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Abstract

A wide range of real world optimization problems involves continuous
decisions and non-linearities. Each non-linear component of such prob-
lems can be modeled either linearly or non-linearly, considering or not
additional integer variables. This results into different modeling choices
that can drastically impact the solution time and quality. In this pa-
per, we evaluate representative modeling alternatives, including common
models from the literature as well as new models featuring less common
functions. The single Hydro Unit Commitment problem (1-HUC) is a
non-linear use case considered. The non-linearities involved come from the
power produced. The power is defined as a two-dimensional non-convex
and non-concave function of the water flow and head decision variables,
the latter being itself a one-dimensional concave function of the turbined
volume. We consider both the general problem and a common special
case, assuming that the water head is fixed. Several available solvers are
used for each non-linear model and the best virtual solver is retained to
focus on the model capabilities rather than on the solver performance.
Based on the numerical experiments, three models stand out as the most
efficient in terms of computational time, solution quality and feasibility,
sometimes in a counter-intuitive manner. For each of these models, a
solver is highlighted as the most adequate.
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1 Introduction

In the real world, systems involving continuous decisions and non-linearities are
frequent. In the literature, optimizing such systems via mathematical program-
ming requires to choose between two main modeling alternatives of each non-
linear component, namely either a linear or a non-linear model, yielding possibly
additional integer variables. A non-linear model usually represents more closely
a physical system than a linear one, but tends to require a longer computing
time, in particular when no convexity property applies. Within these two main
modeling possibilities, there are still a lot of modeling choices to make. For illus-
tration purposes, Figure 1 shows a real-world continuous non-linear function
on interval [0; 10] and four alternative functions, amongst many others, to model
it. Figure (1a) shows the real-world continuous non-linear function. Alterna-
tive (1b) relies on a single non-linear function, alternative (1c) uses a family of
elementary non-linear functions, alternative (1d) is based on a piecewise-linear
(PWL) function, and alternative (1e) considers a finite set of discrete points.
These alternatives have several differences, such as the type of function(s) in-
volved: non-linear non-convex non-concave for (1b), concave for (1c) and linear
for (1d), or the need of additional binary variables for (1c), (1d) and (1e).
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Thus, two alternatives can have different properties, meaning their resolution
may be nothing alike. Faced to a real-world non-linear problem, choosing the
best modeling alternative is a crucial issue.

The non-linear use case considered in this paper is the single unit Hydro
Unit Commitment (1-HUC). The 1-HUC features two non-linearities, namely a
one dimensional concave non-linearity, and a two dimensional non-convex non-
concave non-linearity. Such non-linearities can lead to various issues, which can
be highlighted using different indicators, such as precision, feasibility, computing
time or solution quality. The modeling of the hydroelectric power function
already raised interest in the literature, such as in [12] where three different
models are compared for the hydropower maintenance scheduling, with a focus
on the approximation of the hydroelectric power function.

In this paper, we push the study of the impact of non-linear modeling fur-
ther. First of all, the power functions considered in the literature are usually
simplifications, which may not reflect all the non-linear features of the power
function. As such, we define a new power function closer to the physics, based
on the characteristics of the power function for each turbine, assuming a fixed
turbine start-up sequence. As the model featuring this power function is out of
reach for current solvers, seven modeling alternatives are described for the 1-
HUC. These seven models cover a large panel, ranging from linear to non-linear
models, with and without integer variables, and are representative of how the
literature handles the approximation functions described in Figure 1. More
precisely, four models are proposed for with a unique function represented by
Figure 1b, one for each of the alternatives. As any two non-linear solvers do
not implement the same tools, they are expected to behave differently. This is
why the proposed non-linear models will be solved using five black-box global
optimization solvers available on Neos Server [9]. The principle is to evaluate
these models for the 1-HUC using the afore-mentioned indicators and to iden-
tify the characteristics of the 1-HUC instances impacting their solution time and
quality. The main contribution of the paper is to make general modeling recom-
mendations from the numerical experiments, depending on the characteristics
of the instance, the desired precision and the allowable computing time.

In Section 2 a literature review of solution approaches for non-linear opti-
mization problems is proposed. In Section 3, the 1-HUC is defined, followed by
a literature review on the non-linearities of the HUC. In Section 4 the proposed
models are described and compared from a theoretical point of view. In Section
5, numerical experiments illustrate the comparative performance of the models
on different sets of realistic 1-HUC instances. In Section 6, concluding remarks
and perspectives for further research are drawn.
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Figure 1: Four different approximations of a real-world non-linear function

2 Solution approaches for non-linear optimiza-
tion problems

As aforementioned, to optimize a non-linear system using mathematical pro-
gramming, the main possibilities are to solve either a linear or a non-linear
model. Linear models lead to Mixed Integer Linear Programs (MILP), and
non-linear models to Non-Linear Programs (NLP) or Mixed Integer Non-Linear
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Programs (MINLP). For these three types of programs, exact algorithms are
based on a divide and conquer strategy. In all cases the search space is divided
in order to obtain lower and upper bounds in each sub-space.

For a minimization problem, the upper bound is derived from any feasible
solution, and the lower bound is obtained by solving a relaxation of the problem.
For an MILP, the relaxed problem consists in ignoring the integrity constraints
[19]. For an NLP and an MINLP, the relaxed problem is obtained by ignoring
the integrity constraints and via convex under-estimators [34]. In this section,
the main modeling techniques are described, along with state-of-the-art solution
methods and more specifically the ones implemented in the non-linear solvers
used for the numerical experiments. Note that, although the literature on the
1-HUC mostly focuses on heuristics, we restrict our study to the exact methods
implemented in the selected solvers, thus allowing us to enlight the full potential
of each tested model when optimality can be proven.

2.1 Modeling

Modeling a non-linear problem as an MILP is usually driven by the will to have
smaller computing times. The functions approximating non-linearities within
an MILP are PWL as shown in Figure (1d). A PWL function is defined as a
collection of affine functions on intervals. The bounds of the intervals, as shown
in Figure (1d) are called breakpoints. From the literature, several PWL formu-
lations exist. The authors in [8] and [15] compare three classical formulations,
convex combination, multiple choice and incremental, which are proven to be
equivalent in terms of relaxation. The standard approach for these formulations
is to approximate a non-linear univariate function, but there are extensions for
two-dimensional functions. For example in [10] three methods to approximate
two-dimensional non-linear functions where breakpoints exist in both dimen-
sions are presented. There are also results to approximate a function for any
dimension, in [15], where a generalized PWL model for any dimension is pro-
posed. These PWL formulations can be improved in order to reduce the number
of variables required. For instance introducing disjunctive constraints makes it
possible to describe a PWL model with a logarithmic number of variables as
proposed in [37]. Another example is to use a non-necessarily continuous PWL
function. In the case of an univariate function, it is proven in [25] that for a
given precision, a PWL function can be derived with less pieces if the PWL
function is non necessarily continuous at the breakpoints.

Modeling a non-linear problem as an (MI)NLP is usually driven by the will
to have a better representation of the physics. If the (MI)NLP is convex, the
problem admits a single local optimum, which is also global. Also, the relaxation
only consists in relaxing the integrity constraints, as the problem is convex, it
is itself a convex under-estimator. However, if the (MI)NLP is non-convex,
global optimization algorithms are required. The relaxation then relies on both
relaxing the integrity constraints, and finding a convex under-estimator. If the
functions of a non-convex (MI)NLP have an efficient under-estimator, a better
lower-bound will be produced, meaning faster convergence. For this purpose,
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the survey in [5] describes under-estimators for various non-linear functions. To
help finding better convex under-estimators, techniques such as the symbolic
reformulation in [34] and the bound tightening [3] can be performed. In all
cases, the modeling choices can alter the feasibility of the problem. With high
exponents or functions like log(x) with x close to 0, approximation errors can
be induced, in particular in floating point computing.

Pointing out the differences between the family of the models is also impor-
tant because the tools used to solve a problem depends on its structure. To
solve an MILP, the well known Branch and Bound (BB) algorithm [19] and its
derivatives the Branch and Cut [27], the Branch and Price [32] and the Branch
and Cut and Price [11] can be used. To solve a convex (MI)NLP, as the relax-
ation is similar to a MILP, a variant of the BB algorithm can be used. To solve
a non-convex (MI)NLP, a global optimisation algorithm is required. The main
algorithm involved in most global optimization tools is the spatial Branch and
Bound (sBB) [34], designed to solve an MINLP. If modeling requires no integer
variables, the model remains continuous (Figure (1b)) and results in an NLP.
Variations of the sBB for NLP can be used, such as the α Branch and Bound,
the Reduced Space Branch and Bound [13], or the Branch and Contract [39].
If modeling requires additional integer variables (Figure (1c)), the algorithms
involved in the tool must be able to handle an MINLP. As aforementioned, the
sBB can solve this type of models as well as other algorithms such as the Branch
and Reduce [30], the sBB with interval analysis [36] or the GMIN and SMIN
algorithms [1].

2.2 Solvers

Five non-linear solvers are considered in this paper, ANTIGONE [24], BARON
[35], COUENNE [2], LINDOGlobal [22] and SCIP [38], as they are accessible on
Neos Server [9] with GAMS format. All of the five solvers implement global op-
timization algorithms, and use the sBB algorithm or its derivatives. To improve
the solution time and quality, the solvers complement variations of the sBB with
different tools. However, the set of implemented tools is not the same from a
solver to another, which means that their performance may vary depending on
the model.

Solver CPLEX [7] is used to solve MILPs in this article. As comparing linear
solvers is beyond the scope of this work, a well known and efficient linear solver
is arbitrarily chosen. Clearly non-linear solvers can also solve linear models.
However linear solvers are dedicated to linear problems, and give a more appro-
priate reference, in particular for a comparison with the resolution of non-linear
models.

The six solvers are further described in Appendix A.
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3 1-Hydro Unit Commitment

3.1 Definition of the problem

The 1-HUC is defined as follows. Consider a valley containing one unit located
between a single upstream reservoir and a single downstream reservoir. From
the hydroelectric production principle, the water from the upstream reservoir
flows through the unit to the downstream reservoir, operating the turbines of
the unit, thus generating electric power. The time horizon is discretized in
T time periods, each of duration ∆. At each time period t the water flow
dt going through the unit must lie within the interval [D,D]. The power pt
produced at the time period t depends on the water flow dt, but also on the
reservoir head ht. The head ht is the height difference between the surface of
the water in the upstream reservoir and the unit, and depends on the volume of
the upstream reservoir v1t . Each reservoir n ∈ {1, 2} has a maximum capacity
V

n

t and minimum capacity V n
t , variable through time. Variable maximum and

minimum capacity makes it possible to set target volumes, when V
n

t = V n
t . At

each time period, the reservoir n has an additional intake of water An
t , which

can be positive (rain, melting snow) or negative (use of water for surrounding
agriculture). At each time period, we consider the energy to be sold at forecasted
unitary price Λt, variable through the time. At the end of time period T , the
water in reservoir n has an expected unitary value Φn. Value Φn is the expected
value of the energy produced using the water. A higher Φn will lead to preserve
more water and produce less energy, and the other way around for a lower Φn.
The HUC considered is a revenue-maximizing price-taker scheduler problem,
where the power prices, the water expected value and the reservoir external
inflows and reservoirs capacities are parameters. There exist other types of
HUC, for instance where the aim is for the energy produced to meet the demand
[14].

The profit takes into account the total value of the water in each reservoir
at the end of time period T , and the value of the energy produced. Solving
the HUC consists in maximizing the profit, while satisfying the capacities and
the target volumes at each time period. A generic model (Pgen) can be defined,
using the water flow dt, the power pt, the volume in the upstream reservoir v1t
and in the downstream reservoir v2t and the head of the upstream reservoir ht as
decision variables. Function f is the one-dimensional concave function, giving
the water head ht at time period t with respect to the volume and function
F is the two-dimensional non-convex and non-concave function, representing
the power of the unit, depending on the water flow dt and the head ht. Both
functions f and F are considered as nondecreasing and nonnegative. Model
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(Pgen) is given as follows:

max

T∑
t=1

∆ · Λt · pt +
2∑

n=1

Φn · vnT (1)

s.t. v1t = V 1
0 +

t∑
t′=1

(
A1

t′ − dt′∆
)

∀t ≤ T (2)

v2t = V 2
0 +

t∑
t′=1

(
A2

t′ + dt′∆
)

∀t ≤ T (3)

ht = f(v1t ) ∀t ≤ T (4)

pt = F (dt, ht) ∀t ≤ T (5)

V n
t ≤ vnt ≤ V

n

t ∀t ≤ T, ∀n ∈ {1, 2} (6)

D ≤ dt ≤ D ∀t ≤ T (7)

Constraints (2) and (3) are volume conservation constraints. Constraints
(4) computes the water head ht, using the concave function f of the volume.
Constraints (5) computes the power pt, using the non-convex non-concave non-
linear function F of the water flow dt and the head ht. Constraints (6) and
(7) give upper and lower bounds for variables. The criterion to maximize is the
profit, which is a linear expression described by (1).

A standard simplification of the 1-HUC is to assume a constant head ht = H,
which leads to the fixed-head 1-HUC. This simplification is relevant for some
instances of the 1-HUC where volume variations are small enough for the impact
on the unit efficiency to be insignificant. As such, inequalities (4) and (5) from
(Pgen) are replaced by:

pt = F (dt, H) ∀t ≤ T (8)

For the fixed-head 1-HUC, function F becomes a one-dimensional function, but
remains non-convex non-concave. Note that even if the head is constant, we
still consider variable v1t and v2t in the model, to ensure that reservoir capacities
are respected.

