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THE CHEVALLEY–HERBRAND FORMULA

AND THE REAL ABELIAN MAIN CONJECTURE

NEW CRITERION USING CAPITULATION OF THE CLASS GROUP

GEORGES GRAS

Abstract. The Main Theorem for abelian fields (often called Main Con-
jecture despite proofs in most cases) has a long history which has found
a solution by means of “elementary arithmetic”, as detailed in Washing-
ton’s book from Thaine’s method having led to Kolyvagin’s Euler sys-
tems. Analytic theory of real abelian fields K says (in the semi-simple
case) that the order of the p-class group HK is equal to the index of cy-
clotomic units (EK : FK). We have conjectured (1977) the same relations
#Hϕ = (Eϕ : Fϕ) for the isotypic p-adic components of the irreducible
p-adic characters ϕ of K. We develop, in this article, new promising links
between: (i) the Chevalley–Herbrand formula giving the number of “am-
biguous classes” in p-extensions L/K, L ⊂ K(µℓ) for the auxiliary prime

numbers ℓ ≡ 1 (mod 2pN ) inert in K; (ii) the phenomenon of capitula-
tion of HK in L; (iii) the real Main Conjecture #Hϕ = (Eϕ : Fϕ) for
all ϕ. We prove that the real Main Conjecture is trivially fulfilled as soon
as HK capitulates in L (Main Theorem 1.1). Computations with PARI
programs support this new philosophy of the Main Conjecture. The ran-
domness of the phenomenon of capitulation (very frequent, suggesting the
Conjecture 1.2) could probably be studied as for Cohen–Lenstra–Martinet
heuristics and perhaps solved with Koymans–Pagano techniques.
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1. Introduction – Statement of the main result

1.1. Abelian characters. Let Qab be the maximal abelian extension of Q
contained in an algebraic closure Q of Q; let Qp be the p-adic field and Qp an

algebraic closure of Qp containing Q.

Let Ψ be the set of irreducible characters of Gal(Qab/Q), of degree 1 and
finite order, with values in Qp. We define the set Φ of irreducible p-adic
characters and the set X of irreducible rational characters. For a subfield
K of Qab, we define the subsets ΨK , ΦK , XK , whose kernels fixe K. The set
X is in one-to-one correspondence with the set of cyclic subfields of Qab.

The notation ψ | ϕ | χ (for ψ ∈ Ψ, ϕ ∈ Φ, χ ∈ X) means that ϕ is a term
of χ and ψ a term of ϕ; so ϕ is the sum of the Qp-conjugates of ψ and χ the
sum of the Q-conjugates of ψ (cf. [Ser1998]).

Let χ ∈ X; we denote by gψ = gϕ = gχ the order of ψ | ϕ | χ; the field of
values of these characters is by definition the cyclotomic field Q(µgψ ).

Let K/Q be an abelian extension of Galois group g of prime-to-p order. For
any Z[g]-module A of finite type of K, we denote by Aχ (resp. Aϕ) the χ-
component (resp. the ϕ-component) of A := A ⊗ Zp; we get Aχ =

⊕
ϕ|χAϕ,

then A =
⊕

χ∈XK

⊕
ϕ|χAϕ =

⊕
ϕ∈ΦK

Aϕ. These ϕ-components may be

obtained by means of the system of idempotents of the algebra Zp[g].

In this semi-simple case all reasonings reduce to the arithmetic of the cyclic
subfields of K; so in what follows, we only consider cyclic extensions K/Q.

1.2. Main theorem. We have obtained the following result (Theorem 5.6):

Theorem 1.1. Let p ≥ 2 be a prime number. Let K/Q be a real cyclic exten-
sion of prime-to-p degree and Galois group g. Denote by HK =

⊕
ϕ∈ΦK

Hϕ

the p-class group of K.

Consider primes ℓ ≡ 1 (mod 2pN ), ℓ totally inert in K, and let Kn be the
subfield of K(µℓ) of degree pn over K, n ∈ [1, N ], where µℓ is the group of
ℓ-roots of unity.

