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Abstract
Combinatorial optimization (CO) layers in machine learning (ML) pipelines are a powerful tool to

tackle data-driven decision tasks, but they come with two main challenges. First, the solution of a CO
problem often behaves as a piecewise constant function of its objective parameters. Given that ML
pipelines are typically trained using stochastic gradient descent, the absence of slope information is very
detrimental. Second, standard ML losses do not work well in combinatorial settings. A growing body of
research addresses these challenges through diverse methods. Unfortunately, the lack of well-maintained
implementations slows down the adoption of CO layers.

In this paper, building upon previous works, we introduce a probabilistic perspective on CO layers,
which lends itself naturally to approximate differentiation and the construction of structured losses. We
recover many approaches from the literature as special cases, and we also derive new ones. Based on
this unifying perspective, we present InferOpt.jl, an open-source Julia package that 1) allows turning
any CO oracle with a linear objective into a differentiable layer, and 2) defines adequate losses to train
pipelines containing such layers. Our library works with arbitrary optimization algorithms, and it is
fully compatible with Julia’s ML ecosystem. We demonstrate its abilities using a pathfinding problem
on video game maps.

Keywords: combinatorial optimization, machine learning, automatic differentiation, Julia program-
ming language

1 Introduction
Machine learning (ML) and combinatorial optimization (CO) are two essential ingredients of modern indus-
trial processes. While ML extracts meaningful information from noisy data, CO enables decision-making
in high-dimensional constrained environments. But in many situations, combining both of these tools is
necessary: for instance, we might want to generate predictions from data, and then use those predictions to
make optimized decisions. To do that, we need pipelines that contain two types of layers: ML layers and
CO layers.

Due to their many possible applications, hybrid ML-CO pipelines currently attract a lot of research
interest. The recent reviews by Bengio, Lodi, and Prouvost (2020) and Kotary et al. (2021) are excellent
resources on this topic. Unfortunately, relevant software implementations are scattered across paper-specific
repositories, with few tests, minimal documentation and sporadic code maintenance. Not only does this make
comparison and evaluation difficult for academic purposes, it also hurts practitioners wishing to experiment
with such techniques on real use cases.

Let us discuss a generic hybrid ML-CO pipeline, which includes a CO oracle amid several ML layers:
Input x−−−−−→

�� ��ML layers Objective θ−−−−−−−→ CO oracle
Solution y−−−−−−→

�� ��More ML layers Output−−−−→ (1)
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The inference problem consists in predicting an output from a given input. It is solved online, and requires
the knowledge of the parameters for each ML layer. On the other hand, the learning problem aims at finding
parameters that lead to “good” outputs during inference. It is solved offline based on a training set that
contains several inputs, possibly complemented by target outputs.

In Equation (1), we use the term CO oracle to emphasize that any algorithm may be used to solve the
optimization problem, whether it relies on an existing solver or a handcrafted implementation. Conversely,
when we talk about a layer, it is implied that we can compute meaningful derivatives using automatic
differentiation (AD). Since it may call black box subroutines, an arbitrary CO oracle is seldom compatible
with AD. And even when it is, its derivatives are zero almost everywhere, which gives us no exploitable slope
information. Therefore, according to our terminology, a CO oracle is not a layer (yet), and the whole point
of this paper is to turn it into one.

Modern ML libraries provide a wealth of basic building blocks that allow users to assemble and train
complex pipelines. We want to leverage these libraries to create hybrid ML-CO pipelines, but we face two
main challenges. First, while ML layers are easy to construct, it is not obvious how to transform a CO oracle
into a usable layer. Second, standard ML losses are ill-suited to our setting, because they often ignore the
underlying optimization problem.

Our goal is to remove these difficulties. We introduce InferOpt.jl1, a Julia package which 1) can turn
any CO oracle into a layer with meaningful derivatives, and 2) provides structured loss functions that work
well with the resulting layers. It contains several state-of-the-art methods that are fully compatible with
Julia’s AD and ML ecosystem, making CO layers as easy to use as any ML layer. To describe the available
methods in a coherent manner, we leverage the unifying concept of probabilistic CO layer, hence the name
of the package.

1.1 Motivating example
Let us start by giving an example of hybrid ML-CO pipeline. Suppose we want to find shortest paths on a
map, but we do not have access to an exact description of the underlying terrain. Instead, all we have are
images of the area, which give us a rough idea of the topography and obstacles. To solve our problem, we
need a pipeline comprising two layers of very different natures. First, an image processing layer, which is
typically implemented as a convolutional neural network (CNN). The CNN is tasked with translating the
images into a weighted graph. Second, a CO layer performing shortest path computations on said weighted
graph (e.g. using Dijkstra’s algorithm).

This pipeline is exactly the one considered by Vlastelica et al. (2019) and Berthet et al. (2020) for
pathfinding on video game maps. We illustrate it on Figure 1, and we describe it in more detail in Section 2.3.
The goal is to learn appropriate weights for the CNN, so that it feeds accurate cell costs to Dijkstra’s
algorithm. This is done by minimizing a loss function, such as the distance between the true optimal path
and the one we predict.

1.2 Our setting
In our hybrid ML-CO pipelines, we consider CO oracles f that solve the following kind of problem:

f : θ 7−→ argmax
v∈V

θ>v (2)

Here, the input θ ∈ Rd is the objective direction. Meanwhile, V ⊂ Rd (for vertices) denotes a finite set of
feasible solutions – which may be exponentially large in d – among which the optimal solution f(θ) shall be
selected. The feasible set V and its dimension may depend on the instance. For instance, if Equation (2)
is a shortest path problem, the underlying graph may change from one input to another. If we wanted to

1https://github.com/axelparmentier/InferOpt.jl
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Figure 1: Pipeline for computing shortest paths on Warcraft maps – data from Vlastelica et al. (2019)

remain generic, we should therefore write V(x) ⊂ Rd(x). To keep notations simple, we omit the dependency
in x whenever it is clear from the context. Note that we could also study more general CO oracles given by

argmax
v∈V

θ>g(v)

where g is any function from an arbitrary finite set V to Rd. As long as the objective is linear in θ, the
theory we present generalizes seamlessly. However, for ease of exposition, we keep g(v) = v. In this case,
Equation (2) is equivalent to

argmax
v∈conv(V)

θ>v.

Indeed, when the objective is linear in v, it makes no difference to optimize over the convex hull conv(V)
instead of optimizing on V.

1.2.1 From an optimization problem to an oracle

It is important to note that the formulation argmaxv∈V θ
>v is very generic. Any linear program (LP) or

mixed integer linear program (MILP) can be written this way, as long as its feasible set is bounded. Indeed,
the optimum of an LP is always reached at a vertex of the polytope, of which there are finitely many.
Similarly, the optimum of an MILP is always reached at an integral point, or even better, at a vertex of
the convex hull of the integral points. As a result, Equation (2) encompasses a variety of well-known CO
problems related to graphs (paths, flows, spanning trees, coloring), resource management (knapsack, bin
packing), scheduling, etc. See Korte and Vygen (2006) for an overview of CO and its applications.

For every one of these problems, dedicated algorithms have been developed over the years, which some-
times exploit the domain structure better than a generic MILP library (such as Gurobi or SCIP). Thus, we
have no interest in restricting the procedure used to compute an optimal solution: we want to pick the best
solver for each application. That is why the methods discussed in this paper only need to access the CO
oracle f as a black box function, without making assumptions on its implementation.

1.2.2 From an oracle to a probability distribution

When using CO oracles within ML pipelines, the first challenge we face is the lack of useful derivatives.
Since training often relies on stochastic gradient descent (SGD), we need to be able to backpropagate loss
gradients onto the weights of the ML layers. This requires each individual layer to be differentiable, so
that we can compute the Jacobian of its output with respect to its input. Unfortunately, since the feasible
set V of Equation (2) is finite, the CO oracle is a piecewise constant mapping and its derivatives are zero
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almost everywhere. To recover useful slope information, we seek approximate derivatives, which is where the
probabilistic approach comes into play.

To describe it, we no longer think about a CO oracle as a function returning a single element f(θ)
from V. Instead, we use it to define a probability distribution p(·|θ) on V. The naive choice would be the
Dirac mass p(v|θ) = δf(θ)(v), but it shares the lack of differentiability of the oracle itself. Thus, our goal
is to spread out the distribution p into an approximation p̂, such that the probability mapping θ 7−→ p̂(·|θ)
becomes smooth with respect to θ. If we can do that, then the expectation mapping

f̂ : θ 7−→ Ep̂(·|θ)[V ] =
∑
v∈V

vp̂(v|θ), (3)

where it is understood that V ∼ p̂(·|θ), will be just as smooth. This expectation mapping f̂ is what we take
to be our probabilistic CO layer : see Section 3 for detailed examples. In what follows, plain letters (p, f)
always refer to the initial CO oracle, while letters with a hat (p̂, f̂) refer to the probabilistic CO layer that
we wrap around it.

1.2.3 From a probability distribution to a loss function

The presence of CO oracles in ML pipelines gives rise to a second challenge: the choice of an appropriate loss
function to learn the parameters. As highlighted by Bengio, Lodi, and Prouvost (2020), this choice heavily
depends on the data at our disposal. They distinguish two main paradigms, which we illustrate using the
pipeline of Figure 1.

