
HAL Id: hal-03739572
https://hal.science/hal-03739572v1

Submitted on 27 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging dynamical models and deep networks to solve
forward and inverse problems

Marie Déchelle, Jérémie Donà, Kévin Plessis-Fraissard, Patrick Gallinari,
Marina Lévy

To cite this version:
Marie Déchelle, Jérémie Donà, Kévin Plessis-Fraissard, Patrick Gallinari, Marina Lévy. Bridging
dynamical models and deep networks to solve forward and inverse problems. NeurIPS 2020 - 1st
NeurIPS workshop on Interpretable Inductive Biases and Physically Structured Learning, Jun 2021,
Paris (virtual event), France. �hal-03739572�

https://hal.science/hal-03739572v1
https://hal.archives-ouvertes.fr

Bridging Dynamical Models and Deep Networks to
Solve Forward and Inverse Problems

Marie Déchelle ∗
Sorbonne Université, MLIA, LIP6,

marie.dechelle@lip6.fr

Jérémie Donà *

Sorbonne Université, MLIA, LIP6
jeremie.dona@lip6.fr

Kévin Plessis-Fraissard *

Sorbonne Université, MLIA, LIP6,
plessis@poleia.lip6.fr

Patrick Gallinari
Sorbonne Université, MLIA, LIP6

Criteo AI Labs
patrick.gallinari@lip6.fr

Marina Levy
Sorbonne Université, LOCEAN, IPSL
marina.levy@locean.ipsl.fr

Abstract

Modeling the dynamics of physical systems recently gained attention in the ma-
chine learning community. Most recent works rely on complete observations of
the physical state, whereas only partial observations are available in practice. Esti-
mating the full state dynamics is important for the understanding of the underlying
phenomenon and for model based prediction. Largely unexplored from an ML
viewpoint, we address in this work the estimation and forecast of a partially ob-
served spatio-temporal system, leveraging prior dynamical knowledge. To solve
both forward (forecasting) and inverse (identification) problems, we bridge nu-
merical models of partial differential equations and deep learning and introduce a
dynamical regularization on the unobserved states. This constrains our estimation
and improves estimation performances. The approach is validated on two simulated
datasets where the dynamics is controlled and fully known.

1 Introduction

Modeling the dynamics of physical phenomena classically relies on ordinary or partial differential
equations (ODE and PDE), involving two practical issues: prediction and estimation of the unobserved
states and dynamics, respectively the forward and inverse problem. Solving both problems can be
critically enabling for example for transport equations, key in climate and ocean circulation models
[10]. Both tasks raise major issues: for instance, forward modelling through data assimilation [20] is
computationally expensive while inverse problems are intrinsically ill-posed [28].

Recent trends consider Machine Learning (ML) as an alternative or complementary approach to tradi-
tional physical models, allowing the integration of observations and potentially faster computations
through model reduction. To solve forward modeling, machine learning leverages complex recurrent
architectures able to deal with high-dimensional partially observed systems [29, 7, 32]. This pure ML
approach is however not sufficient when dealing with complex physical dynamics. Large size inverse
problem resolution with deep models recently gained attention [2, 6, 3], but they do not provide
interpretable estimation of the unobserved state. [18, 21] use prior knowledge in the forward model

∗Equal contribution

1st NeurIPS workshop on Interpretable Inductive Biases and Physically Structured Learning (2020), virtual.

and fully observed state to recover unknown parameters, but are limited to low dimensional settings.
To cope with the ill-posedness in inverse problem resolution and retrieve meaningful estimation
of the unobserved state, further regularization is needed [23]. In that perspective promising works
[6, 27, 19, 25] consider strong inductive priors.

We propose a framework bridging numerical schemes of PDE and neural networks to approximate
the forward model. Incorporating physical knowledge, our framework considers the dynamics of
the observed variable and its known dependency to unknown variables. Thanks to a dynamical
regularization of the hidden states, the model also solves the inverse problem. We illustrate the ability
of our approach to tackle high dimensional partially observed systems and show its effectiveness on
simplified dynamics of ocean circulation.