3.2 Literature of the non-linearities of the HUC

As mentioned in [12], there are cases of the HUC where no perfect analytic
representation of the hydroelectric power function is known. Nevertheless, some
functions have been described as a baseline to measure the approximation error
of the various models proposed in the literature. A generic hydroelectric power
function [16] is:

pt = ρ ·G · ht · dt (9)

The power pt is the product of ρ the density of water, G the gravitational
constant, dt the water flow and ht the head. With ht ≥ 0 and dt ≥ 0, this
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generic bilinear function is concave. However, in various papers of the literature
[20] [23] [4] [12] [26], the shape of function F is described as non-convex and
non-concave. In [26] a more sophisticated function is provided:

pt = C1 · (v1t )2 + C2 · (dt)2 + C3 · v1t · dt + C4 · v1t + C5 · dt + C6

- with C1 to C6 being constants. Note that this function may lead to approxima-
tion errors depending on the characteristics of the turbines and their number, as
they are not explicitly considered in the function. Another approach uses a grid
to have a reference for the hydroelectric power function obtained by discretizing
the water flow and the head [12]. An algorithm, described in [33], is used to
obtain a set of such grids, each of them representing the power function for a
given number of active turbines. For each point on one of these grids, the value
of the hydroelectric power function is computed with a dynamic programming
algorithm based on a bilinear function similar to (9). The resulting grids are
overvaluations of the power function, meaning that they no not necessarily re-
flect its actual shape. In order to have a function as close to the physics as
possible, we will propose in this paper a new analytic function, considering the
power function of each turbine explicitly for a fixed turbine start-up sequence.

In terms of modeling, some (MI)NLP featuring (9) are described in the
literature. Indeed, a bilinear function is a common non-linear function can be
well handled by non-linear solvers, even for large-scale instances. In [23] the
HUC considered has multiple units, and is modeled as an NLP. Compared to
(Pgen), function f not only depends on the volume of the upstream reservoir
but also on the volume of the downstream reservoir and function F is a bilinear
function depending on the water flow and the head. In [21], an algorithm
called spatial Hydro Branch and Bound (sHBB) has been developed to solve to
optimality the HUC with cascading units. This algorithm is used to solve an
MINLP, where the power is a bilinear function of both water head and water
flow. Comparing again with (Pgen), function f is a polynomial function with
degree 4, and function F is a bilinear function depending on the water flow and
the head. All these non-linear formulations define the power as merely linear
with respect to the water flow, meaning that function F is always a bilinear
function.

Another common modeling alternative of the literature is to approximate the
power function with a piecewise linear function. In [28] the 1-HUC is considered.
The authors introduce a family of univariate PWL functions to model the power
depending on the water flow. Each PWL function of this family represents, for a
specific volume, the power with respect to the water flow using exactly 4 pieces.
To compare to (Pgen), function F becomes one of the univariate PWL functions
introduced. The model also approximates with PWL functions the spilled flow
constraints (see definition below), which involve a polynomial function. The
proposed model in [4] for the 1-HUC also expresses the power with a family
of univariate PWL functions of the water flow, for specific volumes. Besides,
it takes into account the maximum variation of the water flow between two
consecutive time periods. An improvement of this model features the rectangle
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method [10]. The aim is to compute a better approximation when v1t is between
two of the specific volumes selected to compute the PWL functions. To do so, the
method computes a projection of the power between the two surrounding specific
volumes in order to rectify the approximation. There are also iterative methods
using PWL functions. In [14] the HUC with cascading units is considered. It
is pointed out that if the head is fixed, then the power depends only on the
water flow. Using a PWL function with two pieces, the procedure is to solve
HUC with fixed head iteratively, while updating the head between each iteration
until convergence. Besides PWL formulations, hyperplanes formulations have
also been developed [29]. The aim is to create a set of hyperplanes, for each
number of active turbines, to linearize the non-linear power function. More
precisly, the hyperplanes are deduced from the most efficient point, and each
set form a concave over-estimator of the power function for a given number of
active turbines. As a maximization problem is considered, these hyperplanes
yield a convex optimization region. Defining multiple sets aims to produce a
more precise approximation, based on the aforementioned grid approximation of
the power function for each number of active turbines [33]. For a given number of
active turbines, the linearization does not require any additional binary variable.
However, binary variables are required to indicate the number of active turbines
at each time period, thus resulting in a MILP.

In [12] three models for the hydro power maintenance scheduling are com-
pared. The three models involve respectively a formulation with hyperplanes
[29], a PWL formulation from [10], and a five degree polynomial function. As
mentioned previously, the grid approach [33] is considered as a baseline to com-
pare the economic value of the solutions. The result of this comparison is that
the hyperplanes formulation is overall the best compromise between the size
and complexity of the optimization problem and the deviation from the refer-
ence data. As the grid approach is a simplification of the power function, there
was no need to resort to more elaborated functions. In our study, we would like
to make a similar comparison, but with a power function taking into account
the power of each turbine explicitly. It becomes relevant to include more sophis-
ticated models in this comparison, as they may lead to smaller approximation
errors.

As we can see from the aforementioned articles two common models represent
the power function either with PWL functions, or with a bilinear function. We
will consider models using these two types of functions, but we will also consider
models with more precise non-linear function F in formulation (Pgen). As the
focus is to represent the power function, the 1-HUC considered in this paper is
simplified with respect to other components. Thus, many constraints from the
literature will be ignored. In particular, the spillage [28] [23] [6], which is the
process of discharging water from the upstream reservoir to the downstream
reservoir without going through the unit, will not be considered. The water
spilled has no economic value, and spillage occurs on very rare occasions. The
maximum variation of the water flow between two consecutive time periods [10],
taking into account several other uses of water in the valley, will also be ignored.
The start-up and shut-down costs [21] [14], making the start up and shut down
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of a turbine impact the profit, are also not included in the model. We also
consider a fixed turbine start-up sequence [12].

3.3 Non-linear functions considered for the 1-HUC

From generic model (Pgen), we want to specify functions f and F . Firstly, we
will focus on function f to compute the head. Figure 2a shows the evolution
of the head depending on the volume for a realistic instance named B-T-1,
described in Appendix C. More generally, function f has the following form:

ht = f(v1t ) = γ1 + γ2 · v1t + γ3 · (v1t )γ4 ∀t ≤ T (10)

where γi are parameters depending on the instance, and γ4 ∈ [0.5, 1], which
means that this function is necessarily concave. Depending on the shape of the
reservoir, the function can be quasi linear or have a very noticeable non-linearity,
but always stays concave.

Secondly, we will focus on the power function F . A generic hydroelectric
power function from the literature [16] is described by equation (9). However,
this function does not correspond to our data. Indeed, for a fixed head, the
shape of the power function is known in the literature to be a non-convex and
non-concave function [20] [23] [4]. The following generic function corresponds
more precisely the data, and will be considered in our models instead of equation
(9), with function g non-convex and non-concave.

pt = ρ ·G · ht · g(dt, ht) (11)

When it comes to the hydroelectric power function, there is no analytic function
g that perfectly represents the physique. In the following we define function g
as well as possible, based on data and the following information on the shape
of the hydroelectric power function.

When the head is fixed, the power is the product of function g and constants,
but remains non-convex and non-concave. The reason why g is non-convex and
non-concave is because the function g includes the power rate of each turbine.
In particular, the power rate for each turbine is concave, and the unit has N
turbines which start-up in a prescribed order. Adding multiple turbines adds
concavity to the resulting function. To push the analysis further, function g
also has the following characteristics. For each turbine, function g is almost
linear when the turbine starts, then it incurves more and more until the next
turbine starts. When another turbine starts, we notice a break in the function
shape. The four main characteristics of g is described in Table 1.

In order to be as close to the physics as possible, we define g as a piecewise
non-linear function with N different five parameter logistic functions (5PL)
[17]. These 5PL functions, described in Appendix B, are slightly modified to
ensure they are defined for any water flow. Function g is as follows, with y a
vector containing the five parameters of the 5PL:

g(dt, H) =

N∑
i=1

bi · 5PLi(dt, y)
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C1 non-convex and non-concave
C2 locally linear when a turbine starts
C3 concave for each turbine with respect to the water flow
C4 non-differentiable points when changing turbine

Table 1: Characteristics of the power function

with the binary variable bi equal to one if and only if the i first turbines are
running, and 5PLi the cumulative power of the i first turbines, assuming a fixed
turbine start-up sequence. The 5PLi functions are parameterized such that
only the concave part of the 5PLi is considered when i turbines are running.
This non-linear power function of the original model features the four main
characteristics described in Table 1.

In the general case, function g also depends on the head. Figure 2b shows
the evolution of function g with respect to dt for instance B-T-1 (see Table
9). The functions in black are for the minimum and the maximum head, and
the grey region represents the power function for the possible values of ht. It is
noticeable that function g for the maximum head is not a linear transformation
of function g for the minimum head. Indeed, the shape of the function slightly
changes with the head. This means that the head influences the parameters of
the function g. To take this effect into account, the parameters y1 to y5 of the
5PL functions are linearly dependent on the head ht.

The model (Pgen) with functions g and h to compute the head and the
power will be referred to as the original model. This original model is is a non-
linear model with mixed variables. Preliminary computations show that this
model involves higher computing times than any other model presented, and is
not practicable for most of the instances considered, even for the smallest ones.
This is often the case in real world applications where the functions modeling a
physical system are either too complex to be implemented or not supported by
any solver.

For resolution purposes, the idea is to derive more tractable models than the
original model to capture the non-linearity in the power function.

4 Models for the 1-HUC

The following sections propose different models to represent the non-linearities
of the 1-HUC arising from the power generation function and its characteristics.
The models are also described for the fixed-head 1-HUC, which is a special case
often considered.

4.1 (MI)NLP modeling elementary non-linear functions

The models in this section represent the power function of each turbine explic-
itly, in order to have a representation close to the physics. The downside is that
for each turbine, auxiliary variables are required. Three models are presented,
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the first one features a family of polynomial functions, the second one a family
of 5PL functions with the max function, and the last one a family of 5PL
functions without the max function.

4.1.1 MINLP with a family of polynomial functions

The power function of one turbine for a given head has a parabolic shape. A
parabolic shape can be represented with a polynomial function with degree 2.
Each polynomial function represents the power generated by a turbine, plus the
contribution of the previous ones, following their startup order. Figure 3 shows
an example with 3 turbines. We define the following notations:

• bit : the binary variables such that bit = 1 if we use the polynomial
function of turbine i at the time period t;

• xkit : the continuous variable being the coefficient of monomial dkt in the
polynomial of turbine i at time period t;

• αki and βki : constants such that xkit linearly depends on ht with these
parameters;
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We introduce the following inequalities:

xkit = αki + βki · ht ∀k ≤ 2,∀i ≤ N, ∀t ≤ T (12)

N∑
i=1

bit = 1 ∀t ≤ T (13)

bit ∈ {0, 1} ∀i ≤ N, ∀t ≤ T (14)

pt = ρ ·G · ht ·
N∑
i=1

bit ·
2∑

k=0

xkit · (dt)k ∀t ≤ T (15)

Inequalities (12) compute parameters xkit as linearly dependent on ht. Inequal-
ities (13) and (14) ensure that only one of the polynomials is active for each
time period. Inequalities (15) compute the power with function g represented
by a family of polynomial functions.

The complete model, called (P2D−poly) is defined by inequalities (1)-(3),
(6)-(7), (10), (12)-(15). It appears that (P2D−poly) is a non-convex MINLP
as (10) and (15) are non-linear. Indeed, function f computing ht in (10) is
concave, and the polynomial functions in (15) are concave. But xkit is linear
with respect to ht (12), and in (15) variable xkit is multiplied by ht. So the power
function is convex with respect to ht, as it is a growing polynomial of degree
2. Consequently, the region for the optimization is non-convex. This model
represents well the power function, as it takes into account characteristics C1,
C3 and C4. However, this model still has downsides, mainly the addition of
auxiliary binary variables.

The polynomial functions are such that, for a given water flow, the poly-
nomial with the highest value represents the power of the turbine. Indeed, as
we maximize the profit, for a given water flow, the polynomial with the highest
value, for a given dt, will be considered for the optimal solution if energy prices
Λt are positive. The considered instances will have Λt ≥ 0, thus there is no need
to add inequalities specifying which variable bit is equal to 1 for a time period.
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dt

g(dt, ht)

Figure 3: Function g with polynomial functions
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Fixed-head 1-HUC To adapt the model (P2D−poly) to the fixed-head 1-
HUC, with head H, we introduce the following notations:

• Xki : the constants coefficient of (dt)
k for the turbine i.

The power function becomes (16)

pt = ρ ·G ·H ·
( N∑

i=1

bit · (
2∑

k=0

Xki · (dt)k)
)

∀t ≤ T (16)

Model (P2D−poly) for the fixed-head 1-HUC contains inequalities (1)-(3), (6)-
(7), (13)-(14) and (16) and is an MINLP. Indeed, we maximize the objective
function, and the only non-linear functions are concave polynomials of degree
2, hence the region of optimization for the integer relaxation is convex.

