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Abstract

Neuromuscular electrical stimulation (NMES) has been effectively applied in

many rehabilitation treatments of individuals with spinal cord injury (SCI). In

this context, we introduce a novel, robust, and intelligent control-based method-

ology to closed-loop NMES systems. Our approach utilizes a robust control law

to guarantee system stability and machine learning tools to optimize both the

controller parameters and system identification. Regarding the latter, we in-

troduce the use of past rehabilitation data to build more realistic data-driven

identified models. Furthermore, we apply the proposed methodology for the re-

habilitation of lower limbs using a control technique named the robust integral

of the sign of the error (RISE), an offline improved genetic algorithm optimizer,

and neural network models. Although in the literature, the RISE controller

presented good results on healthy subjects, without any fine-tuning method, a
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trial and error approach would quickly lead to muscle fatigue for individuals

with SCI. In this paper, for the first time, the RISE controller is evaluated

with two paraplegic subjects in one stimulation session and with seven healthy

individuals in at least two and at most five sessions. The results showed that

the proposed approach provided a better control performance than empirical

tuning, which can avoid premature fatigue on NMES-based clinical procedures.

Keywords: Neuromuscular electrical stimulation, Spinal cord injury, RISE

controller, Knee joint, Machine learning.

1. Introduction1

Neuromuscular electrical stimulation (NMES) and functional electrical stim-2

ulation (FES) have been effectively applied in many rehabilitation treatments3

for people with spinal cord injury (SCI) in the past years. Damages in the spinal4

cord may be engendered by traumatic causes such as road accidents, sports in-5

juries, and violence, or nontraumatic ones such as diseases and tumors. Spinal6

cord injury is commonly a permanent cause, which can generate issues such as7

loss of bodily perception, difficulties related to sexual functions, partial or total8

paralysis, and severe pain (Ho et al. (2014); Lynch & Popovic (2008); Popović9

(2014); Wagner et al. (2018)). However, the main consequences depend on sev-10

eral factors, such as the patient’s personal condition, the level of the lesion and11

its damages, the availability of time and resources, and socioeconomic factors.12

For instance, in low-income countries, SCI normally leads to death, whereas in13

high-income countries, people with SCI enjoy a better and more productive life14

(Bickenbach (2013)).15

The application of NMES/FES for SCI rehabilitation is one of the most fre-16

quently used methods (Marquez-Chin & Popovic (2020); Kapadia et al. (2020)).17

It provides many health and social benefits to patients; for example, it helps18

to preserve and recover muscle strength and prevent flaccidity and hypotro-19

phy, which are evidence of muscle inactivity; it also offers higher expecta-20

tion and quality of life, and facilitates social reinsertion (Peckham & Knutson21
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(2005); Marquez-Chin & Popovic (2020); Lynch & Popovic (2008)). Moreover,22

NMES/FES are techniques based on the use of equipment that generates elec-23

trical signals for muscle stimulation at the motor level. More specifically, the24

aim is generating a muscle contraction via electrodes placed superficially or in-25

tramuscularly. The electrical stimulation consists of applying a pulsed current26

or voltage signal that can depolarize neurons above the activation threshold.27

The amplitude, pulse width (PW), frequency, and shape of the pulse determine28

which neurons are recruited. Muscle control can be realized by amplitude, PW,29

or frequency modulation (Lynch & Popovic (2012); Popović (2014)).30

Even though there are several investigations on the closed-loop control of31

NMES/FES systems for lower limb rehabilitation (cf. Ferrarin et al. (2001);32

Previdi & Carpanzano (2003); Jezernik et al. (2004); Cheng et al. (2016); Mo-33

hammed et al. (2012); Wu et al. (2017); Hmed et al. (2017); Sharma et al. (2012);34

Gaino et al. (2017); dos Santos et al. (2015); Nunes et al. (2019); Teodoro et al.35

(2020); Müller et al. (2017); Page & Freeman (2020); Gaino et al. (2020) and the36

references within), these systems are hardly put into production. Alternatively,37

there exist commercial stimulators normally available on open-loop designs and38

with pre-programmed electrical stimulation, which are not adequate to deal39

with the nonlinear and time-varying nature of muscles (Page & Freeman (2020);40

Lynch & Popovic (2012)). Hence, given the numerous challenges in the design41

of automatic stimulation strategies, further investigation is needed in this field.42

For example, control strategies are needed to compensate for modeling errors on43

the plant, system faults, individual’s muscles behavior, and inter/intra-subject44

variability in muscle properties (Sharma et al. (2009, 2012); Yu et al. (2013,45

2015)). The variability in muscle properties leads to the difficulty of predicting46

the exact contraction force exerted by the muscle, which results in unknown47

mapping between the stimulation parameters and the muscle force.48

In this sense, the design and evaluation of the robust integral of the sign of49

the error (RISE) control (Xian et al. (2003); Xian et al. (2004)) for tracking the50

nonlinear dynamics of electrically stimulated lower limbs are presented in this51

paper. Despite several control laws investigated in the literature, this study52
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considers RISE control law by some fundamental characteristics, such as the53

consideration of unmodeled disturbances and uncertainties in the plant. Never-54

theless, adjusting the controller parameters is the main component to guarantee55

high-quality control performance; that is, the method can only guarantee good56

responses (semi-global asymptotic stability), appropriately selecting the gain57

constants.58

Stegath et al. (2007, 2008) and Sharma et al. (2009) are pioneers authors59

on RISE controller development for the lower limb tracking control. After-60

ward, Sharma et al. (2012) presented an improvement of RISE control method61

for the same application using a feedforward neural network (NN) term. Downey62

et al. (2013) and Downey et al. (2015) developed an RISE controller for the asyn-63

chronous stimulation to the lower limb. Kawai et al. (2014) simulated the track-64

ing control performance of an RISE-based controller to model the co-contraction65

control of the human lower limb. Kushima et al. (2015) modeled an FES knee66

bending and stretching system, and developed an RISE-based controller to stim-67

ulate the quadriceps and hamstring muscle groups. In the similar context of68

NMES, but for upper limbs, Lew et al. (2016) implemented RISE controller for69

the rehabilitation of post-stroke individuals.70

Even though previous investigations for this problem with RISE controller71

presented good results without any fine-tuning method, the motivation of this72

paper is the absence of clever algorithms to properly select the gain constants73

of RISE controller. In the aforementioned studies, the authors did not show the74

controller tuning method or empirical approach (pretrial tests) for defining gain75

parameters before the real experiments are conducted. In addition, experiment76

validations were made only on healthy individuals; however, the muscles of77

people with SCI are not as strong as healthy muscles (Mohammed et al. (2012);78

Lynch & Popovic (2012)).79

More specifically, Stegath et al. (2008), Sharma et al. (2009), and Downey80

et al. (2015) present four inequalities to gain constants, which are sufficient con-81

ditions to guarantee semi-global asymptotic stability for an uncertain nonlinear82

muscle model. There are infinite combinations of gains in R+ that satisfy these83
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inequalities; yet, as presented in the aforementioned works, a “trial and error”84

methodology might be feasible to set gain constants to the controller for healthy85

subjects. However, this procedure must be reconsidered when treating people86

with SCI to avoid some common problems. For instance, for SCI rehabilitation87

via NMES/FES, there might exist rapid muscle fatigue, muscle tremors due88

to incomplete tetanus, and harsh muscle spasms (Ho et al. (2014); Lynch &89

Popovic (2012); Popović (2014); Peckham & Knutson (2005)).90

Therefore, to overcome the aforementioned problems, this paper proposes a91

novel robust and intelligent control-based methodology for NMES/FES systems.92

More precisely, we aim to overcome the empirical tuning technique for clinical93

procedures using RISE controller, as observed in the literature. Moreover, this94

study proposes to extend the analysis of RISE controller to individuals with95

SCI that do not present ideal conditions as healthy individuals. The proposed96

methodology includes an identification step based on machine learning (ML)97

black-box models with the novelty of using past identification and control data98

for each patient, a robust control law (e.g., RISE technique) to guarantee the99

semi-global asymptotic stability, and an ML-based offline controller optimizer.100