2 Related Work: Neural Representation of Differential Equations

Our work derives from the neural representation of PDE. Initiated by the similarity between forward
Euler scheme for ODEs and Residual Networks (ResNets) [14], a flourishing literature has thrived
developing links between ODE/PDE and neural networks, ranging from analysis involving the
continuous limit of ResNets [5] to the neural implementation of sophisticated numerical schemes [13].
Recently, some works leveraged data specific knowledge to shape the prediction function, for example
imposing specific fluid dynamic [26] or Hamiltonian constraints [11, 31]. Considering dynamics
driven by PDEs, [6] estimates a velocity field from data, under the constraint of an advection-diffusion
PDE to derive a forecast scheme. [3] goes further and proposes a general scheme for modeling
dynamical systems governed by unknown PDEs from partial observations. However, in both settings,
the estimated field lacks physical interpretability. The forward model can be constrained as in [19]
where convolutional filters of residual networks are forced to approximate euclidean differential
operators. Very recently, [12, 21] proposed to combine physics informed solvers and deep networks
for both forward and inverse problems, requiring however full state observation. Because we only
use partial information about the true PDE and partial observations of the dynamics, our work
extends hybrid models [12, 6, 21]. It enables physically plausible estimates of the unobserved states,
opening the way to well-built combination between neural estimation and numerical scheme of partial
differential equations.

3 Model

We denote by Xt ∈ Ω ⊆ Rp+q a partially observed physical state, written as Xt = (Xobs
t , Yt) ∈

X × Y where Xobs
t ∈ X ⊆ Rp is observed and Yt ∈ Y ⊆ Rq is unobserved. Our primary goal is to

estimate the full physical state Xt from partial observations, i.e from a sequence of Xobs
t .

3.1 Solving an Inverse Problem via Forward Modeling

We assume that the evolution of Xt is governed by a differential equation with a dynamic f :

Xt =

(
Xobs
t
Yt

)
(1a)

dXt

dt
= f(Xt) (1b)

We formulate our problem as retrieving the full state Xt given a sequence of observed variables Xobs
t .

This problem is ill-posed since f is not known and no observation of Y is available. Unlike [6] who
has access to a closed form solution to estimate f , we only rely on partial information on the forward
model. Our contribution involves two interlinked dimensions: 1) learning jointly estimates of Y
and 2) learning the whole dynamics of X (both observed and unobserved) by incorporating partial
physical knowledge. We give below a formulation of these two steps.

State Estimation Formulation Relying on adjoint state method [24], we learn a neural networkGθ
estimating the unobserved Yt from k consecutive measurements (Xobs)t−k:t = (Xobs

t−k+1, ..., X
obs
t):

Gθ : X k → X × Y
(Xobs)t−k:t → X̂t = (Xobs

t , Ŷt) (2)

2

However, having no supervision for the learning of Gθ, we leverage the dynamics of the observed
variable to retrieve a physical estimate of the full state through data assimilation principles [1, 22].

Dynamical Model Formulation We rewrite f from Equation (1b) as f = (f1, f2) acting respec-
tively on Xobs and Y :

dXt

dt
=

d

dt

(
Xobs
t
Yt

)
=

(
f1(Xt)
f2(Xt)

)
(3)

Observing physical variables provides information about their dynamics. For example when studying
transport motions, we know that advection is involved. It leads us to assume that f1 is partially
known, allowing us to write without loss of generality f1 as f1(Xt) = fk1 (Xt) + fu1 (Xt), where fk1
is known a priori and fu1 is to be estimated. This leads to the following decomposition:

dXt

dt
=

(
fk1 (Xt) + fu1 (Xt)

f2(Xt)

)
, (4)

Note that despite fk1 is known, it involves the unobserved quantity Y . To sum up, to accurately
predict the dynamics of Xobs, we aim at learning fu1 while accurately estimating Y .

There is usually no guarantee that Ŷt is coherent temporally nor physically interpretable [3]. Therefore,
our proposition is to estimate f2, i.e. to force the unobserved Y to obey a PDE and to make the
trajectory of Y well defined from an initial datum estimated thanks to Gθ. One key insight in our
work is that we learn the dynamics of Y using a PDE, regularizing the estimation. In our work, f2
is implemented with a ResNet, which can be viewed as approximating a transport equation (see
for example [17, 16]). Also, the method of characteristics (see Section 6.3) provides existence and
uniqueness of the solution to the Cauchy problem associated to the transport equation under mild
assumptions.

