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We show the simplest form with which one can express the gravity force, and that still gives all the same predictions of observable phenomena as does standard Newton gravity. This new form to express gravity, through quantum gravitational energy, requires less constants to predict gravity phenomena than does standard gravity theory. This alone should make the physics community interested in investigating this approach. It shows that gravitational energy, and other types of energy, are a collision-length in their most complete and deepest form. This is consistent with a recently published collision-space-time theory.

While general relativity theory needs two constants to predict gravity phenomena, that is G and c, our new theory, based on gravity energy, only needs one constant, cg, that is easily found from gravitational observations with no prior knowledge of any constants. Further, we will show that, at the deepest quantum level, quantum gravity needs two constants, cg and the Planck length, while the standard formulation here needs c, h and lp. Thus our theory gives a reduction in constants and simpler formulas than does standard gravity theory. Further, it gives insight into the quantum aspects of gravity. This is not ment as a replacement of existing gravitational theories, but a new approach that look at gravity from a deeper perspective that deserves further investigation by more researchers.

1 Short about the modern Newtonian formula Today, Newton's gravitational force formula, as found in modern text books and research papers, is given by:

F = G Mm R 2 (1)
where M and m are the mass of the large and the small mass in kilograms, G is the gravitational constant, and R is the center-to-center distance from M to m. It is of great importance to understand that the gravity force itself has never been directly observed, but only indirectly through observable gravitational phenomena, and the gravity force is not among these. In all observable gravitational phenomena predicted from this formula, the small mass m always cancels out in the derivation of something that actually can be observed, something we soon will look at in detail 1 . Also be aware that this version of the gravity formula with a gravity constant was introduced in 1873 by Cornu and Baille [START_REF] Cornu | Détermination nouvelle de la constante de l'attraction et de la densité moyenne de la terre[END_REF]. They were the first to introduce the gravitational constant and used notation f for it. Boys [START_REF] Boys | The Newtonian constant of gravitation[END_REF] in 1894 was likely the first to use the symbol G for the gravity constant. Isaac Newton's original gravity force formula was:

F = Mm R 2 (2)
as he only stated by word in Principia [START_REF] Newton | Philosophiae Naturalis Principia Mathematica[END_REF]. However, Newton's mass definition was very di↵erent than today's kilogram mass definition (so M and m, in this formula, mean something di↵erent); see [START_REF] Haug | Newton did not invent or use the so-called Newton's gravitational constant; G, it has mainly caused confusion[END_REF] for an in-depth analysis of the original Newton gravity force formula. The so-called Newton's gravitational constant was pointed out by Thüuring [START_REF] Thüring | The gravitational constant[END_REF] in 1961 to have been introduced somewhat ad-hoc; see also Gillies [START_REF] Gillies | The newtonian gravitational constant: recent measurements and related studies[END_REF]. Thüring pointed out that the gravitational constant cannot be associated with a unique property of nature. The gravitational constant has dimensions |G| = L 3 MT 2 or, in SI units, m 3 • kg 1 • s 2 . In nature this is, at a fundamental level, length cubed divided by mass times time squared. One must have a good imagination to come up with something that fits the bill. We think it is no coincidence that the gravitational constant has such output units. We have good reasons to think it is a composite constant, something that is discussed in detail in Haug [START_REF] Haug | Progress on composite view of Newtonian gravitational constant and its link to the planck scale[END_REF].

Einstein's [START_REF] Einstein | Näherungsweise integration der feldgleichungen der gravitation[END_REF] general relativity theory took Newton's gravitational constant for granted. Already, in the same 1916 paper on general relativity, Einstein pointed out that the next step in gravity was to develop a quantum gravity theory or, in his own words:

"Because of the intra-atomic movement of electrons, the atom must radiate not only electromagnetic but also gravitational energy, if only in minute amounts. Since, in reality, this cannot be the case in nature, then it appears that the quantum theory must modify not only Maxwell's electrodynamics but also the new theory of gravitation." -A. Einstein One should clearly still be allowed to question even the very foundation of gravity theories. We think that in particular one should be allowed to question the gravitational constant, what it represents, and if it can be replaced, as it was inserted ad-hoc in 1873. Einstein also mentioned gravitational energy. Here we will demonstrate that one can easily come up with a formula that replaces Newton's formula using G and kilogram masses, with a formula based on gravitational energy and the speed of this gravitational energy, which we will see is the speed of gravity that again is identical to the speed of light. Further, our suggestions in this paper are directly linked to a recent quantum gravity theory known as collision-space-time [START_REF] Haug | Collision space-time: Unified quantum gravity[END_REF][START_REF] Haug | Quantum Gravity Hidden In Newton Gravity And How To Unify It With Quantum Mechanics[END_REF][START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF], something we will get back to soon.

2 A new and simpler gravitational formula rooted in gravitational energy

We will here introduce a new gravitational force formula that we will demonstrate can replace Newton's gravity formula. It is given by:

F = cg Eg E g R 2 (3) 
where Eg and E g are the gravitational energy of the large and small mass (Mg and mg). The gravitational energy is in form of collision-length as defined in collision space-time [START_REF] Haug | Collision space-time: Unified quantum gravity[END_REF][START_REF] Haug | Quantum Gravity Hidden In Newton Gravity And How To Unify It With Quantum Mechanics[END_REF][START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF]. This length is unknown for any mass, but we will soon show how to measure it. Secondly, cg is the speed of gravity, which we can also easily find from gravity observations. We will also demonstrate that the formula above will remarkably give exactly the same predictions for observable gravity phenomena as Newton's gravitational force formula F = G Mm r 2 , both in values and in output units. The only exception is for non-observable phenomena, such as the gravity force itself, something we will soon come back to.

This new gravity force formula has output units m • s 1 in SI units, or in dimensions |F | = L/T . In other words, the gravity force is a speed in this formulation. This is in contrast to the standard modern version of Newton's gravitational force which has output m • kg • s 2 . So, one could easily make the mistake of thinking that our gravity force formula must be wrong as it doesn't even match the output units for the standard gravity force. A basic first check in physics, that even I myself typically use when coming up with a formula, is whether one has at least got the output units right. If not, that is typically a sign one has done something wrong or based the derivation on wrong assumptions. Still, the gravity force has never been observed, so the output units have partly been arbitrary chosen, they where for example not the same in Newton's time, he did not even have a gravity constant in his formula. What is important is that the formula predicts accurately everything that can be observed with respect to both values and, naturally, the correct output units. Also, our new gravitational energy is a length. this seems totally inconsistent with standard joule energy. However, as we [START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF] have already demonstrated in a paper on a new quantum gravity theory, this view is fully consistent with such things as the standard relativistic energy momentum relation.

It is, as we have demonstrated, true that both standard energy (joule) and Einstein's relativistic energy momentum relations are derivatives of simpler and deeper relations.

We will show that this gravitational model can be calibrated and used to predict a long series of observable gravitational phenomena. We have previously [START_REF] Haug | Collision space-time: Unified quantum gravity[END_REF][START_REF] Haug | Demonstration that Newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought![END_REF] shown that a formula that predicts the same as Newton's gravitational force formula is given by:

F = c 3 g Mgmg R 2 (4)
where Mg is the collision-time mass. That is, indeed mass as time which we come to by also incorporating gravity in the mass, something that is missing in the standard kilogram mass. Well, it is the duration of the aggregates of the collisions of the indivisible particles making up the mass; see [START_REF] Haug | Collision space-time: Unified quantum gravity[END_REF] for detailed discussion. Further, this means we have Eg = Mgcg, which at first glance seems to be totally inconsistent with E = mc 2 , but it is not; it is fully consistent also with this. The reason for the di↵erence is simply di↵erent energy and mass definitions.

