
HAL Id: hal-03739485
https://hal.science/hal-03739485v2

Preprint submitted on 3 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning with Combinatorial Optimization Layers: a
Probabilistic Approach

Guillaume Dalle, Léo Baty, Louis Bouvier, Axel Parmentier

To cite this version:
Guillaume Dalle, Léo Baty, Louis Bouvier, Axel Parmentier. Learning with Combinatorial Optimiza-
tion Layers: a Probabilistic Approach. 2022. �hal-03739485v2�

https://hal.science/hal-03739485v2
https://hal.archives-ouvertes.fr

Learning with Combinatorial Optimization Layers:
a Probabilistic Approach

Guillaume Dalle1, Léo Baty1, Louis Bouvier1, and Axel Parmentier1,*

1CERMICS, Ecole des Ponts, Marne-la-Vallée, France
*Corresponding author: axel.parmentier@enpc.fr

December 3, 2022

Abstract

Combinatorial optimization (CO) layers in machine learning (ML) pipelines are a powerful tool to
tackle data-driven decision tasks, but they come with two main challenges. First, the solution of a CO
problem often behaves as a piecewise constant function of its objective parameters. Given that ML
pipelines are typically trained using stochastic gradient descent, the absence of slope information is very
detrimental. Second, standard ML losses do not work well in combinatorial settings. A growing body of
research addresses these challenges through diverse methods. Unfortunately, the lack of well-maintained
implementations slows down the adoption of CO layers.

In this paper, building upon previous works, we introduce a probabilistic perspective on CO layers,
which lends itself naturally to approximate differentiation and the construction of structured losses. We
recover many approaches from the literature as special cases, and we also derive new ones. Based on
this unifying perspective, we present InferOpt.jl, an open-source Julia package that 1) allows turning
any CO oracle with a linear objective into a differentiable layer, and 2) defines adequate losses to train
pipelines containing such layers. Our library works with arbitrary optimization algorithms, and it is
fully compatible with Julia’s ML ecosystem. We demonstrate its abilities using a pathfinding problem
on video game maps as guiding example, as well as three other applications from operations research.

Keywords: combinatorial optimization, machine learning, automatic differentiation, graphs, Julia
programming language

1

mailto:axel.parmentier@enpc.fr

Contents
1 Introduction 3

1.1 Motivating example . 3
1.2 Our setting . 4
1.3 Contributions . 6
1.4 Notations . 7
1.5 Outline . 7

2 Related work 7
2.1 Optimization layers in ML . 7
2.2 Similarities and differences with reinforcement learning . 9
2.3 Our guiding example: shortest paths on Warcraft maps . 10

3 Probabilistic CO layers 11
3.1 The expectation of a differentiable probability distribution . 11
3.2 Regularization as another way to define a distribution . 12
3.3 Collection of probabilistic CO layers . 13
3.4 The case of inexact CO oracles . 17

4 Learning by experience 17
4.1 Minimizing a smooth regret surrogate . 17
4.2 Derivatives of the regret for learning by experience . 19

5 Learning by imitation 19
5.1 A loss that takes the optimization layer into account . 20
5.2 Collection of losses for learning by imitation . 21

6 Applications 23
6.1 Shortest paths on Warcraft maps . 23
6.2 Approximating hard optimization problems . 25
6.3 Stochastic vehicle scheduling problem . 25
6.4 Single-machine scheduling . 30
6.5 Two-stage stochastic minimum weight spanning tree . 32

7 Conclusion 35

References 36

A Proofs 40
A.1 Additive perturbation . 40
A.2 Multiplicative perturbation . 42
A.3 Inexact oracles . 43

B More details on applications 44
B.1 Stochastic vehicle scheduling problem . 44
B.2 Two-stage minimum weight spanning tree . 49

2

1 Introduction
Machine learning (ML) and combinatorial optimization (CO) are two essential ingredients of modern indus-
trial processes. While ML extracts meaningful information from noisy data, CO enables decision-making
in high-dimensional constrained environments. But in many situations, combining both of these tools is
necessary: for instance, we might want to generate predictions from data, and then use those predictions to
make optimized decisions. To do that, we need pipelines that contain two types of layers: ML layers and
CO layers.

Due to their many possible applications, hybrid ML-CO pipelines currently attract a lot of research
interest. The recent reviews by Bengio, Lodi, and Prouvost (2021) and Kotary et al. (2021) are excellent
resources on this topic. Unfortunately, relevant software implementations are scattered across paper-specific
repositories, with few tests, minimal documentation and sporadic code maintenance. Not only does this make
comparison and evaluation difficult for academic purposes, it also hurts practitioners wishing to experiment
with such techniques on real use cases.

Let us discuss a generic hybrid ML-CO pipeline, which includes a CO oracle amid several ML layers:

Input x−−−−−→
�� ��ML layers Objective θ−−−−−−−→ CO oracle

Solution y−−−−−−→
�� ��More ML layers Output−−−−→ (1)

The inference problem consists in predicting an output from a given input. It is solved online, and requires
the knowledge of the parameters (weights) for each ML layer. On the other hand, the learning problem aims
at finding parameters that lead to “good” outputs during inference. It is solved offline based on a training
set that contains several inputs, possibly complemented by target outputs.

In Equation (1), we use the term CO oracle to emphasize that any algorithm may be used to solve the
optimization problem, whether it relies on an existing solver or a handcrafted implementation. Conversely,
when we talk about a layer, it is implied that we can compute meaningful derivatives using automatic
differentiation (AD). Since it may call black box subroutines, an arbitrary CO oracle is seldom compatible
with AD. And even when it is, its derivatives are zero almost everywhere, which gives us no exploitable slope
information. Therefore, according to our terminology, a CO oracle is not a layer (yet), and the whole point
of this paper is to turn it into one.

Modern ML libraries provide a wealth of basic building blocks that allow users to assemble and train
complex pipelines. We want to leverage these libraries to create hybrid ML-CO pipelines, but we face two
main challenges. First, while ML layers are easy to construct, it is not obvious how to transform a CO oracle
into a usable layer. Second, standard ML losses are ill-suited to our setting, because they often ignore the
underlying optimization problem.

Our goal is to remove these difficulties. We introduce InferOpt.jl1, a Julia package which 1) can turn
any CO oracle into a layer with meaningful derivatives, and 2) provides structured loss functions that work
well with the resulting layers. It contains several state-of-the-art methods that are fully compatible with
Julia’s AD and ML ecosystem, making CO layers as easy to use as any ML layer. To describe the available
methods in a coherent manner, we leverage the unifying concept of probabilistic CO layer, hence the name
of our package.

1.1 Motivating example
Let us start by giving an example of hybrid ML-CO pipeline. Suppose we want to find shortest paths on a
map, but we do not have access to an exact description of the underlying terrain. Instead, all we have are
images of the area, which give us a rough idea of the topography and obstacles. To solve our problem, we
need a pipeline comprising two layers of very different natures. First, an image processing layer, which is
typically implemented as a convolutional neural network (CNN). The CNN is tasked with translating the
images into a weighted graph. Second, a CO layer performing shortest path computations on said weighted
graph (e.g. using Dijkstra’s algorithm).

1https://github.com/axelparmentier/InferOpt.jl

3

https://github.com/axelparmentier/InferOpt.jl

�

�
	Conv. Neural

Network

Dijkstra’s
algorithm

�

�
	Loss

function

Map image Cell costs Shortest path

Figure 1: Pipeline for computing shortest paths on Warcraft maps – data from Vlastelica et al. (2020)

This pipeline is exactly the one considered by Vlastelica et al. (2020) and Berthet et al. (2020) for
pathfinding on video game maps. We illustrate it on Figure 1, and we describe it in more detail in Section 2.3.
The goal is to learn appropriate weights for the CNN, so that it feeds accurate cell costs to Dijkstra’s
algorithm. This is done by minimizing a loss function, such as the distance between the true optimal path
and the one we predict.

1.2 Our setting
In our hybrid ML-CO pipelines, we consider CO oracles f that solve the following kind of problem:

f : θ 7−→ argmax
v∈V

θ⊤v (2)

Here, the input θ ∈ Rd is the objective direction. Meanwhile, V ⊂ Rd (for vertices) denotes a finite set of
feasible solutions – which may be exponentially large in d – among which the optimal solution f(θ) shall be
selected. For simplicity, we assume that f is single-valued, i.e. that the optimal solution is unique.

The feasible set V and its dimension may depend on the instance. For instance, if Equation (2) is a
shortest path problem, the underlying graph may change from one input to another. If we wanted to remain
generic, we should therefore write V(x) ⊂ Rd(x). To keep notations simple, we omit the dependency in x
whenever it is clear from the context. Note that we could also study more general CO oracles given by

argmax
v∈V

θ⊤g(v) + h(v)

where g is any function from an arbitrary finite set V to Rd, and h is any function from V to R. As long as
the objective is linear in θ, the theory we present generalizes seamlessly. However, for ease of exposition, we
keep g(v) = v and h(v) = 0. In this case, Equation (2) is equivalent to

argmax
v∈conv(V)

θ⊤v.

Indeed, when the objective is linear in v, it makes no difference to optimize over the convex hull conv(V)
instead of optimizing over V.

1.2.1 From an optimization problem to an oracle

It is important to note that the formulation argmaxv∈V θ
⊤v is very generic. Any linear program (LP)

or integer linear program (ILP) can be written this way, as long as its feasible set is bounded. Indeed, the

4

optimum of an LP is always reached at a vertex of the polytope, of which there are finitely many. Meanwhile,
the optimum of an ILP is always reached at an integral point, or more precisely, at a vertex of the convex hull
of the integral points. As a result, Equation (2) encompasses a variety of well-known CO problems related
to graphs (paths, flows, spanning trees, coloring), resource management (knapsack, bin packing), scheduling,
etc. See Korte and Vygen (2006) for an overview of CO and its applications.

For every one of these problems, dedicated algorithms have been developed over the years, which some-
times exploit the domain structure better than a generic ILP solver (such as Gurobi or SCIP). Thus, we
have no interest in restricting the procedure used to compute an optimal solution: we want to pick the best
algorithm for each application. That is why the methods discussed in this paper only need to access the CO
oracle f as a black box function, without making assumptions about its implementation.

1.2.2 From an oracle to a probability distribution

When using CO oracles within ML pipelines, the first challenge we face is the lack of useful derivatives.
Training often relies on stochastic gradient descent (SGD), so we need to be able to backpropagate loss
gradients onto the weights of the ML layers. Unfortunately, since the feasible set V of Equation (2) is finite,
the CO oracle is a piecewise constant mapping and its derivatives are zero almost everywhere. To recover
useful slope information, we seek approximate derivatives, which is where the probabilistic approach comes
into play.

To describe it, we no longer think about a CO oracle as a function returning a single element f(θ)
from V. Instead, we use it to define a probability distribution p(·|θ) on V. The naive choice would be the
Dirac mass p(v|θ) = δf(θ)(v), but it shares the lack of differentiability of the oracle itself. Thus, our goal
is to spread out the distribution p into an approximation p̂, such that the probability mapping θ 7−→ p̂(·|θ)
becomes smooth with respect to θ. If we can do that, then the expectation mapping

f̂ : θ 7−→ Ep̂(·|θ)[V] =
∑
v∈V

vp̂(v|θ), (3)

where it is understood that V ∼ p̂(·|θ), will be just as smooth. This expectation mapping f̂ is what we take
to be our probabilistic CO layer : see Section 3 for detailed examples. In what follows, plain letters (p, f)
always refer to the initial CO oracle, while letters with a hat (p̂, f̂) refer to the probabilistic CO layer that
we wrap around it.

1.2.3 From a probability distribution to a loss function

The presence of CO oracles in ML pipelines gives rise to a second challenge: the choice of an appropriate loss
function to learn the parameters. As highlighted by Bengio, Lodi, and Prouvost (2021), this choice heavily
depends on the data at our disposal. They distinguish two main paradigms, which we illustrate using the
pipeline of Figure 1.

If our dataset only contains the map images, then we are in a weakly supervised setting, which they call
learning by experience (see Section 4). In that case, the loss function will evaluate the solutions computed
by our pipeline using the true cell costs. On the other hand, if our dataset happens to contain precomputed
targets such as the true shortest paths, then we are in a fully supervised setting, which they call learning by
imitation (see Section 5). In that case, the loss function will compare the paths computed by our pipeline with
the optimal ones, hoping to minimize the discrepancy. For both of these cases, the probabilistic perspective
plays an important role in ensuring smoothness of the loss.

1.2.4 Complete pipeline

The typical pipeline we will focus on is a special case of Equation (1), which we now describe in more detail:

Input x−−−−−→
�� ��ML layer φw

Objective θ = φw(x)−−−−−−−−−−−−−→ CO oracle f
Solution y = f(θ)−−−−−−−−−−−→

�� ��Loss function L (4)

5

Our pipeline starts with an ML layer φw, where w stands for the vector of weights. Its role is to encode the
input x into an objective direction θ = φw(x), which is why we often refer to it as the encoder. Then, the
CO oracle defined in Equation (2) returns an optimal solution y = f(θ). Finally, the loss function L is used
during training to evaluate the quality of the solution. If our dataset contains N input samples x(1), ..., x(N),
training occurs by applying SGD to the following loss minimization problem:

min
w

1

N

N∑
i=1

L
(y(i)︷ ︸︸ ︷
f
(
φw(x

(i))︸ ︷︷ ︸
θ(i)

)
, . . .

)
. (5)

The dots . . . correspond to additional arguments that may be used by the loss. For instance, the loss may
depend on the input x(i) itself, or require targets t̄(i) for comparison (see Section 5).

Remark 1.1. Our work focuses on individual layers and loss functions. Although we present various concrete
examples, we do not give generic advice on how to build the whole pipeline for a specific application. If the
use case corresponds to a “predict, then optimize” setting such as the one from Figure 1, then Elmachtoub
and Grigas (2022) give a few useful pointers. If the goal is to approximate hard optimization problems with
easier ones, the reader can refer to Parmentier (2021a) for a general methodology.

1.3 Contributions
Our foremost contribution is the open-source package InferOpt.jl, which is written in the Julia program-
ming language (Bezanson et al. 2017). Given a CO oracle provided as a callable object, our package wraps it
into a probabilistic CO layer that is compatible with Julia’s AD and ML ecosystem. This is achieved thanks
to the ChainRules.jl2 interface (White et al. 2022). Moreover, InferOpt.jl defines several structured
loss functions, both for learning by experience and for learning by imitation.

On top of that, we present theoretical insights that fill some gaps in previous works. In addition to the
framework of probabilistic CO layers, we propose:

• A new perturbation technique designed for CO oracles that only accept objective vectors with a certain
sign (such as Dijkstra’s algorithm, which fails on graphs with negative edge costs): see Section 3.3.2.

• A way to differentiate through a large subclass of probabilistic CO layers (those that rely on convex
regularization) by combining the Frank-Wolfe algorithm with implicit differentiation: see Section 3.3.3.

• A probabilistic regularization of the regret for learning by experience: see Section 4.

• A generic decomposition framework for imitation losses, which subsumes most of the literature so far
and suggests ways to build new loss functions: see Section 5.1.

Finally, we describe numerical experiments on our motivating example of Warcraft shortest paths, as well
as three combinatorial optimization problems from operations research: the stochastic vehicle scheduling
problem, the single-machine scheduling problem, and the two-stage stochastic minimum weight spanning
tree problem. Here are a few highlights:

• We benchmark and show the strengths of the different learning methods proposed in the literature on
hybrid ML-CO pipelines.

• We use the pipeline of Figure 1 for learning by experience on the Warcraft shortest paths problem,
even though the CNN encoder has tens of thousands of parameters. To the best of our knowledge,
previous attempts to learn such pipelines by experience were restricted to ML layers with fewer than
100 parameters.

2https://github.com/JuliaDiff/ChainRules.jl

6

https://github.com/JuliaDiff/ChainRules.jl

• We tackle the stochastic vehicle scheduling problem efficiently by approximating it with its deterministic
counterpart.

• We obtain a fast heuristic with state-of-the-art performance for the single machine scheduling problem,
which has been a focus of the by the scheduling community for several decades.

• We show that our library enables the use of graph neural networks (GNNs) instead of generalized linear
models (GLMs) for instance encoding, bringing additional performance on the two-stage spanning tree
problem.

1.4 Notations
We write 1 for the vector with all components equal to 1, and ei for the basis vector corresponding to
dimension i. The notation 1{E} corresponds to the indicator function of the set (or event) E. The operator ⊙
denotes the Hadamard (componentwise) product between vectors of the same size. We use ∆d to refer to
the unit simplex of dimension d, and Ep to denote an expectation with respect to the distribution p. If S is
a set, we write

conv(S) =
{∑

i

pisi : si ∈ S, pi ≥ 0,
∑
i

pi = 1

}
= {Ep[S] : p ∈ ∆S} (6)

for its convex hull and projS for the orthogonal projection onto S. If h is a real-valued function, we denote
by ∇ah(x) the gradient of h with respect to parameter a at point x and by ∂ah(x) its convex subdifferential
(set of subgradients). The notation dom(h) stands for the domain of h, i.e. the set on which it takes finite
values. If h is a vector-valued function, we denote by Jah(x) its Jacobian matrix.

1.5 Outline
In Section 2, we review the literature on differentiable optimization layers, before focusing on the Warcraft
example. Section 3 introduces the family of probabilistic CO layers by splitting it into perturbed and
regularized approaches. Then, Section 4 gives tools for learning by experience, while Section 5 discusses loss
functions for learning by imitation. Practical applications of our package are presented in Section 6, before
we conclude in Section 7. Proofs for our main theoretical results can be found in Appendix A.

2 Related work

2.1 Optimization layers in ML
A significant part of modern ML relies on AD: see Baydin et al. (2018) for an overview and Griewank
and Walther (2008) for an in-depth treatment. In particular, AD forms the basis of the backpropagation
algorithm used to train neural networks.

2.1.1 The notion of implicit layer

Standard neural architectures draw from a small collection of explicit layers (Goodfellow, Bengio, and
Courville 2016). Whatever their connection structure (dense, convolutional, recurrent, etc.) and regard-
less of their activation function, these layers all correspond to input-output mappings that can be expressed
using an analytic formula. This same formula is then used by AD to compute gradients.