We formulate our optimization problem accordingly and verify experimentally the effect of our
regularization. Note that [12] proposes to inform the forward model and to solve ill-posedness by
minimizing the `2-norm of fu1 , which will be investigated as a baseline (denoted with ‖fu1 ‖).

3.2 Control of the Dynamic and Training Objective

As previously stated, we want to accurately estimate the dynamics of the observed variable, but also
to model the intrinsic dynamics of the unobserved variable Y . We have access to partial observations
up to t0 and want to forecast the full state from t0 to T . We consider the following objective:

min
fu
1 ,f2

∥∥∥Yt0+T − (Yt0 +

∫ t0+T

t0

f2(Xt)dt
)∥∥∥

2
subject to

dXobs
t

dt
= f1(Xt), (5)

Unfortunately, having no access to the true Y we only rely on estimates given by Gθ. In order to
solve Equation (5), we introduce two losses: we penalize the forecasts errors in the observed state,
and force the unobserved variable Y to obey a learned dynamics f2.

Let F k1 , F
u
1 , F2 be the numerical integration of fk1 , fu1 , f2 over one time step. Fn2 is F2 iterated n

times. In practice, having no priors on the dynamics fu1 and f2, we directly estimate their integrated
counterpart Fu1 and F2 using a neural network. Fu1 shares the same inputs as Gθ.

Forecasting loss on Xobs For Y to be estimated properly, it must lead to accurate predictions of
Xobs. Thus, we penalise the discrepancy between forecasts of Xobs and their true value:

JXobs =

T∑
t=t0

∥∥∥F k1 (X̂obs
t , F t−t02 (Gθ(X

obs
t0−k:t0))

)
+ Fu1

(
X̂obs
t−k:t

)
−Xobs

t+1

∥∥∥
2
, (6)

Note that for t < t0, X̂obs
t refers to actual observations, while for t ≥ t0, X̂

obs
t is the prediction

done using former time steps estimations such that X̂obs
t+1 = F k1

(
X̂obs
t , F t−t02 (Gθ(X

obs
t0−k:t0)

)
+

Fu1

(
X̂obs
t−k:t

)
.

3

Table 1: MSE Predictions (x100) scores of compared models across 10 time steps.

Models
Advection Source Dataset

ψ w S ψ w S

Ours (u,v known) 0.00 n/a 0.00 0.19 n/a 0.12

Ours 2.11 4.90 0.23 4.97 4.96 0.89
Ours (‖fu1 ‖) 2.04 4.49 0.07 3.11 10.10 1.11
Ours (no F2) 0.95 8.28 1.07 2.98 15.71 9.06
Ours (no F2, ‖fu1 ‖) 1.07 9.07 1.09 1.00 11.74 4.48
NeuralODE 3.17 n/a n/a 5.24 n/a n/a

Evolution of Y Besides, we are interested in the dynamics of the unobserved Y and constrain it to
obey a partial differential equation defined by F2:

JY,t =
∥∥∥F t−t0+1

2 ◦Gθ(Xobs
t0−k:t0)−Gθ(Xobs

t−k+1:t+1)
∥∥∥
2
, (7)

The optimization of Equation (5) consists in learning the parameters of (Gθ, F2, Fu1) and by mini-
mizing our overall cost function J defined by:

J = JY,t=T + λXobsJXobs (8)

Note that our model can be adapted to various data specific scheme such as fully Lagrangian or
symplectic integration and more general all-purpose integrator such as Rk4, as long as differentiability
is maintained while computing F k1 .

4 Experiments

Figure 1: Sequence of estimations on ψ,w =
(u, v) for the Dataset with non null physical
source

Physical Dataset We validate our approach on sim-
plified simulations of ocean surface variables. Our
dataset is composed of simulated sea surface temper-
ature (SST) dynamics ψ advected by a velocity field
w plus a forcing term, denoted S, as:

∂ψ(x, y, t)

∂t
+∇.(ψw(x, y, t)) = S(w, x, y, t), (9)

We take as initial condition real ocean temperatures
from [20]. In our experiments Xobs = ψ and Y = w.
Several types of velocity fields w, representing the
Gulf-Stream, are simulated following [4]. From this
distribution of w, we investigate two experimental
settings: no source term (S = 0) and a non null
source term S inspired by [9]. Thorough experimen-
tal details and hyperparameters are available in the
appendix Section 6.2 and Section 6.4. Note that the
unobserved w = (u, v) is an high-dimensional vector
field, contributing to the difficulty of the task.