If our dataset only contains the map images, then we are in a weakly supervised setting, which they call
learning by experience (see Section 4). In that case, the loss function will evaluate the solutions computed
by our pipeline using the true cell costs. On the other hand, if our dataset happens to contain precomputed
targets such as the true shortest paths, then we are in a fully supervised setting, which they call learning by
imitation (see Section 5). In that case, the loss function will compare the paths computed by our pipeline with
the optimal ones, hoping to minimize the discrepancy. For both of these cases, the probabilistic perspective
plays an important role in ensuring smoothness of the loss.

1.2.4 Complete pipeline

The typical pipeline we will focus on is a special case of Equation (1), which we now describe in more detail:

Input x−−−−−→
�� ��ML layer ϕw

Objective θ = ϕw(x)−−−−−−−−−−−−−→ CO oracle f
Solution y = f(θ)−−−−−−−−−−−→

�� ��Loss function L (4)

Our pipeline starts with an ML layer ϕw, where w stands for the vector of parameters (or weights). Its
role is to encode the input x into an objective direction θ = ϕw(x), which is why we often refer to it as the
encoder. Then, the CO oracle defined in Equation (2) returns an optimal solution y = f(θ). For simplicity,
we assume that f is single-valued, i.e. that the optimal solution is unique. Finally, the loss function L is used
during training to evaluate the quality of the solution. If our dataset contains N input samples x(1), ..., x(N),
learning involves applying SGD to the following loss minimization problem:

min
w

1

N

N∑
i=1

L
( y(i)︷ ︸︸ ︷
f
(
ϕw(x(i))︸ ︷︷ ︸

θ(i)

)
, . . .

)
. (5)

The dots . . . correspond to additional arguments that may be used by the loss. For instance, the loss may
depend on the input x(i) itself, or require target outputs t̄(i) for comparison (see Section 5).

Remark 1.1. Our work focuses on individual layers and loss functions. Although we present various concrete
examples, we do not give generic advice on how to build the whole pipeline for a specific application. If the
use case corresponds to a “predict, then optimize” setting such as the one from Figure 1, then Elmachtoub
and Grigas (2021) give a few useful pointers. If the goal is to approximate hard optimization problems with
easier ones, the reader can refer to Parmentier (2021a) for a general methodology.
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1.3 Contributions
Our foremost contribution is the open-source package InferOpt.jl, which is written in the Julia program-
ming language (Bezanson et al. 2017). Given a CO oracle provided as a callable object, our package wraps it
into a probabilistic CO layer that is compatible with Julia’s AD and ML ecosystem. This is achieved thanks
to the ChainRules.jl2 interface (White et al. 2022). Moreover, InferOpt.jl defines several structured
loss functions, both for learning by experience and for learning by imitation.

On top of that, we present theoretical insights that fill some gaps in previous works. In addition to the
framework of probabilistic CO layers, we propose:

• A new perturbation technique designed for CO oracles that only accept objective vectors with a certain
sign (such as Dijkstra’s algorithm, which fails on graphs with negative edge costs): see Section 3.3.2.

• A way to differentiate through a large subclass of probabilistic CO layers (those that rely on convex
regularization) by combining the Frank-Wolfe algorithm with implicit differentiation: see Section 3.3.3.

• A probabilistic regularization of the regret for learning by experience: see Section 4.

• A generic decomposition framework for imitation losses, which subsumes most of the literature so far
and suggests ways to build new loss functions: see Section 5.1.

Finally, we describe numerical experiments on our motivating example of Warcraft shortest paths. In
particular, we use the pipeline of Figure 1 for learning by experience, even though the CNN encoder has
tens of thousands of parameters. To the best of our knowledge, previous attempts to learn hybrid ML-CO
pipelines by experience were restricted to ML layers with fewer than 100 parameters.

1.4 Notations
We write 1 for the vector with all components equal to 1, and ei for the basis vector corresponding to
dimension i. The notation 1{E} corresponds to the indicator function of the set (or event) E. The operator �
denotes the Hadamard (componentwise) product between vectors of the same size. We use ∆d to refer to the
unit simplex of dimension d, and Pp (resp. Ep) to denote a probability mass function (resp. an expectation)
with respect to the distribution p. If S is a set, we write

conv(S) =

{∑
i

pisi : si ∈ S, pi ≥ 0,
∑
i

pi = 1

}
= {Ep[S] : p ∈ ∆S} (6)

for its convex hull and projS for the orthogonal projection onto S. If h is a real-valued function, we denote
by ∇ah(x) the gradient of h with respect to parameter a at point x and by ∂ah(x) its convex subdifferential
(set of subgradients). The notation dom(h) stands for the domain of h, i.e. the set on which it takes finite
values. If h is a vector-valued function, we denote by Jah(x) its Jacobian matrix.

1.5 Outline
In Section 2, we review the literature on differentiable optimization layers, before focusing on the Warcraft
example. Section 3 introduces the family of probabilistic CO layers by splitting it into perturbed and
regularized approaches. Then, Section 4 gives tools for learning by experience, while Section 5 discusses loss
functions for learning by imitation. Practical applications of our package are presented in Section 6, before
we conclude in Section 7. Proofs for our main theoretical results can be found in Appendix A.

2https://github.com/JuliaDiff/ChainRules.jl
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2 Related work

2.1 Optimization layers in ML
A significant part of modern ML relies on AD: see Baydin et al. (2018) for an overview and Griewank
and Walther (2008) for an in-depth treatment. In particular, AD forms the basis of the backpropagation
algorithm used to train neural networks.

2.1.1 The notion of implicit layer

Standard neural architectures draw from a small collection of explicit layers (Goodfellow, Bengio, and
Courville 2016). Whatever their connection structure (dense, convolutional, recurrent, etc.) and regard-
less of their activation function, these layers all correspond to input-output mappings that can be expressed
using an analytic formula. This same formula is then used by AD to compute gradients.

On the other hand, the layers defined by InferOpt.jl are of the implicit kind, which means they can
contain arbitrarily complex iterative procedures. While we focus here on optimization algorithms, those are
not the only kind of implicit layers: fixed point iterations and differential equation solvers are also widely
used, depending on the application at hand. See the tutorial by Kolter, Duvenaud, and Johnson (2020) for
more thorough explanations.

Due to the high computational cost of unrolling iterative procedures, efficient AD of implicit layers often
relies on the implicit function theorem. As long as we can specify a set of conditions satisfied by the input-
output pair, this theorem equates differentiation with solving a linear system of equations. See the Python
package jaxopt3 for an example implementation, and its companion paper for theoretical details (Blondel,
Berthet, et al. 2021). The recent Python package theseus4 showcases an application of this framework to
robotics and vision (Pineda et al. 2022).

2.1.2 Convex optimization layers

Among the early works on optimization layers for deep learning, the seminal OptNet paper by Amos and
Kolter (2017) stands out. It describes a way to differentiate through quadratic programs (QPs) by using the
Karush-Kuhn-Tucker (KKT) optimality conditions and plugging them into the implicit function theorem.

More sophisticated tools exist for disciplined conic programs, such as the Python package cvxpylayers5

(Agrawal et al. 2019). The recent Julia package DiffOpt.jl6 (Sharma et al. 2022) extends these ideas
beyond the conic case to general convex programs. Note that both libraries only accept optimization problems
formulated in a domain-specific modeling language, as opposed to arbitrary oracles.

Strong convexity makes differentiation easier because the solutions evolve smoothly as a function of
the constraints and objective parameters. In particular, this means the methods listed above return exact
derivatives and do not rely on approximations. Regrettably, this nice behavior falls apart as soon as we enter
the combinatorial world.

2.1.3 Linear optimization layers

Let us consider an LP whose feasible set is a bounded polyhedron, also called polytope. It is well-known
that for generic objective directions, the optimal solution will be unique and located at a vertex of the
polytope. Even though LPs look like continuous optimization problems, this property shows that they
are fundamentally combinatorial. Indeed, a small change in the objective direction can cause the optimal
solution to suddenly jump to another vertex, which results in a discontinuous mapping from objectives to
solutions. In fact, this mapping is piecewise constant, which means no useful differential information can
come from it: its Jacobian is undefined at the jump points and zero everywhere else.

3https://github.com/google/jaxopt
4https://github.com/facebookresearch/theseus
5https://github.com/cvxgrp/cvxpylayers
6https://github.com/jump-dev/DiffOpt.jl
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Therefore, when differentiating LPs with respect to their objective parameters, we need to resort to
approximations. Vlastelica et al. (2019) use interpolation to turn a piecewise constant mapping into a
piecewise linear and continuous one. However, the dominant approximation paradigm in the literature is
regularization, as formalized by Blondel, Martins, and Niculae (2019).

For instance, Wilder, Dilkina, and Tambe (2019) add a quadratic penalty to the linear objective, which
allows them to reuse the QP computations of Amos and Kolter (2017). Mandi and Guns (2020) propose a
log-barrier penalty, which lets them draw a connection with interior-point methods. Berthet et al. (2020)
suggest perturbing the optimization problem by adding stochastic noise to the objective direction, which is
a form of implicit regularization.