On the other hand, the layers defined by InferOpt.jl are of the implicit kind, which means they can
contain arbitrarily complex iterative procedures. While we focus here on optimization algorithms, those are
not the only kind of implicit layers: fixed point iterations and differential equation solvers are also widely
used, depending on the application at hand. See the tutorial by Kolter, Duvenaud, and Johnson (2020) for
more thorough explanations.

7

Due to the high computational cost of unrolling iterative procedures, efficient AD of implicit layers often
relies on the implicit function theorem. As long as we can specify a set of conditions satisfied by the input-
output pair, this theorem equates differentiation with solving a linear system of equations. See the Python
package jaxopt3 for an example implementation, and its companion paper for theoretical details (Blondel,
Berthet, et al. 2022). The recent Python package theseus4 showcases an application of this technique to
robotics and vision (Pineda et al. 2022).

2.1.2 Convex optimization layers

Among the early works on optimization layers for deep learning, the seminal OptNet paper by Amos and
Kolter (2017) stands out. It describes a way to differentiate through quadratic programs (QPs) by using the
Karush-Kuhn-Tucker (KKT) optimality conditions and plugging them into the implicit function theorem.

More sophisticated tools exist for disciplined conic programs, such as the Python package cvxpylayers5

(Agrawal et al. 2019). The recent Julia package DiffOpt.jl6 (Sharma et al. 2022) extends these ideas
beyond the conic case to general convex programs. Note that both libraries only accept optimization problems
formulated in a domain-specific modeling language, as opposed to arbitrary oracles.

Strong convexity makes differentiation easier because the solutions evolve smoothly as a function of
the constraints and objective parameters. In particular, this means the methods listed above return exact
derivatives and do not rely on approximations. Regrettably, this nice behavior falls apart as soon as we enter
the combinatorial world.

2.1.3 Linear optimization layers

Let us consider an LP whose feasible set is a bounded polyhedron, also called polytope. It is well-known that
for most objective directions, the optimal solution will be unique and located at a vertex of the polytope. Even
though LPs look like continuous optimization problems, this property shows that they are fundamentally
combinatorial. Indeed, a small change in the objective direction can cause the optimal solution to suddenly
jump to another vertex, which results in a discontinuous mapping from objectives to solutions. In fact, this
mapping is piecewise constant, which means no useful differential information can come from it: its Jacobian
is undefined at the jump points and zero everywhere else.

Therefore, when differentiating LPs with respect to their objective parameters, we need to resort to
approximations. Vlastelica et al. (2020) use interpolation to turn a piecewise constant mapping into a
piecewise linear and continuous one. However, the dominant approximation paradigm in the literature is
regularization, as formalized by Blondel, Martins, and Niculae (2020).

For instance, Wilder, Dilkina, and Tambe (2019) add a quadratic penalty to the linear objective, which
allows them to reuse the QP computations of Amos and Kolter (2017). Mandi and Guns (2020) propose a
log-barrier penalty, which lets them draw a connection with interior-point methods. Berthet et al. (2020)
suggest perturbing the optimization problem by adding stochastic noise to the objective direction, which is
a form of implicit regularization.

When LP layers are located at the end of a pipeline, a clever choice of loss function can also simplify
differentiation. This is illustrated by the structured support vector machine (S-SVM) loss (Nowozin and
Lampert 2010), smart “predict, then optimize” (SPO+) loss (Elmachtoub and Grigas 2022) and Fenchel-
Young (FY) loss (Blondel, Martins, and Niculae 2020).

2.1.4 Integer and combinatorial optimization layers

In theory, the methods from the previous section still work in the presence of integer variables, that is, for
ILPs. To apply them, we only need to consider the polytope defined by the convex hull of integral solutions.

3https://github.com/google/jaxopt
4https://github.com/facebookresearch/theseus
5https://github.com/cvxgrp/cvxpylayers
6https://github.com/jump-dev/DiffOpt.jl

8

https://github.com/google/jaxopt
https://github.com/facebookresearch/theseus
https://github.com/cvxgrp/cvxpylayers
https://github.com/jump-dev/DiffOpt.jl

Alas, in the general case, there is no concise way to describe this convex hull. This is why many authors
decide to differentiate through the continuous relaxation of the ILP instead (Mandi, Demirović, et al. 2020):
it is an outer approximation of the integral polytope, but it can be sufficient for learning purposes. Some
suggest taking advantage of techniques specific to integer programming, such as integrality cuts (Ferber et al.
2020) or a generalization of the notion of active constraint (Paulus et al. 2021).

There has also been significant progress on finding gradient approximations for combinatorial problems
such as ranking (Blondel, Teboul, et al. 2020) and shortest paths (Parmentier 2021b). Yet these techniques
are problem-specific, and therefore hard to generalize, which is why we leave them aside.

Instead, we want to allow implicit manipulation of the integral polytope itself, without making assump-
tions on its structure. To achieve that, we can only afford to invoke CO oracles as black boxes (Vlastelica
et al. 2020; Berthet et al. 2020). Compatibility with arbitrary algorithms is one of the fundamental tenets of
InferOpt.jl. The recent Python package PyEPO7 (Tang and Khalil 2022) shares our generic perspective,
but it only implements a subset of InferOpt.jl and does not address the notion of probabilistic CO layer.

This probabilistic aspect is central to our proposal, and it is mostly inspired by the works of Blondel,
Martins, and Niculae (2020) and Berthet et al. (2020). Another related approach is the Implicit Maxi-
mum Likelihood Estimation of Niepert, Minervini, and Franceschi (2021), whose probabilistic formulation is
slightly different and based on exponential families.

Finally, note that CO layers can be computationally heavy due to the frequent need to recompute optimal
solutions at each epoch. Mulamba et al. (2021) address this issue by proposing a noise contrastive approach
with solution caching, while Mandi, Bucarey, et al. (2022) build upon this method with a focus on learning
to rank.

2.2 Similarities and differences with reinforcement learning
As we will see in Section 4, learning by experience can be reminiscent of reinforcement learning (RL), which
also relies on a reward or cost signal given by the environment (Sutton and Barto 2018). Furthermore, the
encoder layer of Equation (4) is similar to a parametric approximation of the value function, which forms the
basis of deep RL approaches. This prompts us to discuss a few differences between RL and the framework
we study.

The standard mathematical formulation of RL is based on Markov decision processes (MDPs), where a
reward and state transition are associated with each action. Usually, the available actions are elementary
decisions: pull one lever of a multi-armed bandit, cross one edge on a graph, select one move in a board
game, etc. The resulting value or policy update is local: it is specific to both the current state and the action
taken. The more reward information we gather, the more efficient learning becomes.

In our framework, the basic step is a call to the optimizer. But combinatorial algorithms can go beyond
simple actions: they often output a structured and high-dimensional solution, which aggregates many ele-
mentary decisions. This in turn triggers a global update in our knowledge of the system, whereby the final
reward is redistributed between all elementary decisions. In a way, backpropagation through the optimizer
enables efficient credit assignment, even for sparse reward signals.

Another difference is related to the Bellman fixed point equation. In an RL setting, the Bellman equation
is used explicitly to derive parameter updates. In our setting, the Bellman equation is used implicitly within
optimizers such as Dijkstra’s algorithm.

To conclude, while standard RL decomposes a policy into elementary decisions, the pipelines we study
here are able to look directly for complex multistep solutions. Note that a similar concept of option exists
in hierarchical RL (Barto and Mahadevan 2003): comparing both perspectives in detail would no doubt be
fruitful, and we leave it for future work.

7https://github.com/khalil-research/PyEPO

9

https://github.com/khalil-research/PyEPO

2.3 Our guiding example: shortest paths on Warcraft maps
As a way to clarify the concepts introduced in this paper, we illustrate them on the problem of Warcraft
shortest paths (Vlastelica et al. 2020; Berthet et al. 2020), which was already introduced on Figure 1. The
associated dataset8, assembled by Vlastelica et al. (2020), contains randomly-generated maps similar to
those from the Warcraft II video game. Each of these maps is a red-green-blue (RGB) image of size ks× ks
containing k× k square cells of side length s. Every cell has its own terrain type (grass, forest, water, earth,
etc.) which incurs a specific cost when game characters cross it.

The goal is to find the shortest path from the top left corner of the map to the bottom right corner.
At prediction time, cell costs are unknown, which means they must be approximated from the image alone.
Solving the problem of Warcraft shortest paths thus requires adapting the pipeline of Equation (4) as follows:

Map image−−−−−−−−→
x∈Rks×ks×3

�

�
	Conv. Neural

Network φw

Negative cell costs−−−−−−−−−−−→
θ∈Rk×k

Dijkstra’s
algorithm

argmaxv∈Pk
θ⊤v

Shortest path−−−−−−−−→
y∈Pk

�

�
	Loss

function L (7)

where we have defined the set of feasible paths

Pk = {v ∈ {0, 1}k×k : v represents a path from (1, 1) to (k, k)}.

Training proceeds based on the map images and (possibly) the true shortest paths or cell costs provided in
the dataset.

As suggested by Vlastelica et al. (2020), we design the CNN based on the first few layers of a ResNet18
(He et al. 2016). We also append a negative softplus activation, in order to make sure that all outputs are
negative. The sign constraint is there to ensure that Dijkstra’s algorithm will terminate, but it is not obvious
why we require negative costs instead of positive ones. The reason behind this sign switch is that Dijkstra’s
algorithm is a minimization oracle, whereas by convention InferOpt.jl works with maximization oracles.

We now show how to implement this pipeline in Julia. Throughout the paper, in addition to InferOpt.jl,
the following packages are used: Flux.jl9 (Innes et al. 2018; Innes 2018), Graphs.jl10 (Fairbanks et al.
2021), GridGraphs.jl11, Metalhead.jl12 and Zygote.jl13 (Innes 2019), along with the base libraries
LinearAlgebra and Statistics. Code sample 1 creates the CNN encoder layer. Meanwhile, Code sam-
ple 2 shows how to define the Dijkstra oracle and the true cost function.

Finally, Code sample 3 demonstrates the full prediction and optimization pipeline. It assumes that we
have already parsed the Warcraft dataset into three vectors:

• images, whose elements are three-dimensional arrays representing map images;

• cells, whose elements are floating-point matrices representing true cell costs;

• paths, whose elements are binary matrices representing true shortest paths.

These functions do not rely on InferOpt.jl, but they will be used throughout the paper inside the
differentiable wrappers provided by the package. Note that some snippets shown here have been shortened
for clarity. Please refer to the documentation of InferOpt.jl and satellite packages for actual runnable
examples.

8https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.YJCQ5S
9https://github.com/FluxML/Flux.jl

10https://github.com/JuliaGraphs/Graphs.jl
11https://github.com/gdalle/GridGraphs.jl
12https://github.com/FluxML/Metalhead.jl
13https://github.com/FluxML/Zygote.jl

10

https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.YJCQ5S
https://github.com/FluxML/Flux.jl
https://github.com/JuliaGraphs/Graphs.jl
https://github.com/gdalle/GridGraphs.jl
https://github.com/FluxML/Metalhead.jl
https://github.com/FluxML/Zygote.jl

� �
using Flux, Metalhead, Statistics

resnet18 = ResNet(
18; pretrain=false, nclasses=1

)

warcraft_encoder = Chain(
resnet18.layers[1][1:4],
AdaptiveMaxPool((12, 12)),
x -> mean(x; dims=3),
x -> dropdims(x; dims=(3, 4)),
x -> -softplus.(x)

)� �
Code sample 1: CNN encoder for Warcraft

� �
using Graphs, GridGraphs, LinearAlgebra
using GridGraphs: QUEEN_DIRECTIONS

function warcraft_maximizer(theta)
g = GridGraph(

-theta;
directions=QUEEN_DIRECTIONS

)
path = grid_dijkstra(g, 1, nv(g))
y = path_to_matrix(g, path)
return y

end

function warcraft_cost(y; theta_ref)
return dot(y, theta_ref)

end� �
Code sample 2: Dijkstra optimizer for Warcraft

� �
x, theta_ref, y_ref = images[1], cells[1], paths[1]
theta = warcraft_encoder(x)
y = warcraft_maximizer(theta)
c = warcraft_cost(y; theta_ref=theta_ref)� �

Code sample 3: Full pipeline for Warcraft shortest paths

3 Probabilistic CO layers
In this section, we focus on the CO oracle f defined in Equation (2), which is piecewise constant. By adopting
a probabilistic point of view, we construct several smooth approximations f̂ , which can be computed and
differentiated based solely on calls to f .

3.1 The expectation of a differentiable probability distribution
As announced in Section 1.2.2, a probabilistic CO layer works in two steps. First, it constructs a probability
distribution p̂(·|θ) ∈ ∆V . Second, it returns the expectation f̂(θ) = Ep̂(·|θ)[V] ∈ conv(V). Figure 2 illustrates
this behavior on a two-dimensional polytope, with a maximization problem defined by the vector θ (black
arrow). While the CO oracle outputs a single optimal vertex (red square), the probabilistic CO layer defines
a distribution on all the vertices (light blue circles). Its output (dark blue hexagon) is a convex combination
of the vertices with nonzero weights, which belongs to the convex hull of V (gray surface).

For such a layer to be useful in our setting, we impose several conditions. First, all computations must
only require calls to the CO oracle f . Second, the expectation Ep̂(·|θ)[V] must be tractable (whether it is with
an explicit formula, Monte-Carlo sampling, variational inference, etc.). Third, the mapping θ 7−→ p̂(·|θ) must
be differentiable. If the last condition is satisfied, then the Jacobian of f̂ is easily deduced from Equation (3):

Jθf̂(θ) = JθEp̂(·|θ)[V] =
∑
v∈V

v∇θp̂(v|θ)⊤ (8)

Let us give an example where analytic formulas exist. If V = {e1, ..., ed} is the set of basis vectors, then
its convex hull conv(V) = ∆d is the unit simplex of dimension d. Given an objective direction θ, solv-
ing argmaxv∈V θ

⊤v yields the basis vector f(θ) = ei where i is the index maximizing θi.

11

Figure 2: Effect of a probabilistic CO layer

We want a probability distribution that evolves smoothly with θ, so we need to spread out the naive
Dirac mass δf(θ)(·) by putting weight on several vertices instead of just one. Let us assign to each vertex a
probability that depends on its level of optimality in the optimization problem argmaxv∈V θ

⊤v, that is, on
its inner product with θ. The Boltzmann distribution is a natural candidate, leading to p̂(ei|θ) ∝ eθ

⊤ei = eθi .
Computing the expectation reveals a well-known operation:

f̂(θ) = Ep̂(·|θ)[V] =

d∑
i=1

eθi∑d
j=1 e

θj
ei = softmax(θ)

Unlike the “hardmax” function f , the softmax function f̂ is differentiable, which justifies its frequent use as
an activation function in classification tasks.

While the Boltzmann distribution can be used for specific sets V, in the general case, it has an intractable
normalizing constant. This means we would need Markov chain Monte-Carlo (MCMC) methods to compute
derivatives, which undermines the simplicity we are looking for. Fortunately, Sections 3.3.1 and 3.3.2 present
other probability distributions which can be easily approximated through sampling.

3.2 Regularization as another way to define a distribution
Although this probabilistic point of view was recently put forward by Berthet et al. (2020), the most popular
paradigm in the literature remains regularization (Blondel, Martins, and Niculae 2020). Instead of using the
CO oracle (2), regularization solves a different problem:

f̂Ω : θ 7−→ argmax
µ∈dom(Ω)

θ⊤µ− Ω(µ) (9)

where Ω : Rd → R is a smooth and convex function that penalizes the output µ. Usually, Ω is chosen to
enforce Ω(µ) = +∞ whenever µ /∈ conv(V), which means dom(Ω) ⊆ conv(V). Remember that since V is
finite, conv(V) is a polytope whose vertices form a subset of V.

12

The change of notation from v (vertex) to µ (moment) stresses the fact that v is an element of V, while µ
belongs to dom(Ω) ⊆ conv(V). By Equation (6), any feasible µ is the expectation of some distribution
over V, hence our choice of letter. This means we can write f̂Ω(θ) as a convex combination of the elements
of V, whose weights are then interpreted as probabilities p̂Ω(·|θ). In other words, the two perspectives are
not opposed: regularization is just another way to define a probability distribution.

For instance, if we go back to the concrete example from Section 3.1 and select Ω(µ) =
∑

i µi logµi (the
negative Shannon entropy), we find once again that f̂Ω(θ) = softmax(θ). But the case of the unit simplex is
very peculiar, because for any µ ∈ conv(V), the convex decomposition of µ onto the vertices V is unique. In
other words, the correspondence between regularizations Ω and probability mappings p̂Ω is one-to-one.

This does not hold for arbitrary polytopes. As a result, we need to be more specific in how we choose
the convex decomposition. In particular, we need the weights to be differentiable, in order to compute the
Jacobian with Equation (8). Section 3.3.3 describes one possible approach, which relies on the Frank-Wolfe
algorithm and implicit differentiation.

Conversely, the probability distributions given in Sections 3.3.1 and 3.3.2 also give rise to an implicit
regularization, which can be expressed using Fenchel conjugates. This point of view is especially useful
when we want to combine these layers with Fenchel-Young losses (Section 5.2.3). In essence, we claim that
probabilistic CO layers and regularization are two sides of the same coin.

3.3 Collection of probabilistic CO layers
Our package implements various flavors of probabilistic CO layers, which are summed up in Table 1. Code
sample 4 displays the operations they all support.

Remark 3.1. We also implement an Interpolation layer, corresponding to the piecewise linear interpo-
lation of Vlastelica et al. (2020). However, to the best of our knowledge it cannot be cast as a probabilistic
CO layer, so it does not support as many operations, and we only mention it for benchmarking purposes.

We now present each row of Table 1 in more detail. The main goal of Sections 3.3.1, 3.3.2 and 3.3.3 is to
explain how p̂(·|θ) and f̂(θ) are computed, as well as their derivatives. We also draw connections with the
regularization paradigm, which will ease the introduction of Fenchel-Young losses in Section 5.2.3. A hasty
reader can safely skip to Section 4.