For example, we could define a new energy E2 = E/c. Then we would have E2 = mc. There is nothing mathematically wrong with this as it is simply a change of units in the energy done in a consistent way. However, why should energy be re-defined as joule divided by the speed of light? A re-definition of energy and/or mass must be able to explain something new or make things more intuitive. Simply by taking the joule energy and dividing by c to define a new energy does not seem to simplify intuition or teach us something new. Our new energy definition of Eg, on the other hand, is just a length, and we can go from the joule energy to this energy (collision-length) by multiplying the joule energy, E, with l 2 p ~c , and in E = Mc 2 we need to do the same on both sides, so we get Mg = M l 2 p ~. It is hard to see intuition here yet, except that we end up with a length for energy and time for mass. Length is something most of us find easier to understand than joule. To go from E and M to Eg and Mg in the way just described, one needs to know ~and lp and also c. So, is this not some fancy change of units? As we soon will see, Eg (and also Mg) can easily be extracted from gravity phenomena with no knowledge of G, h or c. We will end up needing knowledge of less constants than are used in Newton's and Einstein's gravity to make the same predictions. Just to briefly demonstrate that our new energy and mass definitions are consistent with the relativistic energy momentum relation, we must have:

Eg = mg cg E 2 g = m 2 g c 2 g 2 E 2 g = m 2 g c 2 2 m 2 g c 2 + m 2 g c 2 E 2 g = m 2 g c 2 1 v 2 /c 2 m 2 g c 2 + m 2 g c 2 E 2 g = m 2 g c 2 1 v 2 /c 2 m 2 g c 2 (1 v 2 /c 2 ) 1 v 2 /c 2 + m 2 g c 2 E 2 g = m 2 g c 2 1 v 2 /c 2 m 2 g c 2 m 2 g v 2 1 v 2 /c 2 + m 2 g c 2 E 2 g = m 2 g v 2 1 v 2 /c 2 + m 2 g c 2 E 2 g = p 2 g + m 2 g c 2 Eg = q p 2 g + m 2 g c 2 (5) 
where pg = mgv is the relativistic gravitational momentum and is, as usual, the Lorentz factor, = p 1 v 2 /c 2 . That is, it's the same as the standard relativistic momentum except m is replaced with mg. Now it is only necessary to multiply each side of equation 5 with l2 p c (or c 4 G ) as well as setting cg = c (as we know it is from measurements and theory) and we end up with the standard E = p p 2 c 2 + m 2 c 4 . We will claim the standard mass and standard energy are incomplete mass and energy definitions; they can almost be seen as derivatives of a deeper theory, where the deeper relation is the first line in the derivation above. The incomplete mass and energy are enough to describe energy and mass relations not related to gravity, but they fall short when we work with gravity.

The standard mass and energy have no information about the Planck scale as the Planck length embedded in Eg is taken out, something that will soon be clearer. We will claim the Planck scale is the essence of gravity. When the Planck scale is not incorporated in standard mass and energy, this is, in our view, one of the main reasons why one has not been able to unify gravity and quantum mechanics, at least until perhaps very recently; see [START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF] for a much more in-depth discussion about this point.

Actually the speed of gravity cg constant which by calibration only from gravity phenomena can be shown to be equal to the speed of light can be seen as a pure scaling factor that adjust for human conventions in how we define length in relation to time. The speed of gravity can be found without knowledge of the speed of light and without any detection of gravitational waves, this have recently been demonstrated, see [START_REF] Haug | Demonstration that Newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought![END_REF][START_REF] Haug | Extraction of the speed of gravity (light) from gravity observations only[END_REF]. If we take the standard gravity force formula and multiply it with R we get G Mm R which has output units joule, which is energy. In our formula if we multiply it with R we get cg

Eg E g R
which gives output units when using meters and seconds as meters squared divided by second. However if we set cg = 1 then we get output dimensions

Eg E g R
which is length as one of the collision-length energies dimensions cancel with the length dimensions of R, which is collision-length energy, when space and time are connected through the speed of light.

3 Finding the speed of gravity and the gravitational energy without any knowledge o↵ G, h or c

In our new gravitational model, we need to know Eg and cg. They are both unknown, so even if we can assume cg = c, we want to see if we can find it "experimentally", with no knowledge of c, and in a simple way by utilizing the implications of our theory. The radius R from the center of the gravitational object to the center of the small mass the gravitational field acts on, can typically be easily measured directly or indirectly. Remarkably, there is an easy way to find both the speed of gravity cg and the gravitational energy without any prior knowledge of any constants or of the mass of the gravitational object. Also, in our formulation we must have:

mga = F (6) 
That, when we replace F with our new gravity force formula, leads to:

mga = cg EgEg R 2 (7) 
and in our theory we have mg = Eg c , and as discussed in the section above this is fully consistent with E = mc 2 , so we get

E g cg a = cg Eg R 2 a = c 2 g Eg R 2 (8)
That is, the gravitational acceleration field is given by g = a = c 2 g Eg R 2 . This only dependent on one constant: the speed of gravity, cg. There are two unknowns here, both cg and the gravitational energy Eg of the mass in question. We could as standard theory assume cg = c, something that also have been experimentally tested to at least be very close, but we will based on our own theory show it is a much easier way to extract cg from gravity observations and therefore demonstrate we are totally independent on any assumptions about the value for cg. Let us solve the gravitational acceleration field with respect to Eg; this gives:

Eg = gR 2 c 2 g (9)
However, we still do not know cg so we cannot, from this, find Eg yet. The gravitational red shift for a beam sent in a weak gravitational acceleration field from R h to RL (R h > RL) is given by:

z = f h fL fL ⇡ q 1 2Eg R L q 1 2Eg R h 1 ( 1 0 ) 
Next, replace Eg with Eg = g R 2 c 2 g in the formula above and we get:

z = f h fL fL ⇡ s 1 2g L R 2 L c 2 g R L s 1 2g L R 2 L c 2 g R h 1 z ⇡ q 1 2g L R L c 2 g s 1 2g L R 2 L c 2 g R h 1 (11) (12) 
Solved with respect to cg this gives:

cg ⇡ q 2gLRL( R h R L z + 2RL + RLz) p R h (2 + z) (13) 
This is actually equal to the strong field exact solution one can get in general relativity theory as we have recently demonstrated [START_REF] Haug | Planck length, Planck time and speed of gravity when taking into account relativistic mass with no knowledge of G, h or c. Hal archive[END_REF], but it is in our view still just an approximation , so far in our model, we have not taken into account Lorentz's [START_REF] Lorentz | Simplified theory of electrical and optical phenomena in moving systems[END_REF] relativistic mass, something we will get back to. That is, to find the speed of gravity all we need to do is to measure the gravitational acceleration at the surface of the Earth, for example at sea level (RL), and then also measure the gravitational red-shift from a laser beam going from R h to RL, where R h > RL. This result in itself is remarkable, because it means one can measure the speed of gravity easily by combining two types of gravitational observations, and thus there is no need for advanced LIGO measurements of gravitational waves to do this; see also [START_REF] Haug | Demonstration that Newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought![END_REF]. Inputting measured values into this formula reveals that the speed of gravity, cg, is indeed identical to the speed of light, c, as also assumed in general relativity theory and it seems confirmed by complex experiments; see [START_REF] Salisbury | Velocity of gravitational waves[END_REF][START_REF] Abbott | Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and GRB 170817a[END_REF].