We consider as physical prior on the dynamics F k(ψ,w) = ∇.(ψw), representing the advection of
the observed quantity ψ, implemented as a semi-Lagrangian scheme (see Section 6.3), known for its
stability in time.

Inverse Problem Figure 1 shows examples of predicted hidden states and columns labeled w give
the MSE between estimation and target hidden state w. Both Figure 1 and Table 1 show that Gθ
truthfully estimates the hidden state using our framework. Minimizing ‖fu1 ‖ as in [12] does not help
the estimation of the unobserved variables, as confirmed by the conducted ablation study. Therefore,
our dynamical prior on w helps solving the inverse problem.

4

Forward Problem Constraining temporally the hidden states harms prediction accuracy despite
truthful estimates in both SST (Figure 1) and source term S. We observe in Table 1 that models
without F2 fail at estimating w, forcing Fu1 to capture the whole dynamics. Unlike our estimations
of S showed in appendix Figure 2, they thus also fail at estimating an interpretable source term S.
Finally, data agnostic algorithms are less performing for long term forecasts than informed neural
models, confirming that providing knowledge in a data-driven forward model brings stability in the
forecasts.

5 Conclusion

We propose to bridge PDE-specific numerical scheme with deep networks to solve forward and
inverse problem for partially observed dynamics. We empirically show that regularizing time varying
unobserved states helps solving both the forward problem and the inverse estimation. Further studies
should include more thorough experiments evidencing different dynamics. Theoretical considerations
on the proposed regularization will also be investigated.

Broader Impact

The cooperation between physical models and deep learning is an emerging topic with interesting
applications in the climate modeling community. For example, this cooperation could be coupled
with data assimilation techniques allowing for better understanding of Earth’s climate, crucial for the
estimation of the impact of climate change.

Acknowledgments and Disclosure of Funding

We would like to thank all members of the MLIA team from the LIP6 laboratory of Sorbonne
Université for helpful discussions and comments. We acknowledge financial support from the
LOCUST ANR project (ANR-15-CE23-0027) and the European Union’s Horizon 2020 research and
innovation program under grant agreement 825619 (AI4EU). This study has been conducted thanks
to Natl60 data provided by MEOM research team.

References
[1] David L. T. Anderson and Jürgen Willebrand, editors. Tracer Inverse Problems, pages 1–77.

Springer Netherlands, Dordrecht, 1989.

[2] Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems
with invertible neural networks. In International Conference on Learning Representations,
2019.

[3] Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, and Patrick Gallinari. Learning the spatio-
temporal dynamics of physical processes from partial observations. In ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
3232–3236, 2020.

[4] Guido Boffetta, G Lacorata, G Redaelli, and A Vulpiani. Detecting barriers to transport: a
review of different techniques. Physica D: Nonlinear Phenomena, 159(1-2):58–70, 2001.

[5] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pages 6571–6583,
2018.

[6] Emmanuel de Bezenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical pro-
cesses: Incorporating prior scientific knowledge. Journal of Statistical Mechanics: Theory and
Experiment, 2019(12):124009, 2019.

[7] Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1174–1183,
Stockholmsmässan, Stockholm, Sweden, July 2018. PMLR.

5

[8] Michail Diamantakis. The semi-lagrangian technique in atmospheric modelling: current
status and future challenges. In Seminar on Recent Developments in Numerical Methods
for Atmosphere and Ocean Modelling, 2-5 September 2013, pages 183–200, Shinfield Park,
Reading, 2014. ECMWF, ECMWF.

[9] Claude Frankignoul. Sea surface temperature anomalies, planetary waves, and air-sea feedback
in the middle latitudes. Reviews of geophysics, 23(4):357–390, 1985.

[10] Lucile Gaultier, Jacques Verron, Jean-Michel Brankart, Olivier Titaud, and Pierre Brasseur. On
the inversion of submesoscale tracer fields to estimate the surface ocean circulation. Journal of
Marine Systems, 126:33–42, 2013.

[11] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In
Advances in Neural Information Processing Systems, pages 15353–15363, 2019.

[12] Vincent Le Guen, Yuan Yin, Jérémie Dona, Ibrahim Ayed, Emmanuel de Bézenac, Nicolas
Thome, and Patrick Gallinari. Augmenting physical models with deep networks for complex
dynamics forecasting, 2020.

