the driver to turn on an automatic driving mode. An
indicator light informs the driver of the status of the automatic
driving mode. As the light communicates to the driver whether
he must pay attention to the road, it is of critical importance to
the driver’s safety that it be accurate. Our reference monitor
is designed to protect the system against a generic attacker
trying to switch ON the light in any state of the system. We
can prove that, under that attack scenario, a large range of
attacks is safely prevented.

This paper is organized as follows. The next section offers
reminders about model checking and presents our CTL-based
solution, which provides useful visual representations of the
system and the impact of attacks. We then conclude with a
few perspectives for future works.

CYBERSECURITY FOR AN INTELLIGENT STEERING WHEEL

In this section, we provide basic information about model
checking, describe our model and show that the integration of
our access control prevents attacks while preserving the safety
of the intelligent system.

Model checking performs an (explicit or symbolic) state
space exploration representing the evolution of a system, given
a formal specification of the system’s operational rules. By

exploring this model, we can assess whether the model satisfies
the properties written by the cybersecurity, safety, and func-
tional experts. In practice, as said above, most actors have only
a partial (and often informal) view of some components. Here,
we focus on the internal communications of our Tier1-level
example of the ISW. The ISW is modelled as a synchronized
product of sub-components (here, Electronic Control Units, or
ECU). The general idea is that the behavior (including commu-
nications) of each individual ECU is modelled separately (as
finite-state automata for now, cf. subfigures Button automaton
and Attacker automaton of Figure 2).

Some of those communications are marked as requiring
synchronization between components, others not. From this,
the global behavior of the system, covering all possible in-
teractions, is then mechanically derived, yielding a potentially
much larger automaton. Examples of this global automaton
are shown as background of Figure 2. These automata were
generated using a CTL tool [9].

We first model (what we know of) our example system. The
expected behavior of the ISW is as follows: in the initial state,
the automatic driving is disabled, the light is OFF and both
buttons are released. When both buttons are pressed at the
same time, the mainboard sends a message to the automatic
driving ECU to enable the automatic driving mode. When
automatic driving is enabled, the mainboard sends a message
to switch ON the light, which notifies the driver that automatic
driving is enabled. Then, when both buttons are pressed again,
the mainboard switches OFF the light and then disables the
automatic driving mode, returning to the initial state.

This preliminary modeling step has some intrinsic value,
as it may reveal some basic design flaws, even in nominal
behavior. If flaws are found, experts can refine their properties
(if they are improperly written) or make changes to the system.
In the second step, we model and add the attacker (as one or
several new subcomponents), thus revealing successful attacks
(if any). In our model, the attacker tries to switch ON the
light whenever he can. Practically speaking, in any state of the



Fig. 2. Synchronized product automata of systems under attack (without our reference monitor on the left, with our reference monitor on the right) and
examples of sub-system specifications on the bottom

global system, we consider that the attacker has the capability
to ask for switching ON the light (cf. subfigure Attacker
automaton of Figure 2). This covers a large range of attacks
since we do not limit the way an attacker enters into the
system. Attacker successes can be of two types:

1) he switches ON the light when the automatic driving
mode is disabled (i.e. leading to an unsafe situation,
outside of the nominal specification)

2) he switches ON the light when the automatic driving
mode is enabled (i.e. leading to a safe situation, but it
might bypass some transitions)

The left automaton of Figure 2 represents the global au-
tomaton of our ISW, under attack. This figure is the result of
the synchronized product of all component specifications.

We evaluate the correctness of the model with respect to
some properties written in temporal logic by cybersecurity,
safety, and functional experts; for example, the safety CTL
formula φ =(Light ⇒ AutoDrive), which means “Whenever
the light is on, then automatic driving is enabled”. To ensure
that our reference monitor does not interfere with the sys-
tem’s legitimate operations in the name of security, we also
verify that the addition of the monitor preserves the system’s
functional properties such as: ψ =EF(Light), which roughly

means “There is always a way to turn on the light”.
The tool yields a colored representation (cf. Figure 2), indi-

cating which states of the global system satisfy the properties
φ, ψ (in green) or not (in red).

With an attacker and without the dynamic mandatory access
control, we observe in Figure 2, Zoom A, a state where our
property φ does not hold (i.e. the light is ON while the
automatic driving is disabled). Thus, the attacker is successful
(success type 1). This is a violation of a safety property due to
a cybersecurity attack. φ is only violated when the light is ON
and the automatic driving is disabled. All red states here have
been made accessible by the attacker. (However, if the attacker
switches ON the light when the automatic driving is already
enabled, φ is still verified, success type 2.) By examining the
different attack flaws, the designers can implement a dedicated
dynamic policy (Figure 3).

Fig. 3. Dynamic access control for the ISW

Thus, the designers adds a dynamic mandatory control



(Figure 3) that enforces the following sequence: automatic
driving is enabled, light is switched ON, light is switched OFF,
automatic driving is disabled.

The aim of our reference monitor is to preserve the integrity
of the system regarding φ and ψ. Without the system’s
integrity with respect to φ, the driver may be fooled into
thinking that the automatic driving feature is ON when it is not
(as we saw previously, success type 1). Adding our reference
monitor constrains the system’s behavior: the mainboard, the
light, and the monitor are synchronized. As we see on the
right background of Figure 2, all states are green, meaning
φ (and ψ) are always verified. The integrity of the system is
preserved. The attack is foiled as the attacker cannot switch
ON the light while the automatic driving is not enabled.