To measure the speed of gravity cg, all we need is a measurement of the gravitational acceleration and the gravitational red shift. This can easily be done without any knowledge of any other constants. One can easily misunderstand here and think we are simply getting out c as we have inputted c, but this is not the case. In standard physics, we have g = GM R 2 and z ⇡ GM c 2 R , so one could think we are here getting c out since it is an input in the red shift formula. However, this is only if one predicts the gravitational red shift. There is no need to know c to measure the frequency shift in a light beam in a gravitational field; we only need to know c to predict the gravitational red shift in standard theory. However, here we are not predicting these, but measuring them and then finding cg, which indeed has the same value as c. Based on our deeper understanding of our theory, we also know that cg = c, naturally based on some assumptions; see [START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF].

Next, we can now find Eg from formula 9 as we now know cg, g, and R. As soon as we know Eg and cg, we can predict all kinds of other observable gravitational phenomena from the gravitational object's gravitational energy, Eg, which is the gravitational energy of the large mass. For example, we can predict all types of gravitational e↵ects from the Earth. A long series of predictions we can do are illustrated in Table 1. Here we show both the modern standard Newton and GR formulations as well as the predictions from our new framework. For all observable phenomena, they give the same output in values and in terms of output units. Actually, the standard method is less accurate as it needs G that typically is calculated first from a smaller test mass, for example by using a Cavendish apparatus. This will add an additional measurement error when we work with larger masses such as, for example, the mass of the Earth. This is outside the scope of this paper but will be looked at in detail in another paper we are working on.

Standard:

Alternative:

Mass M (kg) Mg (collision-time mass) Energy E = Mc 2 (joule) Eg = Mgcg (gravitational energy) Gravitational constant G c g m/s Non observable (contains GM m) Gravity force F = G Mm R 2 (kg • m • s 2 ) F = cg Eg E g R 2 m/s Observable predictions, identical for the two methods: (contains only GM ) Gravity acceleration g = GM R 2 g = c 2 g Eg R 2 
Orbital velocity vo =

q GM R vo = cg q Eg R Orbital time T = 2⇡R q GM R T = 2⇡ p R 3 cg p Eg Velocity ball Newton cradle vout = q 2 GM R 2 H v out = cg R p EgH Periodicity Pendulum (clock) T = 2⇡ q L g = 2⇡R q L GM T = 2⇡R cg q L Eg Frequency Newton spring f = 1 2⇡ q k m = 1 2⇡R q GM x f = cg 2⇡R q Eg x Gravitational red shift z = r 1 2GM R 1 c 2 r 1 2GM R 2 c 2 1 z = r 1 2Eg R L r 1 2Eg R h 1 Time dilation T R ⇡ T f r 1 q 2GM R 2 /c 2 T R ⇡ T f q 1 2Eg R Time dilation (beyond GR) exact T R = T f q 1 2GM Rc 2 + G 2 M 2 c 2 R 2 T R = T f r 1 2Eg R + E 2 g R 2 Gravitational deflection (GR) = 4GM c 2 R = 4Eg R Advance of perihelion = 6⇡GM a(1 e 2 )c 2 = 6⇡Eg a(1 e 2 )
Micro lensing

✓ = q 4GM c 2 ds d L dsd L ✓ = 2 q Eg ds d L dsd L Cosmology: (contains only GM ) Cosmological redshift z H ⇡ dH 0 c = 1 2GMc c 2 d z H ⇡ d Eg Hubble constant H 0 = c 3 2GMc H 0 = cg Eg Hubble radius R H = c H 0 = 2GMc c 2 R H = Eg Indirectly/"hypothetical" observable predictions: (contains only GM ) Gravitational parameter µ = GM µ = c 2 g Eg Two body problem µ = G(M 1 + M 2 ) µ = c 2 g (E g,1 + E g,2 ) Constants needed G, c and H 0 Only cg (cg = c)
Table 1: The table shows that all observable gravity is linked to GM in the standard Newton and general relativity formulation. Pay attention to how standard gravity theory needs knowledge of two constants to predict gravity phenomena, namely G and the speed of light. The alternative theory only needs one constant, namely cg. The gravitational energy Eg as well as cg can be found directly from gravity observations without knowledge of any known physical constants. Standard theory needs G, c, and M . Both theories naturally, in addition, need to know the distance to the center of the gravitational object.

What about quantum gravity energy?

At a deeper level, the gravitational energy (collision-length) is given by (see [START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF]):

Eg = lp lp ¯ ( 14 
)
where lp is the Planck length first described by Max Planck [START_REF] Planck | Natuerliche Masseinheiten[END_REF][START_REF] Planck | Vorlesungen über die Theorie der Wärmestrahlung[END_REF] in 1899, and ¯ is the reduced Compton [START_REF] Compton | A quantum theory of the scattering of x-rays by light elements[END_REF] wavelength. Max Planck introduced the Planck length in 1899 by the formula lp = q Gc 3 . So, it looks like we need to know G and ~to find the Planck length. In recent years it has been shown this is not the case. The Planck length can be found totally independently of G and ~; see [START_REF] Haug | Demonstration that Newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought![END_REF][START_REF] Haug | Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a newton force spring[END_REF][START_REF] Haug | Extraction of the Planck length from cosmological redshift without knowledge o↵ G or ~[END_REF]. We will also, in this paper, devote a short section on how to find the Planck length independently of knowledge of G and h.

So the first lp in the gravitational energy formula represents the collision-length of a single collision (Planck event). This collision-length of one Planck event is always the Planck length; see [START_REF] Haug | Quantum Gravity Hidden In Newton Gravity And How To Unify It With Quantum Mechanics[END_REF][START_REF] Haug | Planck speed: the missing speed of physics? absolute still without breaking lorentz symmetry![END_REF] for a discussion of why it is invariant. The next part, lp ¯ , is the number of Planck mass events in the gravitational mass over an observational time window of the Planck time. It is not that we need to observe anything in the Planck time, but it is what this represents, and we can measure it indirectly. For a Planck mass then, the reduced Compton wavelength is the Planck length, and then this factor is 1. For a mass smaller than the Planck mass, then lp ¯ is less than one. It is then a probability for a Planck mass event in the Planck time. Elementary particles consist, in this view, of Planck mass events (collisions) happening at the reduced Compton frequency. If the gravitational mass is larger than the Planck mass (and it is typically much larger) then lp ¯ typically consist of a large integer number plus a small fraction. The integer part then represents the number of Planck mass events in the Planck time. In other words, this is where the quantization comes in. The quantization is linked to the Planck length, that in our view is the diameter of an indivisible particle; see [START_REF] Haug | Collision space-time: Unified quantum gravity[END_REF][START_REF] Haug | Quantum Gravity Hidden In Newton Gravity And How To Unify It With Quantum Mechanics[END_REF].

Our simple gravitational force formula F = cg

Eg E g R 2
has embedded quantum gravity. That is, gravitational energy and gravitational mass come in quanta. The quanta is linked to the Planck length and the reduced Compton wavelength through the factor lp ¯ that is embedded in the gravitational energy as it is, at the deepest level, described by equation 14. We will even claim standard Newton gravity has hidden quantum gravity in it, not on purpose or by design, but by coincidence, as gravity when calibrating G to observations incorporates lp; see a lengthy discussion and review of the composite view of the gravitational constant view by Haug [START_REF] Haug | Progress on composite view of Newtonian gravitational constant and its link to the planck scale[END_REF].