In Arcolezi et al. (2019), our group proposed an offline improved genetic101

algorithm (IGA) optimizer to RISE controller. Simulations were performed102

using a nonlinear mathematical model of the knee joint for three paraplegics and103

one healthy individual. In this study, our proposed methodology is implemented104

and evaluated with seven healthy and two paraplegic individuals using RISE105

control law, the aforementioned IGA optimizer, and NN black-box models.106

The first hypothesis in this paper is that using an empirical approach to107

clinical procedures would present a large number of poor performances, while a108

more adequate tuning with a more representative identified model can provide109

better tracking control of the lower limb. That is, we assume no background110

knowledge with the RISE controller for clinicians intending to design and apply111

it to real-life scenarios. The second hypothesis is that by using past rehabilita-112

tion data for identifying an individual, this model will improve the description of113

the relationship between the angular position and the delivered electrical stim-114
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ulation, whereby fatigue and other problems as tremors are already implicit in115

the data.116

The remaining sections of this paper are organized as follows: Section 2117

presents the theoretical background; Section 3 introduces the proposed control-118

based methodology and the materials and methods used in the experiments;119

Section 4 presents the results and its analysis; and finally, Section 5 provides120

the conclusions of this paper and future works.121

2. Theoretical Background122

In this section, we briefly present the musculoskeletal dynamics about the123

knee joint (Subsection 2.1) and RISE control method (Subsection 2.2). We124

summarize the IGA for the optimization procedure (Subsection 2.3), and we125

discuss nonlinear system identification via NN models (Subsection 2.4).126

2.1. System dynamics127

The musculoskeletal dynamics based on electrical stimulation is given as

(Ferrarin et al. (2001); Sharma et al. (2009))

Jθ̈(t) = Λg(θ(t)) + Λe(θ(t)) + Λv(θ̇(t)) + Λd(t) + Λes(t), (1)

where J ∈ R is the unknown inertia of the combined shank and foot;128

θ(t), θ̇(t), θ̈(t) ∈ R is the angular position, velocity and acceleration, respec-129

tively.130

The gravitational component Λg(θ(t)) ∈ R is expressed as

Λg(θ(t)) = −mgl sin(θ(t)), (2)

where m ∈ R denotes the unknown combined mass of the shank and foot; l ∈ R131

is the unknown length between the knee-joint and center of mass of the shank132

and foot; and g ∈ R is the gravitational acceleration.133

The elastic effects due to joint stiffness Λe(θ(t)) ∈ R can be modeled as

Λe(θ(t)) = − (ψ1θ(t)− ψ1ψ3)
(
e−ψ2θ(t)

)
, (3)
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where ψ1, ψ2, ψ3 ∈ R are unknown positive coefficients.134

The viscous effects due to damping Λv(θ̇(t)) ∈ R is defined as

Λv(θ̇(t)) = −κ1 tanh(−κ2θ̇(t)) + κ3θ̇(t), (4)

where κ1, κ2, κ3 ∈ R are unknown positive constants.135

The torque produced at the knee joint by the electrical stimulation Λes(t) ∈

R is related to the positive moment ς(θ(t)) ∈ R from the extension and flexion

of the leg, the unknown nonlinear function ν(θ, θ̇) ∈ R corresponding to muscle

tendon force, and the electrical potential u(t) ∈ R applied to the quadriceps

muscle:

Λes(t) = ς(θ(t))ν(θ(t), θ̇(t))u(t). (5)

Finally, Λd(t) ∈ R is the unmodeled bounded disturbances (e.g., fatigue,136

spasms, tremor, and delay).137

2.2. RISE-based control138

RISE control method proposed by Xian et al. (2003); Xian et al. (2004) uti-139

lizes a continuous and high gain control signal, which guarantees semi-global140

asymptotic stability considering bounded smooth external disturbances and141

bounded modeling uncertainties. The use of the integral of the sign of the142

error in RISE technique minimizes the commonly chattering problem seen in143

sliding-mode controllers. To achieve the stated control objective, i.e., to enable144

the lower limb to track a desired angular trajectory despite external disturbances145

and modeling uncertainties, a position tracking error denoted by e1(t) ∈ R, is146

defined as147

e1(t) = θd(t)− θ(t), (6)

where θd(t) is the angular trajectory to be tracked with the premise of having148

bounded continuous-time derivatives, and θ(t) is the real angular position. Fur-149

thermore, to facilitate the control design, filtered tracking errors e2(t) ∈ R and150
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r(t) ∈ R are defined as151

e2(t) = ė1(t) + α1e1(t), (7)

r(t) = ė2(t) + α2e2(t), (8)

where α1, α2 ∈ R are positive and selectable control gains.152

Multiplying (8) by J , and considering (1)-(7), ė2 = θ̈d(t) + α1ė1 − θ̈(t), one

obtains

Jr = Υ(θ̇d, θ̇, θ, ė1, e2)−Ψ(θ̇, θ)u− Λd, (9)

where Υ(θ̇d(t), θ̇(t), ė1(t), e2(t)) ∈ R defined as

Υ(θ̇d, θ̇, θ, ė1, e2) = θ̈d + α1ė1 + α2e2 − Λg(θ)− Λe(θ)− Λv(θ̇),

and Ψ(θ, θ̇) ∈ R a function monotonic and bounded, expressed as

Ψ(θ̇, θ) = ς(θ)ν(θ, θ̇).

153

For stability analysis, from (9) can be determined the open-loop error system

JΨr = YΨ − u− LΨ,

where JΨ = Ψ−1J , YΨ = Ψ−1Υ, and LΨ = Ψ−1Λd, and consequently one

obtains

JΨṙ = −u̇− e2 + W̃ +Wd,

where W̃ =W −Wd, W̃(e1, e2, r, t) ∈ R, W ∈ R corresponds to the term

W = −1

2
J̇Ψr + ẎΨ − L̇Ψ + e2,

and Wd ∈ R expressed as

Wd = J̇Ψθ̈d + JΨ

...
θ d − Λ̇e − Λ̇g − Λ̇v − Λ̇d.

154
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Based on the mean value theorem applied to upper bound
∥∥∥W̃∥∥∥ ≤155

ς (‖ζ‖) ‖ζ‖, where ζ ∈ R3, ζ =
[
rT eT1 eT2

]T
, ς (‖ζ‖) ∈ R is a positive globally156

invertible nondecreasing function, and considering that θd, and its derivatives157

θ
(k)
d ∈ L∞,∀k ∈ I = {1, 2, 3, 4}, the following constraints can be established158

‖Wd‖ ≤ EWd
,
∥∥∥Ẇd

∥∥∥ ≤ EẆd
, such as EWd

, EẆd
∈ R are positive constants (Utkin159

(2013)).160

Note that the system error equations obtained to nonlinear dynamic model

are similar to other studies with the RISE controller in (Sharma et al. (2009);

Stegath et al. (2008); Patre et al. (2008); Makkar et al. (2007); Xian et al.