When LP layers are located at the end of a pipeline, a clever choice of loss function can also simplify
differentiation. This is illustrated by the structured support vector machine (S-SVM) loss (Nowozin and
Lampert 2011), smart “predict, then optimize” (SPO+) loss (Elmachtoub and Grigas 2021) and Fenchel-
Young (FY) loss (Blondel, Martins, and Niculae 2019).

2.1.4 Integer optimization layers

In theory, the methods from the previous section still work in the presence of integer variables, that is,
for MILPs. To apply them, we only need to consider the polytope defined by the convex hull of integral
solutions. Alas, in the general case, there is no concise way to describe this convex hull. This is why many
authors decide to differentiate through the continuous relaxation of the MILP instead (Mandi, Demirović,
et al. 2020): it is an outer approximation of the integral polytope, but it can be sufficient for learning
purposes. Some suggest taking advantage of techniques specific to integer programming, such as integrality
cuts (Ferber et al. 2020) or a generalization of the notion of active constraint (Paulus et al. 2021).

There has also been significant progress on finding gradient approximations for combinatorial problems
such as ranking (Blondel, Teboul, et al. 2020) and shortest paths (Parmentier 2021b). Yet these techniques
are problem-specific, and therefore hard to generalize, which is why we leave them aside.

Instead, we want to allow implicit manipulation of the integral polytope itself, without making assump-
tions on its structure. To achieve that, we can only afford to invoke CO oracles as black boxes (Vlastelica
et al. 2019; Berthet et al. 2020). This compatibility with arbitrary algorithms is one of the fundamental
tenets of our work. The recent Python package PyEPO7 (Tang and Khalil 2022) shares this perspective, but
it only implements a subset of InferOpt.jl since it does not address the central notion of probabilistic
CO layer.

2.2 Similarities and differences with reinforcement learning
As we will see in Section 4, learning by experience can be reminiscent of reinforcement learning (RL), which
also relies on a reward or cost signal given by the environment (Sutton and Barto 2018). Furthermore, the
encoder layer of Equation (4) is similar to a parametric approximation of the value function, which forms the
basis of deep RL approaches. This prompts us to discuss a few differences between RL and the framework
we study.

The standard mathematical formulation of RL is based on Markov decision processes (MDPs), where a
reward and state transition are associated with each action. Usually, the available actions are elementary
decisions: pull one lever of a multi-armed bandit, cross one edge on a graph, select one move in a board
game, etc. The resulting value or policy update is local: it is specific to both the current state and the action
taken. The more reward information we gather, the more efficient learning becomes.

In our framework, the basic step is a call to the optimizer. But combinatorial algorithms can go beyond
simple actions: they often output a structured and high-dimensional solution, which aggregates many ele-
mentary decisions. This in turn triggers a global update in our knowledge of the system, whereby the final
reward is redistributed between all elementary decisions. In a way, backpropagation through the optimizer
enables efficient credit assignment, even for sparse reward signals.

7https://github.com/khalil-research/PyEPO
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Another difference is related to the Bellman fixed point equation. In an RL setting, the Bellman equation
is used explicitly to derive parameter updates. In our setting, the Bellman equation is used implicitly within
optimizers such as Dijkstra’s algorithm.

To conclude, while standard RL decomposes a policy into elementary decisions, the pipelines we study
here are able to look directly for complex multistep solutions. Note that a similar concept of option exists
in hierarchical RL (Barto and Mahadevan 2003): comparing both perspectives in detail would no doubt be
fruitful, and we leave it for future work.

2.3 Our guiding example: shortest paths on Warcraft maps
As a way to clarify the concepts introduced in this paper, we illustrate them on the problem of Warcraft
shortest paths (Vlastelica et al. 2019; Berthet et al. 2020), which was already introduced on Figure 1. The
associated dataset8, assembled by Vlastelica et al. (2019), contains randomly-generated maps similar to
those from the Warcraft II video game. Each of these maps is a red-green-blue (RGB) image of size ks× ks
containing k× k square cells of side length s. Every cell has its own terrain type (grass, forest, water, earth,
etc.) which incurs a specific cost when game characters cross it.

The goal is to find the shortest path from the top left corner of the map to the bottom right corner.
At prediction time, cell costs are unknown, which means they must be approximated from the image alone.
Solving the problem of Warcraft shortest paths thus requires adapting the pipeline of Equation (4) as follows:

Map image−−−−−−−−→
x∈Rks×ks×3

�



�
	Conv. Neural

Network ϕw
Negative cell costs−−−−−−−−−−−→

θ∈Rk×k

Dijkstra’s
algorithm

argmaxv∈Pk
θ>v

Shortest path−−−−−−−−→
y∈Pk

�



�
	Loss

function L
(7)

where we have defined the set of feasible paths

Pk = {v ∈ {0, 1}k×k : v represents a path from (1, 1) to (k, k)}.

Training proceeds based on the map images and (possibly) the true shortest paths or cell costs provided in
the dataset.

As suggested by Vlastelica et al. (2019), we design the CNN based on the first few layers of a ResNet18
(He et al. 2016). We also append a negative softplus activation, in order to make sure that all outputs are
negative. The sign constraint is there to ensure that Dijkstra’s algorithm will terminate, but it is not obvious
why we require negative costs instead of positive ones. The reason behind this sign switch is that Dijkstra’s
algorithm is a minimization oracle, whereas by convention InferOpt.jl works with maximization oracles.

We now show how to implement this pipeline in Julia. Throughout the paper, in addition to InferOpt.jl,
the following packages are used: Flux.jl9 (Innes et al. 2018; Innes 2018), Graphs.jl10 (Fairbanks et al.
2021), GridGraphs.jl11, Metalhead.jl12 and Zygote.jl13 (Innes 2019), along with the standard
libraries LinearAlgebra and Statistics. Code sample 1 creates the CNN encoder layer. Meanwhile,
Code sample 2 shows how to define the Dijkstra oracle and the true cost function.

8https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.YJCQ5S
9https://github.com/FluxML/Flux.jl

10https://github.com/JuliaGraphs/Graphs.jl
11https://github.com/gdalle/GridGraphs.jl
12https://github.com/FluxML/Metalhead.jl
13https://github.com/FluxML/Zygote.jl
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� �
using Flux, Metalhead, Statistics

resnet18 = ResNet(
18; pretrain=false, nclasses=1

)

warcraft_encoder = Chain(
resnet18.layers[1][1:4],
AdaptiveMaxPool((12, 12)),
x -> mean(x; dims=3),
x -> dropdims(x; dims=(3, 4)),
x -> -softplus.(x)

)� �
Code sample 1: CNN encoder for Warcraft

� �
using Graphs, GridGraphs, LinearAlgebra

function warcraft_maximizer(theta)
g = GridGraph(-theta)
path = grid_dijkstra(g, 1, nv(g))
y = path_to_matrix(g, path)
return y

end

function warcraft_cost(y; theta_ref)
return dot(y, theta_ref)

end� �
Code sample 2: Dijkstra optimizer for Warcraft

Finally, Code sample 3 demonstrates the full prediction and optimization pipeline. It assumes that we
have already parsed the Warcraft dataset into three lists:

• images, whose elements are three-dimensional arrays representing map images;

• cells, whose elements are matrices representing true cell costs;

• paths, whose elements are binary matrices representing true shortest paths.

� �
x, theta_ref, y_ref = images[1], cells[1], paths[1]
theta = warcraft_encoder(x)
y = warcraft_maximizer(theta)
c = warcraft_cost(y; theta_ref=theta_ref)� �

Code sample 3: Full pipeline for Warcraft shortest paths

These functions do not rely on InferOpt.jl, but they will be used throughout the paper inside the
differentiable wrappers provided by the package. Note that some snippets shown here have been shortened
for clarity. Please refer to the documentation of InferOpt.jl and satellite packages for actual runnable
examples.

3 Probabilistic CO layers
In this section, we focus on the CO oracle f defined in Equation (2), which is piecewise constant. By adopting
a probabilistic point of view, we construct several smooth approximations f̂ , which can be computed and
differentiated based solely on calls to f .

3.1 The expectation of a differentiable probability distribution
As announced in Section 1.2.2, a probabilistic CO layer works in two steps. First, it constructs a probability
distribution p̂(·|θ) ∈ ∆V . Second, it returns the expectation f̂(θ) = Ep̂(·|θ)[V ] ∈ conv(V). Figure 2 illustrates
this behavior on a two-dimensional polytope, with a maximization problem defined by the vector θ (black
arrow). While the CO oracle outputs a single optimal vertex (red square), the probabilistic CO layer defines
a distribution on all the vertices (light blue circles). Its output (dark blue hexagon) is a convex combination
of the vertices with nonzero weights, which belongs to the convex hull of V (gray surface).

For such a layer to be useful in our setting, we impose the following conditions:

9



Figure 2: Effect of a probabilistic CO layer

• All computations must only require calls to the CO oracle f .

• The expectation Ep̂(·|θ)[V ] must be tractable (whether it is with an explicit formula, Monte-Carlo
sampling, variational inference, etc.).

• The mapping θ 7−→ p̂(·|θ) must be differentiable.