4.1.2 NLP with 5PL functions using function max

Function g can be represented as a sum of 5PL functions, where each 5PL
represents the power of one turbine. By summing properly parametrized func-
tions, the sum can be a precise approximation of the physical data. Figure 4
shows an example of the sum of 5PL functions as a solid line, and the three
separated 5PL as dashed lines.
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dt

g(dt, ht)

Figure 4: Function g with a sum of 5PL functions

To represent g with as a sum of 5PL functions, the 5PL functions need to
depend on the water flow. Besides, as function g depends on the water flow and
the head ht, the parameters of the 5PL functions have to depend on the head.
As such, these parameters denoted yj , j ∈ {1, .., 5}, are decision variables. Plus,
as there are multiple turbines and multiple time periods, these variables have 3
indices. To use 5PL functions, we introduce the following notations:

• yjit : continuous variable being the jth parameter of the 5PL function
for the turbine i at the time period t;
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• γji : and δji constants such that yjit linearly depends on ht with these
parameters;

For this model we need the following equalities:

yjit = γji + δji · ht ∀j ≤ 5,∀i ≤ N, ∀t ≤ T (17)

pt = ρ ·G · ht ·
( N∑

i=1

y4it +
−y4it(

1 +
(

max(0,dt−y1it)
y3it

)y2it
)y5it

)
∀t ≤ T (18)

Inequalities (17) set the parameters of the 5PL functions used in function g.
Inequalities (18) compute the power with g as a sum of 5PL functions. As
mentioned, a 5PL function is not defined if x < y1, which means for the 1-
HUC when dt < y1it. This is why we introduce function max in equalities
(18).

The model (P5PL−max) includes inequalities (1)-(3), (6)-(7), (10) and (17)-
(18). It is a non-convex non-concave NLP, and the non-linearity takes into
account characteristics C1 and C2. As this model contains a max function, it
is not supported by some global optimization solvers.

Fixed-head 1-HUC To adapt the model (P5PL−max) to the fixed-head 1-
HUC, with head H, we introduce the following notations:

• Y1i, .., Y5i : the 5 parameters for the 5PL function of the turbine i.

The power is computed by equalities (19).

pt = ρ ·G ·H ·
( N∑

i=1

Y4i +
−Y4i(

1 +
(

max(0,dt−Y1i)
Y3i

)Y2i
)Y5i

)
∀t ≤ T (19)

Model (P5PL−max) for the fixed-head 1-HUC contains inequalities (1)-(3), (6)-
(7) and (19).

4.1.3 MINLP with 5PL functions using auxiliary variables

This model is a variation of (P5PL−max), where the max is linearized by adding
linear inequalities and auxiliary variables. With the addition of binary variables
ait, we introduce the following set of inequalities:

dt − y1it ≤ uit ≤ dt − y1it + (1− ait) · (D − Y 1it) ∀i ≤ N, ∀t ≤ T (20)

0 ≤ uit ≤ ait · (D − Y 1it) ∀i ≤ N, ∀t ≤ T (21)

ait ∈ {0, 1} ∀i ≤ N, ∀t ≤ T (22)

pt = ρ ·G · ht ·
( N∑

i=1

y4it +
−y4it(

1 +
(

uit

y3it

)y2it
)y5it

)
∀t ≤ T (23)
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Set of inequalities (20)-(22) ensure uit = max(0, dt − y1it). Inequalities (23)
compute the power in the same manner as inequalities (18), but using uit.

The model (P5PL−bin) contains inequalities (1)-(3), (6)-(7), (10), (17) and
(20)-(23). Unlike the NLP model (P5PL−max), model (P5PL−bin) is an MINLP,
as it requires auxiliary binary variable ait. Model (P5PL−bin) can be solved by
many more MINLP solvers, as function max has been linearized. The non-
linearity is the same for (P5PL−max) and (P5PL−bin), and both models take
into account characteristics C1 and C2. Note that the model (Pgen), with the
piecewise non-linear function with 5PL, is also an MINLP. The difference is
that the binary variables are not the same as the ones in (P5PL−bin). Indeed,
the binary variables of (P5PL−bin) only acts in order to linearize the function
max, while in (Pgen) they are decision variables.

Fixed-head 1-HUC To adapt the model (P5PL−bin) to the fixed-head 1-
HUC, with head H, we introduce the following notations:

• Yji : constants for the parameter j for the 5PL function of the turbine i;

• uit : the variable such that uit = max(0, dt − Y1i).

To ensure the behaviour of variable uit, we add the set of inequalities (24)-(27),
defined as (20)-(23), where variables y are replaced by constants Y . Model
(P5PL−bin) for the fixed-head 1-HUC contains inequalities (1)-(3), (6)-(7) and
(24)-(27).

4.2 (MI)NLP modeling an aggregated non-linear function

The models introduced in this section represent all turbines as an aggregated
function. The principle is to consider a single function to represent the whole
power function, instead of a family or a sum of elementary functions. A single
function being less precise, the expected benefit is a quick resolution by MINLP
tools, as few additional variables and inequalities are required. The functions
we propose are the following: a polynomial function, a bilinear function, and a
finite set of operating flows.

4.2.1 NLP with a high degree polynomial function

A model using an aggregated function that represents well the physics is ob-
tained by using a single polynomial function as function g. Figure 5 shows an
example of an 8th degree polynomial function for an instance with two turbines.
As g depends on the head ht, the coefficients of the polynomial are linearly
dependent on ht. We introduce the following notation

• Q : the degree of the polynomial, with Q = 4N , where N denotes the
number of turbines;

• zqt : the continuous variable being the coefficient of monomial dqt in the
polynomial function at time period t;
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• ηq : and θq constants such that zqt linearly depends on ht with these
parameters;

For this model, we need the following inequalities:

zqt = ηq + θq · ht ∀q ≤ Q,∀t ≤ T (28)

pt = ρ ·G · ht ·
( Q∑

q=0

zqt · (dt)q
)

∀t ≤ T (29)

Inequalities (28) set the parameters of the polynomial function. Inequalities
(29) compute the power with g as a polynomial function.

The model, called (PHD−poly) includes inequalities (1)-(3), (6)-(7), (10) and
(28)-(29). It is an NLP featuring characteristic C1 as it is non-convex and non-
concave. The benefits compared to (P2D−poly) is that (PHD−poly) only considers
one single polynomial function. This means that no auxiliary binary variables
are required. The downside of (PHD−poly) is that high degree polynomials (8
for two turbines, 20 for five turbines) can induce large approximation errors. If
the water flow can fluctuate between 0 and 100, then it means that the solver
might need to compute numbers such as 0.18 or 1008, which are either too small
or too large numbers for solvers’ precision. Moreover, computational errors can
have a dramatic impact for the HUC, as an error for a time period will cumulate
and carry over all future time periods [31].

2 4 6 8

10

20

30

40

dt

g(dt, ht)

Figure 5: Function g with a single polynomial function

Fixed-head 1-HUC To adapt the model (PHD−poly) to the fixed-head 1-
HUC, with head H, we introduce the following notations:

• Zq : the coefficients for the degree q of the polynomial function.

The power function becomes:

pt = ρ ·G ·H ·
( Q∑

q=0

Zq · (dt)q
)

∀t ≤ T (30)
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The model (PHD−poly) for these special instances contains inequalities (1)-(3),
(6)-(7) and (30).

4.2.2 NLP with a bilinear function

A type of model often described in the literature to solve the HUC as an MINLP
is a bilinear model [23], [6]. The power is linear with respect to the water flow,
and to the head. In the model (Pgen), the power is already linear with respect
to the head. We need to make it also linear with respect to the water flow. To
do so, we introduce the following notations:

• µ and ν: constants such that the power is linearly dependant on the water
flow.

We adapt the power function as follows:

pt = ρ ·G · ht · (µ+ ν · dt) ∀t ≤ T (31)

Inequalities (31) compute the power linearly dependent of the head ht and the
water flow dt.

The model (Pbilin) contains inequalities (1)-(3), (6)-(7), (10) and (31). As
mentioned, inequality (31) is a bilinear function of ht and dt. A bilinear func-
tion is non-convex non-concave. However, the constraint are such that ht ≥ 0
and dt ≥ 0, in which case a bilinear function is concave. As we maximize
the objective function, and both ht and pt are computed with a concave func-
tion, the region for the optimization is convex. Unlike (P2D−poly), (PHD−poly),
(P5PL−max) or (P5PL−bin), (Pbilin) requires no additional variables. This makes
this model a potential candidate to solve quickly the problem. The downside
is that this model has the roughest approximation of all models. Indeed, the
bilinear function features none of the non-linear characteristics C1, C2, C3 or
C4. Even MILP models such as PWL models (Section 4.3) might have a better
precision.

Fixed-head 1-HUC When we adapt the model (Pbilin) to the fixed-head 1-
HUC, with head H, the model becomes a linear model, where the power is a
linear function of the water flow. To do so, we simply adapt the power function
as follows:

pt = ρ ·G ·H · (µ+ ν · dt) ∀t ≤ T (32)

The model (Pbilin) for the fixed-head 1-HUC contains inequalities (1)-(3), (6)-
(7) and (32), which yields an LP.

4.2.3 MINLP with a discrete set of decisions

Having a discrete set of decisions for the 1-HUC means that only a given number,
say L, operating flows are authorized. These operating flows are specifically
chosen where the power production is the most profitable, and usually are in
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the concave parts of the original power function in (Pgen). We introduce the
following notations:

• Dl : the constant being the lth operating flow;

• olt : the binary variable such that olt = 1 if we use the lth operating flow
at time period t.

We need the following inequalities: We consider a model with disjunctive con-
straints between the operating flows. As such, we need the following inequalities.

L∑
l=1

olt ≤ 1 ∀t ≤ T (33)

v1t′ = V 1
0 +

t′∑
t=1

(
A1

t − (

L∑
l=1

olt ·Dl) ·∆
)

∀t′ ≤ T (34)

v2t′ = V 2
0 +

t′∑
t=1

(
A2

t + (

L∑
l=1

olt ·Dl) ·∆
)

∀t′ ≤ T (35)

pt = ρ ·G · ht · g(
L∑

l=1

olt ·Dl, ht) ∀t ≤ T (36)

Inequalities (33) ensure that only one operating flow can be active at each time
period. The set of equations (34)-(36) corresponds to equations (2), (3) and (5)
from (Pgen), with operating flows instead of the water flow dt.

This leads to a new generic model (Pop) containing inequalities (1), (6),
(10) and (33)-(36). Function g in (36) can be any of the previously described
function for models (PHD−poly), (P2D−poly), (P5PL−max), (P5PL−bin) or (Pbilin).
Because we have a finite set of operating flows, function g for (Pop) will feature
none of the characteristics C1 to C4, regardless of the function considered.
Model (Pop) can be beneficial as the space of solution is drastically smaller, but
does not offer as much freedom, in particular when target volumes occur. As the
operating flows are amongst the most profitable ones, the solution might still be
close to the optimal solution. The downside of this model is that target volumes
can be unreachable with the set of operating flows, thus leading to infeasibility.

Fixed-head 1-HUC When we adapt the model (Pop) for the fixed-head 1-
HUC, with head H, the model becomes an MILP model. In this case the power
only depends on the water flow, thus there is a finite set of possible powers. As
such, the model becomes an MILP as we have to chose a pair (operating flow,
power produced) amongst a list of pairs at each time period. We introduce the
following notations:

• Pl : the constant being the power generated for the lth operating flow.

The model is very similar to (Pop) for the general 1-HUC, but we compute the
power differently as we use constants Pl:
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pt =

L∑
l=1

olt · Pl ∀t ≤ T (37)

The model (Pop) adapted for the fixed-head 1-HUC contains inequalities (1), (6),
(33)-(35) and (37). We can notice that this model contains very few variables,
as only the decision variables olt are required.

4.3 MILP modeling a PWL functions

Using a PWL approximation is a common practice when modeling a non-linear
problem. It is indeed an efficient way to obtain an MILP. The aim of comparing a
PWL model to the previously described non-linear models is mostly to compare
the precision in terms of solution value. As such, we will consider a standard
PWL formulation [8] [15], more precisely the convex combination formulation.
There exist much more efficient formulations, e.g. the logarithmic formulation
in [37], but they will not be considered as it will not impact the value of the
solution, but only the computing time.

A generic way to obtain a two dimensional PWL function is to use the
one-dimensional method described in [10]. It is a generalization of the convex
combination formulation [15]. The method described to approximate a non-
linear function f(x, y) is as follows. We fix I variables on the x axis, (x̃1, .., x̃I),
and J variables on the y axis (ỹ1, .., ỹJ). For each ỹj , we approximate f(x, ỹj)
with a PWL function l(x, ỹj), where each x̃i, i ≤ I acts like a break point.
It means that piece i of l(x, yj) is a linear function between x̃i and x̃i+1. We
obtain then J PWL functions with I − 1 pieces. The value for l(x, y), y ∈
[ỹj , ỹj+1], is approximated by l(x, ỹj). For the 1-HUC, we will approximate the
power function with respect to the water flow dt for a set of fixed volumes ỹj ,
j ∈ 1, ..., J .

In this model, we will aggregate both non-linear functions f and g as a a
unique function to represent the power. To do so, it is possible to replace ht

by f(v1t ) in inequalities (5) from (Pgen). Thus, the power is defined as follows,
and we only need to approximate one two-dimensional non-linear function for
the whole model:

pt = F (dt, v
1
t ) = ρ ·G · f(v1t ) · g(dt,f(v1t ))

To use the PWL approximation, we introduce the following notations:

• l(v1t , dt) : the PWL approximation of F (v1t , dt);

• J : the number of PWL functions allocated on the volume axis;

• I : the number of breakpoints on the water flow axis;

• ṽ1j : the volume corresponding to the jth one dimensional PWL function.
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• d̃i : the breakpoint i for all J PWL functions;

And we include the following variables:

• lj,t : the value l(ṽ1j , dt) of the PWL function j at time period t;

• rit : binary variables such that rit = 1 if dt is located on the interval
[d̃i, d̃i+1];

• wit : continuous variables such that dt is the convex combination witd̃i +
wi+1td̃i+1;

• sjt : binary variables such that sjt = 1 if v1t is located in the interval
[ṽ1j , ṽ

1
j+1].