(2004); Xian et al. (2003)). Based on the open-loop error system, the control

input u(t) ∈ R, is designed as

u(t) = (ks+1)e2(t)−(ks+1)e2(0)+

∫ t

0

[(ks+1)α2e2(τ)+βsgn(e2(τ))]dτ , (10)

where ks, β ∈ R also represents positive and adjustable control gains, u(t) is the161

control signal, and sgn(·) is the known signum function.162

The RISE controller, given in (10), ensures that all system signals are

bounded under closed-loop operation and the position tracking error is regu-

lated in sense that

lim
t→∞

‖e1(t)| → 0,

yields semi-global asymptotic stability provided the control gain ks sufficiently

large, and β satisfying the following sufficient condition

β > EWd
+

1

α2
EẆd

, (11)

where EWd
, EẆd

∈ R are known positive constants. More details about the163

stability analysis of the RISE method can be found in (Patre et al. (2008);164

Makkar et al. (2007); Xian et al. (2004)).165

The ideal first derivative of the error H(s) =
Y (s)

U(s)
=
sE(s)

E(s)
= s is an im-

proper function, that is, H(s) =

∑m
j=0 bjs

j∑n
i=0 ais

i
, ai, bj ∈ R, ∀i = 1, 2, · · · , n,

∀j = 1, 2, · · · , m, m > n, |H(∞)| = ∞. The unfeasibility of practical imple-

mentation using the ideal derivative is solved by a filtered derivative (Khadra
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et al. (2016)). Thus, the filtered tracking error is calculated by

H(s) =
Y (s)

U(s)
=

s

τs+ 1
, (12)

where τ is the time constant between the signal and its derivative. Note that (12)166

is a low pass filter (LPF) that attenuates high-frequency noises.167

2.3. Improved genetic algorithm168

The IGA was introduced in Arcolezi et al. (2019) to optimize the gains pa-169

rameters of RISE controller for a representative model of an individual. This170

algorithm is summarized in this paper. First, there is a pre-processing stage for171

bounding the gain limits to efficiently initiate (i.e., the random initial popula-172

tion within the constraints of stability) and maintain the search (i.e., genetic173

operators such as recombination, mutation, and replacement operator). Sec-174

ond, a simple fast genetic algorithm (FGA) is used in the construction phase175

to generate a good initial population. Thereafter, a complete genetic algorithm176

(CGA) is applied to improve the quality of this population and hence achieve a177

global (or local) minimum.178

Figure 1 describes the FGA with a flow chart. In the chart, Np is the size179

of the initial population (small), Mr is the mutation rate, and the stopping180

criterion is the number of generations Ng. More specifically, Ng represents the181

size of the real initial population (RIP) to initiate the local search phase. The182

CGA is similar to the FGA, with a more stringent test to the replacement183

operator. We recommend that readers refer to (Arcolezi et al. (2019)) for a184

more descriptive version of the algorithm.185

2.4. System identification via neural networks186

Nonlinear systems identification and modeling have been applied in most187

areas of science to predict the future behavior of dynamic systems. System188

identification has been an active field in control theory, and it is an important189

approach to explore, study, and understand the world by a formal description190

of events as a model. The use of NNs to identify nonlinear systems has been a191
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Figure 1: Flow chart of the fast genetic algorithm.

prospective direction since previous research presented in (Hornik et al. (1989);192

Chen et al. (1990); Narendra & Parthasarathy (1990); Chu et al. (1990)), for193

example. In the following, the use of NNs for the identification of discrete194

dynamic system is briefly described.195

The construction of black-box models is essentially based on the quality of196

measured data about the system. The fundamental concept of this approach197

is to model the direct input-output relationship, i.e., identifying and modeling198

just with data, in which the main objective is to find the weights and other199

coefficients (known as hyperparameters) of the NN. Moreover, NNs are based200

on a collection of inter-connected units named neurons. These neurons are201

structured into three or more layers, input, hidden(s), and output. Neural202
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networks are in the core of deep learning (several neurons and hidden layers)203

and have become a progressively popular research topic. Generally, NNs can be204

divided into two large classes: feedforward and recurrent NNs.205

Fundamentally, an operator F from an input space U to an output space206

Y expresses the model of the system to be identified, where the goal is to find207

a function F̂ that approximates F to a specific requirement. By the Stone-208

Weierstrass theorem, there exists a continuous and bounded function F , that209

can be uniformly approximated as closely as desired by a polynomial function210

F̂ . Furthermore, according to the universal approximation theorem, there exists211

a combination of hyperparameters of an NN that allows it to identify and learn212

any continuous nonlinear function defined on a closed interval (Hornik et al.213

(1989)).214

Consider a single-input and single-output discrete system structure with only215

the input and output data available:216

y(k) = F [y(k − 1), ..., y(k − n);u(k − 1), ..., u(k −m)], (13)

where F (·) is an unknown nonlinear difference equation that represents the plant217

dynamics; u and y are measurable scalar input and output, respectively; and m218

and n are the maximum lags for the system output and input; that is, they are219

the last values of the input and output respectively. In short, the next value of220

the dependent output signal y(k) is regressed on previous values of the output221

and input signals.222

The identification for the discrete-time system in (13) can be performed223

by the following two major types of identification structures presented in the224

literature: the parallel and the series-parallel identification model (Narendra &225

Parthasarathy (1990)). The first structure depends on past inputs of the system226

and the outputs of the NN model. The second structure uses both past inputs227

and system’s outputs. Mathematically, these models are respectively described228
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as229

ŷ(k) = F̂ [ŷ(k − 1), ..., ŷ(k − n);u(k − 1), ..., u(k −m)], (14)

ŷ(k) = F̂ [y(k − 1), ..., y(k − n);u(k − 1), ..., u(k −m)], (15)

where ŷ is the model output; y is the real system output; F̂ is the model230

structure; and m and n are the regression orders for the input and output,231

respectively. These last two parameters are chosen before the identification232

process, where n is the output memory to indicate how many past steps of233

output will be used in the system identification, and m refers to the time-step234

of input values and it is the longest memory that a model can store. In this235

paper, we used a feedforward NN (multilayer perceptron - MLP) to approximate236

the nonlinear mapping function F (·) in (13) using the series parallel structure237

in (15).238

3. Materials and Methods239

In this section, we first present an overview of our proposed methodology240

(Subsection 3.1). Next, we provide information on the volunteering participants241

(Subsection 3.2) and on the instrumentation used for real experiments (Subsec-242

tion 3.3). Lastly, we describe how we applied the proposed methodology in this243

study for both, data acquisition and experimental procedures (Subsection 3.4).244

3.1. Proposed methodology245

Fig. 2 illustrates an overview of the proposed methodology. In the first246

session of a new patient (no previous data), a stimulation test is performed to247

acquire information on the relationship between delivered electrical stimulation248

and the achieved angular position. The acquired data are appropriately treated249

to pass through an identification step via NN black-box models. Once this250

relationship is efficiently mapped as a model, a simulation process is initiated251

using clever algorithms. The aim is to minimize a well-defined objective function252
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to adequately set-up the gains of RISE controller for the patient. Therefore, to253

finalize the first session, the rehabilitation procedure is retaken with fine-tuned254

gains for a better control-stimulation session. This could prevent premature255

fatigue and other unwanted factors that would be present for people with SCI256

by not choosing an appropriate gain combination.257

In future sessions, all data (system identification and control evaluation)258

from previous rehabilitation sessions are used for training an NN model in an259

offline scheme. That is, before each (next) session, all data from a patient are260

combined to a single dataset and used to map the relationship between angular261

position and electrical stimulation. Thus, the same optimization process using262

the trained model provides fine-tuned gain parameters to be afterward applied263

to the rehabilitation procedure. The gains of the controller are found using264

only past rehabilitation data, which is motivated by the belief that preliminary265

electrical stimulation could lead to quick muscle fatigue during the real clinical266

procedure. Moreover, between stimulation sessions, there exist factors such as267

fatigue, hydration, evolution/gain of strength, rest, and therapeutic sessions,268

which might influence one’s response to NMES/FES and make the control-269

stimulation inefficiently.270

The use of NNs is motivated by the advantages of these methods for the271

nonlinear system identification problem and by the high power for computation272

and storage of data encountered nowadays. Regarding the identification step,273

the novelty of the proposed methodology is the use of past rehabilitation data.274

The primary purpose is to build up a dataset for each patient, where the number275

of data will increase during rehabilitation sessions, and the identified model will276

improve with more data and details about the nonlinear muscular behavior.277

As highlighted in the literature, muscular behavior is susceptible to parametric278

variation between one day and another, for instance, the evolution and gain of279

strength due to previous rehabilitation sessions.280

Moreover, one of the primary advantages of performing simulations for an281

NMES-based knee extension is the liberty of studying this problem from dif-282

ferent perspectives and divergent levels of abstraction with the acquired data.283
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Figure 2: The proposed robust and intelligent control-based methodology.