If these conditions are satisfied, then the Jacobian of f̂ is easily deduced from Equation (3):

Jθf̂(θ) = JθEp̂(·|θ)[V ] =
∑
v∈V

v∇θp̂(v|θ)> (8)

Let us give an example where analytic formulas exist. If V = {e1, ..., ed} is the set of basis vectors, then
its convex hull conv(V) = ∆d is the unit simplex of dimension d. Given an objective direction θ, solving
argmaxv∈V θ

>v yields the basis vector f(θ) = ei where i is the index maximizing θi.
We want a probability distribution that evolves smoothly with θ, so we need to spread out the naive

Dirac mass δf(θ)(·) by putting weight on several vertices instead of just one. Let us assign to each vertex a
probability that depends on its level of optimality in the optimization problem argmaxv∈V θ

>v, that is, on
its inner product with θ. The Boltzmann distribution is a natural candidate, leading to p̂(ei|θ) ∝ eθ

>ei = eθi .
Computing the expectation reveals a well-known operation:

f̂(θ) = Ep̂(·|θ)[V ] =

d∑
i=1

eθi∑d
j=1 e

θj
ei = softmax(θ)

Unlike the “hardmax” function f , the softmax function f̂ is differentiable, which justifies its frequent use as
an activation function in classification tasks.

While the Boltzmann distribution can be used for specific sets V, in the general case, it has an intractable
normalizing constant. This means we would need Markov chain Monte-Carlo (MCMC) methods to compute
derivatives, which undermines the simplicity we are looking for. Fortunately, Sections 3.3.1 and 3.3.2 present
other probability distributions which can be easily approximated through sampling.

10



Layer Notations Probability p̂(·|θ) Regularization

PerturbedAdditive p̂+
ε , f̂+

ε Explicit: f(θ + εZ) Implicit: Fenchel conjugate
PerturbedMultiplicative p̂�ε , f̂�ε Explicit: f(θ � eεZ−ε21/2) Implicit: Fenchel conjugate

RegularizedGeneric p̂FW
Ω , f̂FW

Ω Implicit: Frank-Wolfe weights Explicit: function Ω

Table 1: Probabilistic CO layers and their defining features

3.2 Regularization as another way to define a distribution
Although this probabilistic point of view was recently put forward by Berthet et al. (2020), the most popular
paradigm in the literature remains regularization (Blondel, Martins, and Niculae 2019). Instead of using the
CO oracle (2), regularization solves a different problem:

f̂Ω : θ 7−→ argmax
µ∈dom(Ω)

θ>µ− Ω(µ) (9)

where Ω : Rd → R is a smooth and convex function that penalizes the output µ. Usually, Ω is chosen to
enforce Ω(µ) = +∞ whenever µ /∈ conv(V), which means dom(Ω) ⊆ conv(V). Remember that since V is
finite, conv(V) is a polytope whose vertices form a subset of V.

The change of notation from v to µ stresses the fact that v is an element of V, while µ belongs to dom(Ω) ⊆
conv(V). By Equation (6), any feasible µ is the expectation of some distribution over V, hence our choice of
letter. This means we can write f̂Ω(θ) as a convex combination of the elements of V, whose weights are then
interpreted as probabilities p̂Ω(·|θ). In other words, the two perspectives are not opposed: regularization is
just another way to define a probability distribution.

For instance, if we go back to the concrete example from Section 3.1 and select Ω(µ) =
∑
i µi logµi (the

negative Shannon entropy), we find once again that f̂Ω(θ) = softmax(θ). But the case of the unit simplex is
very peculiar, because for any µ ∈ conv(V), the convex decomposition of µ onto the vertices V is unique. In
other words, the correspondence between regularizations Ω and probability mappings p̂Ω is one-to-one.

This does not hold for arbitrary polytopes. As a result, we need to be more specific in how we choose
the convex decomposition. In particular, we need the weights to be differentiable, in order to compute the
Jacobian with Equation (8). Section 3.3.3 describes one possible approach, which relies on the Frank-Wolfe
algorithm and implicit differentiation.

Conversely, the probability distributions given in Sections 3.3.1 and 3.3.2 also give rise to an implicit
regularization, which can be expressed using Fenchel conjugates. This point of view is especially useful
when we want to combine these layers with Fenchel-Young losses (Section 5.2.3). In essence, we claim that
probabilistic CO layers and regularization are two sides of the same coin.

3.3 Collection of probabilistic CO layers
Our package implements various flavors of probabilistic CO layers, which are summed up in Table 1. Code
sample 4 displays the operations they all support.

Remark 3.1. We also implement an Interpolation layer, corresponding to the piecewise linear interpo-
lation of Vlastelica et al. (2019). However, to the best of our knowledge it cannot be cast as a probabilistic
CO layer, so it does not support as many operations, and we only mention it for benchmarking purposes.

We now present each row of Table 1 in more detail. The main goal of Sections 3.3.1, 3.3.2 and 3.3.3 is
to explain how p̂(·|θ) and f̂(θ) are computed, as well as their derivatives. We also draw connections with
the regularization paradigm, which ease the introduction of Fenchel-Young losses in Section 5.2.3. A hasty
reader can safely skip to Section 4.
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� �
using InferOpt, Zygote

p = compute_probability_distribution(layer, theta)
rand(p)
compute_expectation(p)

y = layer(theta) # equal to the expectation of p
Zygote.jacobian(layer, theta)� �

Code sample 4: Supported operations for a probabilistic CO layer

3.3.1 Additive perturbation

A natural way to define a distribution on V is to solve (2) with a stochastic perturbation of the objective
direction θ. Berthet et al. (2020) suggest the following additive perturbation mechanism:

f̂+
ε (θ) = E

[
argmax
v∈V

(θ + εZ)>v

]
= E [f(θ + εZ)] (10)

where ε > 0 controls the amplitude of the perturbation, Z ∼ N (0, I) is a standard Gaussian vector and
the expectation is taken with respect to Z unless otherwise specified. Choosing ε is a trade-off between
smoothness (large ε) and accuracy of the approximation (small ε). The associated probability distribution
on V can be described explicitly:

f̂+
ε (θ) =

∑
v∈V

vp̂+
ε (v|θ) with p̂+

ε (v|θ) = P (f(θ + εZ) = v) . (11)

Meanwhile, Proposition 3.1 allows us to compute differentials. Although the expectations cannot be expressed
in closed form, they can be estimated using M Monte-Carlo samples Z1, ..., ZM ∼ N (0, I). Increasing M
yields smoother approximations but makes the complexity grow linearly.

Proposition 3.1 (Differentiating through an additive perturbation (Berthet et al. 2020)). We have:

∇θp̂+
ε (v|θ) =

1

ε
E [1{f(θ + εZ) = v}Z]

Jθf̂
+
ε (θ) =

1

ε
E
[
f(θ + εZ)Z>

]
Proof. See Appendix A.1.1.

In order to recover the regularization associated with p+
ε , we leverage convex conjugation. Let F+

ε be the
function defined by

F+
ε (θ) = E

[
max
v∈V

(θ + εZ)>v

]
and let Ω+

ε = (F+
ε )∗ denote its Fenchel conjugate.

Proposition 3.2 (Regularization associated with an additive perturbation (Berthet et al. 2020)). The
function Ω+

ε is convex, it satisfies dom(Ω+
ε ) ⊂ conv(V) and

f̂+
ε (θ) = argmax

µ∈conv(V)

θ>µ− Ω+
ε (µ) = f̂Ω+

ε
(θ).

Proof. See Appendix A.1.2.

Code sample 5 shows how this translates into InferOpt.jl syntax.
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3.3.2 Multiplicative perturbation

Since the Gaussian distribution puts mass on all of Rd, it can happen that some components of θ+εZ switch
their sign with respect to θ. This may cause problems whenever the CO oracle for f has sign-dependent
behavior. For instance, Dijkstra’s algorithm for shortest paths requires all the edges of a graph to have a
positive cost. In those cases, we need a sign-preserving kind of perturbation. Changing the distribution
of Z to make it positive almost surely is not the right answer because it would bias the pipeline, leading
to E[θ + εZ] > θ for the componentwise order. So instead of being additive, the perturbation becomes
multiplicative:

f̂�ε (θ) = E
[
argmax
v∈V

(
θ � eεZ−ε

21/2
)>

v

]
= E

[
f
(
θ � eεZ−ε

21/2
)]

(12)

Here, � denotes the Hadamard product, and the exponential is taken componentwise. Since E[eεZ ] =

eε
21/2 6= 1, we add a correction term in the exponent to remove any bias: E[θ � eεZ−ε21/2] = θ. As before,

the associated probability distribution is easy to describe:

f̂�ε (θ) =
∑
v∈V

vp̂�ε (v|θ) with p̂�ε (v|θ) = P
(
f
(
θ � eεZ−ε

21/2
)

= v
)
. (13)

And Proposition 3.3 provides differentiation formulas that are very similar to the additive case.

Proposition 3.3 (Differentiating through a multiplicative perturbation). We have:

∇θp̂�ε (v|θ) =
1

εθ
� E

[
1

{
f
(
θ � eεZ−ε

21/2
)

= v
}
Z
]

Jθf̂
�
ε (θ) =

1

εθ
� E

[
f
(
θ � eεZ−ε

21/2
)
Z>
]

Proof. See Appendix A.2.1.