Further the gravitational mass is equal to

Mg = Eg c = lp c lp ¯ = tp lp ¯ (15) 
In other words mass is time, it is collision-time, It is how many collisions we have in the gravitational mass per Planck time. Where again lp ¯ gives the numbers o↵ such events, so even mass is quantized. Again one can easily think it must be inconsistent that mass is simply energy divided by c as it in standard theory is c 2 , but this is fully consistent with that as demonstrated in the derivation in the end of section two.

Finding the Planck length and the Compton wavelength independently of any knowledge of G, ~, and even c

We can do all gravitational predictions simply from the gravitational energy, Eg, and the speed of gravity, cg, and these we have already shown how to find. It is only when we want to understand the deeper aspects of Eg and Mg that we need the Planck length. The Planck length can easily be found without any knowledge of G, c and ~; something that is controversial in standard gravity theory, but that we have recently demonstrated, in a series of published papers, is possible. Still, we will also demonstrate here that it is also possible when we write our formulas from gravitational energy.

The gravitational acceleration as before (section 3) is given by:

g = c 2 g Eg R 2 (16) 
Further, Eg at the quantum level is given by Eg = lp lp ¯ , where ¯ is the reduced Compton wavelength of the gravitational energy in question. We can now simply solve the formula above for lp, and this gives:

lp = s g R 2 c 2 g ¯ ( 17 
)
That is, to find the Planck length independently of G and ~, we need to find g and the reduced Compton wavelength independently of these. The gravitational acceleration we can find simply by measuring how long it takes for a ball dropped at hight H above the ground to hit the ground. It is given by g = 2H T 2 .

Still, how do we find the reduced Compton wavelength of, for example, the Earth? The reduced Compton wavelength [START_REF] Compton | A quantum theory of the scattering of x-rays by light elements[END_REF] for a fundamental particle like the electron is given by:

¯ = mc (18) 
That is, if you know the kilogram mass of the particle m, the reduced Planck constant, and the speed of light. However, it is not necessary to know the kilogram mass of the particle or the Planck constant to find the Compton wavelength (or reduced Compton wavelength). In photon scattering of an electron, we have:

e = ,2
,1

1 cos ✓ ( 19 
)
where e is the Compton wavelength of the electron, and ,1 and ,2 are respectively the wavelength of the incoming and outgoing photon; see [START_REF] Haug | Derivation of a relativistic Compton wave[END_REF]. So, there is no need to know the Planck constant to measure the Compton wavelength. The reduced Compton wavelength is simply this divided by 2⇡.

Next we can utilize the knowledge that electrons and protons have the same absolute value of the charge. The cyclotron frequency is given by:

f = qB 2⇡m ( 20 
)
This means we must have:

fe fp = qB 2⇡me qB 2⇡mp = mp me = ¯ e ¯ P ⇡ 1836.15 (21) 
That is, to find the reduced Compton wavelength of the proton we can simply take the reduced Compton wavelength of the electron and divided it by 1836.15. This is why cyclotron experiments have also been used to find the proton electron mass ratio; see [START_REF] Grä↵ | A direct determination of the proton electron mass ratio[END_REF][START_REF] Sturm | High-precision measurement of the atomic mass of the electron[END_REF][START_REF] Van-Dyck | New measurement of the proton-electron mass ratio[END_REF]. Research on the proton Compton wavelength goes back to at least 1958 in the paper of Levitt [START_REF] Levitt | The proton Compton wavelength as the 'quantum' of length[END_REF]. Next, we can simply count the number of protons in the mass in question, divide the Compton wavelength of the single proton by this number, and we have the Compton wavelength of the mass in question. For simplicity and even practical purposes, we can treat neutrons as the same mass as protons, or alternatively by doing the small corrections for the slightly di↵erent mass. This way of finding the Compton wavelength of a large mass ignores nuclear binding energy (see for example D'Auria [START_REF] Auria | Introduction to Nuclear and Particle Physics[END_REF]), but this will, at a maximum, give an error in the Compton wavelength of about 1%. This is naturally a considerable additional error, but we can even more-or-less remove it by treating the binding energy as mass equivalent, m = E/c 2 , and adjust for it.

To count the number of atoms in a mass is, in practice, no easy task, but for smaller macroscopic masses one can also, in practice, count the number of atoms . This was one of the competing methods to re-define the kilogram; see [START_REF] Becker | The Avogadro constant: determining the number of atoms in a single-crystal 28si sphere[END_REF][START_REF] Becker | The new kilogram definition based on counting the atoms in a 28 si crystal[END_REF][START_REF] Bartl | A new 28 SI single crystal: Counting the atoms for the new kilogram definition[END_REF][START_REF] Massa | The measurement of the silicon lattice parameter and the count of atoms to realise the kilogram[END_REF]. Silicon 28 has a very uniform crystal structure, so if one can count the number of atoms in a very small volume of this material and next create a very accurate sphere of such material, then one can find with high precision the number of atoms in this sphere. Such a sphere can then, for example, be used in a Cavendish apparatus to measure gravitation e↵ects, such as the gravitational acceleration from this uniform sphere.

Next, to find the Compton wavelength of much larger objects like, for example, the Earth, we can utilize the following relation:

g1R 2 1 g2R 2 2 = ¯ 2 ¯ 1 (22) 
After we have done this, we know the Planck length as well as the Compton wavelength of the gravitational object in question and we can next predict all gravity phenomena by using only two constants, namely the Planck length and the speed of gravity (light) plus variables. We can now actually also directly see that the modern Newton formulation and our new gravity theory are, at the deepest level, identical. To see this, we need to replace G in the standard gravitational framework with G = l 2 p c 3 ~, which is simply the Max Planck length formula lp = q Gc 3 solved with respect to G; see [START_REF] Haug | The gravitational constant and the Planck units. A simplification of the quantum realm[END_REF][START_REF] Haug | Progress on composite view of Newtonian gravitational constant and its link to the planck scale[END_REF]. One should be aware that the idea of expressing G from Planck units goes back to at least 1984 when Cahill [START_REF] Cahill | The gravitational constant[END_REF][START_REF] Cahill | Tetrads, broken symmetries, and the gravitational constant[END_REF] suggested G = ~c m 2 p . However, as pointed out by Cohen [START_REF] Cohen | Fundamental Physical Constants[END_REF] in 1987, this seemed to lead to a circular problem, as it seemed one had to know G to find mp, so to express G from Planck units seemed to be useless. This has been a view held until very recently. It was first in 2017 that we showed one could find the Planck length independently of any knowledge o↵ G. In addition to writing G as a composite constant, one needs to solve the reduced Compton wavelength formula with respect to m. This means we can express any kilogram mass as m = ~ 1 c . Now, by inserting this composite gravity constant as well as this way to express the mass in the standard Newtonian framework, we see that it leads to exactly the same formulas for all observable phenomena as our new gravitational energy framework. In other words, they give the same output both in terms of values and units as can be seen from Table 2. Non-observable phenomena such as the gravitational force itself have di↵erent output units in the two approaches.