Layer Notations Probability p̂(·|θ) Regularization

PerturbedAdditive p̂+ε , f̂+ε Explicit: f(θ + εZ) Implicit: Fenchel conjugate
PerturbedMultiplicative p̂⊙ε , f̂⊙ε Explicit: f(θ ⊙ eεZ−ε21/2) Implicit: Fenchel conjugate

RegularizedGeneric p̂FWΩ , f̂FWΩ Implicit: Frank-Wolfe weights Explicit: function Ω

Table 1: Probabilistic CO layers and their defining features

3.3.1 Additive perturbation

A natural way to define a distribution on V is to solve (2) with a stochastic perturbation of the objective
direction θ. Berthet et al. (2020) suggest the following additive perturbation mechanism:

f̂+ε (θ) = E
[
argmax

v∈V
(θ + εZ)⊤v

]
= E [f(θ + εZ)] (10)

where ε > 0 controls the amplitude of the perturbation, Z ∼ N (0, I) is a standard Gaussian vector and
the expectation is taken with respect to Z unless otherwise specified. Choosing ε is a trade-off between

13

� �
using InferOpt, Zygote

p = compute_probability_distribution(layer, theta)
rand(p)
compute_expectation(p)

y = layer(theta) # equal to the expectation of p
Zygote.jacobian(layer, theta)� �

Code sample 4: Supported operations for a probabilistic CO layer

smoothness (large ε) and accuracy of the approximation (small ε). The associated probability distribution
on V can be described explicitly:

f̂+ε (θ) =
∑
v∈V

vp̂+ε (v|θ) with p̂+ε (v|θ) = P (f(θ + εZ) = v) . (11)

Meanwhile, Proposition 3.1 allows us to compute differentials. Although the expectations cannot be expressed
in closed form, they can be estimated using M Monte-Carlo samples Z1, ..., ZM ∼ N (0, I). Increasing M
yields smoother approximations but makes the complexity grow linearly.

Proposition 3.1 (Differentiating through an additive perturbation (Berthet et al. 2020)). We have:

∇θp̂
+
ε (v|θ) =

1

ε
E [1{f(θ + εZ) = v}Z]

Jθf̂
+
ε (θ) =

1

ε
E
[
f(θ + εZ)Z⊤]

Proof. See Appendix A.1.1.

In order to recover the regularization associated with p+ε , we leverage convex conjugation. Let F+
ε be the

function defined by

F+
ε (θ) = E

[
max
v∈V

(θ + εZ)⊤v

]
and let Ω+

ε = (F+
ε)∗ denote its Fenchel conjugate.

Proposition 3.2 (Regularization associated with an additive perturbation (Berthet et al. 2020)). The
function Ω+

ε is convex, it satisfies dom(Ω+
ε) ⊂ conv(V) and

f̂+ε (θ) = argmax
µ∈conv(V)

θ⊤µ− Ω+
ε (µ) = f̂Ω+

ε
(θ).

Proof. See Appendix A.1.2.

Code sample 5 shows how this translates into InferOpt.jl syntax.

3.3.2 Multiplicative perturbation

Since the Gaussian distribution puts mass on all of Rd, it can happen that some components of θ+εZ switch
their sign with respect to θ. This may cause problems whenever the CO oracle for f has sign-dependent
behavior. For instance, Dijkstra’s algorithm for shortest paths requires all the edges of a graph to have a
positive cost. In those cases, we need a sign-preserving kind of perturbation. Changing the distribution
of Z to make it positive almost surely is not the right answer because it would bias the pipeline, leading

14

to E[θ + εZ] > θ for the componentwise order. So instead of being additive, the perturbation becomes
multiplicative:

f̂⊙ε (θ) = E
[
argmax

v∈V

(
θ ⊙ eεZ−ε21/2

)⊤
v

]
= E

[
f
(
θ ⊙ eεZ−ε21/2

)]
(12)

Here, ⊙ denotes the Hadamard product, and the exponential is taken componentwise. Since E[eεZ] =

eε
21/2 ̸= 1, we add a correction term in the exponent to remove any bias: E[θ ⊙ eεZ−ε21/2] = θ. As before,

the associated probability distribution is easy to describe:

f̂⊙ε (θ) =
∑
v∈V

vp̂⊙ε (v|θ) with p̂⊙ε (v|θ) = P
(
f
(
θ ⊙ eεZ−ε21/2

)
= v

)
. (13)

And Proposition 3.3 provides differentiation formulas that are very similar to the additive case.

Proposition 3.3 (Differentiating through a multiplicative perturbation). We have:

∇θp̂
⊙
ε (v|θ) =

1

εθ
⊙ E

[
1

{
f
(
θ ⊙ eεZ−ε21/2

)
= v

}
Z
]

Jθf̂
⊙
ε (θ) =

1

εθ
⊙ E

[
f
(
θ ⊙ eεZ−ε21/2

)
Z⊤

]
Proof. See Appendix A.2.1.

As far as regularization is concerned, we need a slight tweak compared to the additive case. Let F⊙
ε be

the function defined by

F⊙
ε (θ) = E

[
max
v∈V

(
θ ⊙ eεZ−ε21/2

)⊤
v

]
and let Ω⊙

ε = (F⊙
ε)∗ denote its Fenchel conjugate. We define

f̂⊙scaled
ε (θ) = E

[
eεZ−ε21/2 ⊙ f

(
θ ⊙ eεZ−ε21/2

)]
Proposition 3.4 (Regularization associated with a multiplicative perturbation). The function Ω⊙

ε is convex
and satisfies

f̂⊙scaled
ε (θ) = argmax

µ∈dom(Ω⊙
ε)

θ⊤µ− Ω⊙
ε (µ) = f̂Ω⊙

ε
(θ).

Unlike in the additive case, it is not f̂⊙ε itself that can be viewed as the product of regularization with Ω⊙
ε ,

but f̂⊙scaled
ε . Furthermore, this time we have dom(Ω⊙

ε) ̸⊆ conv(V).

Proof. See Appendix A.2.2.

Code sample 5 shows how this translates into InferOpt.jl syntax.

3.3.3 Generic regularization

We now switch our focus to the case of an explicit regularization Ω. Provided the regularization is convex
and smooth, approximate computation of f̂Ω(θ) is made possible by the Frank-Wolfe algorithm (Frank and
Wolfe 1956). This algorithm is interesting for two reasons. First, it only requires access to the CO oracle f
and the gradient of Ω. Second, its output is expressed as a convex combination of only a few polytope vertices
(Jaggi 2013). In other words, the Frank-Wolfe algorithm does not just return a single point f̂Ω(θ) ∈ conv(V):
it also defines a sparse probability distribution p̂FWΩ (·|θ) over the vertices V such that

f̂Ω(θ) =
∑
v∈V

vp̂FWΩ (v|θ).

15

� �
using InferOpt

perturbed_add = PerturbedAdditive(
warcraft_maximizer;
epsilon=0.5, nb_samples=10

)

perturbed_mult = PerturbedMultiplicative(
warcraft_maximizer;
epsilon=0.5, nb_samples=10

)� �
Code sample 5: Probabilistic CO layers defined by

perturbation

� �
using InferOpt

regularized = RegularizedGeneric(
warcraft_maximizer;
omega=y -> 0.5 * sum(y .ˆ 2),
omega_grad=y -> y

)� �
Code sample 6: Probabilistic CO layer defined

by regularization

This distribution is called sparse because most of the weights are actually zero. Note that p̂FWΩ (·|θ) is not
uniquely specified by the regularization Ω, but instead depends on the precise implementation of the Frank-
Wolfe algorithm (initialization, step size, convergence criterion, etc.). In particular, the number of atoms in
the distribution is upper-bounded by the number of Frank-Wolfe iterations.

As pointed out by Blondel, Berthet, et al. (2022, Appendix C), there exists a function g(p, θ) defined
on ∆V×Rd such that p̂FWΩ (·|θ) is a fixed point of its projected gradient operator p 7−→ proj∆V (p−∇pg(p, θ)).
Since the orthogonal projection onto the simplex ∆V is itself differentiable (Martins and Astudillo 2016), we
can apply the implicit function theorem to this fixed point equation. Doing so yields gradients ∇θp̂Ω(v|θ)
that we use to compute a Jacobian for f̂Ω(θ). Again, by sparsity, this sum only has a few non-zero terms,
which makes it tractable:

Jθf̂Ω(θ) =
∑
v∈V

v∇θp̂
FW
Ω (v|θ)⊤. (14)

Among all the possible functions Ω, the quadratic penalty Ω(µ) = 1
2∥µ∥2 is particularly interesting. It gives

rise to the SparseMAP method (Niculae et al. 2018), whose name comes from the sparsity of the Euclidean
projection onto a polytope:

f̂Ω(θ) = argmax
µ∈conv(V)

{
θ⊤µ− 1

2
∥µ∥2

}
= argmin

µ∈conv(V)

∥µ− θ∥2.

This is the one we used for the example of Code sample 6. Our implementation relies on the recent package
FrankWolfe.jl14 (Besançon, Carderera, and Pokutta 2022).

Remark 3.2. Blondel, Martins, and Niculae (2020) also suggest distribution regularization, whereby Ω(µ)
is defined through a generalized entropy H(p) on ∆V :

Ω(µ) = − max
p∈∆V

H(p) s.t. Ep[V] = µ.

Distribution regularization can only be computed explicitly for certain entropies H (Shannon entropy, Gini
index) and certain polytopes conv(V) (unit simplex, permutahedron, spanning trees, etc.). In each case, a
custom combinatorial algorithm is required. Since we aim for a generic approach, we only consider mean
regularization, which is defined directly on the expectation µ.

14https://github.com/ZIB-IOL/FrankWolfe.jl

16

https://github.com/ZIB-IOL/FrankWolfe.jl

3.4 The case of inexact CO oracles
In our discussion so far, an implicit assumption was that the CO oracle f returns an exact solution to
Equation (2). For most polynomial problems (as well as some NP-hard problems which are tractable in
practice), this is perfectly reasonable. But in some cases, exact solutions are too expensive to compute.
Then, our CO oracle may only be able to return an inexact solution, for instance because branch & bound
has to be interrupted before the whole tree can be explored. What kind of impact does this have on the
precision of the computed Jacobian?

Let us denote by f a hypothetical exact oracle, and by g an inexact oracle.

Proposition 3.5 (Jacobian precision for inexact oracles – perturbed case). Suppose we use g instead of f
with additive (resp. multiplicative) perturbation. Then the error on the Jacobian of the probabilistic CO
layer satisfies: ∥∥∥Jθĝ+ε (θ)− Jθf̂+ε (θ)

∥∥∥2 ≤ √d
ε
∥g − f∥∞∥∥∥Jθ ĝ⊙ε (θ)− Jθf̂⊙ε (θ)

∥∥∥2 ≤ √
d

εmini|θi|
∥g − f∥∞.

While requiring the inexact oracle g to be uniformly close to f is quite restrictive, this result does provide
heuristic justification for the use of inexact oracles in practice.

Proof. See Appendix A.3.

4 Learning by experience
Now that we have seen several ways to construct probabilistic CO layers, we turn to the definition of an
appropriate loss function. Let us start with learning by experience, which takes place when we only have
access to input samples without target outputs. In that case, Equation (5) simplifies as

min
w

1

N

N∑
i=1

L
(
f
(
φw(x

(i))
))
. (15)

As we will see below, the regret, which is the natural choice of loss, does not yield interesting gradients.
That is why we propose a family of smooth regret surrogates derived from our probabilistic CO layers, and
explain how to differentiate them. While similar losses have been hinted at in previous works, to the best of
our knowledge, our general point of view is new.

To make notations lighter, we restrict ourselves to a single input x. Furthermore, we write losses as
functions of θ instead of w. Indeed, our losses do not just rely on y = f(θ): they use f as an ingredient
internally. In practice, we leave it to AD to exploit the relation θ = φw(x) in order to compute gradients
with respect to w.

4.1 Minimizing a smooth regret surrogate
When we learn by experience, the problem statement usually includes a cost function c : V → R, and we
want our pipeline to generate solutions that are as cheap as possible. Internally, this cost function may use
parameters that are unknown to us at prediction time: typically, it may assess the quality of our solution
using the true objective direction θ̄. It may be useful to think about c as the feedback provided by an outside
evaluator, rather than a function we implement ourselves.

The natural loss to minimize is the cost incurred by our prediction pipeline, also called regret:

R(θ) = c(f(θ)). (16)

17

� �
using InferOpt

regret_pert = Pushforward(
perturbed_add, warcraft_cost

)
regret_reg = Pushforward(

regularized, warcraft_cost
)� �

Code sample 7: Expected regrets associated with
probabilistic CO layers

� �
using Zygote

R = regret(theta)
Zygote.gradient(regret, theta)� �

Code sample 8: Supported operations for an
expected regret

This function relies on the CO oracle f , which is piecewise constant. Our spontaneous impulse would be to
replace the CO oracle f with a probabilistic CO layer f̂ , thus minimizing c(f̂(θ)). Unfortunately, the cost
function c is not necessarily smooth either. To make matters worse, c may only be defined on vertices v ∈ V,
and not on general convex combinations µ ∈ conv(V).

The solution we propose relies on the pushforward measure (also called image measure) of p̂(·|θ) with
respect to the function c. Recall that a probabilistic CO layer is defined by f̂(θ) = Ep̂(·|θ)[V]. To compose it
with an arbitrary cost, instead of applying c outside the expectation, we apply it inside the expectation. In
other words, we first push the measure p̂(·|θ) forward through the function c, before taking the expectation.
This gives rise to the notion of expected regret :

Rp̂(θ) = Ep̂(·|θ)[c(V)] (17)

By integration, this loss is just as smooth as the probability mapping θ 7−→ p̂(·|θ), which means we can com-
pute its gradient easily. We therefore suggest using the expected regret Rp̂ that stems from the probabilistic
CO layers p̂+ε , p̂⊙ε , and p̂FWΩ defined in Section 3.

Note that if c is linear and defined on all of conv(V), then Ep̂(·|θ)[c(V)] = c
(
Ep̂(·|θ)[V]

)
and the two

quantities coincide. Furthermore, if c is convex, then Ep̂(·|θ)[c(V)] ≥ c
(
Ep̂(·|θ)[V]

)
by Jensen’s inequality,

which means the expected regret is an upper bound.

Code sample 7 demonstrates how to define an expected regret from probabilistic CO layers, while Code
sample 8 shows that we can compute and differentiate it automatically. Finally, Code sample 9 displays a
complete program for learning by experience. The rest of this section explains how to compute derivatives
of the expected regret Rp̂ and can be skipped without danger.

� �
using Flux, InferOpt

gradient_optimizer = Adam()
parameters = Flux.params(warcraft_encoder)
data = images

function pipeline_loss(x)
theta = warcraft_encoder(x)
return regret(theta)

end

for epoch in 1:1000
train!(pipeline_loss, parameters, data, gradient_optimizer)

end� �
Code sample 9: Learning with an expected regret

18

Remark 4.1. Since the learning problem is non-convex, we may also try to minimize the (non-smooth)
regret R using global optimization algorithms such as DIRECT (Jones, Perttunen, and Stuckman 1993).
Perhaps surprisingly, this has been shown to yield good results when φw is a generalized linear model and
the dimension of the weights w is not too large, i.e., no greater that 100 (Parmentier 2021a). When the ML
layer φw is a large neural network, we cannot use this approach anymore.

4.2 Derivatives of the regret for learning by experience
When p̂ comes from a random perturbation, we can formulate the gradient of the expected regret as an
expectation too, and approximate it with Monte-Carlo samples.

Proposition 4.1 (Gradient of the expected regret, perturbation setting). We have:

∇θRp̂+
ε
(θ) =

1

ε
E [(c ◦ f)(θ + εZ)Z]

∇θRp̂⊙
ε
(θ) =

1

εθ
⊙ E

[
(c ◦ f)

(
θ ⊙ eεZ−ε21/2

)
Z
]
.

Proof. For the additive perturbation, it is a consequence of Proposition 3.1. For the multiplicative pertur-
bation, it is a consequence of Proposition 3.3.

These gradients obey a simple logic: the more the perturbation Z increases the cost of a solution, the
more positive weight it gets, and vice versa. To see it, we remember that E[Z] = 0 for a standard Gaussian,
and rewrite the regret gradients as follows:

∇θRp̂+
ε
(θ) =

1

ε
E [(c ◦ f)(θ + εZ)Z − (c ◦ f)(θ)Z]

∇θRp̂⊙
ε
(θ) =

1

εθ
⊙ E

[
(c ◦ f)

(
θ ⊙ eεZ−ε21/2

)
Z − (c ◦ f)(θ)Z

]
.

On the other hand, when p̂ is derived from an explicit regularization Ω, the expected regret is amenable
to implicit differentiation of the Frank-Wolfe algorithm. Once more, the sparsity property makes exact
computation tractable by reducing the number of terms in the sum:

∇θRp̂FW
Ω

(θ) =
∑
v∈V

c(v)∇θp̂
FW
Ω (v|θ)

Remark 4.2. Although the previous discussion focuses on a scalar-valued cost, it actually applies to any
pushforward function c, even with vector values. The formulas for the generic Jacobian are given below:

JθEp̂+
ε (·|θ)[c(V)] =

1

ε
E
[
(c ◦ f)(θ + εZ)Z⊤]

JθEp̂⊙
ε (·|θ)[c(V)] =

1

εθ
⊙ E

[
(c ◦ f)

(
θ ⊙ eεZ−ε21/2

)
Z⊤

]
JθEp̂FW

Ω (·|θ)[c(V)] =
∑
v∈V

c(v)∇θp̂
FW
Ω (v|θ)⊤

At the moment, InferOpt.jl only handles the case where c is a fully-defined function without free pa-
rameters. In the near future, we will add support for the case where c is itself an ML layer with learnable
weights.

5 Learning by imitation
We now move on to learning by imitation, where additional information is used to guide the training pro-
cedure. For each input sample x(i), we assume we have access to a target t̄(i). In that case, Equation (5)

19

simplifies as

min
w

1

N

N∑
i=1

L
(
f
(
φw(x

(i))
)
, t̄(i)

)
, (18)

and we can see that the loss takes the target as an additional argument. In this section, we introduce imitation
losses that are well-suited to hybrid ML-CO pipelines, and explain how to compute their gradients. As in
Section 4, we only consider a single input x, and we write losses as L(θ, t̄).

5.1 A loss that takes the optimization layer into account
There are two main kinds of target. The first one is a good quality solution t̄ = ȳ. The second one is the
true objective direction θ̄, from which we can also deduce ȳ = f(θ̄), so that t̄ = (θ̄, ȳ). When learning by
imitation, it is tempting to focus only on reproducing the targets, but this would be misguided. To explain
why, we revisit the pipeline of Equation (4).