As far as regularization is concerned, we need a slight tweak compared to the additive case. Let F�ε be
the function defined by

F�ε (θ) = E
[
max
v∈V

(
θ � eεZ−ε

21/2
)>

v

]
and let Ω�ε = (F�ε )∗ denote its Fenchel conjugate. We define

f̂�scaled
ε (θ) = E

[
eεZ−ε

21/2 � f
(
θ � eεZ−ε

21/2
)]

Proposition 3.4 (Regularization associated with a multiplicative perturbation). The function Ω�ε is convex
and satisfies

f̂�scaled
ε (θ) = argmax

µ∈dom(Ω�ε )

θ>µ− Ω�ε (µ) = f̂Ω�ε
(θ).

Unlike in the additive case, it is not f̂�ε itself that can be viewed as the product of regularization with Ω�ε .
Furthermore, this time we have dom(Ω�ε ) 6⊆ conv(V).

Proof. See Appendix A.2.2.

Code sample 5 shows how this translates into InferOpt.jl syntax.
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3.3.3 Generic regularization

We now switch our focus to the case of an explicit regularization Ω. Provided the regularization is convex
and smooth, approximate computation of f̂Ω(θ) is made possible by the Frank-Wolfe algorithm (Frank and
Wolfe 1956). This algorithm is interesting for two reasons. First, it only requires access to the CO oracle f
and the gradient of Ω. Second, its output is expressed as a convex combination of only a few polytope vertices
(Jaggi 2013). In other words, the Frank-Wolfe algorithm does not just return a single point f̂Ω(θ) ∈ conv(V):
it also defines a sparse probability distribution p̂FW

Ω (·|θ) over the vertices V such that

f̂Ω(θ) =
∑
v∈V

vp̂FW
Ω (v|θ).

This distribution is called sparse because most of the weights are actually zero. Note that p̂FW
Ω (·|θ) is not

uniquely specified by the regularization Ω, but instead depends on the precise implementation of the Frank-
Wolfe algorithm (initialization, step size, convergence criterion, etc.). In particular, the number of atoms in
the distribution is upper-bounded by the number of Frank-Wolfe iterations.

As pointed out by Blondel, Berthet, et al. (2021, Appendix C), there exists a function g(p, θ) defined
on ∆V×Rd such that p̂FW

Ω (·|θ) is a fixed point of its projected gradient operator p 7−→ proj∆V (p−∇pg(p, θ)).
Since the orthogonal projection onto the simplex ∆V is itself differentiable (Martins and Astudillo 2016), we
can apply the implicit function theorem to this fixed point equation. Doing so yields gradients ∇θp̂Ω(v|θ)
that we use to compute a Jacobian for f̂Ω(θ). Again, by sparsity, this sum only has a few non-zero terms,
which makes it tractable:

Jθf̂Ω(θ) =
∑
v∈V

v∇θp̂FW
Ω (v|θ)>. (14)

Among all the possible functions Ω, the quadratic penalty Ω(µ) = 1
2‖µ‖

2 is particularly interesting. It gives
rise to the SparseMAP method (Niculae et al. 2018), whose name comes from the sparsity of the Euclidean
projection onto a polytope:

f̂Ω(θ) = argmax
µ∈conv(V)

{
θ>µ− 1

2
‖µ‖2

}
= argmin
µ∈conv(V)

‖µ− θ‖2.

This is the one we used for the example of Code sample 6. Our implementation relies on the recent package
FrankWolfe.jl14 (Besançon, Carderera, and Pokutta 2021).

Remark 3.2. Blondel, Martins, and Niculae (2019) also suggest distribution regularization, whereby Ω(µ)
is defined through a generalized entropy H(p) on ∆V :

Ω(µ) = − max
p∈∆V

H(p) s.t. Ep[V ] = µ.

Distribution regularization can only be computed explicitly for certain entropies H (Shannon entropy, Gini
index) and certain polytopes conv(V) (unit simplex, permutahedron, spanning trees, etc.). In each case, a
custom combinatorial algorithm is required. Since we aim for a generic approach, we only consider mean
regularization, which is defined directly on the expectation µ.

14https://github.com/ZIB-IOL/FrankWolfe.jl
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� �
using InferOpt

perturbed_add = PerturbedAdditive(
warcraft_maximizer;
epsilon=0.5, nb_samples=10

)

perturbed_mult = PerturbedMultiplicative(
warcraft_maximizer;
epsilon=0.5, nb_samples=10

)� �
Code sample 5: Probabilistic CO layers defined by

perturbation

� �
using InferOpt

regularized = RegularizedGeneric(
warcraft_maximizer;
omega=y -> 0.5 * sum(y .ˆ 2),
omega_grad=y -> y

)� �
Code sample 6: Probabilistic CO layer defined by

regularization

4 Learning by experience
Now that we have seen several ways to construct probabilistic CO layers, we turn to the definition of an
appropriate loss function. Let us start with learning by experience, which takes place when we only have
access to input samples without target outputs. In that case, Equation (5) simplifies as

min
w

1

N

N∑
i=1

L
(
f
(
ϕw(x(i))

))
. (15)

As we will see below, the regret, which is the natural choice of loss, does not yield interesting gradients.
That is why we propose a family of smooth regret surrogates derived from our probabilistic CO layers, and
explain how to differentiate them. While similar losses have been hinted at in previous works, to the best of
our knowledge, our general point of view is new.

To make notations lighter, we restrict ourselves to a single input x. Furthermore, we write losses as
functions of θ instead of w. Indeed, our losses do not just rely on y = f(θ): they use f as an ingredient
internally. In practice, we leave it to AD to exploit the relation θ = ϕw(x) in order to compute gradients
with respect to w.

4.1 Minimizing a smooth regret surrogate
When we learn by experience, the problem statement usually includes a cost function c : V → R, and we
want our pipeline to generate solutions that are as cheap as possible. Internally, this cost function may use
parameters that are unknown to us at prediction time: typically, it may assess the quality of our solution
using the true objective direction θ̄. It may be useful to think about c as the feedback provided by an outside
evaluator, rather than a function we implement ourselves.

The natural loss to minimize is the cost incurred by our prediction pipeline, also called regret:

R(θ) = c(f(θ)). (16)

This function relies on the CO oracle f , which is piecewise constant. Our spontaneous impulse would be to
replace the CO oracle f with a probabilistic CO layer f̂ , thus minimizing c(f̂(θ)). Unfortunately, the cost
function c is not necessarily smooth either. To make matters worse, c may only be defined on vertices v ∈ V,
and not on general convex combinations µ ∈ conv(V).

The solution we propose relies on the pushforward measure (also called image measure) of p̂(·|θ) with
respect to the function c. Recall that a probabilistic CO layer is defined by f̂(θ) = Ep̂(·|θ)[V ]. To compose it
with an arbitrary cost, instead of applying c outside the expectation, we apply it inside the expectation. In
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other words, we first push the measure p̂(·|θ) forward through the function c, before taking the expectation.
This gives rise to the notion of expected regret :

Rp̂(θ) = Ep̂(·|θ)[c(V )] (17)

By integration, this loss is just as smooth as the probability mapping θ 7−→ p̂(·|θ), which means we can com-
pute its gradient easily. We therefore suggest using the expected regret Rp̂ that stems from the probabilistic
CO layers p̂+

ε , p̂�ε , and p̂FW
Ω defined in Section 3.

Note that if c is linear and defined on all of conv(V), then Ep̂(·|θ)[c(V )] = c
(
Ep̂(·|θ)[V ]

)
and the two

quantities coincide. Furthermore, if c is convex, then Ep̂(·|θ)[c(V )] ≥ c
(
Ep̂(·|θ)[V ]

)
by Jensen’s inequality,

which means the expected regret is an upper bound.

Code sample 7 demonstrates how to define an expected regret from probabilistic CO layers, while Code
sample 8 shows that we can compute and differentiate it automatically. Finally, Code sample 9 displays a
complete program for learning by experience. The rest of this section explains how to compute derivatives
of the expected regret Rp̂ and can be skipped without danger.� �

using InferOpt

regret_pert = Pushforward(
perturbed_add, warcraft_cost

)
regret_reg = Pushforward(

regularized, warcraft_cost
)� �

Code sample 7: Expected regrets associated with
probabilistic CO layers

� �
using Zygote

R = regret(theta)
Zygote.gradient(regret, theta)� �
Code sample 8: Supported operations for an

expected regret

� �
using Flux, InferOpt

gradient_optimizer = ADAM()
parameters = Flux.params(warcraft_encoder)
data = images

function pipeline_loss(x)
theta = warcraft_encoder(x)
return regret(theta)

end

for epoch in 1:1000
train!(pipeline_loss, parameters, data, gradient_optimizer)

end� �
Code sample 9: Learning with an expected regret

Remark 4.1. Since the learning problem is non-convex, we may also try to minimize the (non-smooth)
regret R using global optimization algorithms such as DIRECT (Jones, Perttunen, and Stuckman 1993).
Perhaps surprisingly, this has been shown to yield good results when ϕw is a generalized linear model and the
dimension of the weights w is not too large, i.e., non greater that 100 (Parmentier 2021a). When the ML
layer ϕw is a large neural network, we cannot use this approach anymore.
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4.2 Derivatives of the regret for learning by experience
When p̂ comes from a random perturbation, we can formulate the gradient of the expected regret as an
expectation too, and approximate it with Monte-Carlo samples.