The PWL formulation requires the following inequalities:

I∑
i=1

rit = 1 ∀t ≤ T (38)

wit ≤ ri−1t + rit ∀i ≤ I, ∀t ≤ T (39)

I∑
i=1

wit = 1 ∀t ≤ T (40)

dt =

I∑
i=1

wit · d̃i ∀t ≤ T (41)

lj,t =

I∑
i=1

wit · F (ṽ1j , d̃i) ∀j ≤ J, ∀t ≤ T (42)

rit ∈ {0, 1} ∀i ≤ I, ∀t ≤ T (43)

0 ≤ wit ≤ 1 ∀i ≤ I, ∀t ≤ T (44)

J∑
j=1

sjt · ṽ1j ≤ v1t ≤
J∑

j=1

sjt · ṽ1j+1 ∀t ≤ T (45)

J∑
j=1

sjt = 1 ∀t ≤ T (46)

lj,t − P t · (1− sjt) ≤ pt ≤ lj,t + P t · (1− sjt) ∀j ≤ J, ∀t ≤ T (47)

sjt ∈ {0, 1} ∀j ≤ J, ∀t ≤ T (48)

Inequalities (38)-(44) are the standard convex combination formulation for
a one-dimensional PWL function, applied to approximate function F for each
given volume. These inequalities ensure that lj,t is the value, at time period t of
the PWL function approximating F for for volume ṽ1j . Inequalities (38) express
that exactly one variable rit is equal to one at time period t, meaning that we
consider one piece of the PWL function at time period t. Inequalities (39) allows
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the weight rit of a breakpoint to be greater than zero only if one for the two
surrounding pieces is considered at time period t. Inequalities (40)−(41) ensure
that dt is the convex combination of the d̃i with the weights rit at time period
t. Inequalities (42) compute the PWL approximation of the power function.

We have described the inequalities to obtain lt,j the approximated value of
F at time period t using univariate PWL functions. Now we need inequalities
(45)-(48) in order to compute the power from the value lt,j for the fixed volume
ṽ1j , with ṽ1j ≤ v1t ≤ ṽ1j+1. Inequalities (45)-(47) ensure sj,t = 1 if v1t ∈ [ṽ1j ; ṽ

1
j+1],

and exactly one variable sj,t is equal to 1. Variable sj,t then indicates which
PWL function should be considered depending on the volume. Inequalities (47)
ensure pt = lj,t if sj,t = 1, or give trivial bounds if sj,t = 0.

The MILP model (Ppwl) contains inequalities (1)-(3), (6)-(7) and (38)-(48).
The consequences of this model being an MILP are twofold. On the one hand,
it can be solved with powerful MILP tools. On the other hand it includes a
lot of auxiliary variables and inequalities, and it does not include any of the
non-linear characteristics of the power function.

Fixed-head 1-HUC When we adapt the model (Ppwl) to the fixed-head 1-
HUC, with head H, we approximate a one-dimensional power function. To do
so, we use the convex combination formulation [15], which is the formulation
generalized for formulation (Ppwl) in the general case. The convex combination
formulation adapted for the 1-HUC requires inequalities (38)-(41) and (42)-(44).
We compute the power as follows

pt =

I∑
i=1

wit · ρ ·G ·H · g(d̃i, H) ∀t ≤ T (49)

Thus the model (Ppwl) for these special instances contains inequalities (1)-(3),
(6)-(7), (38)-(41) and (43)-(44) and (49)

4.4 Summary of models and non-linear functions

We have described a total of fourteen different models. Most of the models share
the same set of constraints. We define constraint sets S1=(1)-(3), (6)-(7), (11)
and S2=(1)-(3), (6)-(7). Table 2 summarizes all models with their constraints.
The difference between these models is the representation of the power function.

Table 3 shows the characteristics and the type of program for each model.
The convexity and the linearity of a model do not take into account the inte-
ger variables. From a theoretical point of view, none of the presented models
perfectly fits the power function of the original model. Indeed, none of the
models features all four non-linear characteristics of the power functions. How-
ever, it will be shown in the numerical experiments that some models allow for
very small approximation errors, while other models, with simpler non-linear
expressions, lead to shorter computing times.

It is also possible to compare the models, on the basis of the difficulty for
the solvers to manage their non-linear expression. A way to measure this is to
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Model General cases inequalities Fixed-head cases inequalities
(P2D−poly) S1,(12)-(15) S2,(13)-(14), (16)
(P5PL−max) S1,(17)-(18) S2,(19)
(P5PL−bin) S1,(17),(20)-(23) S2,(24)-(27)
(PHD−poly) S1,(28)-(29) S2,(30)
(Pbilin) S1,(31) S2,(32)
(Pop) (1), (6),(10), (33)-(36) (1), (6), (33)-(35), (37)
(Ppwl) S2,(38)-(48) S2,(38)-(41), (42)-(44), (49)

Table 2: Summary of the proposed models

1-HUC Fixed-head 1-HUC Characteristics
Model Type Convexity Type Convexity C1 C2 C3 C4

(P2D−poly) MINLP non-convex MINLP convex ✓ ✗ ✓ ✓
(P5PL−max) NLP non-convex NLP non-convex ✓ ✓ ✗ ✗
(P5PL−bin) MINLP non-convex MINLP non-convex ✓ ✓ ✗ ✗
(PHD−poly) NLP non-convex NLP non-convex ✓ ✗ ✓ ✗
(Pbilin) NLP convex LP linear ✗ ✗ ✗ ✗
(Pop) MINLP non-convex MILP linear ✗ ✗ ✗ ✗
(Ppwl) MILP linear MILP linear ✗ ✗ ✗ ✗

Table 3: Comparison of the models non-linear characteristics

compare the size of the reformulation binary tree for the non-linear expressions
as in [34]. Following this metric, 5PL functions are by far the most difficult
functions, followed by high degree polynomials, two degree polynomials, bilinear
functions and linear functions.

5 Numerical experiments

The tests are performed via Neos Server [9] using the following five MINLP
solvers: ANTIGONE, BARON, COUENNE, LINDOGlobal, SCIP, along with
the MILP solver CPLEX. For MINLP solvers, the GAMS format is used for
input files, while for the MILP solver, the LP format is used. All experiments
are performed on Neos Server machine prod-exec-7 (a 2x Intel Xeon Gold 5218 @
2.3GHz processor with 384 GB of RAM), using a single thread. The computing
time limit is set to 10800 seconds.

5.1 Modeling choices

The parameters of the power functions featured in the different models are
obtained by fitting them to the power function of the original model. The
fitting is done via Scipy’s curve fit function1, using a non-linear least squares

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_

fit.html, accessed: 2023-01-09
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method. Unfortunatly, no a priori precision is given for the resulting function
with respect to the data. Recall that the purpose of this work is to study and
analyse various approximations of the power function. Thus the parameters of
the head functions of all proposed models are the ones of the original model.

For model (Ppwl) we also want to compare the impact of the number of
linear pieces, therefore we will define three variants of (Ppwl): (P 1

pwl), (P
2
pwl)

and (P 3
pwl), respectively with 5, 20 and 100 breakpoints for each axis. For every

variant, the breakpoints are defined as equidistant instead of being tailored to
each instance. Results show that model (Ppwl) is not significantly penalized in
terms of approximation error compared to the other models, with equidistant
breakpoints.

For model (Pop), a discrete set of decision variables is to be chosen. For the
considered instances, we define g as the non-linear function of model (P5PL−bin),
and we consider 5 operating flows per turbine. We will not consider models with
more operating flows, as the model contains 5PL functions that are already
difficult to handle. Additional operating flows would make the model irrelevant
as it would become too hard to solve.

All models contain variables that are subject to an equality constraint, but
there are no explicit constraint to bound the value of these variables. However,
when using global solvers, it is a good practice to bound every variable. Hence,
for the experiments, every variable has an upper and lower bound, even if these
bounds are trivially set through the equality constraints.

5.2 Instances

All the instances on which the models and solvers are tested are described in
detail in Appendix C. Different characteristics of the instances are changed
from an instance to another. The varying characteristics and the correspond-
ing 1-HUC parameters are as follows. The size of the instance varies with the
number of time periods. Equality constraints appear as soon as target volumes
are accounted for in the instance. Two characteristics of the non-linear function
can be changed: the number of inflection points and the degree of non-linearity.
These characteristics are respectively linked to the number of turbines, and
to when the transition from a turbine to another occurs when increasing or
decreasing the water flow. The last characteristic is the sensitivity of the deci-
sion variables, which measures how much the decision can affect the dynamical
behavior of the physical system. For the 1-HUC, the smaller the water flows rel-
ative to the absolute volume, the less the volumes change over the time periods.
The sensitivity S can be computed as follows for the 1-HUC:

S =
D · T −D · T

min(V
1

T − V 1
T , V

2

T − V 2
T )

For instance, let an instance of the 1-HUC be with D = 50, D = 0, T = 10,

V
1

T = V
2

T = 1000 and V 1
T = V 2

T = 0, then S = 500/1000 = 0.5. A similar

instance with V
1

T = V
2

T = 1000 would have S = 500/10000 = 0.05.
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Table 9 inAppendix C summarizes the instances and their characteristics.

5.3 Terminology, notations and metrics

In this section, additional terminology is introduced to compare the different
models on the considered instances. For the comparisons, we also define the
metrics used and their notation.

A configuration is defined as a pair (instance, model). For all models, a con-
figuration is solved to optimality when the optimality gap between the primal
and dual values is below 0.1%. Note that the optimality gap is not computed in
the exact same manner for every solver, but remains very similar. The optimal
solution of a configuration is the solution when the configuration is solved to
optimality. The value of a configuration is the value of the optimal solution.
The recalculated value of a solution is the value of the solution, evaluated with
the non-linear functions of the original model. The recalculated value of a con-
figuration is the recalculated value of the optimal solution of the configuration.
A configuration is solvable by a solver if the solver supports the model. A con-
figuration is solved if the it is solved to optimality with at least one solver. A
configuration is feasible with a solver when it is not solved to optimality, but a
solution is found. A configuration is infeasible with a solver if the solver proves
the configuration to have no feasible solution.

The metrics used to compare the models and the solvers are as follows.
The computing time (CT) of a configuration is the time required to return the
optimal solution. The approximation error (AE) of a configuration is the relative
difference between the value of the optimal solution of the configuration, and
the recalculated value of the configuration. The distance to the best recalculated
value (DB) of a configuration is the relative difference between the recalculated
value of the configuration, and the highest recalculated value of all configurations
with the same instance.

As specified, configurations are solved with several solvers. We define the
virtual best solver (VBS) [18] of a given configuration as the solver that requires
minimal CT to solve the configuration. Results show that the AE (resp. the
DB) of a configuration is the same for every solver. Thus, for our results, the
VBS is the solver that has the configuration solved to optimality in minimal
CT. For our analysis we use the metrics of the configurations with their VBS.
All figures and tables for the results are with the VBS, except for Tables 5 and
6 that display the results for each solver.

5.4 Model comparison

As aforementioned, the 1-HUC and its simplification, the fixed-head 1-HUC,
are considered. To observe the effect of this simplification, results are presented
for both the 1-HUC and the fixed-head 1-HUC.

Note that some configurations are not solvable with every solver. Indeed,
model (P5PL−max) is only supported by LINDOGlobal and SCIP. Besides, none
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of the configurations with (PHD−poly) returns a feasible solution. It follows that
results related to model (PHD−poly) are not enclosed.

Figure 6 shows on the y-axis the proportion of configurations solved with
their VBS, under a CT threshold given on the x-axis. In a similar manner,
Figure 7 shows on the y-axis the proportion of configurations solved with their
VBS, but this time under a given AE threshold on the x-axis. Analogously,
Figure 8 shows on the y-axis the proportion of configurations solved with their
VBS, under a given DB threshold on the x-axis. For these three figures, the
configurations are color-coded depending on the model of the configuration.
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Figure 6: Proportion of configurations solved with their VBS where the CT is
under a CT threshold

For any model the 1-HUC requires more CT (Figure 6) and leads to smaller
AE (Figure 7) than the fixed-head 1-HUC.

We notice from Figure 6 and Figure 7 that for the 1-HUC, a model is a
trade-off between CT and AE, whereas for the fixed-head 1-HUC, every model
has similar AE, except for (Pbilin), which yields a poor approximation. When
considering the fixed-head 1-HUC, it becomes counterproductive to use a very
sophisticated non-linear model, as the AE induced by a fixed head will be largely
independent of the chosen model.

We now evaluate the economic quality of the solution obtained by comparing
the DB (Figure 8). Most configurations yielding the smallest DB are with the
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Figure 7: Proportion of configurations solved with their VBS where the AE is
under an AE threshold
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Figure 8: Proportion of configurations solved with their VBS where the DB is
under a DB threshold

1-HUC. For the fixed-head 1-HUC, the optimal solution of a configuration may
be far from optimal for (Pgen), due to the generally large AE. However it must
be noted that there are cases where the DB for the fixed-head 1-HUC is small.
This can happen in two cases: when only configurations with non-precise models
((P 2

pwl), (P 3
pwl) and (Pbilin)) are solved for the 1-HUC, or for configurations

relative to instances with low sensitivity of decision variables. In the latter case,
the AE of the fixed-head 1-HUC is similar to the AE of the 1-HUC.