Remember that we may have access to the true objective direction θ̄ during training, but at prediction
time, the CO oracle f is applied to the encoder output θ = φw(x) instead. Minimizing a naive square loss
like ∥φw(x) − θ̄∥2 completely neglects the asymmetric impacts of the prediction errors on θ: for example,
overestimating or underestimating θ may have very different consequences on the quality of the downstream
solution. That is why, according to Elmachtoub and Grigas (2022), we need a loss function that takes
the optimization step into account. The same holds true when we have access to a precomputed solution ȳ.
Berthet et al. (2020) present experiments showing that the naive square loss ∥f̂(φw(x))− ȳ∥2 performs poorly
compared with more refined approaches. Our own numerical findings (Section 6) support their conclusion.

To sum up, we want a loss that does not neglect the optimization step. Let y temporarily denote the
output of our pipeline. When surveying the literature, we realized that most flavors of imitation learning
use losses that combine the same components:

Laux
ℓ,Ω (θ, t̄, y) = ℓ(y, t̄)︸ ︷︷ ︸

base loss

+ θ⊤(y − ȳ)︸ ︷︷ ︸
gap between

y and ȳ for the
CO problem (2)

− (Ω(y)− Ω(ȳ))︸ ︷︷ ︸
regularization term

(19)

Here is another way to write it:

Laux
ℓ,Ω (θ, t̄, y) = ℓ(y, t̄)︸ ︷︷ ︸

base loss

+
(
θ⊤y − Ω(y)

)
−
(
θ⊤ȳ − Ω(ȳ)

)︸ ︷︷ ︸
gap between y and ȳ

for the regularized CO problem (9)

The base loss ℓ(y, t̄) is similar in spirit to the cost function c(y) from Section 4. But it is the gap term that
truly makes it possible for the optimization problem to play a role in the loss. Indeed, minimizing the gap
encourages the (regularized) CO problem to output a solution y that is close to the target ȳ.

Putting these components together yields a linear function of θ, and we can remove the dependency in y
by maximizing over y:

Lgen
ℓ,Ω(θ, t̄) = max

y∈dom(Ω)
Laux
ℓ,Ω (θ, t̄, y) = max

y∈dom(Ω)

[
ℓ(y, t̄) + θ⊤(y − ȳ)− (Ω(y)− Ω(ȳ))

]
. (20)

The following result justifies why this is an interesting loss.

Proposition 5.1 (Properties of the generic loss for learning by imitation). The function Lgen
ℓ,Ω (θ, t̄) is convex

with respect to θ, and a subgradient is given by(
argmax
y∈dom(Ω)

Laux
ℓ,Ω (θ, t̄, y)

)
− ȳ ∈ ∂θLgen

ℓ,Ω (θ, t̄). (21)

Proof. As a pointwise maximum of affine functions, θ 7−→ Lgen
ℓ,Ω(θ, t̄) is convex. Its subgradient is obtained

using Danskin’s theorem (Danskin 1967).

20

Method Notation Target Base loss Regul. Loss formula

S-SVM LS-SVM
ℓ ȳ ℓ(y, ȳ) No max

y
ℓ(y, ȳ) + θ⊤(y − ȳ)

SPO+ LSPO+ (θ̄, ȳ) θ̄⊤(ȳ − y) No max
y

θ̄⊤(ȳ − y) + 2θ⊤(y − ȳ)
FY LFY

Ω ȳ 0 Yes max
y

θ⊤(y − ȳ)− (Ω(y)− Ω(ȳ))

Generic Lgen
ℓ,Ω t̄ ℓ(y, t̄) Yes max

y
ℓ(y, t̄) + θ⊤(y − ȳ)− (Ω(y)− Ω(ȳ))

Table 2: A common decomposition for loss functions in imitation learning

� �
using InferOpt

fyl_pert = FenchelYoungLoss(perturbed_add)
fyl_reg = FenchelYoungLoss(regularized)
spol = SPOPlusLoss(warcraft_maximizer)� �

Code sample 10: Example imitation losses

� �
using Zygote

L = loss(theta, y_ref)
Zygote.gradient(loss, theta, y_ref)� �

Code sample 11: Supported operations for an
imitation loss

The idea is that solving argmaxy∈dom(Ω) Laux
ℓ,Ω (θ, t̄, y) should not be much harder than the regularized CO

problem (9). Therefore, using such a loss function dispenses us from differentiating through the probabilistic
CO layer: most of the time, we only need to compute the layer output in order to obtain a loss subgradient
for free.

5.2 Collection of losses for learning by imitation
Several prominent loss functions from the literature are special cases of our decomposition (20): we gather
them in Table 2. Code sample 10 clarifies their construction, while Code sample 11 displays supported
operations. Finally, the entire program necessary for learning by imitation is shown on Code sample 12.

In Sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4, we go over these special cases to explain how to compute each
loss and its subgradient using Equation (21). They can be skipped without danger.

Remark 5.1. While the S-SVM and SPO+ losses do not fall within the framework of probabilistic CO layers
(due to the absence of regularization), we still include them for benchmarking purposes.

� �
using Flux, InferOpt

gradient_optimizer = ADAM()
parameters = Flux.params(warcraft_encoder)
data = zip(images, paths)

function pipeline_loss(x, y)
theta = warcraft_encoder(x)
return loss(theta, y)

end

for epoch in 1:1000
train!(pipeline_loss, parameters, data, gradient_optimizer)

end� �
Code sample 12: Learning with an imitation loss

21

5.2.1 Structured support vector machines

The structured support vector machine (S-SVM) was among the first methods introduced for learning in
structured spaces (Nowozin and Lampert 2010, Chapter 6). Given a target solution ȳ and an underlying
distance function ℓ(y, ȳ) on V, the S-SVM loss is computed as follows:

LS-SVM
ℓ (θ, ȳ) = max

y∈V
{ℓ(y, ȳ) + θ⊤(y − ȳ)}. (22)

The subgradient formula (21) becomes

argmax
y∈V

{ℓ(y, ȳ) + θ⊤(y − ȳ)} − ȳ ∈ ∂θLS-SVM
ℓ .

Note that due to the presence of ℓ, computing a subgradient requires an auxiliary solver that is different
from the linear oracle f . This is why we do not illustrate the S-SVM with a code sample. In InferOpt.jl,
we only implement this auxiliary solver for the unit simplex, in the case where ℓ is the Hamming distance.
However, we also provide a generic layer where the user can plug in the relevant auxiliary solver.

5.2.2 Smart “predict, then optimize”

The smart “predict, then optimize” (SPO) paradigm is applicable when the true objective direction θ̄ is
known (remember that in this case, we have ȳ = f(θ̄)). Elmachtoub and Grigas (2022) define the SPO+
loss function as follows:

LSPO+(θ, θ̄) = (2θ − θ̄)⊤f(2θ − θ̄) + (θ̄ − 2θ)⊤ȳ (23)

= max
y∈V

{
θ̄⊤(ȳ − y) + 2θ⊤(y − ȳ)

}
.

It can be seen as a special case of S-SVM. But this time, computing the loss and its subgradient only requires
calling f twice:

2f(2θ − θ̄)− 2ȳ ∈ ∂θLSPO+(θ, θ̄).

5.2.3 Fenchel-Young losses

The framework of Fenchel-Young losses is built on the theory of convex conjugates, in particular the Fenchel-
Young inequality (Blondel, Martins, and Niculae 2020). Starting from a target solution ȳ and a regulariza-
tion Ω, a loss is constructed as follows:

LFY
Ω (θ, ȳ) = Ω∗(θ) + Ω(ȳ)− θ⊤ȳ (24)

= max
y∈conv(V)

(
θ⊤y − Ω(y)

)
−

(
θ⊤ȳ − Ω(ȳ)

)
This time, the loss and subgradient require access to f̂Ω:

f̂Ω(θ)− ȳ ∈ ∂θLFY
Ω (θ, ȳ).

As can be inferred from the expression above, there are deep connections between Fenchel-Young losses and
the regularization paradigm of Section 3.2. In particular, it is also possible to use implicit regularization by
perturbation (Berthet et al. 2020). The fact that we cannot compute Ω+

ε (y) or Ω⊙
ε (y) is not a real obstacle:

since those terms do not depend on θ, we can just drop them from the loss during training. We end up with
the following estimators for the loss and its subgradient:

LFY
Ω+

ε
(θ, ȳ) = F+

ε (θ)− θ⊤ȳ f̂+ε (θ)− ȳ ∈ ∂θLFY
Ω+

ε
(θ, ȳ)

LFY
Ω⊙

ε
(θ, ȳ) = F⊙

ε (θ)− θ⊤ȳ f̂⊙scaled
ε (θ)− ȳ ∈ ∂θLFY

Ω⊙
ε
(θ, ȳ)

22

5.2.4 Generic imitation loss

Of course, it is tempting to fill in the blanks of Table 2 by combining every single term of the loss decom-
position (20). To the best of our knowledge, this has not been done before in the literature, but there is no
theoretical obstacle.

If we use this generic loss together with regularization, then it is interesting to remark that Lgen
ℓ,Ω(θ, t̄) acts

as a convex upper bound on the base loss ℓ(f̂Ω(θ), t̄). Indeed, since ȳ is a worse solution than f̂Ω(θ) for (9),
we have

ℓ(f̂Ω(θ), t̄) ≤ ℓ(f̂Ω(θ), t̄) +
[
θ⊤f̂Ω(θ)− Ω(f̂Ω(θ))

]
−

[
θ⊤ȳ − Ω(ȳ)

]
≤ max

y∈conv(V)

(
ℓ(y, t̄) + θ⊤(y − ȳ)− (Ω(y)− Ω(ȳ))

)
= Lgen

ℓ,Ω(θ, t̄).

Therefore, our generic loss can be seen as a crossover between the Fenchel-Young loss and a problem-specific
base loss. It is not yet implemented in InferOpt.jl, and we leave its thorough testing for future work.

6 Applications
In this section, we define specific ML-CO pipelines, in both learning settings (by experience and by imitation),
to address four problems: our shortest path problem on Warcraft maps, a stochastic vehicle scheduling
problem, a single-machine scheduling problem, and a two-stage stochastic minimum weight spanning tree
problem. The first one stems from the ML community. The other three are classics from the field of
operations research. They illustrate the idea of approximating hard optimization problems with simpler
ones using ML-CO pipelines.

6.1 Shortest paths on Warcraft maps
First we come back to our guiding example of Section 2.3. Our aim is to illustrate the various learning
settings introduced in this paper, and to evaluate their relative performance. We do so with two kinds of
shortest path (SP) oracles. The first one uses Dijkstra’s algorithm. The second one uses the Ford-Bellman
algorithm with a bounded number of iterations.

6.1.1 Experimental setting

In every experiment presented here, we only consider a sub-dataset, made up of 1% of the original Warcraft
dataset from Vlastelica et al. (2020). It contains 200 samples, or maps, which we split into 80 training samples,
100 validation samples (for hyperparameter tuning) and 20 test samples (for performance evaluation). For
each learning setting, the train, test and validation sets remain the same, and we individually tune a subset
of the hyperparameters stated in Table 3. Our motivation for reducing the dataset is to show that we can
still obtain convincing results with a limited amount of computation.

We use the Metalhead.jl package to build a truncated ResNet18 CNN, Flux.jl to train our pipelines
with the Adam optimizer (Kingma and Ba 2015), and GridGraphs.jl to compute shortest paths. Our
code is available in the WarcraftShortestPaths.jl15 repository. The experiments are conducted on a
MacBook Pro with 2,3 GHz Intel Core i9, 8 cores and 16 Go 2667 MHz DDR4 RAM.

To obtain a precise learning setting, we need to define:

1. The combinatorial problem we need to solve, along with an appropriate oracle.

2. The probabilistic CO layer used to wrap said oracle.

3. The data we have at our disposal to train our pipeline.
15https://github.com/LouisBouvier/WarcraftShortestPaths.jl

23

https://github.com/LouisBouvier/WarcraftShortestPaths.jl

Hyperparameter Description

epsilon Scale of the noise for perturbation.
nb_samples Number of noise samples M for perturbation.
batch_size Size of the batches to compute gradients.
lr_start Starting learning rate.

Table 3: Hyperparameters for learning Warcraft shortest paths.

4. The loss function we want to minimize.

No matter the setting, the data always contains a list of RGB map images. When we learn by experience,
we also have access to a black box cost function, which evaluates paths based on the true cell costs (see the
beginning of Section 4). On the other hand, when we learn by imitation, we add targets to the maps (as
defined in Section 5). The target in our case always includes the optimal path, with or without the true cell
costs.

All those ingredients are detailed in Table 4 for each learning setting we consider. The names given in the
first column are reused in the legends of Figure 3. Most of the probabilistic CO layers considered in this paper
do not prevent the objective vector θ from changing its sign, and the same goes for the losses As a result, we
need oracles able to accommodate negative cell costs. That is why we use the Ford-Bellman algorithm, while
limiting the number of iterations to the number of nodes in the grid graph (to ensure termination even with
negative cycles). Our multiplicative perturbation is the only approach that preserves non-negative costs. It
enables us to apply Dijkstra’s algorithm, which has a smaller time and space complexity.

Seeting name CO problem
(CO oracle) Probabilistic CO layer Exp./Imit.

Target Loss

Cost perturbed multiplicative noise SP with non-negative costs
(Dijkstra)

Multiplicative
perturbation

Experience
No target Perturbed cost

Cost perturbed additive noise SP on an extended acyclic graph
(Ford-Bellman)

Additive
perturbation

Experience
No target Perturbed cost

Cost regularized half square norm SP on an extended acyclic graph
(Ford-Bellman) Half square norm Experience

No target Regularized cost

SPO+ SP on an extended acyclic graph
(Ford-Bellman) No regularization Imitation

Cost and path SPO+ loss

MSE perturbed multiplicative noise SP with non-negative costs
(Dijkstra)

Multiplicative
perturbation

Imitation
Path Mean squared error

MSE regularized half square norm SP on an extended acyclic graph
(Ford-Bellman) Half square norm Imitation

Path Mean squared error

Fenchel-Young perturbed multiplicative noise SP with non-negative costs
(Dijkstra)

Multiplicative
perturbation

Imitation
Path Fenchel-Young

Fenchel-Young perturbed additive noise SP on an extended acyclic graph
(Ford-Bellman)

Additive
perturbation

Imitation
Path Fenchel-Young

Fenchel-Young regularized half square norm SP on an extended acyclic graph
(Ford-Bellman) Half square norm Imitation

Path Fenchel-Young

Table 4: Learning settings for Warcraft shortest paths.

6.1.2 Results

In Figure 3, we show the average train (Figure 3a) and test (Figure 3b) optimality gaps, computed using
the true cell costs. We compare all the settings detailed in Table 4, with the exception of MSE base loss +
additive noise (we could not get satisfactory results using only 80 training samples). To quantify training
effort, instead of counting epochs (i.e. passes through the dataset), we use the number of optimizer calls,
because these calls are the truly time-consuming part. This aims at comparing learning settings which
involve different amounts of computation per gradient step. For instance, using SPO+, we need 2 optimizer

24

calls to compute the loss gradient for one sample. On the other hand, we need M optimizer calls if we choose
Fenchel-Young perturbed additive noise.

When learning by imitation, SPO+ reaches almost zero average gap both on train and test sets after
very few optimizer calls, even though we only kept 1% of the initial dataset. This impressive result can be
understood since, with SPO+, we have access to the true cell costs during training, and we leverage the
problem structure within the loss.

Assuming we only have access to target paths, we obtain better results with Fenchel-Young losses than
with MSE losses. The train and test average gaps are lower than 5% with the former, and we observe good
generalization performance. This may be explained by the use of the optimization problem in the Fenchel-
Young loss definition. On the contrary, in the MSE setting, although we have access to target paths, we only
seek to imitate them without truly accounting for solution cost.

Perhaps surprisingly, we also manage to learn by experience with our small sub-dataset. Indeed, using
the techniques introduced in Section 4, we reach 7% average test gaps in the cost perturbed multiplicative
noise setting, which is better than learning by imitation with an MSE loss. To the best of our knowledge, it
is the first time that learning by experience (as defined in Section 4) is combined with CNNs.

6.2 Approximating hard optimization problems
Solving hard optimization problems is one of the main applications of hybrid CO-ML pipelines. The principle
is to build a pipeline which approximates a hard combinatorial problem, for which we do not have an efficient
algorithm. The approximation relies on a similar but easier problem, for which an efficient algorithm exists.
This “easy” algorithm is then used as a CO layer. In order to obtain the best possible approximation (in
terms of closeness to the original problem), this CO layer is complemented with encoding and decoding
layers, whose weights can be learned.

In the remaining of this section, we use InferOpt.jl in this framework, and apply it to three different
problems. In Section 6.3, we focus on the stochastic vehicle scheduling problem with similar experiments as
in Parmentier (2021a) for the learning by imitation, and Parmentier (2021b) for the learning by experience.
Then, in Section 6.4, we study the single machine scheduling problem and compare our results to those in
Parmentier and T’Kindt (2021). Finally, in Section 6.5, we look at the two-stage stochastic minimum weight
spanning tree problem, and demonstrate the use of a GNN in combination with InferOpt.jl. Source code
for these three applications can be found in their respective satellite packages.

6.3 Stochastic vehicle scheduling problem
We use InferOpt.jl to solve the stochastic vehicle scheduling problem (StoVSP), by learning a transfor-
mation that approximates its instances as instances of the easier to solve vehicle scheduling problem (VSP).
Source code can be found in the satellite package StochasticVehicleScheduling.jl16.

6.3.1 Problem formulation

Vehicle scheduling problem The (deterministic) VSP consists in assigning vehicles to cover a set of
scheduled tasks, while minimizing the total cost. Let V̄ be the set of tasks. Each task v ∈ V̄ has a scheduled
beginning time tbv, and a scheduled end time tev, such that tev > tbv. We denote ttr(u,v) the travel time from
task u to task v. A task v can be scheduled after another task u only if we can reach it in time, before it
starts:

tbv ≥ teu + ttr(u,v) (25)

An instance of VSP can be modeled with a directed graph D = (V,A), with V = V̄ ∪ {o, d}, and o, d
origin and destination dummy nodes. For all task v ∈ V , (o, v) and (v, d) are arcs in A. Additionally, there
is an arc between two tasks u and v only if (25) is satisfied. The resulting graph D is acyclic.