Proposition 4.1 (Gradient of the expected regret, perturbation setting). We have:

∇θRp̂+
ε

(θ) =
1

ε
E [(c ◦ f)(θ + εZ)Z]

∇θRp̂�ε (θ) =
1

εθ
� E

[
(c ◦ f)

(
θ � eεZ−ε

21/2
)
Z
]
.

Proof. For the additive perturbation, it is a consequence of Proposition 3.1. For the multiplicative pertur-
bation, it is a consequence of Proposition 3.3.

These gradients obey a simple logic: the more the perturbation Z increases the cost of a solution, the
more positive weight it gets, and vice versa. To see it, we remember that E[Z] = 0 for a standard Gaussian,
and rewrite the regret gradients as follows:

∇θRp̂+
ε

(θ) =
1

ε
E [(c ◦ f)(θ + εZ)Z − (c ◦ f)(θ)Z]

∇θRp̂�ε (θ) =
1

εθ
� E

[
(c ◦ f)

(
θ � eεZ−ε

21/2
)
Z − (c ◦ f)(θ)Z

]
.

On the other hand, when p̂ is derived from an explicit regularization Ω, the expected regret is amenable
to implicit differentiation of the Frank-Wolfe algorithm. Once more, the sparsity property makes exact
computation tractable by reducing the number of terms in the sum:

∇θRp̂FW
Ω

(θ) =
∑
v∈V

c(v)∇θp̂FW
Ω (v|θ)

Remark 4.2. Although the previous discussion focuses on a scalar-valued cost, it actually applies to any
pushforward function c, even with vector values. The formulas for the generic Jacobian are given below:

JθEp̂+
ε (·|θ)[c(V )] =

1

ε
E
[
(c ◦ f)(θ + εZ)Z>

]
JθEp̂�ε (·|θ)[c(V )] =

1

εθ
� E

[
(c ◦ f)

(
θ � eεZ−ε

21/2
)
Z>
]

JθEp̂FW
Ω (·|θ)[c(V )] =

∑
v∈V

c(v)∇θp̂FW
Ω (v|θ)>

At the moment, InferOpt.jl only handles the case where c is a fully-defined function without free pa-
rameters. In the near future, we will add support for the case where c is itself an ML layer with learnable
weights.

5 Learning by imitation
We now move on to learning by imitation, where additional information is used to guide the training pro-
cedure. For each input sample x(i), we assume we have access to a target t̄(i). In that case, Equation (5)
simplifies as

min
w

1

N

N∑
i=1

L
(
f
(
ϕw(x(i))

)
, t̄(i)

)
, (18)

and we can see that the loss takes the target as an additional argument. In this section, we introduce imitation
losses that are well-suited to hybrid ML-CO pipelines, and explain how to compute their gradients. As in
Section 4, we only consider a single input x, and we write losses as L(θ, t̄).
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5.1 A loss that takes the optimization layer into account
There are two main kinds of target. The first one is a good quality solution t̄ = ȳ. The second one is the
true objective direction θ̄, from which we can also deduce ȳ = f(θ̄), so that t̄ = (θ̄, ȳ). When learning by
imitation, it is tempting to focus only on reproducing the targets, but this would be misguided. To explain
why, we revisit the pipeline of Equation (4).

Remember that we may have access to the true objective direction θ̄ during training, but at prediction
time, the CO oracle f is applied to the encoder output θ = ϕw(x) instead. Minimizing a naive square loss
like ‖ϕw(x) − θ̄‖2 completely neglects the asymmetric impacts of the prediction errors on θ: for example,
overestimating or underestimating θ may have very different consequences on the quality of the downstream
solution. That is why, according to Elmachtoub and Grigas (2021), we need a loss function that takes
the optimization step into account. The same holds true when we have access to a precomputed solution ȳ.
Berthet et al. (2020) present experiments showing that the naive square loss ‖f̂(ϕw(x))− ȳ‖2 performs poorly
compared with more refined approaches. Our own numerical findings (Section 6) support their conclusion.

To sum up, we want a loss that does not neglect the optimization step. Let y temporarily denote the
output of our pipeline. When surveying the literature, we realized that most flavors of imitation learning
use losses that combine the same components:

Laux(θ, t̄, y) = `(y, t̄)︸ ︷︷ ︸
base loss

+ θ>(y − ȳ)︸ ︷︷ ︸
gap between
y and ȳ for the
CO problem (2)

− (Ω(y)− Ω(ȳ))︸ ︷︷ ︸
regularization term

(19)

Here is another way to write it:

Laux(θ, t̄, y) = `(y, t̄)︸ ︷︷ ︸
base loss

+
(
θ>y − Ω(y)

)
−
(
θ>ȳ − Ω(ȳ)

)︸ ︷︷ ︸
gap between y and ȳ

for the regularized CO problem (9)

The base loss `(y, t̄) is similar in spirit to the cost function c(y) from Section 4. But it is the gap term that
truly makes it possible for the optimization problem to play a role in the loss. Indeed, minimizing the gap
encourages the (regularized) CO problem to output a solution y that is close to the target ȳ.

Putting these components together yields a linear function of θ, and we can remove the dependency in y
by maximizing over y:

Lgen(θ, t̄) = max
y∈dom(Ω)

Laux(θ, t̄, y) = max
y∈dom(Ω)

[
`(y, t̄) + θ>(y − ȳ)− (Ω(y)− Ω(ȳ))

]
. (20)

The following result justifies why this is an interesting loss.

Proposition 5.1 (Properties of the generic loss for learning by imitation). The function Lgen(θ, t̄) is convex
with respect to θ, and a subgradient is given by(

argmax
y∈dom(Ω)

Laux(θ, t̄, y)
)
− ȳ ∈ ∂θLgen(θ, t̄). (21)

Proof. As a pointwise maximum of affine functions, θ 7−→ L(θ, t̄) is convex. Its subgradient is obtained using
Danskin’s theorem (Danskin 1967).

The idea is that solving argmaxy∈dom(Ω) Laux(θ, t̄, y) should not be much harder than the regularized CO
problem (9). Therefore, using such a loss function dispenses us from differentiating through the probabilistic
CO layer: most of the time, we only need to compute the layer output in order to obtain a loss subgradient
for free.
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Method Notation Target Base loss Regul. Loss formula

S-SVM LS-SVM
` ȳ `(y, ȳ) No max

y
`(y, ȳ) + θ>(y − ȳ)

SPO+ LSPO+ (θ̄, ȳ) θ̄>(ȳ − y) No max
y

θ̄>(ȳ − y) + 2θ>(y − ȳ)

FY LFY
Ω ȳ 0 Yes max

y
θ>(y − ȳ)− (Ω(y)− Ω(ȳ))

Generic Lgen t̄ `(y, t̄) Yes max
y

`(y, t̄) + θ>(y − ȳ)− (Ω(y)− Ω(ȳ))

Table 2: A common decomposition for loss functions in imitation learning

5.2 Collection of losses for learning by imitation
Several prominent loss functions from the literature are special cases of our decomposition (20): we gather
them in Table 2. Code sample 10 clarifies their construction, while Code sample 11 displays supported
operations. Finally, the entire program necessary for learning by imitation is shown on Code sample 12.

In Sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4, we go over these special cases to explain how to compute each
loss and its subgradient using Equation (21). They can be skipped without danger.

Remark 5.1. While the S-SVM and SPO+ losses do not fall within the framework of probabilistic CO layers
(due to the absence of regularization), we still include them for benchmarking purposes.

� �
using InferOpt

fyl_pert = FenchelYoungLoss(perturbed_add)
fyl_reg = FenchelYoungLoss(regularized)
spol = SPOPlusLoss(warcraft_maximizer)� �

Code sample 10: Example imitation losses

� �
using Zygote

L = loss(theta, y_ref)
Zygote.gradient(loss, theta, y_ref)� �

Code sample 11: Supported operations for an
imitation loss

� �
using Flux, InferOpt

gradient_optimizer = ADAM()
parameters = Flux.params(warcraft_encoder)
data = zip(images, paths)

function pipeline_loss(x, y)
theta = warcraft_encoder(x)
return loss(theta, y)

end

for epoch in 1:1000
train!(pipeline_loss, parameters, data, gradient_optimizer)

end� �
Code sample 12: Learning with an imitation loss

5.2.1 Structured support vector machines

The structured support vector machine (S-SVM) was among the first methods introduced for learning in
structured spaces (Nowozin and Lampert 2011, Chapter 6). Given a target solution ȳ and an underlying
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distance function `(y, ȳ) on V, the S-SVM loss is computed as follows:

LS-SVM
` (θ, ȳ) = max

y∈V
{`(y, ȳ) + θ>(y − ȳ)}. (22)

The subgradient formula (21) becomes

argmax
y∈V

{`(y, ȳ) + θ>(y − ȳ)} − ȳ ∈ ∂θLS-SVM
` .

Note that due to the presence of `, computing a subgradient requires an auxiliary solver that is different
from the linear oracle f . This is why we do not illustrate the S-SVM with a code sample. In InferOpt.jl,
we only implement this auxiliary solver for the unit simplex, in the case where ` is the Hamming distance.
However, we also provide a generic layer where the user can plug in the relevant auxiliary solver.