The trend is for models with small (resp. high) AE (Figure 7) to also
have small (resp. high) DB (Figure 8). However we notice an exception for
(Pop). Indeed, model (Pop) has a similar AE as (P5PL−max) and (P5PL−bin)
(Figure 7). However the DB for (Pop) is much higher than for (P5PL−max) and
(P5PL−bin) (Figure 8), which means that its solutions are of lesser economic
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quality. This is because for (Pop), there is a finite set of operating flows, and
every solution must have water flows within this set. It is possible that the
optimal solutions of configurations with (Pop) are far from the optimal once the
water flows are not restricted to the finite set. Note that (Pop) is the only model
that yields a DB above 30% for the 1-HUC.

To summarize the results, Figure 9 shows a bargraph which represents
two categories of results: the proportion of configurations solved with their
VBS for each model, and the proportion of these configurations where the DB
is the smallest (resp. the second smallest, third smallest) compared to other
configurations with the same instance. Note that if two configurations with
the same instance lead to the smallest (resp. second smallest, third smallest)
DB, they are both counted as leading to the smallest (resp. second smallest,
third smallest) DB. These results are distinguished for both the 1-HUC and the
fixed-head 1-HUC.

Besides models (P 1
pwl), (P 2

pwl) and (Pbilin) that solve every configuration
for the 1-HUC and for the fixed-head 1-HUC, the proportion of configurations
solved is larger for the fixed-head 1-HUC than for the 1-HUC. Moreover in the
fixed-head case, configurations are solved for every model but (Pop), due to
target volumes that may not be reachable with the finite set of operating flows.

Note that for the 1-HUC, models (P5PL−max) and (P5PL−bin) have for most
configurations a DB that is amongst the top three smallest. However for the
fixed-head 1-HUC, these models lose this property with respect to their DB,
and models (P 2

pwl) and (P 3
pwl) often lead to the smallest DB. This supports

the point that in the case of the fixed-head 1-HUC, it is unnecessary to have a
sophisticated non-linear model.

Another interesting metric is the proportion of infeasible configurations with
their VBS. Table 4 shows, for each model, the proportion of solved (%solved),
feasible (%feasible), and infeasible (%infeasible) configurations with their VBS.
Note that there is no case where the status is undefined: for every configuration,
either a feasible solution is found, or the infeasibility is proven within three
hours.

The infeasible status can occur when the configuration indeed does not have
any feasible solution. For example a configuration with model (Pop) and an
instance with target volumes is infeasible with any solver if the target volumes
are not reachable with the finite set of operating flow. This is why 8.33% of
configurations with model (Pop) are infeasible with their VBS. However, infeasi-
bility can also occur when a configuration has a feasible solution. As (P2D−poly)
has continuous variables for the water flows dt, and a power function defined
on the domain of variables, there should be at least one solution for every con-
figuration. Nevertheless, 11.11% of configurations with model (P2D−poly) are
infeasible with their VBS for the 1-HUC. This happens for configurations with
model (P2D−poly) featuring high degree of non-linearity: every non-linear solver
returns the infeasible status for these configurations.
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Figure 9: Proportion of configurations for each model solved by their VBS

1-HUC Fixed-head 1-HUC
Model %solved %feasible %infeasible %solved %feasible %infeasible

(P5PL−max) 86.1 13.9 0.0 100.0 0.0 0.0
(P5PL−bin) 91.7 8.3 0.0 100.0 0.0 0.0
(P2D−poly) 88.9 0.0 11.1 100.0 0.0 0.0

(Pop) 88.9 2.8 8.3 91.7 0.0 8.3
(Pbilin) 100.0 0.0 0.0 100.0 0.0 0.0
(P 3

pwl) 94.4 5.6 0.0 100.0 0.0 0.0

(P 2
pwl) 100.0 0.0 0.0 100.0 0.0 0.0

(P 1
pwl) 100.0 0.0 0.0 100.0 0.0 0.0

Table 4: Proportion of solution status returned for the configurations for each
model by their VBS

5.5 Solver comparison

All reported results so far are with the VBS, whereas in this section the results
show the behaviour of each solver independently. Table 5 and Table 6 show
for each model the proportion of configurations solved with each solver, and
the average CT, respectively for the 1-HUC and for the fixed-head 1-HUC. As
aforementioned, a solved configuration has, for every solver, the same AE, only
the proportion of configurations solved and the CT can change from a solver to
another. In the tables, the following notations are used:

• %S: proportion of configurations solved

• avg-CT: average CT
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• NS: model not supported by the solver

• NR: model supported by the solver, but experiments are not reported

For a model, a solver dominates another solver if it has a higher %S, and a
smaller avg-CT. For each model, the smallest avg-CT and the highest %S are
emphasized in bold. If for a model, the two metrics are in bold for a solver,
then it dominates every other solver for the model.

The results confirm that the performance of a solver highly depends on
the model. For instance, when the 1-HUC is considered (Table 5), solver
SCIP dominates solver ANTIGONE for model (P5PL−bin), but ANTIGONE
dominates SCIP for model (P2D−poly). The results also give credit for non-linear
models, as paired with the adequate solver can lead to competitive CT. For
instance, for the 1-HUC (Table 5), when solver BARON is used, configurations
with model (P5PL−bin) have a proportion of configurations solved and an avg-
CT very similar to configurations relative to model (P 3

pwl) solved with CPLEX.
More details are given directly on the solvers behaviour in Table 5 and

Table 6. ANTIGONE seems to be less efficient than other solvers for the 1-
HUC. This is especially notable for model (P5PL−bin). BARON is on average
the most efficient solver for models for which it has results. COUENNE is
moderately effective and it seems like there is no model that is significantly
difficult to solve, in comparison to other solvers. LINDOGlobal is pretty efficient
for models (Pop) and (P2D−poly). However, it is the least efficient for (Pbilin).
For models (P5PL−bin), LINDOGlobal is very efficient for the 1-HUC, but not
for the fixed-head 1-HUC. The opposite can be noticed for model (P5PL−max).
SCIP is very efficient for models (P5PL−bin), (P5PL−max) and (Pbilin). However,
it does not perform well with model (P2D−poly).

ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
Model %S avg-t %S avg-t %S avg-t %S avg-t %S avg-t %S avg-t

(P5PL−max) NS NS NS 38.9 616.36 86.1 606.87 NS
(P5PL−bin) 19.4 824.84 88.9 25.63 69.4 163.23 86.1 446.92 88.9 218.00 NS
(P2D−poly) 44.4 2.51 88.9 31.32 63.9 91.27 80.6 30.36 19.4 828.72 NS

(Pop) 50.0 235.24 83.3 258.94 52.8 439.83 75.0 375.10 69.4 44.23 NS
(Pbilin) 75.0 0.10 100.0 0.08 97.2 0.25 75.0 4.72 100.0 0.17 NS
(P 3

pwl) NR NR NR NR NR 94.4 19.07

(P 2
pwl) NR NR NR NR NR 100.0 0.71

(P 1
pwl) NR NR NR NR NR 100.0 0.02

Table 5: Proportion of configurations for each model solved by each solver and
related average CT for the 1-HUC

Previous results are presented with respect to the virtual best solver (VBS).
However, in a practical case it may not be convenient to use the VBS, as it
could be difficult to have access to as many solvers. Tables 7 and 8 show the
proportion of instances where a solver is the VBS, for each model. For model
(P5PL−max), SCIP is the VBS in a large majority of configurations. For linear
models (P 1

pwl), (P 2
pwl) and (P 3

pwl) for the 1-HUC and models (Pbilin), (Pop)
for the fixed-head 1-HUC, CPLEX is the VBS as it is the only linear solver
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ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
Model %S avg-t %S avg-t %S avg-t %S avg-t %S avg-t %S avg-t

(P5PL−max) NS NS NS 97.2 159.96 94.4 0.13 NS
(P5PL−bin) 30.6 856.07 100.0 13.13 100.0 109.84 61.1 58.80 100.0 2.95 NS
(P2D−poly) 72.2 0.15 100.0 0.51 100.0 0.87 100.0 1.36 100.0 100.31 NS

(Pop) NR NR NR NR NR 91.7 0.01
(Pbilin) NR NR NR NR NR 100.0 0.00
(P 3

pwl) NR NR NR NR NR 100.0 0.05

(P 2
pwl) NR NR NR NR NR 100.0 0.02

(P 1
pwl) NR NR NR NR NR 100.0 0.01

Table 6: Proportion of configurations for each model solved by each solver and
related average CT for the fixed-head 1-HUC

considered. For models (P5PL−bin), (P2D−poly), (Pbilin) and (Pop) for the 1-
HUC and models (P5PL−bin) and (P2D−poly) for the fixed-head 1-HUC, BARON
seems to be the VBS in most cases. We see two exceptions, for model (Pbilin)
for the 1-HUC and model (P2D−poly) for the fixed-head 1-HUC, ANTIGONE is
more frequently the VBS. However, Tables 5 and 6 show that in aforementioned
cases, the problem is solved very quickly. Thus it is possible that ANTIGONE
is quicker than BARON only on easy configurations, and may only be quicker to
startup. Besides, ANTIGONE does not solve every configuration in both cited
cases, while BARON does. To summarize, only one solver could be considered
per model to have most of the time the VBS: CPLEX for linear models, SCIP
for model (P5PL−max) and BARON for all other cases.

Model ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
(P5PL−max) NS NS NS 16.1 83.9 NS
(P5PL−bin) 0.0 54.6 30.3 15.2 0.0 NS
(P2D−poly) 12.5 84.4 3.1 0.0 0.0 NS

(Pop) 0.0 90.6 0.0 6.3 3.1 NS
(Pbilin) 63.9 33.3 0.0 0.0 2.8 NS
(P 3

pwl) NR NR NR NR NR 100.0

(P 2
pwl) NR NR NR NR NR 100.0

(P 1
pwl) NR NR NR NR NR 100.0

Table 7: Proportion of configurations for each model where a solver is the VBS
for the 1-HUC

In Appendix D an analysis of the impact of each characteristic of a 1-HUC
instance is described.

5.6 General modeling recommendations from numerical
experiments

From the results, three types of models stand out: (Ppwl), (Pop) and (P2D−poly)
both for the 1-HUC and the fixed-head 1-HUC. We list them hereafter giving
for each of them their main strengths and weaknesses. Firstly, (Ppwl) usually
provides a good trade-off between CT and AE. However the proper number of
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Model ANTIGONE BARON COUENNE LINDOGlobal SCIP CPLEX
(P5PL−max) NS NS NS 5.6 94.4 NS
(P5PL−bin) 2.8 72.2 0.0 13.9 11.1 NS
(P2D−poly) 52.8 33.3 0.0 13.9 0.0 NS

(Pop) NR NR NR NR NR 100.0
(Pbilin) NR NR NR NR NR 100.0
(P 3

pwl) NR NR NR NR NR 100.0

(P 2
pwl) NR NR NR NR NR 100.0

(P 1
pwl) NR NR NR NR NR 100.0

Table 8: Proportion of configurations for each model where a solver is the VBS
for the fixed-head 1-HUC

pieces cannot always be deduced in advance. Consequently, a trial and error
procedure may be necessary to determine a piecewise linear function with a
good trade-off. Secondly, model (Pop) can lead to the smallest AE, and it can
be solved faster than the sophisticated models (P5PL−bin) and (P5PL−max). The
drawback is that in the case of an instance with equality constraints there may
not be a feasible solution for model (Pop). Thirdly, model (P2D−poly) is similar
to (P 2

pwl) in terms of AE and CT, meaning it is also a good trade-off. However,
model (P2D−poly) sometimes fails to find a solution, even if there is a feasible
solution with the model. This illustrates the intrinsic difficulties of the current
solvers for some non-linear models (see also the case of (PHD−poly) described in
Section 5.4).

The choice of the solver impacts the CT and the proportion of instances
solved. The results indicate that BARON is the most efficient non-linear solver
when the model is supported, otherwise SCIP is the most efficient one. For the
three retained models, solver BARON is the most efficient for the non-linear
ones (model (Pop) for the 1-HUC and (P2D−poly) in any case), and a specialized
MILP solver should be considered for the linear ones (model (Pop) for the fixed-
head 1-HUC and (Ppwl) in any case).

6 Conclusion

In this paper various non-linear and linear modeling alternatives to solve a
non-linear problem are compared, in terms of feasibility, approximation er-
ror, distance to the best recalculated value and computational time. The
considered non-linear problem is the 1-HUC, featuring two non-linearities: a
one-dimensional concave function, and a two-dimensional non-convex and non-
concave function. A common special case of the 1-HUC, the fixed-head 1-HUC,
is also considered, featuring a single non-linearity: a one-dimensional non-convex
and non-concave function. A close to the physics non-linear model is defined
for the 1-HUC and for the fixed-head 1-HUC. However, this model features
too difficult non-linearities to be solved in a reasonable time, even for small
instances. Seven alternative models are proposed, the focus being to represent
the non-linearities of both the 1-HUC and the fixed-head 1-HUC. These mod-
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els cover a large panel of modeling alternatives, including the common models
for the 1-HUC from the literature, but also new models with uncommon non-
linear functions. Several sets of instances with different characteristics of the
1-HUC and the fixed-head 1-HUC are solved with each of the proposed model,
using five global solvers, and one linear solver. The results show that three of
the seven models stand out as the most appealing, offering the best trade-off
between computational time, approximation error and feasibility. As the com-
puting time of a non-linear model highly depends on the available global solver,
preferred solvers are also highlighted for these three models.