16https://github.com/BatyLeo/StochasticVehicleScheduling.jl

25

https://github.com/BatyLeo/StochasticVehicleScheduling.jl

A solution of the VSP problem is a set of o − d paths partitioning D, such that all tasks are covered
exactly once. The objective is to minimize the sum of path edge costs. This can be formulated as an LP
(see Appendix B.1.1), and can be solved either using a flow algorithm, or using a general purpose LP solver.

Stochastic Vehicle Scheduling In the stochastic VSP, we consider the same setting as the deterministic
version, to which we add the following. Once the scheduling decision is set, we observe random delays, which
propagate along vehicle paths. The objective is to minimize the sum of vehicle costs and expected total
delay costs.

We consider a finite set of scenarios s ∈ S. For each task v ∈ V̄ , we denote γsv the intrinsic delay of v
in scenario s, and dsv its total delay. We also denote δsu,v the slack between tasks u and v. These quantities
follow the delay propagation equation when u and v are consecutively operated by the same vehicle:

dsv = γsv +max(dsu − δsu,v, 0) (26)

This leads to a much more difficult problem to solve. In Appendix B.1.2, we provide a compact MILP
formulation, which enables to easily solve optimally instances with up to 25 tasks using commercial MILP
solvers.

6.3.2 Datasets

To generate our instance datasets, we use a generator similar to the one used by Parmentier (2021b). More
details are given in Appendix B.1.3. We consider 3 training/validation datasets used to train our models.
Each dataset contains 100 instances, and is divided into 50 training instances and 50 validation instances.
The first dataset contains only instances with 25 tasks and 10 scenarios, the second one only instances with
50 tasks and 50 scenarios, and the last one only instances with 100 tasks and 50 scenarios. The 25 tasks
dataset contains small instances for which we can easily compute optimal solutions to use as target solutions
during the learning. For the two other datasets, we instead used a local search heuristic to compute “good”
(non necessarily optimal) solutions of each instance. For testing purposes, we consider several additional
test datasets we only use for evaluating the final performances and generalization abilities of our learned
models. These test datasets contain larger instances with up to 1000 tasks. Datasets content is summarized
in Table 5.

Dataset type Number of tasks
25 50 100 200 300 500 750 1000

Training 50 50 50 0 0 0 0 0

Validation 50 50 50 0 0 0 0 0

Test 50 50 50 50 50 50 50 50

Table 5: Summary of the number of instances in each used dataset

6.3.3 InferOpt pipeline

We use the deterministic VSP as a CO layer in the following pipeline to solve pipeline to solve the stochastic
VSP. The goal is to train a model able to generalize well enough to instances it has not seen before, especially
bigger instances, for which we cannot compute a good solution in reasonable time. For this, we consider the
pipeline presented in Figure 4.

26

�

�
	GLM

φw

VSP flow
Linear Program

�

�
	Loss

function

StoVSP

instance

Edge weights

θa, ∀a ∈ A
Vehicle routes

o

v1

v2

v3

v4

v5

v6

v7

v8

d

time

o

v1

v2

v3

v4

v5

v6

v7

v8

d

θ a

θa θ
a

θ
a

θa

θ a
θ
a

θ
a

θa θa θa

θ
a

θ a

θ a

θ
a

θ a

θ a

time

o

v1

v2

v3

v4

v5

v6

v7

v8

d

time

Figure 4: Pipeline for the stochastic VSP

An instance x of StoVSP is encoded by computing a vector ϕ(x, a) of 20 features on each arc a ∈ A.
These features contain edge length, slack quantiles and cumulative distribution information. For more details,
refer to Appendix B.1.3. Instance x is then given as input to a GLM φw with learnable weights w, such
that φw(x) = θ, with θa = w⊤ϕ(x, a). Then, we use the predicted θ as the objective arc weights of the VSP
flow linear program to compute the solution paths:

max
y

∑
a∈A

θaya

s.t.
∑

a∈δ−(v)

ya =
∑

a∈δ+(v)

ya, ∀v ∈ V̄ (flow polytope)

∑
a∈δ−(v)

ya = 1, ∀v ∈ V̄ (task covering)

ya ≥ 0, ∀a ∈ A
Training this pipeline means finding parameter vector w that minimizes the chosen loss.

6.3.4 Experimental setting

For each of the three datasets considered, we train two models: we learn the first one by imitation thanks
to a Fenchel-Young loss, and the second one by experience thanks to the expected regret. In both cases,
we use a PerturbedAdditive regularization with parameters ε and nb_samples. We use the Flux.jl
Julia library and the Adam optimizer for training. Hyperparameters used for each model/dataset pair can
be found in Table 6.

Hyperparameters Learn by imitation models Learn by experience models
25 tasks 50 tasks 100 tasks 25 tasks 50 tasks 100 tasks

ε 0.1 0.1 0.1 50 100 300

nb_samples 20 20 20 20 20 20

training epochs 50 50 50 200 200 200

batch size 1 1 1 1 1 1

Table 6: Hyperparameter for Stochastic Vehicle Scheduling experiments

27

Datasets features are normalized during training by dividing each feature by its standard deviation
in the train dataset. At the end of training, the obtained w is renormalized accordingly. We optimize
hyperparameters using metric values on validation datasets. The experiments are conducted on a 2.6 GHz
Intel Core i9-11950H, 16 cores, with 64 Go RAM. We faced one practical difficulty during the training: the
calibration of hyperparameter ε when learning by experience. Indeed, training performance is quite sensible
to its value, which lead to a lot of hyperparameter tuning on the validation set. Detailed training plots can
be found in Appendix B.1.4.

6.3.5 Results

Finally, we can look at the performance of the learned pipelines on all the different datasets, and compare
them with each others. In Figure 5, we observe the resulting solution of three different algorithms on the
same input instance. Interestingly, the model learned by imitation outputs a different solution than the
model learned by experience.

(a) Local search heuristic (b) Model learned by imitation (c) Model learned by experience

Figure 5: Comparison of predictions of three different models on the same 50-task instance. Each circle
represents a task, with color value and size corresponding to its total delay (intrinsic + propagated) in the
predicted solution. Tasks are ordered respect to start time along the x axis. Each arrow path represents a

vehicle path in the predicted solution.

In Table 7, we compare the average execution time between the local search heuristic and one of our
learned pipelines. We see that, once the model is learned offline, online prediction of a solution through the
pipeline is very fast.

Test dataset

25 tasks 50 tasks 100 tasks

heuristic learned pipeline heuristic learned pipeline heuristic learned pipeline

0.12s 0.004s 1.47s 0.01s 5.28s 0.043s

Table 7: Learning by imitation: comparison of average execution time on an instance between the local
search heuristic (10000 iterations) a learned pipeline

Learning by imitation We train three models in the learning by imitation setting, one for each training
dataset. Final results on test data are summarized in Tables 8 and 9. First, we observe the average
and maximum cost gaps on test datasets with instances of the same size as in training datasets, between
predicted solutions and labeled solutions. We recall that labeled solutions are optimal for 25 tasks, and
heuristic (obtained from local search) for 50 and 100 tasks. That is why gaps should stay positive when
predicting on the 25 tasks test dataset, but can be negative when predicting on the two other datasets.

28

We can see that all three models obtain very good gap values, with less than 1% on 25 tasks instances on
average, and average negative gaps on 50 and 100 tasks instances, which means better solutions on average
than the local search heuristic used as labels for the learning.

Train dataset
Test dataset

25 tasks 50 tasks 100 tasks
mean max mean max mean max

25 tasks 0.68% 9.46% −0.41% 4.26% −1.02% 2.4%

50 tasks 0.49% 3.01% −0.46% 2.34% −1.6% 0.62%

100 tasks 0.62% 3.36% −0.14% 9.9% −1.2% 0.11%

Table 8: Learning by imitation: cost gap

Then, we measure the performance of our models on test datasets with larger instances than training
ones. We do not necessarily have label solutions available for these big instances, but can evaluate the average
cost per task. This metric is very useful to assess how well a model generalizes. Indeed, since all instances
share the same map size regardless of the number of tasks, the average cost per task should decrease when
the number of tasks increases, because optimal paths contain more tasks. It is the case for the model trained
on 25 tasks instances, but not for the other two, which deteriorate on instances larger than 300 tasks. This
is probably due to the fact that 50 and 100 tasks datasets are not labeled with optimal solutions, but only
with solutions from the local search heuristic. Indeed, the 100-task model performs even worse than the
50-task model, because the local search heuristic performance decreases when the number of tasks increases.

Train dataset Test dataset (number of tasks in each instance)
25 50 100 200 300 500 750 1000

25 tasks 274.72 225.29 207.14 194.46 186.68 182.56 178.57 177.3

50 tasks 274.27 225.23 205.97 195.78 193.12 194.48 196.99 199.38

100 tasks 274.61 225.87 206.8 197.97 195.53 207.02 219.34 227.14

Table 9: Learning by imitation: average cost per task

Learning by experience In the learning by experience setting, we also train three models on the same
three training datasets, and summarize results in Tables 10 and 11. First, we observe that average cost gaps
and maximum cost gaps are lower on all models, respect to the corresponding models learned by imitation.

Train dataset
Test dataset

25 tasks 50 tasks 100 tasks
mean max mean max mean max

25 tasks 0.45% 4.2% −0.77% 0.63% −2.11% −0.14%
50 tasks 0.43% 3.04% −0.78% 0.74% −2.06% −0.22%
100 tasks 0.43% 3.28% −0.83% 0.97% −2.06% −0.29%

Table 10: Learning by experience: cost gap

Finally, unlike the learning by imitation setting, we observe decreasing average cost per task on all three
models for instances up to 1000 tasks. This means models learned by experience generalize much better,
because they are not biased trying to imitate non-optimal solutions.

29

Train dataset Test dataset (number of tasks in each instance)
25 50 100 200 300 500 750 1000

25 tasks 274.19 224.55 204.9 191.86 184.71 181.29 178.0 177.02

50 tasks 274.12 224.51 205.0 191.85 184.3 180.48 176.96 176.0

100 tasks 274.13 224.41 205.0 191.85 184.63 181.08 177.81 176.74

Table 11: Learning by experience: average cost per task

In the stochastic VSP, learning by experience seems more performant than learning by imitation, the only
downside being the practical difficulty of the training. Indeed, results are more sensible to hyperparameters
and the model needs to be trained for more epochs because the loss convergence is slower.

6.4 Single-machine scheduling
We solve a single-machine scheduling problem with release times and sum of completion times. Given an
instance of this NP-hard problem, we use an ML predictor to define the input of a ranking problem, which is
an LP on the permutahedron and can be solved instantaneously. Its optimal solution (permutation) can then
be decoded into an approximate solution of the hard problem. This follows the recent work of Parmentier
and T’Kindt (2021), re-coded in Julia in the satellite package SingleMachineScheduling.jl17.

6.4.1 Problem formulation

We need to schedule n jobs on a single machine. Each job j ∈ [n] has an associated processing time pj ,
and release date rj . Before rj , the job j cannot start. The machine can process only one job at a time.
Preemption is not allowed, which means whenever a job has started, it must be completed, and cannot
be paused to be finished later. Our aim is to find a schedule (permutation) s = (j1, ..., jn) of [n], such
that the sum of completion times

∑
j Cj(s) is minimal. In this sum, Cj(s) is the completion time of job j

in the schedule s. More precisely, given the schedule s, we have Cj1(s) = rj1 + pj1 , and for k > 1, we
have Cjk(s) = max

(
rjk , Cjk−1

(s)
)
+ pjk .

6.4.2 Existing algorithms for the hard problem

Two kinds of algorithms are considered, both to benchmark our learning pipelines, and to provide solutions
for the learning dataset. The first kind includes several heuristics: the RDI/APRTF heuristic (Chand, Traub,
and Uzsoy 1996), referred to as RDIA, the RBS heuristic with beam width w = 2 (Della Croce, Salassa, and
T’kindt 2014), referred to as RBS, and the matheuristic (Della Croce, Salassa, and T’kindt 2014), referred
to as MATH. The second kind is an exact algorithm, used to solve instances with up to n = 110 jobs, the
branch-and-memorize algorithm (Shang, T’Kindt, and Della Croce 2021).

6.4.3 Datasets

We consider two types of datasets generated randomly:

• A train dataset made of 420 instances with n ∈ {50, 70, 90, 110} jobs, and corresponding solutions
derived by means of the branch-and-memorize algorithm (Shang, T’Kindt, and Della Croce 2021).
Each value of n is equally represented.

• A test dataset made of 1820 instances with n ∈ {50 + k × 100, k ∈ [25]} jobs, and the associated best
solutions derived by the algorithms noted above. Each value of n is equally represented.

17https://github.com/axelparmentier/SingleMachineScheduling.jl

30

https://github.com/axelparmentier/SingleMachineScheduling.jl

Probabilistic CO layer ε nb_samples

Additive perturbation 0.01 100
Multiplicative perturbation 0.2 100

Half square norm 0.2

Table 12: Hyperparameters for scheduling experiments.

6.4.4 InferOpt pipeline

In the pipeline (27), an instance of the hard problem x is passed through an ML layer involving the GLM φw,
leading to the parameter θ = φw(x). We then sort the components of θ using a ranking algorithm. It leads
to a permutation s. This permutation is then passed through a decoder. The output of the decoder y is the
candidate solution to the hard problem.

Hard problem
instance x−−−−−−−−−−−→

�� ��ML layer φw

Parameter
θ = φw(x)−−−−−−−−−→ Ranking f

Permutation
s = f(θ)−−−−−−−−−−→

�� ��Decoder ψ

Solution
y = ψ(s)−−−−−−−→ (27)

Parmentier and T’Kindt (2021) consider two possibilities for the decoder ψ. First, we can use the
permutation s = f(θ) as the candidate solution of the hard problem. We call this algorithm pure machine
learning heuristic, referred to as PMLH. It corresponds to ψ = id. Second, in the improved machine learning
heuristic, referred to as IMLH, we combine a local search and the RDI procedure in the decoder ψ. We
consider PMLH in the following.

6.4.5 Experimental setting

A fast ML-CO pipeline. We focus on a learning by imitation setting, with ψ = id. Since our train
dataset is made of small instances (with up to 110 jobs), and our test dataset has large instances (with up
to 2550 jobs), we want to see if our model generalizes well. Since ranking is quasi-instantaneous, and the
algorithms defined in Section 6.4.2 require much more computational effort, small average gaps on the test
set would lead to an ML-CO algorithm that saves a lot of computation time on large-scale instances.

Learning process. In the learning phase, we use the permutation s = f(θ) as candidate solution to be
compared with the associated target solution in the dataset. We use three types of probabilistic CO layers
and associated Fenchel-Young loss functions: additive perturbation, multiplicative perturbation, and half
square norm regularization. Our hyperparameters are detailed in Table 12. The value of ε is tuned with a
grid search on a validation dataset for each probabilistic CO layer, selecting the one leading to the smallest
average gap. We use a batch size of 1 sample and learn through 300 epochs in each case. Experiments are
done on a computing cluster with processor 32 x Intel Xeon E5-2667, 3.30GHz (hyperthreading), and 192
Go of RAM.

6.4.6 Results

In Table 13, we compare the average train and test gaps given by each of the three probabilistic CO layers
detailed in Table 12, as well as the GLM-based pipeline from Parmentier and T’Kindt (2021). In each case,
we derive solutions in the following way: given an instance x, we follow the pipeline (27), where the weights
of the GLM w are fixed thanks to the learning phase based on the specific probabilistic CO layer (or by
Parmentier and T’Kindt (2021)), and where the decoder is ψ = id. We recall that on the train set, gaps are
computed with respect to the optimal solutions. On the test set, we consider the best solutions found by
the algorithms detailed in Section 6.4.2. Overall, we manage to obtain low test gaps. We even get better
solutions than the heuristics with our ML-CO pipelines on the test set.

31

Train set gap (%) Test set gap (%)
Additive perturbation (GLM) 1.68 -0.26

Multiplicative perturbation (GLM) 3.02 0.34

Half square norm regularization (GLM) 1.52 0.59

Parmentier and T’Kindt (2021) model (GLM) 2.32 1.93

Table 13: Train and test average gaps in % for pipelines with decoder ψ = id.

In Figure 6, we show the histograms of train and test gaps given by the pipeline trained with the
additive perturbation, which gives the best average results in Table 13. It emphasizes a good generalization
performance, even trained on small instances. Since ranking is very fast, it highlights the practical interest of
this kind of ML-CO algorithm. For further studies in a learning by experience setting, as well as additional
details on the decoder part, we refer to Parmentier (2021a) and Parmentier and T’Kindt (2021).

Figure 6: Histograms of train and test gaps in % given by the pipeline trained with the additive
perturbation CO layer and decoder ψ = id.

6.5 Two-stage stochastic minimum weight spanning tree
Let us now focus on the two-stage minimum weight spanning tree problem. This last subsection has two main
purposes: first, having an application on a two stage stochastic optimization problem where we use the single
stage problem as a CO layer, and second, we show how to use InferOpt.jl with a pipeline containing a
graph neural network (GNN), and compare it to a basic generalized linear model (GLM). Source code for
this application can be found in the corresponding satellite package TwoStageSpanningTree.jl18.

6.5.1 Problem formulation

Let G = (V,E) be an undirected graph, and S be a (finite) set of scenarios. The goal is to build a
spanning tree on G over two stages at minimum cost, the second-stage building costs being unknown when
first-stage decisions are taken. For each edge e ∈ E and scenario and s ∈ S, we denote by ce in R the
scenario-independent first stage cost of building e, and by des the scenario-dependent second stage cost. The

18https://github.com/axelparmentier/MinimumWeightTwoStageSpanningTree.jl

32

https://github.com/axelparmentier/MinimumWeightTwoStageSpanningTree.jl

two-stage spanning tree problem can be formulated as the following ILP:

min
y,z

∑
e∈E

ceye +
1

|S|
∑
e∈E

∑
s∈S

deszes,

s.t.
∑
e∈E

ye + zes = |V | − 1, ∀s ∈ S,∑
e∈E(Y)

ye + zes ≤ |Y | − 1, ∀Y, ∅ ⊊ Y ⊊ V, ∀s ∈ S,

ye ∈ {0, 1}, ∀e ∈ E,
zes ∈ {0, 1}, ∀e ∈ E, ∀s ∈ S,

(28a)

(28b)

(28c)

(28d)
(28e)

where ye is a binary variable indicating if e is selected in the first-stage solution, and zes is a binary variable
indicating if e is selected in the second-stage solution for scenario s. The two constraints (28b) and (28c)
jointly ensures that ye + zes belongs to the spanning tree polytope.