5.2.2 Smart “predict, then optimize”

The smart “predict, then optimize” (SPO) paradigm is applicable when the true objective direction θ̄ is
known (remember that in this case, we have ȳ = f(θ̄)). Elmachtoub and Grigas (2021) define the SPO+
loss function as follows:

LSPO+(θ, θ̄) = (2θ − θ̄)>f(2θ − θ̄) + (θ̄ − 2θ)>ȳ (23)

= max
y∈V

{
θ̄>(ȳ − y) + 2θ>(y − ȳ)

}
.

It can be seen as a special case of S-SVM. But this time, computing the loss and its subgradient only requires
calling f twice:

2f(2θ − θ̄)− 2ȳ ∈ ∂θLSPO+(θ, θ̄).

5.2.3 Fenchel-Young losses

The framework of Fenchel-Young losses is built on the theory of convex conjugates, in particular the Fenchel-
Young inequality (Blondel, Martins, and Niculae 2019). Starting from a target solution ȳ and a regulariza-
tion Ω, a loss is constructed as follows:

LFY
Ω (θ, ȳ) = Ω∗(θ) + Ω(ȳ)− θ>ȳ (24)

= max
y∈conv(V)

(
θ>y − Ω(y)

)
−
(
θ>ȳ − Ω(ȳ)

)
This time, the loss and subgradient require access to f̂Ω:

f̂Ω(θ)− ȳ ∈ ∂θLFY
Ω (θ, ȳ).

As can be inferred from the expression above, there are deep connections between Fenchel-Young losses and
the regularization paradigm of Section 3.2. In particular, it is also possible to use implicit regularization by
perturbation (Berthet et al. 2020). The fact that we cannot compute Ω+

ε (y) or Ω�ε (y) is not a real obstacle:
since those terms do not depend on θ, we can just drop them from the loss during training. We end up with
the following estimators for the loss and its subgradient:

LFY
Ω+

ε
(θ, ȳ) = F+

ε (θ)− θ>ȳ f̂+
ε (θ)− ȳ ∈ ∂θLFY

Ω+
ε

(θ, ȳ)

LFY
Ω�ε

(θ, ȳ) = F�ε (θ)− θ>ȳ f̂�scaled
ε (θ)− ȳ ∈ ∂θLFY

Ω�ε
(θ, ȳ)
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Hyperparameter Description

epsilon Scale of the noise for perturbation.
nb_samples Number of noise samples M for perturbation.
batch_size Size of the batches to compute gradients.
lr_start Starting learning rate.

Table 3: Hyperparameters for learning Warcraft shortest paths.

5.2.4 Generic imitation loss

Of course, it is tempting to fill in the blanks of Table 2 by combining every single term of the loss decom-
position (20). To the best of our knowledge, this has not been done before in the literature, but there is no
theoretical obstacle.

If we use this generic loss together with regularization, then it is interesting to remark that L(θ, t̄) acts
as a convex upper bound on the base loss `(f̂Ω(θ), t̄). Indeed, since ȳ is a worse solution than f̂Ω(θ) for (9),
we have

`(f̂Ω(θ), t̄) ≤ `(f̂Ω(θ), t̄) +
[
θ>f̂Ω(θ)− Ω(f̂Ω(θ))

]
−
[
θ>ȳ − Ω(ȳ)

]
≤ max
y∈conv(V)

(
`(y, t̄) + θ>(y − ȳ)− (Ω(y)− Ω(ȳ))

)
= L(θ, t̄).

Therefore, our generic loss can be seen as a crossover between the Fenchel-Young loss and a problem-specific
base loss. It is not yet implemented in InferOpt.jl, and we leave its thorough testing for future work.

6 Applications
In this first version of the paper, we only present one application of our InferOpt.jl package: Warcraft
shortest paths. Experiments on other concrete problems will be added to the final version.

6.1 Shortest paths on Warcraft maps
We come back to our guiding example of Section 2.3. Our aim is to illustrate the various learning settings
introduced in this paper, and to evaluate their relative performance. We do so with two kinds of shortest
path (SP) oracles. The first one uses Dijkstra’s algorithm. The second one uses the Ford-Bellman algorithm
with a bounded number of iterations.

6.1.1 Experimental setting

In every experiment presented here, we only consider a sub-dataset, made up of 1% of the original Warcraft
dataset from Vlastelica et al. (2019). It contains 200 samples, which we split into 80 training samples,
100 validation samples (for hyperparameter tuning) and 20 test samples (for performance evaluation). The
train, test and validation sets are the same for each learning setting. Our motivation for reducing the dataset
is to show that we can still obtain convincing results with a limited amount of computation.

We use the Metalhead.jl package to build a truncated ResNet18 CNN, Flux.jl to train our pipelines
with the Adam optimizer (Kingma and Ba 2014), and GridGraphs.jl to compute shortest paths. Our
code will soon be made available in the WarcraftShortestPaths.jl15 repository (which is still private
at the time of writing). For each learning setting, we tune a subset of the hyperparameters stated in Table 3.
The experiments are conducted on a MacBook Pro with 2,3 GHz Intel Core i9, 8 cores and 16 Go 2667 MHz
DDR4 RAM.

15https://github.com/LouisBouvier/WarcraftShortestPaths.jl
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To obtain a precise learning setting, we need to define:

1. The combinatorial problem we need to solve, along with an appropriate oracle.

2. The probabilistic CO layer used to wrap said oracle.

3. The data we have at our disposal to train our pipeline.

4. The loss function we want to minimize.

No matter the setting, the data always contains a list of RGB map images. When we learn by experience,
we also have access to a black box cost function, which evaluates paths based on the true cell costs (see the
beginning of Section 4). On the other hand, when we learn by imitation, we add targets to the maps (as
defined in Section 5). The target in our case always includes the optimal path, with or without the true cell
costs.

All those ingredients are detailed in Table 4 for each learning setting we consider. The names of the first
column are reused in the legends of Figure 3. Most of the probabilistic CO layers considered in this paper do
not prevent the objective vector θ from changing its sign, and the same goes for the losses. As a result, we
need oracles able to accommodate negative cell costs. That is why we use the Ford-Bellman algorithm, while
limiting the number of iterations to the number of nodes in the grid graph (to ensure termination even with
negative cycles). Our multiplicative perturbation is the only approach that preserves non-negative costs. It
enables us to apply Dijkstra’s algorithm, which has a smaller time and space complexity.

Name CO problem
(CO oracle) Probabilistic CO layer Exp./Imit.

Target Loss

Cost perturbed multiplicative noise SP with non-negative costs
(Dijkstra)

Multiplicative
perturbation

Experience
No target Perturbed cost

Cost perturbed additive noise SP on an extended acyclic graph
(Ford-Bellman)

Additive
perturbation

Experience
No target Perturbed cost

Cost regularized half square norm SP on an extended acyclic graph
(Ford-Bellman) Half square norm Experience

No target Regularized cost

SPO+ SP on an extended acyclic graph
(Ford-Bellman) No regularization Imitation

Cost and path SPO+ loss

MSE perturbed multiplicative noise SP with non-negative costs
(Dijkstra)

Multiplicative
perturbation

Imitation
Path Mean squared error

MSE regularized half square norm SP on an extended acyclic graph
(Ford-Bellman) Half square norm Imitation

Path Mean squared error

Fenchel-Young perturbed multiplicative noise SP with non-negative costs
(Dijkstra)

Multiplicative
perturbation

Imitation
Path Fenchel-Young

Fenchel-Young perturbed additive noise SP on an extended acyclic graph
(Ford-Bellman)

Additive
perturbation

Imitation
Path Fenchel-Young

Fenchel-Young regularized half square norm SP on an extended acyclic graph
(Ford-Bellman) Half square norm Imitation

Path Fenchel-Young

Table 4: Learning settings for Warcraft shortest paths.

6.1.2 Results

In Figure 3, we show the average train (Figure 3a) and test (Figure 3b) optimality gaps, computed using
the true cell costs. We compare all the settings detailed in Table 4, with the exception of MSE base loss +
additive noise (we could not get satisfactory results using only 80 training samples). To quantify training
effort, instead of counting epochs (i.e. passes through the dataset), we use the number of optimizer calls,
because these calls are the truly time-consuming part. This aims at comparing learning settings which
involve different amounts of computation per gradient step. For instance, using SPO+, we need 2 optimizer
calls to compute the loss gradient for one sample. On the other hand, we needM optimizer calls if we choose
Fenchel-Young perturbed additive noise.
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When learning by imitation, SPO+ reaches almost zero average gap both on train and test sets after
very few optimizer calls, even though we only kept 1% of the initial dataset. This impressive result can be
understood since, with SPO+, we have access to the true cell costs during training, and we leverage the
problem structure within the loss.

Assuming we only have access to target paths, we obtain better results with Fenchel-Young losses than
with MSE losses. The train and test average gaps are lower than 5% with the former, and we observe good
generalization performance. This may be explained by the use of the optimization problem in the Fenchel-
Young loss definition. On the contrary, in the MSE setting, although we have access to target paths, we only
seek to imitate them without truly accounting for solution cost.

Perhaps surprisingly, we also manage to learn by experience with our small sub-dataset. Indeed, using
the techniques introduced in Section 4, we reach 7% average test gaps in the cost perturbed multiplicative
noise setting, which is better than learning by imitation with an MSE loss. To the best of our knowledge, it
is the first time that learning by experience (as defined in Section 4) is combined with CNNs.