While the application of NMES to humans presents limitations due to muscle fa-284

tigue, which restricts the number of experiments, simulation provides numerous285

executions to better study the feasibility and practicality of the designed system.286

Moreover, simulation supplies continuous feedback to continuously improve the287

system (Jezernik et al. (2004)).288

3.2. Analyzed individuals289

The study with volunteers was authorized through a research ethics commit-290

tee involving human beings (CAAE: 79219317.2.1001.5402) at São Paulo State291

University (UNESP). Written informed consent was obtained from all partici-292

pants before their participation. In this study, seven healthy individuals (male,293

aged 22-28) labeled as H1-H7 and two male individuals with SCI, labeled as P1294

and P2, participated in the experiments. Table 1 presents information on the295

two SCI individuals, including age, injury data, and ASIA (American Spinal296

Injury Association) Impairment Scale (AIS).297
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Table 1: Specific data on individuals with SCI.

Individual Age (years) Injury level Injury time AIS

P1 32 L4, L5 9 years B

P2 43 C5, C6 17 years C

3.3. Instrumentation298

Fig. 3 illustrates the test platform used for conducting the experiments at299

the Instrumentation and Biomedical Engineering Laboratory (“Laboratório de300

Instrumentação e Engenharia Biomédica - LIEB”) at UNESP - Ilha Solteira.301

The platform was composed of an NI (National Instruments®, USA) myRIO302

controller to operate in real time; a current-based neuromuscular electrical stim-303

ulator; an instrumented chair composed of an electrogoniometer NIP 01517.0001304

(Lynx®, São Paulo, Brazil), a gyroscope LPR510AL (ST Microelectronics®,305

Switzerland), two triaxial accelerometers MMA7341 (Freescale®, USA); and306

two user interfaces developed in LabVIEW®, one for identification and the307

other for controlling.308

The neuromuscular electrical stimulator delivers rectangular, biphasic, sym-309

metrical pulses to the individual’s muscle, allowing a control adjustment of the310

PW in a range of 0− 400µs. We controlled the stimulation intensity by setting311

the pulse amplitude to the quadriceps and controlling the PW. In this study,312

we fixed the following parameters: stimulation frequency at 25 Hz (constant313

frequency train - CFT technique) and pulse amplitude at 80 mA for healthy314

individuals and 120 mA for paraplegic ones. The difference in pulse amplitude315

occurred due to insufficient contractions using amplitude below 120 mA for the316

paraplegic individuals and their respective muscular atrophy conditions. Lastly,317

we used surface electrodes with rectangular self-adhesive CARCI 50 mm x 90318

mm settings.319
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Figure 3: Test platform for electrical stimulation experiments.

3.4. Data acquisition and experimental procedure320

The chair backrest and the knee joint position were adjusted to ensure the321

volunteers’ comfort. Each individual had a different knee angular position in322

the resting condition. The angular position in this condition was measured and323

taken as an offset during the experimental protocol. A muscle analysis was324

conducted to determine the motor point and guarantee the proper positioning325

of the surface electrodes. More precisely, the electrophysiological procedure326
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for identifying the motor point consists of mapping the muscle surface using a327

stimulation electrode to identify the skin area above the muscle, where the motor328

threshold is the lowest for a given electrical current; this skin area is the most329

responsive to electrical stimulation (Gobbo et al. (2014)). After this procedure,330

the electrodes were properly positioned allowing the neuromuscular electrical331

stimulation to maximize the effectiveness of the evoked voltage, minimizing the332

intensity of the injected current and the level of discomfort to the volunteer.333

After the motor-point identification, a few open-loop tests were performed334

by applying a step input during four seconds. It is worth highlighting the335

definition of the electrical current level of the stimulator, as well as evaluating336

the PW values for different operating points of the lower limb extension. If the337

value ρmax tends to the saturation value of the stimulator, the electrical current338

amplitude must be increased so that the control system adequately compensates339

for disturbances and uncertainties in the process. Moreover, the ρmin is related340

to the minimum joint extension value from the resting position. In this study,341

the tests were performed to obtain ρmax and ρmin corresponding to θmax = 40◦342

and θmin = 10◦, respectively. Note that we could adopt other values of lower343

limb extension, but we consider that it was a suitable value for gait control344

application (Nunes et al. (2019)). Lastly, ρmin and ρmax were also useful to345

select the initial PW and an upper bound to the control signal, respectively. If346

ρmax does not approach the saturation value of the stimulator (400µs), with the347

consent of each individual, we select an adequate upper bound to the control348

signal for each stimulation session, aiming to minimize the discomfort level to349

volunteers.350

During the experiments, healthy individuals were instructed to relax, to351

not influence the leg motion voluntarily, and allow the stimulation to control352

it. During electrical stimulation sessions, the individuals could deactivate the353

stimulation pulses using a stop button under any uncomfortable situation (as354

shown in Fig. 3).355

In the following two subsections, the experimental setup is detailed. First,356

the case of an individual using the proposed methodology for the first time, i.e.,357
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without any previous data, is considered (Subsection 3.4.1). Next, the case of358

individuals who participate in more than one rehabilitation session is considered359

(Subsection 3.4.2).360

3.4.1. First session361

In the first session of a new patient, a one-minute stimulation test was con-362

ducted. In this stimulation, the experimental system identification procedure363

was performed by randomly applying PW values belonging to the set of val-364

ues mapped to each individual. The electrical PW random value was constant365

for a random time between four and seven seconds. Consequently, a new test366

has randomness in the domain of the PW of the electrical stimulation as well367

as in the time of each stimulation. In this work, the power of muscle acti-368

vation by electrical stimulation in paraplegic individuals was greater. Before369

the tests were performed, these individuals were not admitted to a rehabilita-370

tion research program involving daily electrically stimulated exercise of their371

lower limbs. Consequently, under high stimulation intensity, there was only372

partial recruitment of synergistic motor units and there was the co-activation of373

antagonists (Doucet et al. (2012)). Unfortunately, this is a disadvantage of con-374

ventional single-electrode stimulation, whose increased stimulation intensity will375

lead to increased muscle fatigue (Laubacher et al. (2017); Maffiuletti (2010)).376

To minimize early fatigue in paraplegic individuals (Gregory et al. (2007)), the377

total test time was reduced to 40 s.378

The motivation to adopt this methodology is to map a tracking situation and379

recognize the completely nonlinear and time-varying nature of muscles under380

long electrical stimulation time. The PW (µs) and angular position (rad) data381

were automatically recorded with a sampling period of 20 ms, i.e., Ts = 0.02382

(s), resulting in datasets with approximately 3000 samples (60 s) at most.383

Afterward, the identification data were read and manipulated for feeding384

up a shallow MLP with one hidden layer. In the literature, one hidden layer385

has been proved to be sufficient to approximate any continuous function on a386

compact domain (Hornik et al. (1989); Previdi (2002)). We tuned the number387
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of neurons via a random search procedure (Bergstra & Bengio (2012)), in which388

a combination of hyperparameters is randomly selected to find the best solution389

for the built model. This process was only done for individual H1, which was the390

first volunteer for this study, and it took less than 30 min to find an appropriate391

architecture to be used for all other individuals. The number of neurons was392

selected as 250; hyperbolic tangent activation was used in each neuron from393

the hidden layer, and the output layer was composed of one neuron with linear394

activation, which gives the estimated output ŷ(k).395

We experimented with several m and n values, and the one with the best396

time-utility trade-off was m = n = 1. This resulted in datasets containing397

the last input value “Pulse Width(k − 1)” and the last output value “Angu-398

lar Position (k−1)” as features, and the actual output value “Angular Position399

(k)” as target. The MLP NN model requires a normal input arranged as400

[samples, features], where the observations at previous time-steps are inputted401

as features to the model. In general, the training time of each NN model in the402

first session did not exceed 5 min as the number of samples was small (∼ 3, 000403

for healthy individuals and ∼ 2, 000 for SCI ones).404

Therefore, using the estimated model, we performed an optimization pro-405

cedure based on the proposed IGA to find the best gains combination for two406

reference trajectories. The first trajectory is a sinusoidal wave ranging from 10◦407

to 40◦ and the second trajectory is a 40◦ step wave (30◦ for individuals with408

SCI); the first and second trajectories simulate isotonic and isometric contrac-409

tions, respectively. A smooth range of motion at 40◦ and a small-time period410

(sine wave) was used to avoid premature fatigue by diminishing muscle effort.411

Considering a real-world application of the proposed methodology and by412

assuming a limited time for a rehabilitation session, we used the following as the413

initial parameters of the IGA simulations: population size Np = 8, mutation414

rate Mr = 0.5, number of generations Ng = 6 (size of RIP), and k = 1 iteration.415