Formulation (28) contains an exponential number of constraints. Several mathematical programming
approaches enable to solve it. Instances with up to 50 vertices can be solved to optimality using a cut-
generation approach or a Benders decomposition. A Lagrangian relaxation and a Lagrangian heuristic can
provide solutions within a 2% optimality gap for instances with up to 10000 vertices in approximately one
hour. A detailed description of this heuristic can be found in Appendix B.2.1.

6.5.2 Datasets

We build three datasets, one for training, one for validation, and one for testing. Each dataset contains 600
grid graphs instances whose widths range from 10 to 60 (that is, with 100 to 3600 vertices), and from 5 to 20
scenarios. For all instances, first stage costs are drawn uniformly between 0 and 20. For the second stage
costs, depending on the instances, they are drawn uniformly between 0 and n, with n varying between 10
and 30. Each instance is labeled with a solution given by the Lagrangian heuristic.

a b c d

e f g h

i j k l

Figure 7: Example of a two stage spanning tree on a 3× 4 grid graph. Blue edges correspond to first-stage
forest, and red dashed edges correspond to second-stage forest.

6.5.3 InferOpt pipeline

The learning pipeline is presented in Figure 8.

33

�

�
	ML layer φw

(GLM or GNN)

Maximum
weight forest
(Kruskal)

�

�
	Loss

function

Input

instance x

Edge weights θ Solution forest y

a b c

d e f

g h i

a b c

d e f

g h i

0.9 −0.2

1.6 −1.9

−2.3 1.3

2.0

−0.1

0.7

−0.4

−0.5

0.1

a b c

d e f

g h i

Figure 8: Two-stage minimum spanning tree pipeline

Input Each edge e of an instance x is encoded by a feature vector ϕ(x, e). In the following experiments, we
test two different set of features. The first one is called Basic features, and only contains information about
first-stage costs and quantiles of second-stage costs. The second feature set is called Advanced features, and
contains multiple other statistics. See Appendix B.2.2 for a detailed description of the features.

ML predictor The feature matrix is given as input to an ML layer φw with learnable parameters w, which
predicts edge weights θe. We tested and compared two different predictors: first a GLM such that θe =
w⊤ϕ(x, e), and then a GNN, in particular the GraphConv architecture (Morris et al. 2019). 1

Combinatorial layer We use the predicted edge weights θ as the objective of a maximum weight forest
problem layer. A maximum weight forest can be efficiently found using Kruskal’s algorithm.

Decoder As a post-processing, the output forest of the training pipeline is interpreted as a first stage
solution of instance x. For each scenario, we can complete it into a minimum cost spanning tree containing
this forest, using Kruskal’s algorithm.

6.5.4 Experimental setting

We train each model by imitation using a FenchelYoungLoss with PerturbedAdditive regularization.
Hypeparameters used for each model can be found in table 14.

ε nb_samples learning rate batch size training epochs

GLM 1 20 0.01 1 20

GNN 1 20 0.001 1 20

Table 14: Hypeparameters for two-stage spanning tree experiments

We use the Flux.jl Julia library and the Adam optimizer for training. We construct our GNN with
the GraphNeuralNetworks.jl19 Julia library (Lucibello and contributors 2021). The GNN architecture
contains 3 GraphConv layers with hidden size 50.

The GLM and GNN models are both trained on each of the two feature sets. Features are normalized
by dividing each feature by its train dataset standard deviation. We optimize hyperparameters and perform
model selection by using the average optimality gap values on the validation dataset. The experiments are

19https://github.com/CarloLucibello/GraphNeuralNetworks.jl

34

https://github.com/CarloLucibello/GraphNeuralNetworks.jl

conducted on a 2.6 GHz Intel Core i9-11950H, 16 cores, with 64 Go RAM. Epochs with best gaps on the
validation dataset are selected for each experiment.

6.5.5 Results

The CO layer takes the same CPU time as one iteration of the Lagrangian relaxation, and the feature
computation takes about the same time as 2 iterations. Therefore, resulting pipelines are roughly 15000
times faster than the Lagrangian heuristic.

We evaluate the performance of the trained pipelines on the test dataset. For this we compute the
average, minimum, and maximum gaps respect to the lower bound and upper bounds respectively given by
the Lagrangian relaxation and the Lagrangian heuristic. Results are gathered in Table 15 below.

Optimality gap (%) Lagrangian heuristic gap (%)
Average Min Max Average Min Max

GLM on basic features 4.77 1.08 12.33 2.91 0.71 8.81

GNN on basic features 3.06 0.09 12.09 1.23 -0.24 7.07

GLM on advanced features 2.21 0.09 7.66 0.41 -0.73 3.12

GNN on advanced features 2.11 0.09 7.91 0.31 -0.73 2.86

Table 15: Test gaps in % for models trained with the basic features

On both feature sets we observe low gaps for both GLM and GNN, with the GNN performing better. We
also see that the GLM trained on advanced features performs better that the GNN on basic features, which
means that feature engineering is more effective than replacing the linear model with a more complex neural
network. Advanced features combined with the GNN performs best. As can be seen in section 6.3 on the
stochastic VSP, we could maybe further improve performance if we learn by experience instead of learning by
imitation. Indeed, the labels computed by the Lagrangian heuristic are not necessarily optimal and probably
introduce bias in the learning.

7 Conclusion
In this paper, we introduce InferOpt.jl, a Julia package that seamlessly turns CO algorithms into layers
of ML pipelines. The package is compatible with most approximate differentiation techniques and structured
losses from the literature, but also includes novel ones. Its theoretical foundation is a probabilistic point of
view on CO layers, which unifies existing and new methods. Our probabilistic framework notably provides
natural “learning by experience” counterparts to the more common “learning by imitation” approaches.
InferOpt.jl also unlocks the use of large neural networks in hybrid pipelines, even when learned by
experience. We demonstrate it with a hybrid ML-CO pipeline containing a CNN with tens of thousands of
parameters, which to the best of our knowledge, has never been achieved.

Using InferOpt.jl, we benchmark pipeline architectures and learning algorithms. In general, we
observe that hybrid pipelines can yield fast algorithms with state-of-the-art performance on well-studied
applications such as the single machine scheduling problem. Depending on the learning setting, we may
require more or less information in the training set. Unsurprisingly, the more information we have in the
training set, the better our predicted solutions become. This is notably clear on the Warcraft shortest path
problem. However, on very hard combinatorial tasks where no algorithm scales on larges instances, learning
by experience can outperform learning by imitation, as can be seen on the stochastic vehicle scheduling
problem.

When we learn by imitating precomputed solutions, Fenchel-Young losses seem to outperform alternatives.
If we use a CO algorithm that is sensitive to the sign of the input, the multiplicative perturbation seems the

35

best approach. Concerning the pipeline architecture, the most important aspect seems to be the choice of
the combinatorial optimization layer and of the features. Using GNNs instead of GLMs for encoding can be
beneficial, as we remarked on the two-stage spanning tree problem.

We also highlight some perspectives. In this paper, we learn the objective function of CO problems based
on the notion of probabilistic CO layers. We do not consider the case when the desired flexibility concerns the
constraints, as studied by Paulus et al. (2021) for instance, even though this perspective would be equally
natural. Furthermore, we make the assumption that the CO oracle derives optimal solutions within our
layer. We briefly mention the case of inexact CO oracles, but additional research would be necessary in this
direction. Finally, a large part of the ML literature is dedicated to reinforcement learning. The connection
between this field and structured learning deserves further exploration.

Acknowledgements
The authors want to thank Mathieu Besançon for his support with various Julia packages, as well as his
expert proofreading. We also thank Éloïse Berthier, Alexandre Forel, Jérôme Malick, Clément Mantoux,
and Pierre Marion for their time and advice.

References
Agrawal, A., B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter (2019). “Differentiable Convex Opti-

mization Layers”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc.
url: https://proceedings.neurips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-
Abstract.html (cit. on p. 8).

Amos, B. and J. Z. Kolter (2017). “OptNet: Differentiable Optimization as a Layer in Neural Networks”. en.
In: Proceedings of the 34th International Conference on Machine Learning. International Conference on
Machine Learning. PMLR, pp. 136–145. url: https://proceedings.mlr.press/v70/amos17a.
html (cit. on p. 8).

Barto, A. G. and S. Mahadevan (2003). “Recent Advances in Hierarchical Reinforcement Learning”. en. In:
Discrete Event Dynamic Systems 13.1, pp. 41–77. issn: 1573-7594. doi: 10.1023/A:1022140919877.
url: https://doi.org/10.1023/A:1022140919877 (cit. on p. 9).

Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind (2018). “Automatic Differentiation in
Machine Learning: A Survey”. In: Journal of Machine Learning Research 18.153, pp. 1–43. issn: 1533-
7928. url: http://jmlr.org/papers/v18/17-468.html (cit. on p. 7).

Bengio, Y., A. Lodi, and A. Prouvost (2021). “Machine Learning for Combinatorial Optimization: A Method-
ological Tour d’horizon”. en. In: European Journal of Operational Research 290.2, pp. 405–421. issn:
03772217. doi: 10.1016/j.ejor.2020.07.063. url: https://linkinghub.elsevier.com/
retrieve/pii/S0377221720306895 (cit. on pp. 3, 5).

Berthet, Q., M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach (2020). “Learning with Differen-
tiable Perturbed Optimizers”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., pp. 9508–9519. url: https://proceedings.neurips.cc/paper/2020/hash/
6bb56208f672af0dd65451f869fedfd9-Abstract.html (cit. on pp. 4, 8–10, 12–14, 20, 22, 40,
41, 43).

Besançon, M., A. Carderera, and S. Pokutta (2022). “FrankWolfe.jl: A High-Performance and Flexible Tool-
box for Frank–Wolfe Algorithms and Conditional Gradients”. en. In: INFORMS Journal on Comput-
ing, ijoc.2022.1191. issn: 1091-9856, 1526-5528. doi: 10.1287/ijoc.2022.1191. url: http://
pubsonline.informs.org/doi/10.1287/ijoc.2022.1191 (cit. on p. 16).

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah (2017). “Julia: A Fresh Approach to Numerical Com-
puting”. en. In: SIAM Review 59.1, pp. 65–98. issn: 0036-1445, 1095-7200. doi: 10.1137/141000671.
url: https://epubs.siam.org/doi/10.1137/141000671 (cit. on p. 6).

36

https://proceedings.neurips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9ce3c52fc54362e22053399d3181c638-Abstract.html
https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v70/amos17a.html
https://doi.org/10.1023/A:1022140919877
https://doi.org/10.1023/A:1022140919877
http://jmlr.org/papers/v18/17-468.html
https://doi.org/10.1016/j.ejor.2020.07.063
https://linkinghub.elsevier.com/retrieve/pii/S0377221720306895
https://linkinghub.elsevier.com/retrieve/pii/S0377221720306895
https://proceedings.neurips.cc/paper/2020/hash/6bb56208f672af0dd65451f869fedfd9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6bb56208f672af0dd65451f869fedfd9-Abstract.html
https://doi.org/10.1287/ijoc.2022.1191
http://pubsonline.informs.org/doi/10.1287/ijoc.2022.1191
http://pubsonline.informs.org/doi/10.1287/ijoc.2022.1191
https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671

Blondel, M., Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa, and J.-P. Vert
(2022). Efficient and Modular Implicit Differentiation. arXiv: 2105.15183 [cs, math, stat]. url:
http://arxiv.org/abs/2105.15183 (cit. on pp. 8, 16).

Blondel, M., A. F. T. Martins, and V. Niculae (2020). “Learning with Fenchel-Young Losses”. In: Journal of
Machine Learning Research 21.35, pp. 1–69. issn: 1533-7928. url: http://jmlr.org/papers/v21/
19-021.html (cit. on pp. 8, 9, 12, 16, 22).

Blondel, M., O. Teboul, Q. Berthet, and J. Djolonga (2020). “Fast Differentiable Sorting and Ranking”.
en. In: Proceedings of the 37th International Conference on Machine Learning. International Conference
on Machine Learning. PMLR, pp. 950–959. url: https://proceedings.mlr.press/v119/
blondel20a.html (cit. on p. 9).

Chand, S., R. Traub, and R. Uzsoy (1996). “An Iterative Heuristic for the Single Machine Dynamic Total
Completion Time Scheduling Problem”. en. In: Computers & Operations Research 23.7, pp. 641–651. issn:
03050548. doi: 10.1016/0305-0548(95)00071-2. url: https://linkinghub.elsevier.com/
retrieve/pii/0305054895000712 (cit. on p. 30).

Danskin, J. M. (1967). The Theory of Max-Min and Its Application to Weapons Allocation Problems. Red. by
M. Beckmann, R. Henn, A. Jaeger, W. Krelle, H. P. Künzi, K. Wenke, and P. Wolfe. Vol. 5. Ökonome-
trie Und Unternehmensforschung / Econometrics and Operations Research. Berlin, Heidelberg: Springer
Berlin Heidelberg. isbn: 978-3-642-46094-4 978-3-642-46092-0. doi: 10.1007/978-3-642-46092-0.
url: http://link.springer.com/10.1007/978-3-642-46092-0 (cit. on p. 20).

Della Croce, F., F. Salassa, and V. T’kindt (2014). “A Hybrid Heuristic Approach for Single Machine Schedul-
ing with Release Times”. en. In: Computers & Operations Research 45, pp. 7–11. issn: 03050548. doi:
10.1016/j.cor.2013.11.016. url: https://linkinghub.elsevier.com/retrieve/pii/
S0305054813003390 (cit. on p. 30).

Elmachtoub, A. N. and P. Grigas (2022). “Smart “Predict, Then Optimize””. en. In: Management Sci-
ence 68.1, pp. 9–26. issn: 0025-1909, 1526-5501. doi: 10.1287/mnsc.2020.3922. url: http:
//pubsonline.informs.org/doi/10.1287/mnsc.2020.3922 (cit. on pp. 6, 8, 20, 22).

Fairbanks, J., M. Besançon, S. Simon, J. Hoffiman, N. Eubank, and S. Karpinski (2021). JuliaGraphs/-
Graphs.jl: An Optimized Graphs Package for the Julia Programming Language. url: https://github.
com/JuliaGraphs/Graphs.jl/ (cit. on p. 10).

Ferber, A., B. Wilder, B. Dilkina, and M. Tambe (2020). “MIPaaL: Mixed Integer Program as a Layer”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 34.02, pp. 1504–1511. issn: 2374-3468,
2159-5399. doi: 10.1609/aaai.v34i02.5509. url: https://aaai.org/ojs/index.php/
AAAI/article/view/5509 (cit. on p. 9).

Frank, M. and P. Wolfe (1956). “An Algorithm for Quadratic Programming”. en. In: Naval Research Logistics
Quarterly 3.1-2, pp. 95–110. issn: 00281441, 19319193. doi: 10.1002/nav.3800030109. url: https:
//onlinelibrary.wiley.com/doi/10.1002/nav.3800030109 (cit. on p. 15).

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. eng. Cambridge, Massachusetts: The
MIT Press. isbn: 978-0-262-33737-3. url: https://www.deeplearningbook.org/ (cit. on p. 7).

Griewank, A. and A. Walther (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics. 438 pp. isbn:
978-0-89871-659-7 (cit. on p. 7).

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, pp. 770–778. isbn: 978-1-4673-
8851-1. doi: 10.1109/CVPR.2016.90. url: http://ieeexplore.ieee.org/document/
7780459/ (cit. on p. 10).

Innes, M. (2019). Don’t Unroll Adjoint: Differentiating SSA-Form Programs. arXiv: 1810.07951 [cs].
url: http://arxiv.org/abs/1810.07951 (cit. on p. 10).

Innes, M., E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T. Karmali, A. Pal, and V. Shah
(2018). Fashionable Modelling with Flux. arXiv: 1811.01457 [cs]. url: http://arxiv.org/abs/
1811.01457 (cit. on p. 10).

37

https://arxiv.org/abs/2105.15183
http://arxiv.org/abs/2105.15183
http://jmlr.org/papers/v21/19-021.html
http://jmlr.org/papers/v21/19-021.html
https://proceedings.mlr.press/v119/blondel20a.html
https://proceedings.mlr.press/v119/blondel20a.html
https://doi.org/10.1016/0305-0548(95)00071-2
https://linkinghub.elsevier.com/retrieve/pii/0305054895000712
https://linkinghub.elsevier.com/retrieve/pii/0305054895000712
https://doi.org/10.1007/978-3-642-46092-0
http://link.springer.com/10.1007/978-3-642-46092-0
https://doi.org/10.1016/j.cor.2013.11.016
https://linkinghub.elsevier.com/retrieve/pii/S0305054813003390
https://linkinghub.elsevier.com/retrieve/pii/S0305054813003390
https://doi.org/10.1287/mnsc.2020.3922
http://pubsonline.informs.org/doi/10.1287/mnsc.2020.3922
http://pubsonline.informs.org/doi/10.1287/mnsc.2020.3922
https://github.com/JuliaGraphs/Graphs.jl/
https://github.com/JuliaGraphs/Graphs.jl/
https://doi.org/10.1609/aaai.v34i02.5509
https://aaai.org/ojs/index.php/AAAI/article/view/5509
https://aaai.org/ojs/index.php/AAAI/article/view/5509
https://doi.org/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/10.1002/nav.3800030109
https://www.deeplearningbook.org/
https://doi.org/10.1109/CVPR.2016.90
http://ieeexplore.ieee.org/document/7780459/
http://ieeexplore.ieee.org/document/7780459/
https://arxiv.org/abs/1810.07951
http://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1811.01457
http://arxiv.org/abs/1811.01457
http://arxiv.org/abs/1811.01457

Innes, M. (2018). “Flux: Elegant Machine Learning with Julia”. In: Journal of Open Source Software 3.25,
p. 602. issn: 2475-9066. doi: 10.21105/joss.00602. url: http://joss.theoj.org/papers/
10.21105/joss.00602 (cit. on p. 10).