The two approaches are only identical when we ignore Lorentz's relativistic mass, as do general relativity theory and standard Newtonian gravity theory. We are of the opinion that for strong gravity fields one should in addition consider Lorentz's relativistic mass. Considering this means, for example, that a micro black hole in our theory matches all the properties of the Planck scale, while general relativity theory that ignores Lorentz relativistic mass will lead to micro black holes that only can match a few properties of the Planck scale, see [START_REF] Haug | Micro black hole candidates and the Planck scale[END_REF]. table

6 Finding the gravitational energy and the Planck length using a Cavendish apparatus

Here we will look at how to find the collision-length, that again is the gravitational energy, by using a Cavendish [START_REF] Cavendish | Experiments to determine the density of the earth[END_REF] apparatus. Moment of force, better known as torque, is given by:

✓ ( 23 
)
where ✓ is the deflection angle of the balance and  is the torsion coe cient of the suspending wire. Next, we have the following well-known relationship:

✓ = LF ( 24 
)
where L is the length between the two small balls in the Cavendish apparatus. Further, F can be set equal to the gravitational force given by:

F = cg EgEg R 2 (25) 
This means we have:

✓ = Lcg EgEg R 2 (26) 
Further, the natural resonant oscillation period of a torsion balance is given by:

T = 2⇡ r I  (27) 
The moment of inertia I of the balance is given by:

I = mg ✓ L 2 ◆ 2 + mg ✓ L 2 ◆ 2 = mgL 2 2 ( 28 
)
from this we must have

T = 2⇡ r mgL 2 2 ( 29 
)
We now solve this with respect to , and this gives:

T 2 2 2 ⇡ 2 = mgL 2 2  = mgL 2 2⇡ 2 T 2 = E g L 2 2⇡ 2 cgT 2 (30) 
Now in the equation 26 replace  with this expression, and then we solve this equation with respect to the gravitational energy, and this gives:

✓ = LF E g L 2 2⇡ 2 cgT 2 ✓ = Lcg EgEg R 2 Eg = L2⇡ 2 R 2 ✓ T 2 c 2 g (31)
And the collision-time mass of the large ball in the Cavendish apparatus is given by

Mg = Eg cg = L2⇡ 2 R 2 ✓ T 2 c 3 g (32)
Again, T is the oscillation time; further, L is the distance between the small balls in the Cavendish apparatus, and R is the distance from center to center between the small ball and the large ball in the Cavendish apparatus. Further, ✓ is the angle of the arm when the arm is deflected. In other words, there is no need to know G or h to measure this in a Cavendish apparatus. However, there the speed of gravity is, as we already know from previous sections, identical to the speed of light.

That is, we know the gravitational energy in the large ball in the Cavendish apparatus. It is indeed an incredibly short length, the collision-length. It is the aggregated collision-length of all the collisions in the mass making up the gravitational energy in the mass during only the Planck time. Pay attention to how we need less information to find this than to find G or M from a Cavendish apparatus. To find G in a Cavendish apparatus, one uses:

G = L2⇡ 2 R 2 ✓ T 2 M (33)
That is, one needs to know M in addition to L, R, and T is all that is needed to find Eg. One can only find the large mass in the Cavendish apparatus by simply weighting the mass, but doing so adds measurement errors compared to only finding Eg. If the G found from the Cavendish apparatus is only used in combination with the large mass in the Cavendish apparatus, then this error from measure M will cancel out with the error this gave to G, but if G measured from the Cavendish apparatus is next used in combination with the mass from the Earth to predict observable gravitational phenomena from the gravitational field of the Earth, then this will give bigger errors than simply using Eg from the Earth directly.

We can also find M in a Cavendish by:

M = L2⇡ 2 R 2 ✓ T 2 G (34)
But then one needs G, and one needed M to find G so this makes little sense. To find the gravitational energy (or the collision-time mass) of the large mass in the Cavendish apparatus requires no G and no kilogram measurements

To separate out the Planck length, we additionally need to know the reduced Compton wavelength of the gravitational mass, and we get:

✓ = LF E g L 2 2⇡ 2 cgT 2 ✓ = Lcg EgEg R 2 lp = s L2⇡ 2 R 2 ✓ ¯ T 2 c 2 g ( 35 
)
That is, the Planck scale (here the Planck length) can be measured (detected) without any knowledge o↵ G or h, but also here we see that we need the reduced Compton wavelength to do so, and this can be found independently of knowledge of G, h, and c. This is rather amazing as it has been thought for more than 100 years that to detect the Planck scale is almost impossible, despite large e↵orts to do so. That we can indirectly measure the Planck length without knowledge of G, c or h means, in our view, simply that to detect gravity is to detect the Planck scale. This is highly controversial and perhaps a shocking view. What one has been searching for, the Planck scale, is already something one has detected all the time, namely almost any observable e↵ects of the gravity force. However, we are measuring an aggregate of these Planck events, and it is when one first understands the relationship between Compton frequency and Planck mass events that one really gets to the depth of it. This paper is, however, not going into great detail about the depth of the quantum scale as this has been a topic in other papers we have recently published and cited here. This paper is mainly about how we can replace the Newtonian formula with a considerably simpler gravitational energy formula F = cg

Eg E g R 2 .
The gravitational constant here is linked to something physically understandable; this is not the case for G. Even our energy is simpler to understand, as it is simply a length (a collision-length), while joule is very di↵use or, as beautifully illustrated by Feynman: " It is important to realize that in physics today, we have no knowledge what energy is. " Richard Feynman Our new collision-length energy demystifies energy, and it is a more complete energy definition that incorporates gravity into standard energy. Standard joule energy is an incomplete derivative of this energy, not by purpose, but based on physics, which, like most sciences, has mostly developed top-down. It is therefore natural that energy, over time, has been understood better and better. We suspect collision-length (energy) and collision-time (mass) is the ultimate depth of reality. This is just one paper in a series of papers trying to explain di↵erent aspects of this new and promising theory. We naturally do not ask other researchers to take any of this for granted, but to take time to study this new theory before prematurely rejecting it.

Equivalence principle

We will here briefly discuss the equivalence principle and also how it is related to our theory. A full analysis of our theory in respect to this will certainly require a series of papers by multiple researchers over time, but at least this will give a good indication of where we currently think our new theory stands in relation to the equivalence principle. Normally, a distinguishment is made between the strong and the weak equivalence principle. In general relativity theory, it is assumed that both the weak and strong equivalence principle should hold. Part of Einstein's equivalence principle basically means that acceleration in flat space-time is locally indistinguishable from acceleration caused by a gravitational field.

One aspect and test of the weak equivalence principle goes all the way back to Galileo Galilei, and is simply related to that all bodies should fall at the same rate in a gravitational field in a vacuum. That this holds is due to the fact that it has been extremely accurately tested in recent times; see, for example, [START_REF] Niebauer | Galilean test for the fifth force[END_REF][START_REF]New tests of the universality of free fall[END_REF][START_REF]Microscope mission: First results of a space test of the equivalence principle[END_REF]. This is also fully in line with our theory.

Our theory is, like standard theory, also in line with recent tests of sub-millimeter scale deviations of the Newtonian 1/R 2 , which have confirmed this law is also valid at such short scales; see [START_REF] Adelberger | New tests of Einstein's equivalence principle and newton's inverse-square law[END_REF].

The weak equivalence principle is, in addition, linked to so-called inertial mass and gravitational mass through the following well known relation :

mia = G Mm R 2 (36)
That is, the weak equivalence principle is also about the inertial mass being equal to the gravitational mass, mi = m (see, for example, [START_REF] Poisson | Gravity[END_REF][START_REF] Rosi | Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states[END_REF][START_REF] Guidry | Modern General Relativity[END_REF]). The equivalence principle is not only discussed inside Newton and general relativity theory, but across several gravitational theories, and its importance and interpretations are still often discussed; see [START_REF] Read | Newtonian equivalence principles[END_REF][START_REF] Lehmkuhl | The equivalence principle(s)[END_REF].

The mass mi, on the left side of equation 36, is thought of as inertial mass and is why we have marked the mass with subscript i. The mass M and m on the right side of the equation are considered gravitational masses. The gravitational force formula used here in modern physics is the 1873 modified Newton formula. This basically means a mass acted upon by a uniform gravitational field g behaves identically to a mass of the same size acted upon by a force (pseudo-force) di↵erent than the gravitational force (used for acceleration) are indistinguishable, something that has also been well tested. At least it appears to be so, and we are not questioning the experimental test results, but we will here actually question the interpretation of this in relation to the standard Newton gravity force formula (Eq. 36).