As future research, refining the three most efficient models revealed by the
present study, via advanced or dedicated solution methods, is promising. First,
the use of logarithmic disjunctive constraints [37] would benefit to all models,
as it would reduce the number of variables. Second, model (Ppwl) can be im-
proved by extending methods from the literature that optimize the number of
breakpoints with an approximation guarantee in a PWL bounding framework
[25]. Third, as model (P2D−poly) features quadratic constraints, making use of
quadratic programming techniques could improve the feasibility and the com-
putational time. Finally, in opposition to the other presented models, the water
flow is discretized in model (Pop) due to the finite set of operating points. Con-
sequently there is a large combinatorics, which usually increases exponentially
with the size of the instances. The use of combinatorial optimization methods,
such as a polyhedral study could lead to smaller computing times.
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Appendices

A Solver description

ANTIGONE [24] is based on an sBB algorithms. The problem is reformulated
in order to find special structures. Once the structures are found, the relaxation
of the problem is solved. The search space is split and the process repeated until
convergence of the upper and the lower bounds. Upper bounds are computed
with local optimization algorithms. Only twice differentiable functions, that are
not trigonometrical functions, are supported by ANTIGONE.

BARON [35] implements a deterministic Branch and Reduce algorithm. This
algorithm contains constraint programming, interval analysis and duality tech-
niques for tightening variables bounds. Heuristics, cutting planes and paral-
lelism are combined with the Branch and Reduce algorithm. Trigonometrical
functions and max functions are not supported.

COUENNE [2] implements an sBB with linearization, bound reductions and
branching method. The main four components are: reformulation, separation of
linearization cuts, branching rules and bound tightening methods. COUENNE
only supports functions that can be reformulated into univariate functions and
does not support function max.

LINDOGlobal [22] is the only solver that does not directly implements an
sBB algorithm. Instead, it implements a branch and cut algorithm that breaks
the model into sub-problems. The sub-problems are further split until each
sub-problem is convex. The sub-problems are then solved with a BB or sBB
algorithm. LINDOGlobal supports most non-linearities, and binary operators
such as AND, OR and NOT.

SCIP [38] implements an sBB, where the non-linearities are represented
within graphs. These graphs help finding convex non-linearities, and refor-
mulating the non-linear functions. During the solving process, SCIP also adds
various cuts, depending on the non-linearities. Bound tightening methods are
also applied. Trigonometrical functions are not supported by SCIP and it is the
only solver which requires a linear objective function.

CPLEX [7] implements a quite effective multipurpose Branch and Cut algo-
rithm, which generates automatically various cuts [7]. Furthermore it is paired
with pre-processing and heuristics.

B Five parameters logistic function

A 5PL is the following function, where x is a variable and y1 to y5 the param-
eters:

5PL(x, y1, y2, y3, y4, y5) = y4 +
−y4

(1 + (x−y1

y3
)y2)y5
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In the context of the 1-HUC, variable x is the water-flow dt. The 5PL has a
shape similar to a more common function, the sigmoid:

sig(x, y′1, y
′
2, y

′
3) =

y′3
1 + e−y′

2(x−y′
1)

The advantages of the 5PL is that it is more flexible than a sigmoid. The
sigmoid is necessarily symmetric with respect to its inflection point, whereas
5PL is not. However, a 5PL function is not defined if x < y1, which can occur
when representing a turbine by a 5PL function. To adapt the 5PL function
to the use case of the 1-HUC, it is possible to insert a max function inside the
5PL function as follows:

5PL(x, y1, y2, y3, y4, y5) = y4 +
−y4(

1 +
(

max(0,x−y1)
y3

)y2
)y5

With this modification, if x < y1 then the 5PL function is equal to y4 +
(−y4/1) = 0, if x ≥ y1, the 5PL has the same behaviour as previously defined.

C Instances description

The instances are derived from the following parameter sets A and B, by chang-
ing the value of only one parameter at a time. The idea is to evaluate the impact
of the parameters on the resolution and the solution with multiple metrics. Ta-
ble 9 shows the parameters of each parameter set.

Parameter set A Parameter set B

V 1
0 = 500, V 2

0 = 200 V 1
0 = 90, V 2

0 = 10

T = 4 T = 4

V
1

t = 1000, V 1
t = 0 ∀t ≤ T V

1

t = 100, V 1
t = 0 ∀t ≤ T

V
2

t = 500, V 2
t = 0 ∀t ≤ T V

2

t = 90, V 2
t = 0 ∀t ≤ T

D = 0, D = 25 D = 0, D = 8

P t = 0, P t = 15 ∀t ≤ T P t = 0, P t = 32 ∀t ≤ T

Φ1 = 230, Φ2 = 0 Φ1 = 850, Φ2 = 0

Λ = [0.2, 0.15, 0.1, 0.2] Λ = [0.1, 0.2, 0.5, 0.4]

A1
t = A2

t = 0 ∀t ≤ T A1
t = A2

t = 0 ∀t ≤ T

γ = [0, 0.1, 5, 0.7] γ = [100, 0.2, 2, 0.6]

Table 9: Parameter sets

The modified characteristics are the following:

• Size of the instance

• Equality constraints
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• Number of inflection points of the non-linear function

• Degree of non-linearity of the function

• Sensitivity of the decision variables to the non-linear effect

In these parameter sets, the maximum and minimum volumes are artificially
large, to see the impact of each characteristic. Below, we justify the choice for
each characteristic and explain how the changes are instantiated on the 1-HUC.
Note that every instance is built such that there is at least one feasible solution
with continuous water flows dt.

C.1 Size of the instance

Larger instances are in general harder to solve as they contain more variables
and inequalities. In the case of the 1-HUC, larger instances considered will have
a larger number of time periods T . Increasing T exponentially increases the
number of feasible solutions. Three instances are considered, A-T-1 to A-T-3
(resp. B-T-1 to B-T-3) corresponding to the variations of the parameter set A
(resp. B) with 4, 7 and 10 time periods T . To take into account more time
periods, prices are supplemented as follows: Λ = [0.2, 0.15, 0.1, 0.2, 0.1, 0.05,
0.1, 0.2, 0.15, 0.05] (resp. Λ = [0.1, 0.2, 0.5, 0.4, 0.3, 0.2, 0.3, 0.5, 0.4, 0.2]).
These instances are such that the volume of each reservoir can not reach the
maximum or minimum volume. The water flow will not be affected by the
bounds on the volume, in contrary to some other sets of instances.

C.2 Equality constraints

Equality constraints can highly affect the resolution. Indeed, equality con-
straints drastically reduce the number of feasible solutions and can also be hard
to satisfy. Moreover, depending on the approximation used in the model, equal-
ity constraints may lead to non efficient solutions. In the case of the 1-HUC,

target volumes are equality constraints, when V 1
t = V

1

t for a time period t. Six
instances are considered, A-E-1 to A-E-6 (resp. B-E-1 to B-E-6) which are vari-
ations of parameter set A (resp. B), where target volumes are only for the last
time period T . For A-E-1 to A-E-3 (resp. B-E-1 to B-E-3) the target volumes
are 480, 450 and 420 (resp. 80, 70 and 60). For A-E-4 to A-E-6 (resp B-E-4
to B-E-6), the target volumes are 500 (resp. 90), but the additional intake of
water at the last time period are 20, 50 and 80 (resp. 10, 20, 30). One can
notice that for instance A-E-1, the difference between the initial and the target
volume is 20, while for instance A-E-4 it is 0, but the additional intake of water
is 20. Thus, feasible solutions for A-E-1 are feasible solutions for A-E-4 and
vice-versa. Instances A-E-2 and A-E-5, B-E-1 and B-E-4 and so on are built
similarly.
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C.3 Number of inflection points of the non-linear function

With a different number of inflection points, the shape of a non-linear function
is changed, which can lead to more local optimal solutions, or less efficient
under-estimators. The functions used to under-estimate and approximate the
functions are also changed. Thus, the resolution and approximation error could
be impacted by the number of inflection points of the non-linear function. In
the case of the 1-HUC, the number of inflection points of the power function can
be changed by defining a larger number of smaller turbines. We still have the
same maximum power and maximum water flow, only the shape of the power
function is different. Three instances are considered, A-N-1 to A-N-3 (resp. B-
N-1 to B-N-3) which are variations of the parameter set A (resp. B) with 2, 4
and 6 turbines.

C.4 Degree of non-linearity of the non-linear function

As for the number of inflection points, changing the degree of non-linearity is
another way to change the shape of a function. Thus, the resolution and approx-
imation error could be affected by the degree of non-linearity of the functions.
In the case of the 1-HUC, one way to increase the non-linearity of the power
function is to change the water flow when each turbine starts and stops, increas-
ing or reducing the degree of curvature for each concave part of the function,
as represented by. The resulting power function for the unit can be quasi-linear
or have a high degree of non-linearity. In addition, it also changes the domain
of some variables. Six instances are considered, A-D-1 to A-D-6 (resp. B-D-1
to B-D-6) being variations of parameter set A (resp. B). Instances A-D-1 and
A-D-4 feature a quasi linear function, with D = 22 and P t = 14.5, ∀t ≤ T ,
instances A-D-2 and A-D-5 correspond to a non-linear function, with D = 25
and P t = 15, and instances A-D-3 and A-D-6 use a very non-linear function,
with D = 28 and P t = 16. The target volume for instances A-D-4 to A-D-6 is
460. Similarly, instances B-D-1 and B-D-4 feature a quasi linear function, with
D = 6 and P t = 28, instances B-D-2 and B-D-5 feature a non-linear function,
with D = 8 and P t = 32, and instances B-D-3 and B-D-6 feature a very non-
linear function, with D = 10 and P t = 34. The target volume for instances
B-D-4 to B-D-6 is 75.

C.5 Sensitivity of the decision variables to the non-linear
effect

Depending on the problem, decision variables can have a very large, or very
small impact on the non-linearities. When the impact is small, it is possible
that some simplifications of the problem would not induce large approximation
errors. In the case of the 1-HUC, the sensitivity of the decision variables to the
non-linear effect can change by considering larger or smaller reservoirs. Two
instances are considered, A-S-1 and A-S-2 (resp. B-S-1 and B-S-2) are variations
of parameter set A (resp. B). Instance A-S-2 is similar to A-S-1, but has all

41



initial, maximal and minimal volumes multiplied by 100, and supplemented
prices Λ = [0.005, 0.00375, 0.0025, 0.005]. Analogously, B-S-2 is similar to B-S-1
with initial, maximal and minimal volumes all multiplied by 100, and adapted
prices Λ = [0.005, 0.01, 0.025, 0.02]. The unit prices Λ are reduced in order to
obtain similar solutions for instances A-S-1 and A-S-2 (resp. B-S-1 and B-S-2).

One can compute bounds on the variation of the volume, by calculating the
maximum and minimum water processed while respecting the capacities. These
bounds give an interval for the final volume in the reservoirs. It is then possible
to compute the maximum difference in terms of volume between two feasible
solutions, and compare it to the capacity of the reservoirs in order to predict if
the instance might induce high volume variations or not. The sensitivity S can
be computed as follows:

S =
D × T −D × T

min(V
1

T − V 1
T , V

2

T − V 2
T )

For instance A-S-1, the sensitivity is 100/500 = 0.2, for instance A-S-2: 0.002,
for instance B-S-1: 0.36 and for instance B-S-2: 0.0036. Note that the parameter
set A (resp. B) has the same sensitivity as instance A-S-1 (resp. B-S-1).

Table 9 summarizes these instances and their characteristics.

Instances Characteristics Modified parameter
A-T-1 to A-T-3

Size of the instance Number of time periods
B-T-1 to B-T-3
A-E-1 to A-E-6

Equality constraints
Different target volumes, with and

B-E-1 to B-E-6 without additional intakes of water
A-N-1 to A-N-3

Number of inflection points Number of turbines
B-N-1 to B-N-3
A-D-1 to A-D-6

Degree of non-linearity
Quasi-linear, non-linear or very linear

B-D-1 to B-D-6 function, with and without target volumes
A-S-1, A-S-2,

Sensitivity of the decision variables Magnitude of the sensitivity
B-S-1, B-S-2

Table 10: Instance characteristics

D Analysis of the impact of the instance char-
acteristics

Let us analyse the impact of each characteristic of a 1-HUC instance on the
resolution. The tables related to the results described in the following section
are in Appendix E

D.1 Size of the instance

Changing the number of time periods (instances A-T-1 to A-T-3 and B-T-1
to B-T-3) has a big effect on the resolution. Indeed, we see from Table 11
and Table 12 that configurations with more time periods require a drastically
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increased CT compared to configurations with fewer time periods. The most
salient case is for the 1-HUC where with T = 10 the only configurations solved
under three hours by their VBS are with one of the following four models:
(P2D−poly), (Pbilin), (P

1
pwl) and (P 2

pwl). Moreover, with T = 7 configurations
with model (P5PL−max) are never solved by their VBS within three hours. The
AE also increases for configurations with instances with more time periods. It
is especially visible for the fixed-head 1-HUC, with T = 10 the minimal AE is
around 20% using models (P5PL−max), and the average AE are around 40% at
least.

As there are more time periods, more variables and inequalities are intro-
duced, exponentially increasing the number of feasible solutions. The reason
why the AE increases is due to the fact that errors are propagated through the
time periods. Also, for the fixed-head 1-HUC, more time periods mean, in gen-
eral, more water processed. The volume varies with a higher magnitude from
the initial volume when there are more time periods, leading to larger AE when
considering a fixed head.