The algorithm ran only once providing Ng combination of RISE controller gains.416

Generally, the running time did not exceed 10 min of execution.417

Notice that the proposed IGA in Arcolezi et al. (2019) has a pre-processing418
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step (step 1 of the algorithm), which tries to bound the gain values when apply-419

ing the genetic operators (crossover, mutation) to the required stability condi-420

tions presented in Subsection 2.2. However, there is still a possibility that given421

an identified model and the optimization procedure that gain values deviate422

from the required conditions. Yet, as genetic algorithms are population-based,423

one can compare and select the most appropriate combination of gains for a424

given individual that satisfies the gain’s condition. Before the real experiment,425

previous simulations of both trajectories were made to visually inspect the sys-426

tem response.427

Lastly, using empirical gains and the ones encountered by the IGA, the con-428

trolling procedure was implemented for both trajectories. Data were recorded429

with a sampling period Ts = 0.005 (s), generally resulting in a dataset with430

approximately 12, 000 samples (60 s) at most.431

The programming language used in this research was Matlab®, both for de-432

veloping the optimization algorithm and for the system identification procedure433

via NNs. The simulation system was developed using the Matlab/Simulink®
434

platform, which contains both sine and step trajectories, a saturation block to435

bound the control signal from 0 µs to ρmax µs for each individual, the RISE436

controller block, and the identified NN block for each individual.437

3.4.2. More than one session438

For individuals who participated in more sessions, with at least 48 hours439

of difference between two consecutive sessions, the one-minute stimulation test440

(identification step) was not considered, as it was performed when an individual441

participated for the first time. The data from previous rehabilitation sessions442

were used to train an NN model in an offline scheme. Before a new session, all443

data from an individual were combined to a single dataset and used to better444

map the relationship between angular position and electrical stimulation. In this445

study, we only used the control data resulting from the control-stimulation ses-446

sions with fine-tuned IGA gains, as it would be in real life rather than empirical447

gains.448
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Thus, using each trained identified model, we performed an optimization449

procedure based on the IGA to find the best gain combination for both sine450

and step reference trajectories. As this optimization was performed in an offline451

scheme and before the next session, time and computational costs were not too452

strict as they were for the first session. Therefore, the initial parameters of IGA453

used for simulations were as follows: population size Np = 10, mutation rate454

Mr = 0.3, number of generations Ng = 30 (size of RIP) and k = 1 iteration.455

The algorithm ran only once, and several gain combinations from the set of456

solutions were simulated to check the system response and select the best gain457

combination for both trajectories. Generally, the total time for both system458

identification and RISE gains optimization procedures took about 1 h for each459

individual/session.460

For the experimental part, the electrodes were positioned at the motor-point461

identified in the first session, and similarly, a few open-loop tests, applying a462

step input during four seconds, were performed, to determine a bounded PW463

band related to θmin = 10◦ and θmax = 40◦. Afterward, a small-time interval464

for muscle rest was provided.465

Therefore, knowing the fine-tuned gain parameters for each individual, we466

applied the controlling procedure for both references, and then employed an467

empirical gain combination for comparing results.468

4. Results and Discussion469

In this section, we report the results obtained by applying our proposed470

methodology in real experiments. During this study, individuals H1-H4 partici-471

pated in five sessions, H5 in three sessions, and H6-H7 in two sessions. Individ-472

uals with SCI participated in only one session due to displacement difficulties.473

For all individuals, the first session took more time and one additional stimu-474

lation than the subsequent ones. This was due to the one-minute stimulation475

test, and the training/optimization time during the session to find the best gain476

combination. Before the start of any control-stimulation test, five combina-477
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tions of empirical gains (α1;α2; ks;β) were chosen as (1; 2; 30; 5), (0.5; 1; 30; 1.5),478

(0.8; 1.2; 20.5; 2.5), (5; 2; 15; 3), (4; 7; 25; 8) for sessions one to five, respectively.479

As the system responses to any combination of gains were unknown, they were480

all chosen at random. Subsections 4.1 and 4.2 present our nonlinear control481

and system identification results and analysis, respectively. Lastly, we provide482

a general discussion in Subsection 4.3.483

4.1. Control-based NMES results484

Figures 4 and 5 illustrate the tracking results on both trajectories and their485

delivered PWs (Deliv. PWs) for individuals P1 and P2, respectively. Addition-486

ally, Table 2 presents control results for the sine wave, comparing the proposed487

methodology with an empirical tuning for all individuals (Ind.) in each ses-488

sion (Sess.). The metrics in this table are the root mean square error (RMSE)489

between the desired and actual knee angles considering the whole period of490

control-stimulation; and the time of effective control (TEC), which represents491

how much time in seconds the lower limb was control-stimulated to track the492

reference angle. When the lower limb did not track the reference angle, the493

RMSE metric is represented by NC, meaning “not calculated”. More precisely,494

the TEC metric is the time between the initial control-stimulation until the leg495

stops tracking the reference angle (±5◦ error) for 5 s. In the worst-case, if the496

leg never tracks the reference angle, NC is assigned.497

Similarly, Table 3 presents control results for the step wave, comparing the498

proposed methodology with an empirical tuning for all individuals in each ses-499

sion. The metrics in this table are the RMSE, TEC, and the averaged and500

standard deviation (std) values of the knee angular position around the operat-501

ing point (AvStd. OP) in degrees. The AvStd. OP metric will be regarded as an502

indicator to evaluate the oscillatory behavior during regulation around an oper-503

ation point (40◦ for healthy individuals and 30◦ for individuals with SCI). For504

individuals who participated in more than one session, Tables 2 and 3 present505

the averaged (Avg.) and the std values for both RMSE and TEC metrics, which506

are calculated considering all sessions of each individual. The symbol (*) indi-507
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cates there is no std value, as there are more “NC” than real values. Lastly,508

similar to Figs. 4 and 5, Appendix A provides supplementary illustrations for509

the tracking results of individuals H1 (session v), H2 (session ii), and H4 (ses-510

sion v), respectively, as well as the fine-tuned gains (α1; α2; ks; β) used for each511

RISE-based control-stimulation session, in Table A.5.512
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Figure 4: Experimental results for individual P1 comparing empirical gains and the proposed

methodology. The first and second rows illustrate the tracking results for the sine wave and the

corresponding delivered PWs (with zoom during five seconds on the third row), respectively.

Similarly, the fourth and fifth rows illustrate the tracking results for the step wave and the

corresponding delivered PWs (with zoom during five seconds on the last row), respectively.

As shown in Tables 2 and 3 and Figs. 4 and 5, the proposed methodology513

could be effectively applied to clinical procedures for treating people with SCI514
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Figure 5: Experimental results for individual P2 comparing empirical gains and the proposed

methodology. The first and second rows illustrate the tracking results for the sine wave and the

corresponding delivered PWs (with zoom during five seconds on the third row), respectively.

Similarly, the fourth and fifth rows illustrate the tracking results for the step wave and the

corresponding delivered PWs (with zoom during five seconds on the last row), respectively.

via NMES/FES. In general, tremors (mainly for P1) and fatigue were detected515

for both individuals with SCI at the end of each trajectory (sine and wave).516

This was because neither of them had been admitted to a rehabilitation research517

program involving daily electrical stimulation exercise of their lower limbs. In518

all experiments, P1 had no perception of the stimulation, while P2 experienced519

small discomfort due to the electrical stimulation intensity. Results from P1520

validate and substantiate the first hypothesis presenting very good tracking521
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Table 2: Performance results for the sine wave on control experiments using the proposed

methodology and empirical tuning for all individuals in their respective sessions.