In our view there is, however, actually only one form of mass; it is the collision-time mass, which is given by

Mg = lp c lp ¯ = G c 3 M
. This means we can just as well write:

mga = c 3 g Mgmg R 2 = cg EgEg R 2 G c 3 ma = c 3 g G c 3 M G c 3 m R 2 (37)
After dividing by G c 3 m on each side, we are left with:

a = GM R 2 (38) 
So, we see our theory is identical to standard theory when it comes to a = g. Still, it is an illusion that the inertial mass mi, if expressed as just kilograms, as in the standard theory, is identical to the (in our view) true gravitational mass mg = G c 3 m; that is, we naturally have m 6 = mg. The true gravitational mass is not M and m, but Mg =

l 2 p ~M = G c 3 M and mg = l 2 p ~m = G c 3 m.
The reason, in our view, that modern physics mistakenly thinks the kilogram mass, whichis the unit of inertial mass, is the same as the gravitational mass, is that using the modern 1873 version of Newton's theory entails unknowingly using two di↵erent mass definitions in the same gravity force formula. That is, in the formula F = G Mm R 2 , the gravitational mass should in reality not be seen as M and m, but rather as M fixed by its multiplication with G; see also [START_REF] Haug | Di↵erent mass definitions and their pluses and minuses related to gravity: The kilogram mass is likely incomplete[END_REF]. The other incomplete mass, m, is only used for derivations with another incomplete inertial mass mi, that always cancels out in derivations to get formulas for something that can also be observed, such as g (see Table 2). The kilogram mass is incomplete and does not have enough information to also account for gravity, and is why any kilogram mass that has a significant gravitational field needs to be fixed (multiplied) with a gravitational constant. However, for standard energy mass relations such as E = mc 2 , then the kilogram mass has enough information embedded in it, as this does not incorporate any information about gravitational mass or gravitational energy.

The inertial mass and the gravitational mass are the same when both are correctly expressed as collision-time mass, but they are not the kilogram mass. In standard theory "even the unit of inertial mass is the kilogram is now per definition via h the unit of inertial mass. However, only the atom count determines the inertial mass of the kilogram realization without any reference to the equivalence principle"; see Mana and Schlamminger [START_REF] Schlamminger | The kilogram: inertial or gravitational mass?[END_REF]. This is in line with the research undertaken to decide on a new kilogram standard, culminating in the new 2019 NIST CODATA standard to link the kilogram to the Planck constant and the watt balance; see [START_REF] Stock | The watt balance: determination of the Planck constant and redefinition of the kilogram[END_REF][START_REF] Thomas | First determination of the Planck constant using the LNE watt balance[END_REF]. The other alternative and competing method for defining the kilogram was counting atoms; see [START_REF] Becker | The Avogadro constant: determining the number of atoms in a single-crystal 28si sphere[END_REF][START_REF] Becker | The new kilogram definition based on counting the atoms in a 28 si crystal[END_REF][START_REF] Bartl | A new 28 SI single crystal: Counting the atoms for the new kilogram definition[END_REF][START_REF] Massa | The measurement of the silicon lattice parameter and the count of atoms to realise the kilogram[END_REF]. Still, none of these methods make the kilogram contain any information needed to make it a gravitational mass, so it is not the same as a gravitational mass.

Inertial mass is, however, identical to gravitational mass when it is defined as collision-time mass. We can easily find the collision-time mass of any macroscopic-sized object in a Cavendish apparatus, as demonstrated in section 6. This can be done without any knowledge of any constants except c and no need for counting atoms or including the watt balance and the Planck constant. This contrasts with the kilogram mass of the large ball in the Cavendish apparatus that we cannot find directly from the Cavendish apparatus without knowing G first. Further, we basically need to know the kilogram mass of the large ball in the apparatus to find G, so this leads to a circular problem. The way one avoids this circular problem in standard physics is to find the kilogram mass of the large ball used in the Cavendish apparatus from an independent method, such as the watt balance, or to count atoms. These methods to define the kilogram are directly or indirectly constructing an arbitrary human-made clump of matter as the standard kilogram mass, but we do not need any of this to find the collision-time mass or collision-length energy of the large balls in the Cavendish apparatus, as it can be found directly in the Cavendish apparatus by only knowing one constant, namely the speed of light c. This constant also has no uncertainty in it, unlike G.

For larger astronomical objects, we can also easily find the collision-time mass for any object such as planets, the sun, and other stars without finding G first. Not only that, but also the uncertainty in these mass measures will be smaller than in the kilogram mass measure for the same objects. This is because to find the kilogram mass of astronomical objects, we generally need to first find G; see [START_REF] Haug | Not relying on the Newton gravitational constant gives more accurate gravitational predictions[END_REF]. For example, the collision-time mass of the Earth we can simply find by measuring gravitational acceleration from a drop ball; the collision-time mass of the Earth is then given by:

Mg = 2HR 2 T 2 b c 3 = g R 2 c 3 (39) 
where H is the height of the drop from above the ground, R is the radius of the Earth, T b is the time it took from when the ball was dropped until it hit the ground, and c is the speed of light (or gravity, as they are the same). We naturally do not claim this method is very accurate, The point is that all we need is to measure g accurately without any knowledge of G; for a detailed discussion of why the collision-time mass (and thereby the gravitational energy) can be found with higher precision than the kilogram mass, see [START_REF] Haug | Not relying on the Newton gravitational constant gives more accurate gravitational predictions[END_REF].

Even if the kilogram mass (and therefore the kilogram inertial mass) is not the same as the gravitational mass, it is true, in our theory, that two masses with the same amount of kilogram also have the same gravitational mass, since any kilogram mass is simply a collision-time mass multiplied by a constant m = mg l2 p = mg c 3 G . This is, however, much more than just a change of units. This unit change when going from kilogram to collision-time is made to get information about the Planck scale into the mass definition, and the Planck scale is what is needed to do any gravity modeling, but this is done unknowingly in standard theory through the calibrated G. We need to know the Planck constant and the Planck length, or G and c, to find the kilogram mass from the collision-time mass.

The kilogram mass has not incorporated the Planck length (or Planck time), which is related to the essence of gravity, but by multiplying G with M one unknowingly gets the Planck length into the mass. This is also discussed in more detail in section 5 of the recently published paper [START_REF] Haug | Progress on composite view of Newtonian gravitational constant and its link to the planck scale[END_REF].

The kilogram mass is incomplete and contains no information about the Planck scale (except for the Planck mass itself) and therefore is an incomplete mass definition, which is why the only mass that is significant for gravity in two-body problems, wherein m ⌧ M problems the mass M is multiplied with G, so the real gravitational mass is linked to GM not just M in the Newton formula. In two-body problems where we do not have m ⌧ M , then the gravitational parameter is µ = G(M + m) = GM + Gm; in other words, then both the kilogram masses are corrected by being multiplied by G, and one is thus unknowingly turning the kilogram mass into collision-time mass, which is the real gravitational mass in our view, but in standard theory this has not been discovered and therefore not been understood. Be aware that when G is multiplied by M , as is needed for prediction of any directly observable gravitational phenomena, then the kilogram unit falls out. This is because G has output units m 3 • kg 11 • s 2 and the kilogram mass naturally outputs unit kg, so the kilogram cancels. This is because gravity does not depend on humanly-constructed mass units, but rather depends on the foundation of mass and energy that is linked to the Planck length and Planck time.