[13] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, dec 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016.

[15] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. CVPR, 2017.

[16] Skander Karkar, Ibrahhim Ayed, Emmanuel de Bézenac, and Patrick Gallinari. A principle of
least action for the training of neural networks, 2020.

[17] Zhen Li and Zuoqiang Shi. Deep residual learning and pdes on manifold. CoRR, abs/1708.05115,
2017.

[18] Ori Linial and Uri Shalit. Generative {ode} modeling with known unknowns. In ICLR 2020
Workshop on Integration of Deep Neural Models and Differential Equations, 2020.

[19] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International Conference on Machine Learning, pages 3208–3216, 2018.

[20] Gurvan Madec. NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon
Laplace (IPSL), France, No 27, 2008.

[21] Viraj Mehta, Ian Char, Willie Neiswanger, Youngseog Chung, Andrew Oakleigh Nelson, Mark D
Boyer, Egemen Kolemen, and Jeff Schneider. Neural dynamical systems: Balancing structure
and flexibility in physical prediction, 2020.

[22] Andrew M Moore. Data assimilation in a quasi-geostrophic open-ocean model of the gulf
stream region using the adjoint method. Journal of Physical Oceanography, 21(3):398–427,
1991.

[23] Finbarr O’Sullivan. A statistical perspective on ill-posed inverse problems. Statistical science,
pages 502–518, 1986.

[24] R.-E. Plessix. A review of the adjoint-state method for computing the gradient of a functional
with geophysical applications. Geophysical Journal International, 167(2):495–503, 11 2006.

[25] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential
equations. The Journal of Machine Learning Research, 19(1):932–955, 2018.

[26] Maziar Raissi, Hessam Babaee, and Peyman Givi. Deep learning of turbulent scalar mixing.
Phys. Rev. Fluids, 4:124501, Dec 2019.

[27] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[28] Pierre C Sabatier. Past and future of inverse problems. Journal of Mathematical Physics,
41(6):4082–4124, 2000.

[29] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun
Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcasting.

6

In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 28, pages 802–810. Curran
Associates, Inc., 2015.

[30] Andrew Staniforth and Jean Côté. Semi-Lagrangian Integration Schemes for Atmospheric
Models—A Review. Monthly Weather Review, 119(9):2206–2223, 09 1990.

[31] Peter Toth, Danilo J. Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and
Irina Higgins. Hamiltonian generative networks. In International Conference on Learning
Representations, 2020.

[32] Yunbo Wang, Jianjin Zhang, Hongyu Zhu, Mingsheng Long, Jianmin Wang, and Philip S. Yu.
Memory in memory: A predictive neural network for learning higher-order non-stationarity
from spatiotemporal dynamics. In The IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

7

6 Appendix

6.1 Introduction To Ocean Modeling

Primitive equation models such as NEMO [20] can realistically model the ocean circulation, the
current velocity fields and their advection. These models represent the tri-dimensional structure of
the ocean but are very costly in computational time and in memory. Simplified models can represent
the ocean surface circulation with good accuracy in most cases. For instance, shallow water equations
simplifies classical Navier-Stokes equations, integrating over depth, and can be written as:

Momentum equation:
∂w

∂t
+ (w.∇)w − f ∧ w = −g′∇h+Dw + Fw (10)

Tracer advection:
∂ψ

∂t
+∇.(ψw) = Dψ + Fψ (11)

where w is the horizontal velocity vector, f the Coriolis parameter, h the depth of the surface layer
obtained from sea surface height observations, g′ the reduced gravity which takes the stratification in
density of the ocean into account such that g′ ≈ g10−3, ψ a tracer concentration. The mixture terms,
referred to as Dψ/w and Fψ/w, are not known.

Note that in the context of the presented work: ψ = Xobs and represents the sea surface temperature.

6.2 Simulation Details

Now we have introduced elements of ocean dynamics, we describe our datasets.

We access monthly data over a year of sea ocean surface temperature of the North Atlantic ob-
servations model denoted NATL60 resulting from NEMO model [20] 2. The dataset covers a
2300km× 2560km zone at 60°(1.5km) resolution, in the North Atlantic Ocean (Gulf Stream).