Ind. Sess.
Empirical Proposed methodology

RMSE TEC RMSE TEC

P1 i 9.147◦ 30 s 2.984◦ 30 s

P2 i 11.296◦ 30 s 10.730◦ 30 s

H1

i 7.494◦ 60 s 5.830◦ 60 s

ii 8.752◦ 60 s 5.933◦ 60 s

iii 14.092◦ 60 s 7.337◦ 60 s

iv 6.377◦ 60 s 3.629◦ 60 s

v 6.383◦ 60 s 3.562◦ 60 s

Avg.(std) 8.62(2.87)◦ 60(0) s 5.26(1.46)◦ 60(0) s

H2

i 5.212◦ 60 s 5.055◦ 45 s

ii 8.317◦ 60 s 3.885◦ 60 s

iii 11.741◦ 35 s 3.633◦ 60 s

iv 4.887◦ 40 s 3.562◦ 40 s

v 10.713◦ 33 s 4.858◦ 23 s

Avg.(std) 8.17(2.78)◦ 46(12) s 4.20(0.63)◦ 46(14) s

H3

i NC NC 6.019◦ 30 s

ii 9.221◦ 50 s 7.615◦ 50 s

iii NC NC 4.616◦ 33 s

iv 3.775◦ 33 s 6.688◦ 60 s

v 19.096◦ 60 s 6.516◦ 60 s

Avg.(std) 10.70(6.3)◦ 48(11) s 6.29(0.98)◦ 47(13)s

H4

i NC NC 9.382◦ 60 s

ii 12.794◦ 60 s 4.823◦ 60 s

iii 8.246◦ 60 s 4.640◦ 30 s

iv 3.534◦ 31 s 4.561◦ 60 s

v 16.483◦ 60 s 3.717◦ 42 s

Avg.(std) 10.3(4.86)◦ 53(13) s 5.42(2.01)◦ 50(12) s

H5

i NC NC 6.006◦ 20 s

ii 8.070◦ 50 s 3.017◦ 21 s

iii NC NC 3.872◦ 52 s

Avg.(std) 8.070(*)◦ 50(*) s 4.30(1.26)◦ 31(15)s

H6
i NC NC 10.128◦ 60 s

ii 9.105◦ 60 s 6.553◦ 60 s

Avg.(std) 9.105(*)◦ 60(*) s 8.34(1.79)◦ 60(0)s

H7
i NC NC 8.500◦ 60 s

ii NC NC 6.630◦ 50 s

Avg.(std) NC NC 7.56(0.94)◦ 55(5) s

results using the proposed methodology. When empirical gains were used, the522

lower limb tracked the sine wave with a lag and presented a slow response to523
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Table 3: Performance results for the step wave on control experiments using the proposed

methodology and empirical tuning for all individuals in their respective sessions.

Ind. Sess.
Empirical Proposed methodology

RMSE TEC AvStd. OP RMSE TEC AvStd. OP

P1 i 10.995◦ 30 s 29.44(6.03)◦ 5.978◦ 25 s 29.88(3.25)◦

P2 i 10.106◦ 23 s 24.15(0.59)◦ 6.613◦ 21 s 28.51(0.99)◦

H1

i 5.920◦ 60 s 39.35(2.50)◦ 6.167◦ 60 s 39.54(1.63)◦

ii 12.291◦ 60 s 36.19(6.92)◦ 8.201◦ 60 s 39.54(4.61)◦

iii 7.266◦ 60 s 37.61(3.76)◦ 4.164◦ 60 s 39.98(1.48)◦

iv 6.741◦ 60 s 38.70(4.59)◦ 4.404◦ 60 s 39.89(1.64)◦

v 6.887◦ 60 s 39.94(5.88)◦ 4.425◦ 60 s 40.01(1.34)◦

Avg.(std) 7.82(2.28)◦ 60(0) s - 5.47(1.54)◦ 60(0) s -

H2

i 9.764◦ 35 s 38.45(2.00)◦ 6.212◦ 37 s 39.80(2.50)◦

ii NC NC NC 7.856◦ 25 s 38.05(1.53)◦

iii 11.822◦ 57 s 33.50(4.14)◦ 5.457◦ 37 s 39.88(3.36)◦

iv 6.424◦ 34 s 38.94(1.92)◦ 4.890◦ 45 s 39.42(1.33)◦

v 6.226◦ 35 s 39.83(4.11)◦ 7.233◦ 38 s 40.19(3.34)◦

Avg.(std) 8.56(2.35)◦ 46(11) s - 6.33(1.09)◦ 37(6) s -

H3

i 15.359◦ 48 s 32.47(7.59)◦ 8.176◦ 32 s 39.54(1.34)◦

ii 8.230◦ 45 s 38.53(2.19)◦ 5.598◦ 28 s 39.71(0.63)◦

iii 14.233◦ 38 s 33.06(6.26)◦ 6.258◦ 30 s 39.66(0.95)◦

iv 5.472◦ 40 s 39.54(0.71)◦ 6.357◦ 55 s 39.64(5.21)◦

v 7.102◦ 60 s 39.88(6.52)◦ 4.491◦ 60 s 39.84(2.23)◦

Avg.(std) 10.08(3.97)◦ 46(8) s - 6.18(1.2)◦ 41(14) s -

H4

i 13.914◦ 60 s 39.08(9.81)◦ 5.943◦ 60 s 40.02(2.97)◦

ii 8.354◦ 60 s 40.49(2.82)◦ 4.694◦ 60 s 40.00(0.87)◦

iii 8.830◦ 60 s 42.26(1.86)◦ 7.286◦ 60 s 39.92(2.35)◦

iv 4.551◦ 60 s 39.89(1.47)◦ 6.777◦ 60 s 39.82(5.33)◦

v 7.871◦ 60 s 39.92(7.29)◦ 4.895◦ 60 s 39.88(2.52)◦

Avg.(std) 8.70(3.01)◦ 60(0) s - 5.92(1.02)◦ 60(0) s -

H5

i NC NC NC 5.719◦ 60 s 39.83(3.74)◦

ii 8.076◦ 52 s 39.13(2.43)◦ 5.481◦ 50 s 39.58(1.11)◦

iii 13.032◦ 45 s 33.66(5.39)◦ 6.351◦ 50 s 39.42(1.99)◦

Avg.(std) 10.55(2.48)◦ 47(3) s - 5.85(0.37)◦ 57(5)s -

H6
i 12.789◦ 60 s 31.64(5.37)◦ 6.578◦ 60 s 40.01(2.80)◦

ii 7.506◦ 60 s 39.6(2.89)◦ 4.040◦ 60 s 39.62(1.49)◦

Avg.(std) 10.15(2.64)◦ 60(0) s - 5.31(1.27)◦ 60(0) s -

H7
i 9.554◦ 40 s 38.82(4.25)◦ 7.044◦ 21 s 39.63(2.49)◦

ii 13.135◦ 60 s 36.38(10.51)◦ 5.212◦ 60 s 40.04(1.68)◦

Avg.(std) 11.34(1.79)◦ 50(10) s - 6.13(0.92)◦ 40(19) s -

the step trajectory. Moreover, the RMSE of 2.9842◦ for the IGA sine wave524

from P1 was the best result during all experiments in this research, which is525
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a third of the RMSE obtained using empirical gains 9.1471◦. However, in the526

final seconds (about 28 s), the lower limb would start to have more tremors due527

to the fatigue factor; this is also noticed after about 15 s to the step wave for528

both our proposed method and empirical tuning.529

Furthermore, the tracking result for the sine wave of individual P2 was not as530

satisfactory such as for P1. However, as seen in the Deliv. PWs curve (Fig. 5),531

this poor sine wave tracking could be due to an underestimation for the upper532

bound to the control signal value (as this individual experienced discomfort533

under NMES); selecting a higher value may have resulted in good tracking.534

This inference is substantiated by the good results achieved in the step wave535

after a 3 min interval for muscle rest and by having consent to increase the536

upper bound value to the PW. A good regulation around the operation point537

was achieved for approximately 21 s, with 50% less RMSE than that obtained538

using empirical tuning. More specifically, using empirical tuning led to poor539

performances for both sine and step trajectories, as the leg did not track the540

sine wave, and the regulation around the operation point featured a stationary541

error.542

For healthy individuals, as seen in Tables 2 and 3 and in the figures of Ap-543

pendix A, using empirical gains led to several poor performances. In many tests,544

the control-stimulated lower limb did not track the reference angle (“NC”) or545

presented high oscillatory comportment. This problem is, for example, demon-546

strated in Figs. A.10 and A.12 and in Table 3 regarding the AvStd. OP metric,547

as using empirical gains resulted in average values (knee angular position) below548

the operation point with high std values. When the proposed methodology was549

used, for all individuals, satisfactory and suitable tracking results were acquired550

for both the tracking of sine wave via isotonic contraction and the regulation551

around an operation point (step wave) as isometric contraction. On average, for552

each individual, our proposed methodology presented much lower RMSE while553

still achieving high TEC (Tables 2 and 3).554

Finally, for most healthy individuals, when our proposed solution was used555

and RISE controller was not tuned with empirical gains, the lower limb robustly556
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tried to track the reference angle for 60 s. This could not be possible if we557

had performed pretrial tests, which could generate muscle fatigue due to prior558

stimulations. In contrast, RISE controller presented by Stegath et al. (2007) and559