The equivalence principle in general relativity theory is considered incompatible with the local presence of the gravitational energy; see, for example, Misner, Thorne and Wheeler [START_REF] Misner | Gravitation. Freeman[END_REF] (section 20.4). According to them, the local gravitational energy-momentum has no weight and do not curve space-time. Further, they write: "It does not produces any geodesic deviation of two nearby world lines that pass through the region of space in question. It is not observable". Further, they write: "At issue is not the existence of gravitational energy, but the localizability of gravitational energy. It is not localizable. The equivalence principle forbids it.".

The gravitational energy, collision-length energy, that we have presented here and in other papers is not directly comparable with what is considered gravitational-momentum energy in general relativity theory. Our gravitational energy is directly related to the Planck scale as discussed in detail in [START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF]. Our model does not assume curved space-time, so it is not clear exactly how to compare our model on this point. For an observational area larger than two Planck lengths, one will in principle be able to clearly observe gravity caused by gravitational energy and, in this way, localize the gravitational energy to be inside a sphere with a radius equal to the Planck length (and a diameter of two Planck lengths). However, we could go even further and try to find out if the localization was inside a volume smaller than inside an area with a radius of the Planck length. This is impossible in our theory, as time would stand still and nothing could be observed inside an area of space smaller than the Planck volume; to understand this, one needs to study our paper on the deeper foundation of this theory; see [START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF]. So, in our theory we can localize the gravitational energy and indirectly find out the gravitational energy is rest-mass energy at the Planck scale inside mass, but we cannot localize the gravitational energy in the sense that our theory has no information below the Planck scale: below the Planck volume, and the Plank time.

There is likely no way, either now or in the future, that we can detect a single Planck event directly. To do so, we ourselves would have to be a photon, as in our model at the deepest level these Planck events are photon-photon collisions inside matter; again, see the paper just referred to. These Planck events, in our theory, consist of a mass of about 10 51 kg in a one-second observational time-window, and the Planck event is related to collisions of photons internally in matter; such collisions have only a duration of the Planck time, and a radius equal to the Planck length. These are all much smaller than anything we can measure directly with our best instruments now or, probably, in the future. Still, surprisingly we can measure the aggregates of such events in macroscopic objects, and even measure how many such events happen in any observational time window. This is namely the lp ¯ factor we discussed above (section 4). That is, in our theory, gravity is linked to the Planck scale. We are boldly claiming to have been the first to have measured the Planck length independently of G, ~and even c; see again [START_REF] Haug | Demonstration that Newtonian gravity moves at the speed of light and not instantaneously (infinite speed) as thought![END_REF][START_REF] Haug | Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a newton force spring[END_REF][START_REF] Haug | Can the Planck length be found independent of big G ?[END_REF]. Indeed, we have somehow indirectly localized the gravitational energy, by measuring its aggregate that is directly linked to the observed gravity, but we have further been able to break it down into its components by measuring the Compton wavelength:m ¯ , the speed of gravity: cg, and the Planck length: lp, totally independently of any knowledge of G, ~, or c. Table 1 shows we can model all gravity phenomena from the speed of gravity and the Planck length, in addition to, naturally, the distance of the center of the gravitational field R.

That is, we have a quantum gravity theory that, even by practical experiments, can and has detected the Planck scale. Tests done in relation to gravitational energy, and that are interpreted through general relativity theory, are not even close to testing the Planck scale. In our view, the Planck scale is, however, misunderstood in standard theory. To detect any e↵ect from gravity is, in our model, to detect gravitational energy and thereby the Planck scale and thereby gravitational energy indirectly.

Be aware that the formulas presented in this paper so far are the weak field approximations of collision space-time quantum gravity theory, just as standard Newton theory is the weak field approximation in general relativity theory. Particularly for strong gravitational fields, this theory needs to take into account Lorentz relativistic mass; see [START_REF] Haug | Micro black hole candidates and the Planck scale[END_REF][START_REF] Haug | Light can always escape black holes and this is why they are observed to be bright[END_REF]. Our gravity theory when considering Lorentz relativistic mass, which can be reformulated as relativistic gravitational energy, basically means we have:

F = cg EgEg R 2 (40) 
where is the Lorentz factor: = 1/ p 1 v 2 /c 2 , so this simply means Lorentz relativistic mass is identical to relativistic gravitational energy. To take such relativistic e↵ects into account is important for light sent out from strong gravitational fields such as from quasars. Haug and Spavieri [START_REF] Haug | Does general relativity theory strongly underestimate gravitational redshift for objects such as black holes and quasars? Physics Essays[END_REF] have recently shown that the unexpected lack of observed velocity time dilation in high Z quasars (see [START_REF] Hawkins | On time dilation in quasar light curves[END_REF]) can be explained in this model taking into account Lorentz relativistic mass or, alternatively, relativistic gravitational energy. Also, when taking into account Lorentz relativistic mass, we are able to predict supernova Ia (one-A) without the hypothesis of dark energy; see [START_REF] Haug | Lorentz relativistic mass makes dark energy superfluous?[END_REF]. Our theory is also incompatible with general relativity for strong gravitational fields where the escape velocity is close to c, so mostly this will a↵ect how to interpret black hole type objects; see [START_REF] Haug | Micro black hole candidates and the Planck scale[END_REF][START_REF] Haug | Light can always escape black holes and this is why they are observed to be bright[END_REF].

There is still considerable discussion around whether all the di↵erent parts of Einstein's equivalence principle actually hold; see, for example, [START_REF] Qin | Test of einstein equivalence principle by frequency comparisons of optical clocks[END_REF] for a discussion. So, there are clearly many more aspects and tests we need to consider to compare our quantum gravitational energy model before we can conclude which parts of the equivalence principle our theory is compatible with or not.

Mercury precessions and bending of light

Two types of gravitational observations that early on led to Newton assuming the theory was incomplete were Mercury precession and the observed size of the deflection of light in gravitational fields. We will shortly look at these here and suggest that Newton theory, in particular after also considering some relativistic e↵ects, is potentially in line with observations.

Corda [START_REF] Corda | The secret of planets' perihelion between newton and Einstein[END_REF] has recently shown that also taking into account the gravitational e↵ects of Mercury, and not only that of the sun, as well as relativistic e↵ects seems to give predictions in line with the observed precession of Mercury. Haug [START_REF] Haug | Relativistic newtonian gravitation that gives the correct prediction of mercury precession[END_REF] has also discussed that Mercury precession can possibly be predicted correctly when taking into account Lorentz relativistic mass.