Jaggi, M. (2013). “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization”. en. In: Proceedings
of the 30th International Conference on Machine Learning. International Conference on Machine Learn-
ing. PMLR, pp. 427–435. url: https://proceedings.mlr.press/v28/jaggi13.html (cit. on
p. 15).

Jones, D. R., C. D. Perttunen, and B. E. Stuckman (1993). “Lipschitzian Optimization without the Lips-
chitz Constant”. en. In: Journal of Optimization Theory and Applications 79.1, pp. 157–181. issn: 0022-
3239, 1573-2878. doi: 10.1007/BF00941892. url: http://link.springer.com/10.1007/
BF00941892 (cit. on p. 19).

Kingma, D. P. and J. Ba (2015). “Adam: A Method for Stochastic Optimization”. In: ICLR (Poster). url:
http://arxiv.org/abs/1412.6980 (cit. on p. 23).

Kolter, J. Z., D. Duvenaud, and M. Johnson (2020). Deep Implicit Layers - Neural ODEs, Deep Equilibirum
Models, and Beyond. en. url: http://implicit-layers-tutorial.org/ (cit. on p. 7).

Korte, B. and J. Vygen (2006). Combinatorial Optimization: Theory and Algorithms. eng. 3rd edition. Algo-
rithms and Combinatorics 21. Berlin: Springer. isbn: 978-3-540-29297-5 (cit. on p. 5).

Kotary, J., F. Fioretto, P. Van Hentenryck, and B. Wilder (2021). “End-to-End Constrained Optimiza-
tion Learning: A Survey”. en. In: Proceedings of the Thirtieth International Joint Conference on Arti-
ficial Intelligence. Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. Mon-
treal, Canada: International Joint Conferences on Artificial Intelligence Organization, pp. 4475–4482.
isbn: 978-0-9992411-9-6. doi: 10.24963/ijcai.2021/610. url: https://www.ijcai.org/
proceedings/2021/610 (cit. on p. 3).

Lucibello, C. and o. contributors (2021). GraphNeuralNetworks.jl: A Geometric Deep Learning Library for the
Julia Programming Language. url: https://github.com/CarloLucibello/GraphNeuralNetworks.
jl (cit. on p. 34).

Mandi, J., V. Bucarey, M. M. K. Tchomba, and T. Guns (2022). “Decision-Focused Learning: Through
the Lens of Learning to Rank”. en. In: Proceedings of the 39th International Conference on Machine
Learning. International Conference on Machine Learning. PMLR, pp. 14935–14947. url: https://
proceedings.mlr.press/v162/mandi22a.html (cit. on p. 9).

Mandi, J., E. Demirović, P. J. Stuckey, and T. Guns (2020). “Smart Predict-and-Optimize for Hard Com-
binatorial Optimization Problems”. In: Proceedings of the AAAI Conference on Artificial Intelligence
34.02, pp. 1603–1610. issn: 2374-3468, 2159-5399. doi: 10.1609/aaai.v34i02.5521. url: https:
//aaai.org/ojs/index.php/AAAI/article/view/5521 (cit. on p. 9).

Mandi, J. and T. Guns (2020). “Interior Point Solving for LP-based Prediction+optimisation”. In: Advances
in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., pp. 7272–7282. url: https:
//proceedings.neurips.cc/paper/2020/hash/51311013e51adebc3c34d2cc591fefee-
Abstract.html (cit. on p. 8).

Martins, A. F. T. and R. Astudillo (2016). “From Softmax to Sparsemax: A Sparse Model of Atten-
tion and Multi-Label Classification”. en. In: Proceedings of The 33rd International Conference on Ma-
chine Learning. International Conference on Machine Learning. PMLR, pp. 1614–1623. url: https:
//proceedings.mlr.press/v48/martins16.html (cit. on p. 16).

Morris, C., M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe (2019). “Weisfeiler
and Leman Go Neural: Higher-Order Graph Neural Networks”. In: Proceedings of the AAAI Conference
on Artificial Intelligence 33, pp. 4602–4609. issn: 2374-3468, 2159-5399. doi: 10.1609/aaai.v33i01.
33014602. url: https://aaai.org/ojs/index.php/AAAI/article/view/4384 (cit. on
p. 34).

Mulamba, M., J. Mandi, M. Diligenti, M. Lombardi, V. Bucarey, and T. Guns (2021). “Contrastive Losses
and Solution Caching for Predict-and-Optimize”. en. In: Twenty-Ninth International Joint Conference
on Artificial Intelligence. Vol. 3, pp. 2833–2840. doi: 10.24963/ijcai.2021/390. url: https:
//www.ijcai.org/proceedings/2021/390 (cit. on p. 9).

38

https://doi.org/10.21105/joss.00602
http://joss.theoj.org/papers/10.21105/joss.00602
http://joss.theoj.org/papers/10.21105/joss.00602
https://proceedings.mlr.press/v28/jaggi13.html
https://doi.org/10.1007/BF00941892
http://link.springer.com/10.1007/BF00941892
http://link.springer.com/10.1007/BF00941892
http://arxiv.org/abs/1412.6980
http://implicit-layers-tutorial.org/
https://doi.org/10.24963/ijcai.2021/610
https://www.ijcai.org/proceedings/2021/610
https://www.ijcai.org/proceedings/2021/610
https://github.com/CarloLucibello/GraphNeuralNetworks.jl
https://github.com/CarloLucibello/GraphNeuralNetworks.jl
https://proceedings.mlr.press/v162/mandi22a.html
https://proceedings.mlr.press/v162/mandi22a.html
https://doi.org/10.1609/aaai.v34i02.5521
https://aaai.org/ojs/index.php/AAAI/article/view/5521
https://aaai.org/ojs/index.php/AAAI/article/view/5521
https://proceedings.neurips.cc/paper/2020/hash/51311013e51adebc3c34d2cc591fefee-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/51311013e51adebc3c34d2cc591fefee-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/51311013e51adebc3c34d2cc591fefee-Abstract.html
https://proceedings.mlr.press/v48/martins16.html
https://proceedings.mlr.press/v48/martins16.html
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://aaai.org/ojs/index.php/AAAI/article/view/4384
https://doi.org/10.24963/ijcai.2021/390
https://www.ijcai.org/proceedings/2021/390
https://www.ijcai.org/proceedings/2021/390

Niculae, V., A. F. T. Martins, M. Blondel, and C. Cardie (2018). “SparseMAP: Differentiable Sparse Struc-
tured Inference”. en. In: Proceedings of the 35th International Conference on Machine Learning. Interna-
tional Conference on Machine Learning. PMLR, pp. 3799–3808. url: https://proceedings.mlr.
press/v80/niculae18a.html (cit. on p. 16).

Niepert, M., P. Minervini, and L. Franceschi (2021). “Implicit MLE: Backpropagating Through Discrete
Exponential Family Distributions”. In: Advances in Neural Information Processing Systems. Vol. 34.
Curran Associates, Inc., pp. 14567–14579. url: https://proceedings.neurips.cc/paper/
2021/hash/7a430339c10c642c4b2251756fd1b484-Abstract.html (cit. on p. 9).

Nowozin, S. and C. H. Lampert (2010). “Structured Learning and Prediction in Computer Vision”. en.
In: Foundations and Trends® in Computer Graphics and Vision 6.3-4, pp. 185–365. issn: 1572-2740,
1572-2759. doi: 10.1561/0600000033. url: https://www.nowpublishers.com/article/
Details/CGV-033 (cit. on pp. 8, 22).

Parmentier, A. (2019). “Algorithms for Non-Linear and Stochastic Resource Constrained Shortest Path”. en.
In: Mathematical Methods of Operations Research 89.2, pp. 281–317. issn: 1432-2994, 1432-5217. doi:
10.1007/s00186-018-0649-x. url: http://link.springer.com/10.1007/s00186-018-
0649-x (cit. on p. 45).

— (2021a). Learning Structured Approximations of Operations Research Problems. arXiv: 2107.04323
[cs]. url: http://arxiv.org/abs/2107.04323 (cit. on pp. 6, 19, 25, 32).

— (2021b). “Learning to Approximate Industrial Problems by Operations Research Classic Problems”. en. In:
Operations Research 70.1, pp. 606–623. issn: 0030-364X, 1526-5463. doi: 10.1287/opre.2020.2094.
url: http://pubsonline.informs.org/doi/10.1287/opre.2020.2094 (cit. on pp. 9, 25, 26,
45).

Parmentier, A. and V. T’Kindt (2021). Learning to Solve the Single Machine Scheduling Problem with Release
Times and Sum of Completion Times. arXiv: 2101.01082 [cs, math]. url: http://arxiv.org/
abs/2101.01082 (cit. on pp. 25, 30–32).

Paulus, A., M. Rolinek, V. Musil, B. Amos, and G. Martius (2021). “CombOptNet: Fit the Right NP-Hard
Problem by Learning Integer Programming Constraints”. en. In: Proceedings of the 38th International
Conference on Machine Learning. International Conference on Machine Learning. PMLR, pp. 8443–8453.
url: https://proceedings.mlr.press/v139/paulus21a.html (cit. on pp. 9, 36).

Pineda, L., T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. Chen, J. Ortiz, D. DeTone, A. Wang, S.
Anderson, J. Dong, B. Amos, and M. Mukadam (2022). Theseus: A Library for Differentiable Nonlinear
Optimization. arXiv: 2207.09442 [cs, math]. url: http://arxiv.org/abs/2207.09442
(cit. on p. 8).

Shang, L., V. T’Kindt, and F. Della Croce (2021). “Branch & Memorize Exact Algorithms for Sequencing
Problems: Efficient Embedding of Memorization into Search Trees”. en. In: Computers & Operations
Research 128, p. 105171. issn: 03050548. doi: 10.1016/j.cor.2020.105171. url: https://
linkinghub.elsevier.com/retrieve/pii/S0305054820302884 (cit. on p. 30).

Sharma, A., M. Besançon, J. D. Garcia, and B. Legat (2022). Flexible Differentiable Optimization via Model
Transformations. arXiv: 2206.06135 [cs, math]. url: http://arxiv.org/abs/2206.06135
(cit. on p. 8).

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction. Second edition. Adaptive
Computation and Machine Learning Series. Cambridge, Massachusetts: The MIT Press. 526 pp. isbn:
978-0-262-03924-6 (cit. on p. 9).

Tang, B. and E. B. Khalil (2022). PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library for
Linear and Integer Programming. arXiv: 2206.14234 [cs, math]. url: http://arxiv.org/abs/
2206.14234 (cit. on p. 9).

Vlastelica, M., A. Paulus, V. Musil, G. Martius, and M. Rolinek (2020). “Differentiation of Blackbox
Combinatorial Solvers”. en. In: International Conference on Learning Representations. url: https:
//openreview.net/forum?id=BkevoJSYPB (cit. on pp. 4, 8–10, 13, 23).

White, F. C., M. Abbott, M. Zgubic, J. Revels, S. Axen, A. Arslan, S. Schaub, N. Robinson, Y. Ma,
G. Dhingra, W. Tebbutt, N. Heim, D. Widmann, A. D. W. Rosemberg, N. Schmitz, C. Rackauckas, R.

39

https://proceedings.mlr.press/v80/niculae18a.html
https://proceedings.mlr.press/v80/niculae18a.html
https://proceedings.neurips.cc/paper/2021/hash/7a430339c10c642c4b2251756fd1b484-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7a430339c10c642c4b2251756fd1b484-Abstract.html
https://doi.org/10.1561/0600000033
https://www.nowpublishers.com/article/Details/CGV-033
https://www.nowpublishers.com/article/Details/CGV-033
https://doi.org/10.1007/s00186-018-0649-x
http://link.springer.com/10.1007/s00186-018-0649-x
http://link.springer.com/10.1007/s00186-018-0649-x
https://arxiv.org/abs/2107.04323
https://arxiv.org/abs/2107.04323
http://arxiv.org/abs/2107.04323
https://doi.org/10.1287/opre.2020.2094
http://pubsonline.informs.org/doi/10.1287/opre.2020.2094
https://arxiv.org/abs/2101.01082
http://arxiv.org/abs/2101.01082
http://arxiv.org/abs/2101.01082
https://proceedings.mlr.press/v139/paulus21a.html
https://arxiv.org/abs/2207.09442
http://arxiv.org/abs/2207.09442
https://doi.org/10.1016/j.cor.2020.105171
https://linkinghub.elsevier.com/retrieve/pii/S0305054820302884
https://linkinghub.elsevier.com/retrieve/pii/S0305054820302884
https://arxiv.org/abs/2206.06135
http://arxiv.org/abs/2206.06135
https://arxiv.org/abs/2206.14234
http://arxiv.org/abs/2206.14234
http://arxiv.org/abs/2206.14234
https://openreview.net/forum?id=BkevoJSYPB
https://openreview.net/forum?id=BkevoJSYPB

Heintzmann, Frankschae, A. Noack, C. Lucibello, K. Fischer, A. Robson, Cossio, J. Ling, MattBrzezinski,
R. Finnegan, A. Zhabinski, D. Wennberg, M. Besançon, and P. Vertechi (2022). JuliaDiff/ChainRules.jl:
V1.44.7. Version v1.44.7. Zenodo. doi: 10.5281/ZENODO.4754896. url: https://zenodo.org/
record/4754896 (cit. on p. 6).

Wilder, B., B. Dilkina, and M. Tambe (2019). “Melding the Data-Decisions Pipeline: Decision-Focused Learn-
ing for Combinatorial Optimization”. In: Proceedings of the AAAI Conference on Artificial Intelligence
33, pp. 1658–1665. issn: 2374-3468, 2159-5399. doi: 10.1609/aaai.v33i01.33011658. url: https:
//aaai.org/ojs/index.php/AAAI/article/view/3982 (cit. on p. 8).

A Proofs
In this Section, the dominated convergence theorem is used implicitly to justify any differentiation under
the integral sign. When dealing with polyhedral functions such as θ 7−→ maxv∈V θ

⊤v, we often write ∇θ for
simplicity even though they are only subdifferentiable, because the set of non-differentiability has measure
zero. We denote the standard Gaussian density by ν.

A.1 Additive perturbation
These proofs are already given by Berthet et al. (2020), but we include them for comparison purposes.

A.1.1 Derivatives

Proof of Proposition 3.1.

Proof. The following change of variable is a diffeomorphism:

u = θ + εz ⇐⇒ u− θ
ε

= z.

We apply it to the definition of p̂+ε (v|θ).

p̂+ε (v|θ) =
∫
Rd

1{f(θ + εz) = v} ν(z) dz

=

∫
Rd

1{f(u) = v} ν
(
u− θ
ε

)
du

εd
.

We now differentiate with respect to θ before applying the reverse change of variable:

∇θp̂
+
ε (v|θ) =

∫
Rd

1{f(u) = v}
(−1
ε
∇ν

(
u− θ
ε

))
du

εd

=
−1
ε

∫
Rd

1{f(θ + εz) = v} ∇ν(z) dz

=
1

ε

∫
Rd

1{f(θ + εz) = v} zν(z) dz.

The last equality holds because the standard Gaussian density satisfies ∇ν(z) = −zν(z). From there, we
deduce the Jacobian of f̂+ε (θ):

Jθf̂
+
ε (θ) =

∑
v∈V

v∇θp̂
+
ε (θ, y)

⊤

=
1

ε

∫
Rd

(∑
v∈V

v 1{f(θ + εz) = v}
)

︸ ︷︷ ︸
f(θ+εz)

z⊤ν(z) dz

40

https://doi.org/10.5281/ZENODO.4754896
https://zenodo.org/record/4754896
https://zenodo.org/record/4754896
https://doi.org/10.1609/aaai.v33i01.33011658
https://aaai.org/ojs/index.php/AAAI/article/view/3982
https://aaai.org/ojs/index.php/AAAI/article/view/3982

We arrive at the following simple expression, which was already given by Berthet et al. (2020):

Jθf̂
+
ε (θ) =

1

ε
E
[
f(θ + εZ)Z⊤]

A.1.2 Regularization

Proof of Proposition 3.2.

Proof. Because Ω+
ε = (F+

ε)∗ is a Fenchel conjugate, it is automatically convex. Furthermore,

Ω+
ε (µ) = sup

θ∈Rd

{
θ⊤µ− F+

ε (θ)
}

= sup
θ∈Rd

{
θ⊤µ− E

[
max
v∈V

(θ + εZ)⊤v

]}
.

We consider µ /∈ conv(V). By convex separation, there exists θ̃ ∈ Rd and α > 0 such that θ̃⊤µ ≥ α + θ̃⊤v
for all v ∈ V. This implies that, for all t > 0,

Ω+
ε (µ) ≥ tθ̃⊤µ− E

[
max
v∈V

(
tθ̃ + εZ

)⊤
v

]
≥ tθ̃⊤µ− tE

[
max
v∈V

θ̃⊤v

]
− εE

[
max
v∈V

Z⊤v

]
≥ tα− εE

[
max
v∈V

Z⊤v

]
−−−−→
t→+∞

+∞

We have shown that µ /∈ dom(Ω+
ε), and therefore dom(Ω+

ε) ⊂ conv(V). We define

fZ(θ, v) = (θ + εZ)⊤v so that F+
ε (θ) = E

[
max
v∈V

fZ(θ, v)

]
.

Danskin’s theorem helps us compute the gradient of F+
ε :

∇θF
+
ε (θ) = E

[
∇θ

(
max
v∈V

fZ(θ, v)

)]
= E

[
∇1fZ

(
θ, argmax

v∈V
fZ(θ, v)

)]
= E

[
argmax

v∈V
fZ(θ, v)

]
= E

[
argmax

v∈V
(θ + εZ)⊤v

]
= f̂+ε (θ).

As shown by Berthet et al. (2020, Proposition 2.2), the function Ω+
ε is a Legendre type function, which

means that
∇θF

+
ε = ∇θ(Ω

+
ε)

∗ = (∇θΩ
+
ε)

−1.

From this, we deduce

∇θF
+
ε (θ) = argmax

µ∈Rd

{
θ⊤µ− Ω+

ε (µ)
}

= argmax
µ∈dom(Ω+

ε)

{
θ⊤µ− Ω+

ε (µ)
}
= f̂Ω+

ε
(θ).