Stegath et al. (2008) demonstrated tracking control for 8 s for a step trajectory560

and 20 s for a sine wave; Sharma et al. (2009) and Sharma et al. (2012) presented561

tracking control for 30 s for a step- and a sine-type signal; Kushima et al.562

(2015) presented tracking control for 30 s for a sine wave, and Downey et al.563

(2015) presented tracking control for 45 s (for conventional stimulation) for a564

sine trajectory. On the other hand, in some of our experiments, significant565

“chattering” was noticed in the control input. Yet, except for individual P2,566

none of the other voluntary participants reported discomfort due to NMES567

while presenting satisfactory tracking of the lower limb with high TEC. Further568

improvements to RISE controller tuning (i.e., IGA) may help to smooth this569

“chattering” problem, which is undesirable and may lead to poor controller570

performance (Lynch & Popovic (2012)).571

4.2. Nonlinear system identification results572

Table 4 presents the following metrics for all individuals (Ind.) in each ses-573

sion (Sess.): (i) the Pearson correlation coefficient (Corr.) between the input574

(PW) and output (angular position) data using past control data as sessions575

progress; (ii) the Coefficient of determination (R2); and (iii) the mean squared576

error (MSE ). These metrics are explained in the following: First, the Corr. be-577

tween the input and output data indicates the correlation between both data,578

which clarifies how “difficult” it is to identify the system dynamics. More specif-579

ically, Corr. measures the linear correlation between two variables x and y. The580

Corr. value ranges from -1 to 1. The higher the value, the stronger the corre-581

lation. A negative value indicates an inverse correlation, while a positive value582

indicates a regular correlation. Second, the coefficient of determination (R2) is583

the proportion of the variance in the dependent variable that is predictable from584

the independent variable. The larger R2 is, the more the variability is indicated585
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by the linear regression model1. Third, the MSE is the average squared error586

between the NN outputs and the real ones.587

Additionally, Figs. 6 and 7 compare the results from simulation and real588

experiments using either empirical or fine-tuned IGA gains. These figures were589

selected for illustration purposes only, as the objective is to highlight the benefits590

of using past data for the nonlinear system identification step. In Appendix A,591

we provide more illustrations comparing simulation versus the real experiment592

results.593

Table 4: Identification results for all individuals in their respective sessions.

Ind. Sess. Corr. R2 MSE Ind. Sess. Corr. R2 MSE

P1 i 0.4153 0.836 0.001 P2 i 0.1035 0.796 0.003

H1

i 0.5908 0.726 0.002

H2

i 0.7789 0.869 0.006

ii 0.1738 0.157 0.038 ii 0.2594 0.416 0.039

iii 0.0469 0.101 0.042 iii 0.2640 0.308 0.039

iv -0.1109 0.159 0.041 iv 0.2606 0.282 0.037

v -0.0916 0.113 0.040 v 0.2769 0.292 0.038

H3

i 0.8333 0.820 0.003

H4

i 0.7339 0.974 0.001

ii 0.4325 0.498 0.023 ii 0.0476 0.377 0.054

iii 0.3083 0.506 0.023 iii -0.1050 0.323 0.054

iv 0.3523 0.510 0.024 iv -0.0502 0.294 0.052

v 0.2650 0.492 0.026 v -0.1017 0.281 0.049

H5

i 0.6738 0.881 0.001

H6

i 0.7182 0.815 0.001

ii 0.3774 0.682 0.030 ii 0.3078 0.476 0.028

iii 0.3458 0.599 0.035 - - - -

H7
i 0.5201 0.767 0.004

-
- - - -

ii 0.5520 0.476 0.017 - - - -

As presented in Table 4, there are considerable decrements in the Corr.594

between the input and output data as sessions progress (given the addition of595

control data from every new session). Moreover, while the data from healthy596

individuals in the first session are highly correlated (0.5201 ≤ Corr. ≤ 0.8333),597

the ones from individuals with SCI are poorly correlated, as their muscles do598

not respond to NMES/FES as well as the muscles of the healthy individuals.599

Moreover, due to less correlation between data, the generalization and learning600

1https://fr.mathworks.com/help/stats/coefficient-of-determination-r-squared.html
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Figure 6: Comparison of simulation and real experiments for individual H1 using past reha-

bilitation data to identify the nonlinear model.

Figure 7: Comparison of simulation and real experiments for individual H3 using past reha-

bilitation data to identify the nonlinear model.

procedure of an NN is harder, which resulted in increments in the error metrics601

R2 and MSE. However, as shown in the Figs. 6 and 7, these models better602

describe what happens in real experiments, where non-ideal conditions such as603

fatigue, tremors, and spasms, are explained by data.604

As shown in Figs. 6 and 7, the identified models simulated a sine trajectory605

with some tremors in the upper and lower peak values and some tremors to606

the step wave around the operation point. These behaviors were also noticed607

in real experiments. Appendix A presents simulations to the step wave with608
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a quick response and with oscillatory behavior for the whole period, which was609

also verified in real experiments. Although not flawless, such models can provide610

more insights into the real system response. However, as approximate models of611

healthy individuals, neither of them would be suitable for an exact description of612

the real system; for instance, voluntary movements, fear, or other issues related613

to the individual thoughts (e.g., social or personal life), can affect results, and614

these aspects could not be predicted by the model.615

4.3. Discussion616

Because this research was conducted with volunteering participants, we de-617

pended on their availability. For instance, not all healthy individuals partic-618

ipated in the pre-established five sessions. One volunteer showed availability619

to participate in only two sessions (H7), two volunteers showed availability to620

participate in only three sessions (H5 and H6), while the others (H1-H4) par-621

ticipated in all five sessions. This way, rather than excluding the non-uniform622

collected data, we preferred to present our results for all volunteers according to623

the number of sessions they participated in. Note that this procedure is common624

in studies in this area, because each session depends on consent, as established625

by the ethics committee.626

Figures 8 and 9 summarize the results of Tables 2 and 3 by illustrating in627

bar plots the RMSE metric for both the empirical tuning and our proposed628

methodology, considering each trajectory (sine and step) in all sessions and all629

individuals. In these figures, “NC” indicates when the leg did not track the630

reference angle. Omitted bars indicate the individual did not participate in the631

corresponding session.632

As demonstrated in Figs. 8 and 9, the proposed methodology consistently633

and considerably outperforms the empirical tuning approach, which supports634

and validates the first hypothesis made in this paper. Additionally, in the635

first sessions of healthy individuals, the RMSEs were generally higher, which636

could be due to fear or discomfort to the electrical stimulation or voluntary637

movements. However, as sessions progressed, the tracking results improved for638
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Figure 8: RMSE analysis for the sine trajectory based on empirical tuning or the proposed

methodology.
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Figure 9: RMSE analysis for the step trajectory based on empirical tuning or the proposed

methodology.

some individuals, which among many factors, can be explained by the use of639

a more representative model with past rehabilitation data. This resulted in a640

better tuning of the RISE controller improving the tracking results in practice.641