Another cornerstone test of gravitational theories is if they can predict light bending correctly. Already, in 1794, Cavendish had pointed out that Newtonian gravity would lead to bending of light. Soldner [START_REF] Soldner | On the deflection of a light ray from its rectilinear motion, by the attraction of a celestial body at which it nearly passes by[END_REF] in 1881, as well as Einstein [START_REF] Einstein | Über den einfluss der schwercraft auf die ausbreitung des lichtes[END_REF] in 1911, calculated that Newtonian theory would predict a light bending of = 2GM Rc 2 , which is exactly half of what general relativity theory predicts: = 4GM Rc 2 and what has been observed. Einstein basically derived this by integrating over the gravitational potential in the following way:

= 1 c 2 ˆ1 2 ⇡ 1 2 ⇡ GM R cos ✓ds = 2GM Rc 2 (41) 
As pointed out by Rybczyk [START_REF] Rybczyk | Relativistic escape velocity using relativistic forms of potential and kinetic energy[END_REF] in a working paper in 2009, the gravitational potential = GM R is equal to the orbital velocity squared v 2 o = GM R . So another potential way to get to exactly the same light bending prediction in Newton theory is, as Rybczyk points out, to integrate over

v 2 o c 2 : = 1 c 2 ˆ1 2 ⇡ 1 2 ⇡ GM R cos ✓ds = ˆ1 2 ⇡ 1 2 ⇡ v 2 o c 2 cos ✓d✓ = 1 c 2 ˆ1 2 ⇡ 1 2 ⇡ v 2 o cos ✓d✓ = 2GM Rc 2 = 2v 2 o c 2 (42) 
This is the same result of predicted light bending as derived by Soldner and Einstein for Newton theory. If this should also be an adequate and logical way to do so, then one can ask if it is not the escape velocity that should be used in such derivation, rather than the orbital velocity? Our point is not to indicate that Einstein assumed light bending was related to orbital velocity, which he never claimed, but our point is to ask if light bending could be related to escape velocity rather than to his derivation from gravitational potential. The Newton escape velocity we get by solving the following equation with respect to v:

1 2 mv 2 G Mm R = 0 (43) 
This gives the well-known result:

ve = v = r 2GM R (44) 
If we now integrate over v 2 e c 2 (as first suggested by Rybczyk) we get:

= ˆ1 2 ⇡ 1 2 ⇡ v 2 e c 2 cos ✓d✓ = 1 c 2 ˆ1 2 ⇡ 1 2 ⇡ v 2 e cos ✓d✓ = 4GM Rc 2 = 2v 2 e c 2 (45) 
If this is the relevant way to look at light bending, then it would mean Newton theory does, after all, predict the same as general relativity theory. It is well known that general relativity theory and Newton theory lead to the same escape velocity; see [START_REF] Augousti | An observation on the congruence of the escape velocity in classical mechanics and general relativity in a Schwarzschild metric[END_REF].

Are we fully sure it is the gravitational potential (or orbital velocity) that is relevant and not the escape velocity when dealing with photons and light bending?

Next, if we now derive an escape velocity where we consider relativistic mass, then we simply need to solve the following equation with respect to v:

mc 2 q 1 v 2 c 2 mc 2 G Mm R = 0 (46) 
This gives:

ve = r 2GM R G 2 M 2 R 2 c 2 (47) 
See [START_REF] Haug | A new full relativistic escape velocity and a new Hubble related equation for the universe[END_REF] for more details on this escape velocity. If we now integrate based on this, we get:

= ˆ1 2 ⇡ 1 2 ⇡ v 2 e c 2 cos ✓d✓ = 1 c 2 ˆ1 2 ⇡ 1 2 ⇡ v 2 e cos ✓d✓ = 4GM Rc 2 2G 2 M 2 R 2 c 4 = 2v 2 e c 2 (48) 
This result is also given by Rybczyk [START_REF] Rybczyk | Relativistic escape velocity using relativistic forms of potential and kinetic energy[END_REF]. We see the first term is identical to the predictions from general relativity light bending 4GM Rc 2 and then there is another second order term. In a weak gravitational field, this would give the same prediction as general relativity and would therefore be indistinguishable in weak gravitational field measurements. Gravitational bending has only been tested in weak gravitational fields. The same can be derived from our new way of presenting gravity thorough quantum gravitational energy. We have:

E g c E g c cg EgEg R 2 = 0 (49) 
This gives:

ve = c r 2Eg R E 2 g R 2 (50) 
which is identical to ve = q 2c 3 Mg R cM 2 g R 2 as Eg = Mgc, so this is identical to the escape velocity derived in Haug [START_REF] Haug | Unified quantum gravity field equation describing the universe from the smallest to the cosmological scales[END_REF]. Next, we integrate over this:

= ˆ1 2 ⇡ 1 2 ⇡ v 2 e c 2 cos ✓d✓ = 2v 2 e c 2 = 2c 2 ✓ 2Eg R E 2 g R 2 ◆ c 2 = 4Eg R 2E 2 g R 2 (51) 
The gravitational energy in terms of collision-length for the sun is equal to:

Eg = lp lp ¯ s ⇡ 1480 m ( 52 
)
where lp is the Planck length and ¯ s is the reduced Compton wavelength of the sun. The factor lp ¯ s ⇡ 9.15 ⇥ 10 37 is the number of Planck events in the sun per Planck time; it is the quantization (number) of gravity in the sun.

However, we do not even need to find the Planck length or the reduced Compton wavelength to find lp lp ¯ s = Eg. We can find this factor directly by simply observing the orbital time of the Earth around the sun and in addition knowing the distance from the Earth to the sun; then we have:

To = 2⇡R vo To = 2⇡R c q Eg R T 2 o = 4⇡ 2 R 2 c 2 Eg R Eg = 4⇡ 2 R 3 T 2 o c 2 (53) 
We can check in numerically; the orbital time of the earth is about 365 days, and the distance earth to the sun is approximately 149,600,000,000 meters. So, we have:

Eg = 4⇡ 2 ⇥ 149600000000 3 (365 ⇥ 24 ⇥ 60 ⇥ 60) 2 ⇥ c 2 ⇡ 1479 m
Further, the radius of the sun is 696,340,000 meters. So the predicted light bending of the sun is: which is nicely in line with the observed deflection from the sun. The first accurate observation was performed in 1919 by Eddington and later confirmed with a series of observations. We could have done this from just the first term, that in our theory is only valid in weak gravitational fields, where a weak gravitational field is where ve ⌧ c, and it is a strong gravitational field when ve is significant to the strong field. In the weak field we get: So this is clearly in line with observations. Still, we have to ask if an observation of bending of light is simply related to indirectly measuring the escape velocity divided by the speed of light (both squared) as we have speculated on here? Could this make sense or is it just an ad hoc coincidence that such an approach gives the correct prediction of light bending?

= 4Eg R 2E 2 g R 2 ⇡ 4 ⇥
Whether this is a sound or unsound way of deriving gravitational deflection predictions is unclear at the moment and should be further investigated and discussed. It is clearly purely mathematically correct, but it must also be linked to correct physical intepretation of gravity. So, an outstanding question is if the escape velocity would be relevant for the light bending rather than the gravitational potential? This should be studied more closely before we make a conclusion. At least Lorentz relativistic mass seems to open potential new ways of interpreting observed gravity phenomena.

We have to keep in mind that many gravity observations are interpreted through a mathematical lens. Here, we have presented a mathematical lens where light bending is seen as escape velocity relative to the speed of light and also how this can be done through quantum gravitational energy. Only time can tell if it can give a full consistent framework and if it can add something to, or replace parts of, established theories.

Conclusion

We have demonstrated how the modern and very well-known Newtonian formula F = G Mm R 2 can be replaced with the simpler and more intuitive formula F = cg Eg E g R 2 .These formulas give the same predictions, but the latter one only needs the speed of light (gravity) as a constant, so it does not need G. This is likely the simplest way one can express Newtonian gravity. We have further shown that there is a deeper quantum gravity hidden behind this as well as the Newtonian formula. Both formulas are consistent with weak field gravitation based on the new quantum gravity theory known as collision-space-time. In strong gravitational fields we claim on in addition needs to take into account Lorentz relativistic mass or relativistic quantum gravitational energy. We also discuss how Newton theory actually possibly predict the correct bending of light.

8 . 49 ⇥

 849 10 06 radians This must be multiplied by 648000 ⇡ to get arcseconds. This gives: ⇡ 8.49 ⇥ 10 06 ⇥ 648000 ⇡ ⇡ 1.75 arcseconds
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