D.2 Equality constraints

Taking fixed target volumes (instances A-E-1 to A-E-6 , B-E-1 to B-E-6, A-D-1
to A-D-6 and B-D-1 to B-D-6) has a non-homogeneous impact on the resolu-
tion. From Table 13 and Table 14 we notice that configurations with target
volumes reduce the CT required for the 1-HUC, compared to configurations
without target volumes. For the AE, we notice multiple behaviours. For most
models, configurations with target volumes yields to smaller average AE, but
higher maximal AE, compared to configurations without target volumes. Non-
represented results also showed that ANTIGONE solves less than 25% of config-
urations with target volumes whereas it solves more than 60% of configurations
without target volumes. A similar but less marked behaviour is noticed for
COUENNE.

The decreased CT is probably due to the fact that fewer solutions are feasi-
ble. The reduced AE are due to the target volume being very close to the initial
volume for some instances. Less volume is processed, meaning a smaller power,
and smaller AE. Besides, for the fixed-head 1-HUC, it also means less errors due
to the fixed head, as the volume may not vary to much from the initial volume.
We notice that some configurations with model (Pop) are not solved, for both
the 1-HUC and the fixed-head 1-HUC. This is because the target volume may
not be reachable with the finite set of water flows.

D.3 Degree of non-linearity

Changing the non-linearity of the power function (instances A-D-1 to A-D-6
and B-D-1 to B-D-6) can have an impact on the CT and the AE in the case
of the 1-HUC, but only on the AE for the fixed-head 1-HUC. From Table 15
and Table 16, we notice that configurations with pronounced non-linearities
have larger CT for the 1-HUC than configurations with quasi-linear functions.
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The configurations with non-linear models also have larger AE with pronounced
non-linear functions, for both the 1-HUC and the fixed-head 1-HUC. The AE for
configurations with linear model is not affected. We also see that all the configu-
rations with model (P2D−poly) are infeasible with every solver when the instance
has a pronounced non-linear function, even if there exist feasible solutions for
the instance.

The general increase of the AE for non-linear models can be explained by
two reasons. Firstly, by instance construction, the turbines are the same for
every instances, and the water-flow interval for each turbine is changed in order
to have a different degree of non-linearity. As such, it is possible that lesser
non-linear functions can better approximate the function of the original model
on a larger interval. Secondly, a highly non-linear function can be harder to
approximate by simpler functions, leading to larger AE for every model.

D.4 Number of inflection points

Changing the number of turbines (instances A-N-1 to A-N-3 and B-N-1 to B-N-
3) has only a noticeable impact on models representing each turbine explicitly,
namely (P5PL−max), (P5PL−bin) and (P2D−poly). Indeed, Table 17 and Table
18 show the increased CT required for configurations with these models and
with instances with more turbines. Also, increased number of turbines reduces
the degree of non-linearity. Thus it is possible to see similar behaviours as when
changing the degree of non-linearity.

The reason why the CT increases for configurations with one of the four men-
tioned models and an instance with many turbines is because as they represent
each turbine explicitly, more variables and inequalities are required.

D.5 Sensitivity of the decision variables to the non-linear
effect

In order to have negligible variation of the volume, the volumes can be set to
larger values than the water flows. Table 19 and Table 20 show that the CT
tends to be smaller for configurations with large volumes compared to configu-
rations with smaller volumes. Larger volumes usually lead to an improvement
of the AE for the fixed-head 1-HUC. However, the maximal AE of PWL mod-
els can be very large with large volumes. More precisely, with a PWL models,
half the configurations has a large AE, and the other half has a smaller AE,
compared to configurations with small volumes

The improvement of AE for the fixed-head 1-HUC is because with small
variations, the volume is very similar to the initial volume at any time period.
The AE from the fixed-head becomes very small. The high AE of the PWL
models can be explained as follows. These models only consider a family of
univariate PWL function for a finite set of possible volumes. It is then possible
that the volume is never similar to the volumes used by this family of functions.
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E Numerical experiments when partitioning in-
stances

• %S: proportion of configuration solved

• min-CT, max-CT, avg-CT: minimum, maximum, and average CR for ev-
ery solved configurations.

• min-AE, max-AE, avg-AE: minimum, maximum and average AE for every
solved configurations. (model, solver)

E.1 Size of the instance

Table 11 and Table 12 represents the proportion of configurations with in-
stances with 4, 7 and 10 time periods and each model solved by their VBS, and
related minimum, maximum and average CT and AE.

Instances Model %S min-t max-t avg-t min-e max-e avg-e

T=4

(P5PL−max) 100.0 103.34 186.38 144.86 0.2 0.4 0.3
(P5PL−bin) 100.0 15.28 28.47 21.88 0.2 0.4 0.3
(P2D−poly) 100.0 0.43 0.69 0.56 0.8 3.9 2.4

(Pop) 100.0 1.47 2.25 1.86 0.3 0.4 0.3
(Pbilin) 100.0 0.03 0.05 0.04 24.3 26.1 25.2
(P 3

pwl) 100.0 0.4 7.06 3.73 1.3 3.5 2.4

(P 2
pwl) 100.0 0.09 0.18 0.14 5.8 6.5 6.2

(P 1
pwl) 100.0 0.01 0.02 0.01 11.8 67.9 39.9

T=7

(P5PL−max) 0 - - - - - -
(P5PL−bin) 100.0 10 367.97 10 367.97 10 367.97 0.4 0.4 0.4
(P2D−poly) 100.0 8.31 36.18 22.25 0.8 3.3 2.0

(Pop) 100.0 78.69 574.13 326.41 4.0 14.3 9.2
(Pbilin) 100.0 0.06 0.26 0.16 24.1 31.3 27.7
(P 3

pwl) 100.0 39.12 39.12 39.12 1.3 1.3 1.3

(P 2
pwl) 100.0 0.15 2.88 1.51 5.7 8.7 7.2

(P 1
pwl) 100.0 0.03 0.06 0.04 27.9 67.9 47.9

T=10

(P5PL−max) 0 - - - - - -
(P5PL−bin) 0 - - - - - -
(P2D−poly) 100.0 44.71 344.08 194.39 0.8 14.1 7.5

(Pop) 100.0 7062.75 7062.75 7062.75 78.6 78.6 78.6
(Pbilin) 100.0 0.07 0.09 0.08 40.4 46.3 43.3
(P 3

pwl) 100.0 558.73 558.73 558.73 1.1 1.1 1.1

(P 2
pwl) 100.0 0.46 19.05 9.76 7.4 14.0 10.7

(P 1
pwl) 100.0 0.05 0.16 0.11 32.4 66.8 49.6

Table 11: Proportion of configurations solved with their VBS, CT and AE
statistics for the 1-HUC for different number of time periods (instances A-T-1
to A-T-3 and B-T-1 to B-T-3)
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Instances Model %S min-t max-t avg-t min-e max-e avg-e

T=4

(P5PL−max) 100.0 0.11 0.12 0.11 10.7 20.6 15.7
(P5PL−bin) 100.0 0.25 0.4 0.33 10.7 20.6 15.7
(P2D−poly) 100.0 0.06 0.08 0.07 14.6 27.3 20.9

(Pop) 100.0 0.0 0.01 0.01 10.3 21.0 15.7
(Pbilin) 100.0 0.0 0 0.0 41.0 66.6 53.8
(P 3

pwl) 100.0 0.02 0.02 0.02 20.2 21.9 21.0

(P 2
pwl) 100.0 0.01 0.01 0.01 19.9 21.8 20.9

(P 1
pwl) 100.0 0.01 0.01 0.01 21.9 22.2 22.0

T=7

(P5PL−max) 100.0 0.11 0.14 0.12 12.4 32.1 22.2
(P5PL−bin) 100.0 2.77 10.14 6.46 18.6 32.1 25.4
(P2D−poly) 100.0 0.06 0.1 0.08 23.6 43.4 33.5

(Pop) 100.0 0.01 0.01 0.01 17.8 33.1 25.5
(Pbilin) 100.0 0.0 0 0.0 60.2 115.6 87.9
(P 3

pwl) 100.0 0.03 0.03 0.03 31.5 32.1 31.8

(P 2
pwl) 100.0 0.01 0.01 0.01 30.8 31.6 31.2

(P 1
pwl) 100.0 0.01 0.01 0.01 30.2 35.7 33.0

T=10

(P5PL−max) 100.0 0.11 0.15 0.13 19.6 59.2 39.4
(P5PL−bin) 100.0 6.25 50.0 28.12 29.7 59.2 44.5
(P2D−poly) 100.0 0.08 0.08 0.08 34.7 67.3 51.0

(Pop) 100.0 0.01 0.01 0.01 28.4 49.0 38.7
(Pbilin) 100.0 0.0 0 0.0 78.7 149.9 114.3
(P 3

pwl) 100.0 0.04 0.04 0.04 44.7 47.0 45.9

(P 2
pwl) 100.0 0.01 0.02 0.01 44.2 46.1 45.2

(P 1
pwl) 100.0 0.01 0.01 0.01 42.9 52.8 47.8

Table 12: Proportion of configurations solved with their VBS, CT and AE statis-
tics for the fixed-head 1-HUC for different number of time periods (instances
A-T-1 to A-T-3 and B-T-1 to B-T-3)

E.2 Equality constraints

Table 13 and Table 14 represents the proportion of configurations with in-
stances with and without target volumes and each model solved by their VBS,
and related minimum, maximum and average CT and AE.

E.3 Degree of non-linearity

Table 15 and Table 16 represents the proportion of configurations with in-
stances with a quasi linear, a non-linear and a very non-linear function and each
model solved by their VBS, and related minimum, maximum and average CT
and AE.

E.4 Number of inflection points

Table 17 and Table 18 represents the proportion of configurations with in-
stances with 2, 6 and 6 turbines and each model solved by their VBS, and
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Instances Model %S min-t max-t avg-t min-e max-e avg-e

No target volume

(P5PL−max) 100.0 51.99 212.62 148.12 0.0 12.3 1.9
(P5PL−bin) 100.0 4.08 31.84 21.97 0.0 12.3 1.9
(P2D−poly) 100.0 0.4 0.81 0.53 0.0 7.2 2.8

(Pop) 100.0 1.47 2.95 1.94 0.1 12.7 1.9
(Pbilin) 100.0 0.03 0.06 0.04 19.4 32.3 26.2
(P 3

pwl) 100.0 0.4 8.98 3.6 0.9 4.2 2.5

(P 2
pwl) 100.0 0.09 0.18 0.13 4.4 6.5 5.8

(P 1
pwl) 100.0 0.01 0.03 0.02 10.0 70.6 39.8

target volume

(P5PL−max) 100.0 0.66 399.96 94.73 0.0 9.3 1.1
(P5PL−bin) 100.0 0.1 18.31 7.66 0.0 9.3 0.8
(P2D−poly) 100.0 0.09 0.48 0.29 0.2 4.2 1.4

(Pop) 100.0 0.56 23.96 3.81 0.0 10.5 1.2
(Pbilin) 100.0 0.03 0.13 0.07 0.5 27.4 12.4
(P 3

pwl) 100.0 0.14 1.0 0.44 0.8 22.9 3.4

(P 2
pwl) 100.0 0.01 0.17 0.07 1.3 30.8 6.6

(P 1
pwl) 100.0 0.01 0.02 0.01 4.9 69.4 33.0

Table 13: Proportion of configurations solved with their VBS, CT and AE
statistics for the 1-HUC with and without target volumes (instances A-T-1,
B-T-1, A-E-1 to A-E-6, B-E-1 to B-E-6, A-D-1 to A-D-6 and B-D-1 to B-D-6)

Instances Model %S min-t max-t avg-t min-e max-e avg-e

No target volume

(P5PL−max) 100.0 0.1 0.12 0.11 7.3 24.1 15.9
(P5PL−bin) 100.0 0.2 0.48 0.35 8.8 28.7 17.8
(P2D−poly) 100.0 0.06 0.14 0.08 9.6 28.4 20.8

(Pop) 100.0 0.0 0.01 0.01 8.0 27.8 17.4
(Pbilin) 100.0 0.0 0 0.0 29.0 87.5 56.5
(P 3

pwl) 100.0 0.02 0.03 0.03 17.7 27.5 21.4

(P 2
pwl) 100.0 0.01 0.02 0.01 17.2 27.4 21.1

(P 1
pwl) 100.0 0.01 0.01 0.01 18.4 29.2 22.2

target volume

(P5PL−max) 100.0 0.1 0.93 0.2 2.0 19.5 7.6
(P5PL−bin) 100.0 0.03 1.06 0.52 1.0 80.0 14.0
(P2D−poly) 100.0 0.06 0.23 0.13 0.6 28.8 10.4

(Pop) 100.0 0.0 0.02 0.01 1.0 19.9 7.1
(Pbilin) 100.0 0.0 0 0.0 2.7 49.8 21.2
(P 3

pwl) 100.0 0.02 0.17 0.07 0.8 33.5 10.6

(P 2
pwl) 100.0 0.01 0.04 0.02 0.8 33.5 10.6

(P 1
pwl) 100.0 0.0 0.01 0.01 0.9 33.6 10.8

Table 14: Proportion of configurations solved with their VBS, CT and AE
statistics for the fixed-head 1-HUC with and without target volumes (instances
A-T-1, B-T-1, A-E-1 to A-E-6, B-E-1 to B-E-6, A-D-1 to A-D-6 and B-D-1 to
B-D-6)

related minimum, maximum and average CT and AE.
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Instances Model %S min-t max-t avg-t min-e max-e avg-e