More precisely, considering the first hypothesis made in this paper, setting642

empirical gains to RISE controller generally led to an underperformance com-643

pared with the use of ML-based algorithms to find the best combination for644

each individual. That is, to provide efficient treatment for individuals with SCI645

via NMES/FES, a fine-tuning method such as the presented methodology can646

prevent SCI patients from experiencing premature fatigue and other problems647
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during rehabilitation.648

Moreover, for the second hypothesis, the use of the past rehabilitation data649

for the nonlinear system identification task also presented promising results.650

Even though there is less correlation between the input and output data, which651

increases the error on the identification process, the identified models “gained”652

implicit non-ideal conditions such as tremors and spasms (cf., Figs. 6 and 7653

and figures in Appendix A). Therefore, using data from past rehabilitation654

sessions of each individual and strong tools, such as NNs, the mapping over655

the delivered electrical stimulation and the angular position can be efficiently656

addressed with more realistic models. Regarding future work, we recommend657

and intend to explore a deeper comparison between a case considering past658

rehabilitation data and a case considering each session of an individual as the659

first one (applying and using only the one-minute stimulation test for system660

identification).661

Finally, in the NMES-based knee simulation system, using data saved from662

each patient allows testing improvements to RISE control law and testing more663

control techniques before actual implementation, saving time and resources.664

Furthermore, the proposed methodology for knee joint control would allow peo-665

ple with no experience with technical information on neural networks, genetic666

algorithms, or even the control law RISE to easily use a closed-loop NMES/FES667

system for SCI individuals’ rehabilitation.668

5. Conclusion669

Aiming to improve human lower limb tracking control of individuals with670

SCI via NMES/FES, this paper introduces a novel ML-based methodology. It671

consists of data-driven models that use past rehabilitation data, the RISE con-672

trol method (or fundamentally similar control laws) to guarantee the semi-global673

asymptotic stability, and an improved genetic algorithm to efficiently tune the674

controller. Experiments were performed with seven healthy and two paraplegic675

individuals, which validated the proposed methodology.676
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Additionally, RISE control method designed for lower limb control in the677

literature did not validate this RISE controller for paraplegic subjects. There-678

fore, for the first time and using the proposed methodology, we validated this679

controller with two SCI subjects with promising tracking results. This, however,680

would not be possible using a “trial and error” method by fatiguing the muscle681

before acquiring good tuning. Moreover, in the experiments performed in this682

research, for many healthy individuals, the lower limb robustly tried to track683

the reference angle for more than 45 s, which is the maximum time presented684

in the literature for RISE controller, reaching 60 s many times.685

We recommend and intend to explore the following areas for future work:686

a deeper validation with SCI patients under more sessions; a comparison of687

the effectiveness of using past rehabilitation data with different setups, e.g.,688

the SCI patient is identified each session; the implementation of deeper and689

dynamic NNs studied in Arcolezi et al. (2020) to improve identified models in our690

proposed methodology; to improve the RISE controller tuning approach (i.e.,691

IGA algorithm); the consideration of different control laws and improvements692

to RISE control method.693
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Appendix A. Supplementary results903

Table A.5 exhibits the fine-tuned gains (α1; α2; ks; β) used for each RISE-904

based control-stimulation session and both trajectories. Moreover, Figs. A.10-905

A.12 illustrate tracking results on both trajectories and their respective deliv-906

ered PWs (Deliv. PWs) for individuals H1 (session v), H2 (session ii), and H4907

(session v). Figs. A.13-A.16 compare the results of simulation and real experi-908

ments based on empirical tuning or fine-tuned IGA gains. Figs. A.13-A.16 were909

selected for illustration purposes only, as the objective here is to highlight the910

benefits of using past data for the nonlinear system identification step.911
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Table A.5: RISE controller gains fine-tuned with IGA used in the experiments with the

proposed methodology for both sine and step waves.

Individual Session
RISE controller gains (α1; α2; ks; β)

Sine Step

P1 i 2.61; 3.34; 48.94; 1.78 2.72; 3.57; 47.12; 1.54

P2 i 2.22; 3.54; 39.50; 1.40 3.01; 1.91; 48.34; 2.65

H1

i 3.23; 1.08; 24.74; 5.50 1.37; 1.63; 54.03; 2.36

ii 1.76; 2.28; 32.30; 2.39 0.64; 1.66; 52.26; 4.00

iii 3.23; 2.52; 27.33; 2.29 2.30; 4.24; 59.26; 3.49

iv 2.40; 4.10; 27.05; 2.18 3.12; 5.80; 43.162; 1.35

v 3.07; 4.37; 21.73; 1.56 2.61; 3.54; 39.50; 1.30

H2

i 1.90; 3.50; 48.00; 3.00 1.90; 3.50; 48.00; 3.00

ii 1.57; 2.37; 48.45; 1.05 1.38; 1.34; 64.41; 3.72

iii 1.47; 3.31; 30.01; 1.87 3.54; 3.83; 54.88; 1.92

iv 1.42; 3.68; 35.09; 1.99 2.07; 1.75; 36.32; 1.96

v 2.03; 3.02; 36.07; 2.23 2.17; 1.76; 38.53; 1.85

H3

i 1.40; 2.50; 60.00; 3.40 1.47; 2.63; 57.83; 3.36

ii 2.12; 2.28; 73.74; 1.55 2.77; 3.03; 57.17; 3.47

iii 4.75; 4.01; 19.56; 2.73 1.56; 3.95; 50.91; 3.05

iv 0.93; 2.69; 28.09; 2.45 3.22; 3.99; 68.67; 1.26

v 3.25; 3.45; 22.70; 3.23 2.23; 2.85; 43.33; 2.03

H4

i 1.92; 2.41; 69.71; 1.69 1.92; 2.41; 69.71; 1.69

ii 1.92; 4.14; 44.26; 1.50 1.92; 2.41; 55.83; 1.69

iii 3.85; 4.00; 21.51; 2.85 1.22; 1.64; 30.44; 3.50

iv 1.63; 4.26; 23.74; 1.70 1.03; 6.16; 66.38; 1.14

v 2.24; 2.22; 28.37; 2.06 2.12; 2.35; 46.93; 1.67

H5

i 3.36; 4.09; 53.19; 3.30 3.65; 1.56; 76.66; 2.69

ii 2.68; 6.85; 24.64; 3.13 2.84; 1.51; 40.93; 2.54

iii 3.21; 2.43; 51.30; 3.42 1.16; 2.98; 45.15; 1.20

H6
i 1.52; 2.50; 55.87; 1.67 2.10; 1.08; 51.24; 1.93

ii 4.89; 4.89; 43.05; 2.36 2.62; 5.22; 25.55; 3.65

H7
i 3.72; 3.85; 45.16; 1.59 2.75; 3.85; 68.51; 1.96

ii 1.15; 5.96; 44.29; 1.20 2.73; 5.79; 37.57; 2.44
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Figure A.10: Experimental results for individual H1 comparing empirical gains and the pro-

posed methodology. The first and second rows illustrate the tracking results for the sine wave

and the corresponding delivered PWs, respectively. Similarly, the third and fourth rows illus-

trate the tracking results for the step wave and the corresponding delivered PWs, respectively.
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Figure A.11: Experimental results for individual H2 comparing empirical gains and the pro-

posed methodology. The first and second rows illustrate the tracking results for the sine wave

and the corresponding delivered PWs, respectively. Similarly, the third and fourth rows illus-

trate the tracking results for the step wave and the corresponding delivered PWs, respectively.
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Figure A.12: Experimental results for individual H4 comparing empirical gains and the pro-

posed methodology. The first and second rows illustrate the tracking results for the sine wave

and the corresponding delivered PWs, respectively. Similarly, the third and fourth rows illus-

trate the tracking results for the step wave and the corresponding delivered PWs, respectively.

Figure A.13: Comparison of simulation and real experiments for individual H2 using past

rehabilitation data to identify the nonlinear model.
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Figure A.14: Comparison of simulation and real experiments for individual H3 using past

rehabilitation data to identify the nonlinear model.

Figure A.15: Comparison of simulation and real experiments for individual H6 using past

rehabilitation data to identify the nonlinear model.
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Figure A.16: Comparison of simulation and real experiments for individual H7 using past

rehabilitation data to identify the nonlinear model.
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