Both datasets considered in the paper follow the same equations approximating the tracer equation
(Equation (11)):

∂ψ

∂t
+∇.(ψw) = S(w, l, t) (12)

The first case corresponds to S = 0, i.e a pure advection, while our second investigated case explores
the case where S is derived from [9].

6.2.1 Building a Velocity Field

To simulate a transport setting represented by Equation (12), we first build a velocity field w.

Intuition from Navier Stokes For slow movements (that is of characteristic time superior to a day
and of spatial dimension superior to 20km) forcings are omitted and incompressibility is assumed, i.e
the turbulent terms are null: (w.∇)w = 0. The momentum equation Equation (10) can be simplified:

Geostrophic equation: f ∧ w = −g′∇h (13)

When projected onto x and y axis, 13 becomes

−fv = −g′ ∂h
∂x
, fu = −g′ ∂h

∂y
(14)

Simulation As introduced above in Equation (14), we restrict our attention to incompressible
velocity field, automatically satisfied by introducing a stream functionH = H(l, t) and defining w
through partial derivatives ofH as w = (∂H∂y ,−

∂H
∂x). Following [4], we defineH as:

H(x, y, t) = − tanh[
y −B(t)× cos kx√

1 + k2B(t)2 × sin2kx
] + cy, (15)

Note that B varies periodically with time according to B = B0 + ε cos(ωt + φ). We compute 10
different velocity fields with parameters B0 = 1.2, k = 0.84, c = 0.03, ω = 0.4, ε = 0.8, φ = 0.5.

2Details available at : https://meom-group.github.io/swot-natl60/access-data.html

8

https://meom-group.github.io/swot-natl60/access-data.html

6.2.2 Datasets

To generate our data, we sample randomly 800 images of size 64 × 64 in NATL60 dataset, each
image representing an initial condition. Among these 800 images, 80 are reserved for validation.
200 other 64× 64 images are sampled for test. The images will be used as initial conditions for our
numerical scheme to integrate Equation (12) using the previously computed w across 65 timesteps
thanks to a semi-Lagrangian scheme (see Section 6.3).

Advection Dataset For the purely advective dataset, S is set to 0. Details on the semi-Lagrangian
advection in this case can be found in [30].

Finally, to make our numerical integration well posed, we need border conditions. We impose
symmetrical border conditions implying that what comes out the left part re-enters at the right, and
reciprocally. We also impose velocity to be null on both top and bottom parts of the image.

Source Dataset For this dataset S is non-null, and its precise description can be found in [9].
Simply put, this source term is a non linear transformation of (u, v) multiplied by the difference
between the ocean temperature and a reference temperature:

S(w,ψ, t) = we × (ψ(t)− Te),

where we is 0 where ∂H
∂t is below a small value (ε = 10−4) and 1 otherwise, and for each sequence

Te is the sequence mean image (computed without source).

Same border conditions as before are assumed.

6.3 Semi-Lagrangian Scheme

Unlike Eulerian scheme, relying on time discretization of the derivative, the semi Lagrangian
scheme relies on the constancy of the solution of a PDE along a characteristic curve. Consider a
solution to the advection equation, i.e. Equation (12) with S = 0. The method of characteristics
consists in exhibiting curves (x(s), t(s)) along which the derivative of the solution ψ is simple, i.e
∂ψ
∂s (x(s), t(s)) = 0. For a 1D constant advection scheme, computations leads to:

dt

ds
= 1 =⇒ s = t

dx

ds
= w =⇒ x = x0 + wt

giving therefore, ψ(x, t) = ψ0(x − wt), linking the value of the solution at all time to its initial
condition. Therefore from a single observation at t0, it suffices to estimate the original departure
points x0 − wt to infer the prediction at t.

However, when w is not constant in time, the method remains doable, not along characteristic lines :
(x0 + wt), but along characteristic curves which are given by:

dt

ds
= 1 =⇒ s = t

dx

ds
= w(x, t) (16)

Note that a great deal in the semi-Lagrangian literature involves solving correctly Equation (16). The
mid-point integration rule is a classical method for handling this problem leading to a fixed point
algorithm. In our case, we used a mid-point integration scheme rule with one iteration that we found
sufficient in practice. Further developments can be found for example in [8].

6.4 Model Specifications

We used Python 3.8 and Pytorch 1.5 to implement our model trained on Nvidia GPU with CUDA
10.1.