7 Conclusion
In this paper, we present a Julia package which allows easy insertion of CO layers into ML pipelines. Our
probabilistic perspective provides a coherent framework for several approximate differentiation techniques,
some of which are new. We also construct a natural loss for learning by experience, which is successfully
applied to a hybrid ML-CO pipeline with tens of thousands of parameters. Finally, we propose a generic
loss decomposition for learning by imitation.

Numerical experiments using InferOpt.jl to solve hard combinatorial problems (such as stochastic
vehicle scheduling and two-stage minimum spanning trees) will be included in the final version of the paper.
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Figure 3: Train and test optimality gaps along training in the Warcraft application
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A Proofs
In this Section, the dominated convergence theorem is used implicitly to justify any differentiation under
the integral sign. When dealing with polyhedral functions such as θ 7−→ maxv∈V θ

>v, we often write ∇θ for
simplicity even though they are only subdifferentiable, because the set of non-differentiability has measure
zero. We denote the standard Gaussian density by ν.

A.1 Additive perturbation
These proofs are already given by Berthet et al. (2020), but we include them for comparison purposes.

A.1.1 Derivatives

Proof of Proposition 3.1.

Proof. The following change of variable is a diffeomorphism:

u = θ + εz ⇐⇒ u− θ
ε

= z.
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We apply it to the definition of p̂+
ε (v|θ).

p̂+
ε (v|θ) =

∫
Rd

1{f(θ + εz) = v} ν(z) dz

=

∫
Rd

1{f(u) = v} ν
(
u− θ
ε

)
du

εd
.

We now differentiate with respect to θ before applying the reverse change of variable:

∇θp̂+
ε (v|θ) =

∫
Rd

1{f(u) = v}
(
−1

ε
∇ν
(
u− θ
ε

))
du

εd

=
−1

ε

∫
Rd

1{f(θ + εz) = v} ∇ν(z) dz

=
1

ε

∫
Rd

1{f(θ + εz) = v} zν(z) dz.

The last equality holds because the standard Gaussian density satisfies ∇ν(z) = −zν(z). From there, we
deduce the Jacobian of f̂+

ε (θ):

Jθf̂
+
ε (θ) =

∑
v∈V

v∇θp̂+
ε (θ, y)>

=
1

ε

∫
Rd

(∑
v∈V

v 1{f(θ + εz) = v}
)

︸ ︷︷ ︸
f(θ+εz)

z>ν(z) dz

We arrive at the following simple expression, which was already given by Berthet et al. (2020):

Jθf̂
+
ε (θ) =

1

ε
E
[
f(θ + εZ)Z>

]

A.1.2 Regularization

Proof of Proposition 3.2.

Proof. Because Ω+
ε = (F+

ε )∗ is a Fenchel conjugate, it is automatically convex. Furthermore,

Ω+
ε (µ) = sup

θ∈Rd

{
θ>µ− F+

ε (θ)
}

= sup
θ∈Rd

{
θ>µ− E

[
max
v∈V

(θ + εZ)>v

]}
.

We consider µ /∈ conv(V). By convex separation, there exists θ̃ ∈ Rd and α > 0 such that θ̃>µ ≥ α + θ̃>v
for all v ∈ V. This implies that, for all t > 0,

Ω+
ε (µ) ≥ tθ̃>µ− E

[
max
v∈V

(
tθ̃ + εZ

)>
v

]
≥ tθ̃>µ− tE

[
max
v∈V

θ̃>v

]
− εE

[
max
v∈V

Z>v

]
≥ tα− εE

[
max
v∈V

Z>v

]
−−−−→
t→+∞

+∞
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We have shown that µ /∈ dom(Ω+
ε ), and therefore dom(Ω+

ε ) ⊂ conv(V). We define

fZ(θ, v) = (θ + εZ)>v so that F+
ε (θ) = E

[
max
v∈V

fZ(θ, v)

]
.

Danskin’s theorem helps us compute the gradient of F+
ε :

∇θF+
ε (θ) = E

[
∇θ
(

max
v∈V

fZ(θ, v)

)]
= E

[
∇1fZ

(
θ, argmax

v∈V
fZ(θ, v)

)]
= E

[
argmax
v∈V

fZ(θ, v)

]
= E

[
argmax
v∈V

(θ + εZ)>v

]
= f̂+

ε (θ).

As shown by Berthet et al. (2020, Proposition 2.2), the function Ω+
ε is a Legendre type function, which

means that
∇θF+

ε = ∇θ(Ω+
ε )∗ = (∇θΩ+

ε )−1.

From this, we deduce

∇θF+
ε (θ) = argmax

µ∈Rd

{
θ>µ− Ω+

ε (µ)
}

= argmax
µ∈dom(Ω+

ε )

{
θ>µ− Ω+

ε (µ)
}

= f̂Ω+
ε

(θ).

Hence, we can conclude:

f̂+
ε (θ) = ∇θF+

ε (θ) = argmax
µ∈dom(Ω+

ε )

{θ>µ− Ω+
ε (µ)} = f̂Ω+

ε
(θ).

To recover the formula given in Proposition 3.2, we simply remember that dom(Ω+
ε ) ⊆ conv(V).

A.2 Multiplicative perturbation
A.2.1 Derivatives

Proof of Proposition 3.3.

Proof. Suppose θ ∈ Rd only has positive components. Then the following change of variable is a diffeomor-
phism:

u = θ � eεz−ε
21/2 ⇐⇒ log(u)− log(θ)

ε
+
ε1

2
= z

We apply it to the definition of p̂�ε (v|θ).

p̂�ε (θ, y) =

∫
Rd

1

{
f
(
θ � eεz−ε

21/2
)

= v
}
ν(z) dz

=

∫
(0,+∞)d

1{f(u) = v} ν
(

log(u)− log(θ)

ε
+
ε1

2

)
du

εd
∏
i ui

.
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We now differentiate with respect to θ before applying the reverse change of variable:

∇θp̂�ε (θ, y) =

∫
(0,+∞)d

1{f(u) = v}
(
−1

εθ
�∇ν

(
log(u)− log(θ)

ε
+
ε1

2

))
du

εd
∏
i ui

=
−1

εθ
�
∫
Rd

1

{
f
(
θ � eεz−ε

21/2
)

= v
}
∇ν(z) dz

=
1

εθ
�
∫
Rd

1

{
f
(
θ � eεz−ε

21/2
)

= v
}
zν(z) dz.

From there, we deduce the Jacobian of f̂�ε (θ):

Jθf̂
�
ε (θ) =

∑
v∈V

v∇θp̂�ε (θ, y)>

=
1

εθ
�
∫
Rd

(∑
v∈V

v 1
{
f
(
θ � eεz−ε

21/2
)

= v
})

︸ ︷︷ ︸
f(θ�eεz−ε21/2)

z>ν(z) dz

We arrive at a simple variant of the previous expression:

Jθf̂
�
ε (θ) =

1

εθ
� E

[
f
(
θ � eεz−ε

21/2
)
Z>
]

A.2.2 Regularization

Proof of Proposition 3.4.

Proof. Because Ω�ε = (F�ε )∗ is a Fenchel conjugate, it is automatically convex. Furthermore,

Ω�ε (µ) = sup
θ∈Rd

{
θ>µ− F�ε (θ)

}
= sup
θ∈Rd

{
θ>µ− E

[
max
v∈V

(
θ � eεZ−ε

21/2
)>

v

]}
= sup
θ∈Rd

{
θ>µ− E

[
max
v∈V

θ>
(
v � eεZ−ε

21/2
)]}

.

This last expression shows why we don’t have dom(Ω�ε ) ⊂ conv(V) (unlike in the additive case). Indeed,
even when µ /∈ conv(V), the multiplicative scaling of v might allow it to compensate the inner product θ>µ
and stop Ω�ε (µ) from going to +∞. We define

fZ(θ, v) =
(
θ � eεZ−ε

21/2
)>

v so that F�ε (θ) = E
[
max
v∈V

fZ(θ, v)

]
.

Danskin’s theorem helps us compute the gradient of F�ε :

∇θF�ε (θ) = E
[
∇θ
(

max
v∈V

fZ(θ, v)

)]
= E

[
∇1fZ

(
θ, argmax

v∈V
fZ(θ, v)

)]
= E

[
eεZ−ε

21/2 � argmax
v∈V

fZ(θ, v)

]
= E

[
eεZ−ε

21/2 � argmax
v∈V

(
θ � eεZ−ε

21/2
)>

v

]
= f̂�scaled

ε (θ) 6= f̂�ε (θ)
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We could prove in a way similar to Berthet et al. (2020, Proposition 2.2) that Ω�ε is a Legendre type function,
which means that

∇θF�ε = ∇θ(Ω�ε )∗ = (∇θΩ�ε )−1.

From this, we deduce

∇θF�ε (θ) = argmax
µ∈Rd

{
θ>µ− Ω�ε (µ)

}
= argmax
µ∈dom(Ω�ε )

{
θ>µ− Ω�ε (µ)

}
= f̂Ω+

ε
(θ).

This time we cannot replace dom(Ω�ε ) by conv(V), but we still obtain a similar conclusion:

f̂�scaled
ε (θ) = ∇θF�ε (θ) = argmax

µ∈dom(Ω�ε )

{θ>µ− Ω�ε (µ)} = f̂Ω�ε
(θ).
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