Quasi linear

(P5PL−max) 100.0 2.41 399.96 162.15 0.0 0.5 0.3
(P5PL−bin) 100.0 3.18 31.84 13.63 0.0 0.5 0.3
(P2D−poly) 100.0 0.23 0.4 0.35 0.0 7.2 2.9

(Pop) 100.0 1.43 1.68 1.54 0.1 0.5 0.2
(Pbilin) 100.0 0.03 0.08 0.05 10.2 27.7 18.1
(P 3

pwl) 100.0 0.2 3.39 1.15 1.0 3.6 2.2

(P 2
pwl) 100.0 0.1 0.14 0.12 4.4 6.2 5.4

(P 1
pwl) 100.0 0.01 0.02 0.02 10.0 68.7 38.8

Non-linear

(P5PL−max) 100.0 43.21 239.32 148.84 0.2 0.4 0.3
(P5PL−bin) 100.0 8.83 29.02 17.6 0.2 0.4 0.3
(P2D−poly) 100.0 0.21 0.81 0.46 0.8 3.9 1.9

(Pop) 100.0 1.08 2.93 1.98 0.3 0.4 0.3
(Pbilin) 100.0 0.04 0.08 0.05 0.9 26.1 16.7
(P 3

pwl) 100.0 0.15 6.73 2.01 1.3 3.6 2.6

(P 2
pwl) 100.0 0.03 0.16 0.1 5.8 7.1 6.4

(P 1
pwl) 100.0 0.01 0.02 0.02 11.8 68.4 40.0

Very non-linear

(P5PL−max) 100.0 62.31 208.98 151.88 1.0 12.3 6.2
(P5PL−bin) 100.0 0.56 27.81 15.87 0.0 12.3 5.7
(P2D−poly) 0 - - - - - -

(Pop) 100.0 0.83 3.58 2.29 0.9 12.7 6.3
(Pbilin) 100.0 0.03 0.1 0.06 7.8 32.3 21.7
(P 3

pwl) 100.0 0.37 8.98 2.87 0.9 4.2 2.6

(P 2
pwl) 100.0 0.09 0.17 0.14 5.2 7.2 6.3

(P 1
pwl) 100.0 0.02 0.03 0.02 10.0 70.6 40.0

Table 15: Proportion of configurations solved with their VBS, CT and AE
statistics for the 1-HUC for different degree of non-linearity (instances A-D-1
to A-D-6 and B-D-1 to B-D-6)

E.5 Sensitivity of the decision variables to the non-linear
effect

Table 19 and Table 20 represents the proportion of configurations with in-
stances with small and large volumes and each model solved by their VBS, and
related minimum, maximum and average CT and AE.

48



Instances Model %S min-t max-t avg-t min-e max-e avg-e

Quasi linear

(P5PL−max) 100.0 0.1 0.13 0.11 7.1 18.4 10.2
(P5PL−bin) 100.0 0.2 0.82 0.46 7.1 18.4 10.5
(P2D−poly) 100.0 0.06 0.14 0.1 6.8 28.4 14.3

(Pop) 100.0 0.01 0.01 0.01 7.9 16.8 10.9
(Pbilin) 100.0 0.0 0 0.0 21.1 53.2 31.4
(P 3

pwl) 100.0 0.02 0.03 0.03 7.5 18.5 14.8

(P 2
pwl) 100.0 0.01 0.02 0.01 7.4 18.4 14.7

(P 1
pwl) 100.0 0.01 0.01 0.01 6.8 19.8 15.2

Non-linear

(P5PL−max) 100.0 0.11 0.17 0.12 6.2 20.6 11.7
(P5PL−bin) 100.0 0.32 1.03 0.56 6.2 20.6 11.5
(P2D−poly) 100.0 0.06 0.23 0.15 7.5 27.3 14.1

(Pop) 100.0 0.0 0.01 0.01 6.1 21.0 11.5
(Pbilin) 100.0 0.0 0 0.0 18.7 66.6 37.3
(P 3

pwl) 100.0 0.02 0.03 0.03 7.8 21.9 16.1

(P 2
pwl) 100.0 0.01 0.01 0.01 7.6 21.8 16.0

(P 1
pwl) 100.0 0.01 0.01 0.01 6.1 22.2 15.9

Very non-linear

(P5PL−max) 100.0 0.1 0.12 0.11 10.1 24.1 15.9
(P5PL−bin) 100.0 0.35 1.01 0.56 10.3 28.7 19.9
(P2D−poly) 100.0 0.06 0.19 0.11 6.8 26.8 15.7

(Pop) 100.0 0.01 0.02 0.01 5.0 27.8 18.7
(Pbilin) 100.0 0.0 0 0.0 26.1 87.5 52.6
(P 3

pwl) 100.0 0.03 0.12 0.05 8.1 27.5 18.8

(P 2
pwl) 100.0 0.01 0.03 0.02 8.0 27.4 18.5

(P 1
pwl) 100.0 0.01 0.01 0.01 12.2 29.2 20.2

Table 16: Proportion of configurations solved with their VBS, CT and AE
statistics for the fixed-head 1-HUC for different degree of non-linearity (instances
A-D-1 to A-D-6 and B-D-1 to B-D-6)
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Instances Model %S min-t max-t avg-t min-e max-e avg-e

N=2

(P5PL−max) 100.0 103.34 186.38 144.86 0.2 0.4 0.3
(P5PL−bin) 100.0 15.28 28.47 21.88 0.2 0.4 0.3
(P2D−poly) 100.0 0.43 0.69 0.56 0.8 3.9 2.4

(Pop) 100.0 1.47 2.25 1.86 0.3 0.4 0.3
(Pbilin) 100.0 0.03 0.05 0.04 24.3 26.1 25.2
(P 3

pwl) 100.0 0.4 7.06 3.73 1.3 3.5 2.4

(P 2
pwl) 100.0 0.09 0.18 0.14 5.8 6.5 6.2

(P 1
pwl) 100.0 0.01 0.02 0.01 11.8 67.9 39.9

N=4

(P5PL−max) 100.0 1764.35 5988.44 3876.39 0.1 0.4 0.2
(P5PL−bin) 100.0 13.75 63.73 38.74 0.1 0.4 0.2
(P2D−poly) 100.0 2.76 3.47 3.12 0.4 3.1 1.8

(Pop) 100.0 0.49 1.57 1.03 0.0 0.3 0.1
(Pbilin) 100.0 0.04 0.05 0.04 19.6 22.1 20.9
(P 3

pwl) 100.0 0.75 5.73 3.24 0.3 3.3 1.8

(P 2
pwl) 100.0 0.11 0.15 0.13 4.0 6.4 5.2

(P 1
pwl) 100.0 0.02 0.02 0.02 12.0 70.9 41.5

N=6

(P5PL−max) 100.0 1055.49 1055.49 1055.49 0.0 0 0.0
(P5PL−bin) 100.0 7.63 36.01 21.82 0.0 0.3 0.1
(P2D−poly) 100.0 1.11 3.81 2.46 0.7 8.7 4.7

(Pop) 100.0 0.38 1.3 0.84 0.0 0.9 0.5
(Pbilin) 100.0 0.04 0.04 0.04 13.6 20.4 17.0
(P 3

pwl) 100.0 0.5 6.63 3.56 0.4 4.2 2.3

(P 2
pwl) 100.0 0.14 0.22 0.18 3.7 6.4 5.1

(P 1
pwl) 100.0 0.02 0.02 0.02 10.6 75.8 43.2

Table 17: Proportion of configurations solved with their VBS, CT and AE
statistics for the 1-HUC for different number of turbines (instances A-N-1 to
A-N-3 and B-N-1 to B-N-3)
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Instances Model %S min-t max-t avg-t min-e max-e avg-e

N=2

(P5PL−max) 100.0 0.11 0.12 0.11 10.7 20.6 15.7
(P5PL−bin) 100.0 0.25 0.4 0.33 10.7 20.6 15.7
(P2D−poly) 100.0 0.06 0.08 0.07 14.6 27.3 20.9

(Pop) 100.0 0.0 0.01 0.01 10.3 21.0 15.7
(Pbilin) 100.0 0.0 0 0.0 41.0 66.6 53.8
(P 3

pwl) 100.0 0.02 0.02 0.02 20.2 21.9 21.0

(P 2
pwl) 100.0 0.01 0.01 0.01 19.9 21.8 20.9

(P 1
pwl) 100.0 0.01 0.01 0.01 21.9 22.2 22.0

N=4

(P5PL−max) 100.0 0.11 0.33 0.22 12.2 24.9 18.5
(P5PL−bin) 100.0 0.14 0.76 0.45 14.4 22.4 18.4
(P2D−poly) 100.0 0.06 0.09 0.07 10.3 11.2 10.8

(Pop) 100.0 0.01 0.01 0.01 11.6 22.0 16.8
(Pbilin) 100.0 0.0 0 0.0 36.7 56.7 46.7
(P 3

pwl) 100.0 0.02 0.03 0.03 22.7 23.4 23.0

(P 2
pwl) 100.0 0.01 0.01 0.01 22.8 23.0 22.9

(P 1
pwl) 100.0 0.01 0.01 0.01 21.7 26.5 24.1

N=6

(P5PL−max) 100.0 0.1 0.33 0.22 13.0 25.4 19.2
(P5PL−bin) 100.0 0.03 0.82 0.42 24.7 90.2 57.5
(P2D−poly) 100.0 0.06 0.07 0.07 13.9 15.6 14.8

(Pop) 100.0 0.0 0 0.0 10.3 24.0 17.1
(Pbilin) 100.0 0.0 0 0.0 35.0 48.4 41.7
(P 3

pwl) 100.0 0.02 0.03 0.03 23.1 25.1 24.1

(P 2
pwl) 100.0 0.01 0.01 0.01 23.5 24.9 24.2

(P 1
pwl) 100.0 0.01 0.01 0.01 22.2 23.6 22.9

Table 18: Proportion of configurations solved with their VBS, CT and AE
statistics for the fixed-head 1-HUC for different number of turbines (instances
A-N-1 to A-N-3 and B-N-1 to B-N-3)
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Instances Model %S min-t max-t avg-t min-e max-e avg-e

Large variations

(P5PL−max) 100.0 103.34 186.38 144.86 0.2 0.4 0.3
(P5PL−bin) 100.0 15.28 28.47 21.88 0.2 0.4 0.3
(P2D−poly) 100.0 0.43 0.69 0.56 0.8 3.9 2.4

(Pop) 100.0 1.47 2.25 1.86 0.3 0.4 0.3
(Pbilin) 100.0 0.03 0.05 0.04 24.3 26.1 25.2
(P 3

pwl) 100.0 0.4 7.06 3.73 1.3 3.5 2.4

(P 2
pwl) 100.0 0.09 0.18 0.14 5.8 6.5 6.2

(P 1
pwl) 100.0 0.01 0.02 0.01 11.8 67.9 39.9

Small variations

(P5PL−max) 100.0 123.58 131.2 127.39 0.5 0.8 0.7
(P5PL−bin) 100.0 7.2 16.72 11.96 0.5 0.8 0.7
(P2D−poly) 100.0 0.26 0.36 0.31 3.7 17.5 10.6

(Pop) 100.0 0.18 0.43 0.3 0.5 1.0 0.8
(Pbilin) 100.0 0.05 0.06 0.06 9.6 29.8 19.7
(P 3

pwl) 100.0 0.05 0.11 0.08 2.7 171.9 87.3

(P 2
pwl) 100.0 0.01 0.01 0.01 10.8 173.6 92.2

(P 1
pwl) 100.0 0.01 0.02 0.01 86.3 100.9 93.6

Table 19: Proportion of configurations solved with their VBS, CT and AE
statistics for the 1-HUC for small and large volumes (instances A-S-1, A-S-2,
B-S-1 and B-S-2)

Instances Model %S min-t max-t avg-t min-e max-e avg-e

Large variations

(P5PL−max) 100.0 0.11 0.12 0.11 10.7 20.6 15.7
(P5PL−bin) 100.0 0.25 0.4 0.33 10.7 20.6 15.7
(P2D−poly) 100.0 0.06 0.08 0.07 14.6 27.3 20.9

(Pop) 100.0 0.0 0.01 0.01 10.3 21.0 15.7
(Pbilin) 100.0 0.0 0 0.0 41.0 66.6 53.8
(P 3

pwl) 100.0 0.02 0.02 0.02 20.2 21.9 21.0

(P 2
pwl) 100.0 0.01 0.01 0.01 19.9 21.8 20.9

(P 1
pwl) 100.0 0.01 0.01 0.01 21.9 22.2 22.0

Small variations

(P5PL−max) 100.0 0.14 0.18 0.16 0.1 1.2 0.7
(P5PL−bin) 100.0 0.72 0.84 0.78 0.2 1.0 0.6
(P2D−poly) 100.0 0.09 0.09 0.09 4.2 16.7 10.4

(Pop) 100.0 0.0 0 0.0 0.2 1.1 0.7
(Pbilin) 100.0 0.0 0 0.0 9.8 30.3 20.1
(P 3

pwl) 100.0 0.03 0.03 0.03 0.8 176.3 88.6

(P 2
pwl) 100.0 0.01 0.01 0.01 0.8 175.8 88.3

(P 1
pwl) 100.0 0.01 0.01 0.01 0.7 177.8 89.2

Table 20: Proportion of configurations solved with their VBS, CT and AE
statistics for the fixed-head 1-HUC for small and large volumes (instances A-S-
1, A-S-2, B-S-1 and B-S-2)
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