9

6.4.1 Prior Knowledge and Assumptions

For both datasets: we use as F k1 the same numerical semi-Lagrangian advection scheme than used
for data simulation. It remains differentiable with relation to w allowing optimization of Gθ.

Finally, relying on the momentum equation of Equation (10), we infer that the evolution of w is
independent from the evolution of ψ, thus we make F2 takes as input only ŵ, previously estimated
from a sequence of ψ. Using notations from section 3, we consider F2 such that: F2(Xt) = F2(Yt).

6.4.2 Implementation Details for Null Source

Architectures Fu1 is a convolutional Residual Network with 2 residual blocks. The input are first
downscaled using two layers of strided convolutions. Each residual block has 128 channels, following
the implementation of [15].

F2 is a convolutional Residual Network with 2 residual blocks. The input are first downscaled
using two layers of strided convolutions. Each residual block has 128 channels, following the
implementation of [15].

Gθ is a U-net with at most 512 latent channels also following the implementation of [15].

HyperParameters The learning rate for all algorithms and baselines is lr = 10−5 using Adam
optimizer with β = (0.9, 0.999), with batch size 32.

The number of input frames for G is 4, i.e in Equation (2) k = 4. The number of predicted time steps
T , see Equation (6), is 6.

In practice we set λXobs = 1, and specify another multiplicative hyperparameter λY so that λY =
0.01

Baselines In this setting, for Neural ODE baseline, G has similar architectures, estimating 2 hidden
channels (2 for w). The dynamical network, trained using a 3-layer convolutional networks, with 64
hidden channels, is integrated using RK4 scheme available from https://github.com/rtqichen/
torchdiffeq. The optimization hyperparameters λY , λXobs are the same.

For experiments with minimisation of ‖fu1 ‖, a simple cost is added to the original cost function
Equation (8): Lfu

1
= 0.01× ||Fu1 (Xobs

(t−5:t))||2

6.4.3 Implementation Details for Frankignoul Source

Architectures Fu1 is a U-net with at most 512 latent channels, following the implementation of
[15].

F2 is a convolutional Residual Network with 2 residual blocks. The input are first downscaled
using two layers of strided convolutions. Each residual block has 128 channels, following the
implementation of [15].

Gθ is a U-net with at most 512 latent channels also following the implementation of [15].

For experiments with minimisation of ‖fu1 ‖, a simple cost is added to the original cost function
Equation (8): Jfu

1
= 0.01× ||Fu1 (Xobs

(t−k:t))||2

HyperParameters The learning rate for all algorithms and baselines is 10−4 using Adam optimizer
with β = (0.9, 0.999), with batch size 32.

The number of input frames for G and Fu1 is 4, i.e in Equation (2) k = 4. The number of predicted
time steps T , see Equation (6), is 6.

In practice we set λXobs = 1, and specify another multiplicative hyperparameter λY so that λY = 0.1

Baselines In this setting for Neural ODE baseline, G has similar architectures, estimating 3 hidden
channels (2 for w, one for the source S and one for the source). The dynamical network, trained
using a 3-layer convolutional networks, with 64 hidden channels, is integrated using RK4 scheme.
The optimization hyperparameters λY , λXobs are the same.

10

https://github.com/rtqichen/torchdiffeq
https://github.com/rtqichen/torchdiffeq

For experiments with minimisation of ‖fu1 ‖, a simple cost is added to the original cost function
Equation (8): Jfu

1
= 0.01× ||Fu1 (Xobs

(t−k:t))||2

6.5 Additional Results

t+1 t+4 t+7 t+10 t+13 t+16

SST Truth

SST Estimated

V Estimated

U Estimated

V Truth

U Truth

Source Estimated

Source Truth

Figure 2: Sequence of estimations on ψ, w = (u, v), S for the Dataset with non null physical source

11

	Introduction
	Related Work: Neural Representation of Differential Equations
	Model
	Solving an Inverse Problem via Forward Modeling
	Control of the Dynamic and Training Objective

	Experiments
	Conclusion
	Appendix
	Introduction To Ocean Modeling
	Simulation Details
	Building a Velocity Field
	Datasets

	Semi-Lagrangian Scheme
	Model Specifications
	Prior Knowledge and Assumptions
	Implementation Details for Null Source
	Implementation Details for Frankignoul Source

	Additional Results