Moreover, we must ensure that the reference monitor does
not block anything essential, meaning that ψ (among other
safety and functional properties) must also be verified. If
our reference monitor simply forbade turning ON the light,
unconditionally, then the system would technically be secure
in the sense of φ, but we would have lost a functionality, in the
sense of ψ. To guarantee the innocuousness of the reference
monitor, we check correctness of the monitored system (with-
out the attacker) with respect to ψ and all desired safety and
functional properties, thus ensuring that our reference monitor
(cf. Figure 3) improves the cybersecurity of the vehicle without
altering the safety of the system. As expected, ψ is always
verified, meaning the system preserved its properties. If an
incorrect access control policy was specified (e.g. not allowing
the light to be switched ON) ψ would have been violated
resulting as red states on our global system (cf. Figure 2).

That dynamic control can be automatically generated from
a cybersecurity property expressed through a logic formula,
which it enforces by construction, or it can be generated man-
ually. While automatic generation is desirable, it is not always
straightforward to put into practice. The target property may
involve characteristics of the system that are not accessible
by the ECU on which the monitor is installed. Thus, it must
be rephrased, and possibly loosened, in terms of what can
actually be observed. This aspect could be handled semi-
automatically as well, as we hope to do in future works.
However, the graphical view of the threats eases the designers
analysis and several attempts of control can be sufficient to
have a fully green check. Moreover, the designers can decide
if the remaining threats have a strong probability of occurrence
through exogenous methods of risk analysis.

CONCLUSION AND FUTURE WORKS

Model checking tools are not widely used or known in our
industrial context. Yet, our experiments show that they can
help improving cybersecurity of automotive vehicles while
preserving their safety. In this proof of concept, we were able
to: model the system, model some of its desired properties,
and verify the required properties, both with and without our
mandatory access control.

As shown, we can easily formalise an attack scenario
covering a large range of threats, and design a reference

monitor preserving both the integrity of the system and its
safety under that scenario.

Larger systems may run afoul of the state-space explo-
sion problem [15], and require the use of tools, such as
SPIN [10] [11], that are more scalable, though potentially less
user-friendly.

On that front, a possible approach is the design of a
specification language to simplify the definition of the sys-
tem’s properties. Such a language could encompass safety,
functional, and NIST cybersecurity properties [16]. It could
mechanically translate them into CTL properties (or other
suitable logics).

Our current model is fully synchronized, and thus does
not fully reflect real-world behavior, which is a potential
limitation. Our monitor needs to be able to handle any loss
or desynchronization that might occur. We have started testing
with outages and transient failures. With the addition of loss
detection and/or replay, results are promising and must be
confirmed on real-life automotive systems.

REFERENCES

[1] J. P. Anderson, “Computer Security Technology Planning Study,” Tech.
Rep. ESD-TR-73-51, U.S. Air Force Electronic Systems Division, 10
1972.

[2] V. Hugot, A. Jousse, C. Toinard, and B. Venelle, “oMAC : Open Model
for Automotive Cybersecurity,” in 17th escar Europe : embedded secu-
rity in cars (Konferenzveröffentlichung), (Stuttgart, Germany), pp. 170–
184, Nov. 2019.

[3] Y. Shoukry et al., “Non-invasive spoofing attacks for anti-lock braking
systems,” in Cryptographic Hardware and Embedded Systems - CHES
2013, (Berlin, Heidelberg), pp. 55–72, Springer Berlin Heidelberg, 2013.

[4] A. Greenberg, “Hackers remotely kill a jeep on the highway - with me
in it.” Online, July 2015.

[5] ISO, “26262-1:2011 Road vehicles – Functional safety,” 2011.
[6] “Autosar.” Online.
[7] B. Venelle, J. Briffaut, L. Clévy, and C. Toinard, “Security Enhanced

Java: Mandatory Access Control for the Java Virtual Machine,” in
ISORC - 6h IEEE International Symposium on Object, Component, and
Service-Oriented Real-Time Distributed Computing - 2013, (Paderborn,
Germany), June 2013.

[8] NSA, “Selinux project.” Online, December 2000.
[9] V. Hugot, “Nfa framework for 4a class on verification / model-checking.”

Online, October 2020.
[10] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional, 1st ed., 2011.
[11] G. Holzmann, “The model checker spin,” IEEE Transactions on Software

Engineering, vol. 23, no. 5, pp. 279–295, 1997.
[12] E. A. Emerson and E. M. Clarke, “Characterizing correctness properties

of parallel programs using fixpoints,” in Automata, Languages and Pro-
gramming (J. de Bakker and J. van Leeuwen, eds.), (Berlin, Heidelberg),
pp. 169–181, Springer Berlin Heidelberg, 1980.

[13] J. P. Queille and J. Sifakis, “Specification and verification of concur-
rent systems in cesar,” in International Symposium on Programming
(M. Dezani-Ciancaglini and U. Montanari, eds.), (Berlin, Heidelberg),
pp. 337–351, Springer Berlin Heidelberg, 1982.

[14] M. d’Amorim and G. Roşu, “Efficient monitoring of ω-languages,” in
Computer Aided Verification (K. Etessami and S. K. Rajamani, eds.),
(Berlin, Heidelberg), pp. 364–378, Springer Berlin Heidelberg, 2005.

[15] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Progress on
the State Explosion Problem in Model Checking, pp. 176–194. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001.

[16] NIST, “Glossary csrc.” Online, June 2021.