41

Hence, we can conclude:

f̂+ε (θ) = ∇θF
+
ε (θ) = argmax

µ∈dom(Ω+
ε)

{θ⊤µ− Ω+
ε (µ)} = f̂Ω+

ε
(θ).

To recover the formula given in Proposition 3.2, we simply remember that dom(Ω+
ε) ⊆ conv(V).

A.2 Multiplicative perturbation
A.2.1 Derivatives

Proof of Proposition 3.3.

Proof. Suppose θ ∈ Rd only has positive components. Then the following change of variable is a diffeomor-
phism:

u = θ ⊙ eεz−ε21/2 ⇐⇒ log(u)− log(θ)

ε
+
ε1

2
= z

We apply it to the definition of p̂⊙ε (v|θ).

p̂⊙ε (θ, y) =

∫
Rd

1

{
f
(
θ ⊙ eεz−ε21/2

)
= v

}
ν(z) dz

=

∫
(0,+∞)d

1{f(u) = v} ν
(
log(u)− log(θ)

ε
+
ε1

2

)
du

εd
∏

i ui
.

We now differentiate with respect to θ before applying the reverse change of variable:

∇θp̂
⊙
ε (θ, y) =

∫
(0,+∞)d

1{f(u) = v}
(−1
εθ
⊙∇ν

(
log(u)− log(θ)

ε
+
ε1

2

))
du

εd
∏

i ui

=
−1
εθ
⊙
∫
Rd

1

{
f
(
θ ⊙ eεz−ε21/2

)
= v

}
∇ν(z) dz

=
1

εθ
⊙
∫
Rd

1

{
f
(
θ ⊙ eεz−ε21/2

)
= v

}
zν(z) dz.

From there, we deduce the Jacobian of f̂⊙ε (θ):

Jθf̂
⊙
ε (θ) =

∑
v∈V

v∇θp̂
⊙
ε (θ, y)

⊤

=
1

εθ
⊙
∫
Rd

(∑
v∈V

v 1
{
f
(
θ ⊙ eεz−ε21/2

)
= v

})
︸ ︷︷ ︸

f(θ⊙eεz−ε21/2)

z⊤ν(z) dz

We arrive at a simple variant of the previous expression:

Jθf̂
⊙
ε (θ) =

1

εθ
⊙ E

[
f
(
θ ⊙ eεz−ε21/2

)
Z⊤

]

A.2.2 Regularization

Proof of Proposition 3.4.

42

Proof. Because Ω⊙
ε = (F⊙

ε)∗ is a Fenchel conjugate, it is automatically convex. Furthermore,

Ω⊙
ε (µ) = sup

θ∈Rd

{
θ⊤µ− F⊙

ε (θ)
}

= sup
θ∈Rd

{
θ⊤µ− E

[
max
v∈V

(
θ ⊙ eεZ−ε21/2

)⊤
v

]}
= sup

θ∈Rd

{
θ⊤µ− E

[
max
v∈V

θ⊤
(
v ⊙ eεZ−ε21/2

)]}
.

This last expression shows why we do not have dom(Ω⊙
ε) ⊂ conv(V) (unlike in the additive case). Indeed,

even when µ /∈ conv(V), the multiplicative scaling of v might allow it to compensate the inner product θ⊤µ
and stop Ω⊙

ε (µ) from going to +∞. We define

fZ(θ, v) =
(
θ ⊙ eεZ−ε21/2

)⊤
v so that F⊙

ε (θ) = E
[
max
v∈V

fZ(θ, v)

]
.

Danskin’s theorem helps us compute the gradient of F⊙
ε :

∇θF
⊙
ε (θ) = E

[
∇θ

(
max
v∈V

fZ(θ, v)

)]
= E

[
∇1fZ

(
θ, argmax

v∈V
fZ(θ, v)

)]
= E

[
eεZ−ε21/2 ⊙ argmax

v∈V
fZ(θ, v)

]
= E

[
eεZ−ε21/2 ⊙ argmax

v∈V

(
θ ⊙ eεZ−ε21/2

)⊤
v

]
= f̂⊙scaled

ε (θ) ̸= f̂⊙ε (θ)

We could prove in a way similar to Berthet et al. (2020, Proposition 2.2) that Ω⊙
ε is a Legendre type function,

which means that
∇θF

⊙
ε = ∇θ(Ω

⊙
ε)

∗ = (∇θΩ
⊙
ε)

−1.

From this, we deduce

∇θF
⊙
ε (θ) = argmax

µ∈Rd

{
θ⊤µ− Ω⊙

ε (µ)
}

= argmax
µ∈dom(Ω⊙

ε)

{
θ⊤µ− Ω⊙

ε (µ)
}
= f̂Ω+

ε
(θ).

This time we cannot replace dom(Ω⊙
ε) by conv(V), but we still obtain a similar conclusion:

f̂⊙scaled
ε (θ) = ∇θF

⊙
ε (θ) = argmax

µ∈dom(Ω⊙
ε)

{θ⊤µ− Ω⊙
ε (µ)} = f̂Ω⊙

ε
(θ).

A.3 Inexact oracles
Proof of Proposition 3.5.

Proof. We start with additive perturbation. By Proposition 3.1, we have:

Jθ ĝ
+
ε (θ)− Jθf̂+ε (θ) =

1

ε
E
[
g(θ + εZ)Z⊤]− 1

ε
E
[
f(θ + εZ)Z⊤]

=
1

ε
E
[
(g(θ + εZ)− f(θ + εZ))Z⊤] .

43

We bound the spectral norm of the error using Jensen’s inequality:∥∥∥Jθĝ+ε (θ)− Jθf̂+ε (θ)
∥∥∥2 ≤ 1

ε2
E
∥∥(g(θ + εZ)− f(θ + εZ))Z⊤∥∥2

=
1

ε2
E
[
∥g(θ + εZ)− f(θ + εZ)∥2∥Z∥2

]
≤ 1

ε2
∥g − f∥2∞E

[
∥Z∥2

]
=

d

ε2
∥g − f∥2∞.

We now move on to multiplicative perturbation. For multiplicative perturbation, following the same proof
starting from Proposition 3.3 yields a similar inequality:∥∥∥Jθ ĝ⊙ε (θ)− Jθf̂⊙ε (θ)

∥∥∥2 ≤ d

ε2 mini|θi|2
∥g − f∥2∞.

B More details on applications

B.1 Stochastic vehicle scheduling problem
B.1.1 Linear program formulation of (VSP):

The deterministic Vehicle Scheduling Problem (VSP), can be formulated as the following linear program:

min
∑
a∈A

θaya

s.t.
∑

a∈δ−(v)

ya =
∑

a∈δ+(v)

ya, ∀v ∈ V \{o, d}

∑
a∈δ−(v)

ya = 1, ∀v ∈ V \{o, d}

ya ∈ {0, 1}, ∀a ∈ A

(29)

Since the constraint matrix is totally unimodular, the constraint polytope gives a perfect formulation, there-
fore binary constraints can be relaxed, and this problem can be solved using either a flow algorithm or a
linear programming solver.

44

B.1.2 Two MILP formulations for the StoVSP

MILP formulation We denote respectively cvehicle and cdelay the cost of one vehicle, and the cost of one
minute of delay. The StoVSP problem can be formulated as the following MIP with quadratic constraints:

min
d,y

cdelay
1

|S|
∑
s∈S

∑
v∈V \{o,d}

dsv + cvehicle
∑

a∈δ+(o)

ya (30a)

s.t.
∑

a∈δ−(v)

ya =
∑

a∈δ+(v)

ya ∀v ∈ V \{o, d} (30b)

∑
a∈δ−(v)

ya = 1 ∀v ∈ V \{o, d} (30c)

dsv ≥ γsv +
∑

a∈δ−(v)
a=(u,v)

(dsu − ssu,v)ya ∀v ∈ V \{o, d},∀s ∈ S (30d)

dsv ≥ γsv ∀v ∈ V \{o, d},∀s ∈ S (30e)
ya ∈ {0, 1} ∀a ∈ A (30f)

These quadratic delay constraints (30b) can be linearized using McCormick inequalities, and we can then
solve the resulting MILP with industrial solvers. This approach does not scale well on instances with large
number of tasks and scenarios.

Column generation formulation Another possible formulation for StoVSP is the column generation
approach. Let P the set of feasible vehicle routes. Let us define the cost of a vehicle route P ∈ P by
csP = cvehicle + cdelay ×

∑
v∈P d

s
v. We introduce decision variables yP ∈ {0, 1} that equals 1 if the vehicle

route P is chosen. We can then formulate StoVSP as follows:

min
1

|S|
∑
s∈S

∑
P∈P

csP yP

s.t.
∑
p∋v

yP = 1 ∀v ∈ V \{o, d} (λv ∈ R)

yP ∈ {0, 1} ∀p ∈ P

(31)

Since there is an exponential number of variables, this formulation can be solved using a column generation
algorithm. We denote λv the dual variables of (31). The associated sub-problem is a constrained shortest
path problem :

min
P∈P

(cP −
∑
v∈P

λv) (32)

The sub-problem (32) can be solved using a stochastic constrained shortest path algorithm (see Parmentier
2019 for in-depth details about these algorithms, and ConstrainedShortestPaths.jl20 for a Julia
implementation).

Solving (31) using column generation gives good bounds on instances with up to 50 tasks. A Branch-
and-price could be used to try to find the optimal solution.

B.1.3 Data generation

Instance generator To generate our dataset, we use a similar approach as by Parmentier 2021b. We
define a squared map of 50 minutes width, divided in 25 squared (10 × 10) districts. Each task v has a
(uniformly drawn) start point, a start time tbv, end point, and end time tev.

20https://github.com/BatyLeo/ConstrainedShortestPaths.jl

45

https://github.com/BatyLeo/ConstrainedShortestPaths.jl

Figure 9: Example of a map with 10 tasks. Task 0 represents the depot, in the middle of the map. Square
with task indices are starting points, and tasks without are end points.

We draw each scenario s ∈ S separately and independently. For each district d and hour h of the day,
we draw βd,h ∼ logN (µd,h, σd,h), with (µd,h, σd,h) ∼ U([1, 3])× U([0.4, 0.6]). For each district d and hour h
of the day, ζdisd,h models the congestion in the district at this time, and is computed as follows:{

∀d, ζdisd,0 = βd,0

∀d, h, ζdisd,h+1 = 1
2ζ

dis
d,h + βd,h

(33)

For each hour h of the day, ζinterh models the congestion on roads between districts, and is computed similarly.
With I ∼ logN (µ = 0.02, σ = 0.05): {

ζinter0 = I

ζinterh+1 = (ζinterh + 0.1)I
(34)

Let v be a task corresponding to a trip between district d1 and d2. We compute the perturbed start and
end times are: {

ξbv = tbv + βv

ξev = ξbv + tev − tbv + ζdisd1,h(ξ1)
+ ζinterh(ξ2)

+ ζdisd2,h(ξ3)

(35)

with ξ1 = ξbv, ξ2 = ξ1 + ζdisd1,h(ξ1)
, and ξ3 = ξ2 + tev − tbv + ξinterh(ξ2)

. And the perturbed travel times along arcs
a = (u, v):

ξtra = ξbv + ttra + ζdisd1,h(ξ1)
+ ζinterh(ξ2)

+ ζdisd2,h(ξ3)
(36)

with ξ1 = ξeu, ξ2 = ξ1 + ζdisd1,h(ξ1)
, and ξ3 = ξ2 + ttra + ξinterh(ξ2)

.

Encoding features For an instance, we compute a matrix of 20 features for every arc of the corresponding
graph. Let a = (u, v) ∈ A. The first feature is the length of a in minutes, i.e. the deterministic travel time
between u and v. The second feature is equal to cvehicle if a is connected to the source (i;.e if u = o), else 0.
Then, we add the 9 deciles of ξbv − (ξeu + ξtra) which represents the slack between u and v. Finally, we add
the values of the cumulative probability distribution of the slack, evaluated in −100, −50, −20, −10, 0, 50,
200, and 500.

Label solutions We label each instance with a local search heuristic initialized with the solution of the
deterministic problem. Its implementation can be found on the GitHub repository21.

21https://github.com/BatyLeo/StochasticVehicleScheduling.jl

46

https://github.com/BatyLeo/StochasticVehicleScheduling.jl

B.1.4 Training plots

Figure 10: Learning by imitation metric evolution during learning

47

Figure 11: Learning by experience metric evolution during learning

48

B.2 Two-stage minimum weight spanning tree
This subsection contains additional material about the two-stage stochastic spanning tree problem.

B.2.1 Lagrangian heuristic

We present the heuristic based on Lagrangian relaxation used to label our datasets.

Lagrangian relaxation An option to compute a lower bound on the optimal value of the two-stage
minimum weight spanning tree is to apply a Lagrangian relaxation. For this, we duplicate complicating
variables y for each scenario and introduce associated θes dual variable for each new constraint:

min
∑
e∈E

ceye +
1

|S|
∑
e∈E

∑
s∈S

deszes

s.t.
∑
e∈E

ye + zes = |V | − 1 ∀s ∈ S∑
e∈E(Y)

ye + zes ≤ |Y | − 1, ∀Y, ∅ ⊊ Y ⊊ E, ∀s ∈ S

yes = ye, ∀e ∈ E, ∀s ∈ S (θes dual variables)
y, z ∈ {0, 1}

(37)

Lagrangian dual problem can be formulated as follows:

max
θ
G(θ) =

min
y

∑
e∈E

(ce +
1

|S|
∑
s∈S

θes)ye

s.t. 0 ≤ y ≤M
+

1

|S|
∑
s∈S

min
ys,zs

∑
e∈E

deszes − θesyes

s.t. ys + zs ∈ spanning tree polytope
, (38)

where M is a large constant. In theory M is not needed, we can take M = +∞, but taking a finite M leads
to more informative gradients. G can be maximized by gradient ascent:

(∇θG(θ))es =
1

|S| (ye − yes) (39)

Lagrangian heuristic Once we find a good θ with the Lagrangian relaxation, we can retrieve the corre-
sponding yes solution, and use it as input of the Lagrangian heuristic 1. The general idea is to rebuild a
forest from the edges that are selected in the first stage for most scenarios.
Algorithm 1: Lagrangian heuristic
Data: yes ∈ {0, 1}, ∀e ∈ E, ∀s ∈ S
forall e ∈ E do

if 1
|S|

∑
s∈S yes > 0.5 then

we ← 1;
else

we ← −1;
end

end
Find maximum weight forest for weights w;
Result: ye ∈ {0, 1}, ∀e ∈ E
In the numerical experiments, we use the Lagrangian heuristic to build the training set. Practically, we

stop the Lagrangian relaxation after 50.000 iterations or if the gap between the lower bound provided by the
G(θ) and the upper bound obtained from the heuristic is non-grater than 0.1%.

49

B.2.2 Instance features

We detail here all the features used for training.

Basic feature set Basic features only contain twelve features. Let e be an edge. The first one is
the first stage cost ce, and the other 11 are the quantiles of the second stage costs (des)s∈S for values
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. All quantiles in the advanced feature set use the same values.

Advanced feature set Advanced features contain 79 features in total. Let e be an edge. The first 12
features are the same as the basic features. To these, we add quantiles of best stage costs (i.e for each
scenario s the value min(ce, des)), quantiles of neighbors first stage costs, and quantiles of neighbors second
stage costs. Then, we compute several single stage minimum spanning trees with Kruskal’s algorithm: one
with first stage costs, one for each scenario with corresponding second stage costs, and one for each scenario
with corresponding best stage costs min(ce, des). We use these spanning trees to compute new useful features:
a binary features that tells if e is in the first stage spanning tree, and quantile features on its presence in
second stage trees. Finally, we use best stage spanning trees to compute quantiles for the cost of e in the
best stage costs spanning tree: one set of quantiles for first edge costs, and another set for second stage costs.

50

0 25000 50000 75000 100000 125000 150000 175000 200000
Optimizer calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ga
p

wi
th

 re
sp

ec
t t

o
th

e
tru

e
m

ax
im

ize
r

Average train cost gap during training by experience
Cost perturbed multiplicative noise
Cost perturbed additive noise
Cost regularized half square norm

0 25000 50000 75000 100000 125000 150000 175000 200000
Optimizer calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ga
p

wi
th

 re
sp

ec
t t

o
th

e
tru

e
m

ax
im

ize
r

Average train cost gap during training by imitation
SPO+
MSE perturbed multiplicative noise
MSE regularized half square norm
Fenchel-Young perturbed multiplicative noise
Fenchel-Young perturbed additive noise
Fenchel-Young regularized half square norm

(a) Average train gap

0 25000 50000 75000 100000 125000 150000 175000 200000
Optimizer calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ga
p

wi
th

 re
sp

ec
t t

o
th

e
tru

e
m

ax
im

ize
r

Average test cost gap during training by experience
Cost perturbed multiplicative noise
Cost perturbed additive noise
Cost regularized half square norm

0 25000 50000 75000 100000 125000 150000 175000 200000
Optimizer calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ga
p

wi
th

 re
sp

ec
t t

o
th

e
tru

e
m

ax
im

ize
r

Average test cost gap during training by imitation
SPO+
MSE perturbed multiplicative noise
MSE regularized half square norm
Fenchel-Young perturbed multiplicative noise
Fenchel-Young perturbed additive noise
Fenchel-Young regularized half square norm

(b) Average test gap

Figure 3: Train and test optimality gaps along training in the Warcraft application

51

	Introduction
	Motivating example
	Our setting
	Contributions
	Notations
	Outline

	Related work
	Optimization layers in ML
	Similarities and differences with reinforcement learning
	Our guiding example: shortest paths on Warcraft maps

	Probabilistic CO layers
	The expectation of a differentiable probability distribution
	Regularization as another way to define a distribution
	Collection of probabilistic CO layers
	The case of inexact CO oracles

	Learning by experience
	Minimizing a smooth regret surrogate
	Derivatives of the regret for learning by experience

	Learning by imitation
	A loss that takes the optimization layer into account
	Collection of losses for learning by imitation

	Applications
	Shortest paths on Warcraft maps
	Approximating hard optimization problems
	Stochastic vehicle scheduling problem
	Single-machine scheduling
	Two-stage stochastic minimum weight spanning tree

	Conclusion
	References
	Proofs
	Additive perturbation
	Multiplicative perturbation
	Inexact oracles

	More details on applications
	Stochastic vehicle scheduling problem
	Two-stage minimum weight spanning tree