Let EK (resp. FK) be the group of units (resp. of cyclotomic units) of K and
put EK =

⊕
ϕ∈ΦK

Eϕ (resp FK =
⊕

ϕ∈ΦK
Fϕ). Then:

(i) As soon as HK capitulates by extension in some Kn, the Main Conjecture
holds in K, that is to say, #Hϕ = (Eϕ : Fϕ) for all ϕ ∈ ΦK .

(ii) We have #HKn = #HK for all n ∈ [1, N ], if and only if #HK1
= #HK .

Moreover, if this stability property holds, we have the following consequences:

• The p-class groups HKn are invariant by Gal(Kn/K) and the norms
NKn/K : HKn −→ HK are isomorphisms.

• Let pe be the exponent of HK and assume N ≥ e; then the p-class group
HK capitulates in Ke and (from (i)) the Main Conjecture #Hϕ = (Eϕ : Fϕ),
for all ϕ ∈ ΦK , holds.

Note, once for all, that if HK is of exponent pe and capitulates in Kn,

the relation NKn/K ◦ JKn/K(HK) = H
pn

K shows than necessarily n ≥ e; but
incomplete capitulation may occur for any n ≥ 1.
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We have proposed in [Gra2022b] the following Conjecture of capitulation for
any totally real number field K, without any assumption of splitting on ℓ:

Conjecture 1.2. Let K be any totally real number field and let HK be its
p-class group. There are infinitely many primes ℓ, ℓ ≡ 1 (mod 2pN), N ≫ 0,
such that HK capitulates in the subfield of K(µℓ) of degree p

N over K.

We shall give Section 6 extensive numerical computations with PARI pro-
grams [Pari2013] showing that capitulation in such auxiliary cyclic p-extensions
is, surprisingly, very frequent and conjecturally holds for infinitely many ℓ. The
criterion (ii) of the theorem allows easy effective verifications; but capitulation
may hold without stability in K1/K.

We do not intend to evoke the case of the abelian capitulations of class
groups proved in the literature (Gras [Gra1997], Kurihara [Kur1999], Bosca
[Bos2009], Jaulent [Jau2022]); all techniques in these papers need to built
abelian p-extensions L0 of Q, ramified at various primes and requiring many
local arithmetic conditions, whose compositum L with K gives a capitulation
field of HK ; the method is completely incomparable to ours since it must apply
to any real abelian field K, of arbitrary degree, obtained in an iterative process
giving that the maximal real subfield of Q

(⋃
f>0 µf

)
is principal.

However, these results together with Theorem 1.1 and the help of numerical
computations, among many other results of the literature, support the fact that
the phenomenon of capitulation governs many aspects of abelian arithmetic,
independently of the well-known case of capitulation in the Hilbert class field,
from Hilbert’s theorem 94 and a lot of improvements (see the surveys [Jau1988,
Jau1998, Mai1997, Mai1998] and their references).

In a slightly different, but related, context of the p-adic class field theory,
mention for instance that the capitulation of the logarithmic class group of K
[Jau1994, Jau1998], in its cyclotomic Zp-extension K∞ =

⋃
n≥0Kn, is equiv-

alent to Greenberg’s conjecture [Gree1976] saying that the Iwasawa invariants
λ, µ for lim

←−
HKn are zero [Jau2016, Jau2019a, Jau2019b]. Analogous criteria of

stability of the #HKn were given by Greenberg itself and by Fukuda [Fuk1994];
for instance, in the similar context as ours where one considers p inert in K,
the condition λ = µ = 0 in L = K∞ is equivalent to the capitulation of HK in
some layer Kn0

[Gree1976, Theorem 1].

In a numerical setting, let’s point out the work of Kraft–Schoof [KrSc1995a,
KrSc1995b] (resp. Pagani [Pag2022]), verifying Greenberg’s conjecture for some
real quadratic fields of conductor f < 104 and p = 3 (resp. p = 2), by means
of the analytic formula in some K ′ns.

But Greenberg’s conjecture is still unproved and depends on random algo-
rithmic process, as explain in [Gra2021], governed by the torsion group of the
Galois group of the maximal abelian p-ramified pro-p-extension of K (essen-
tially, the second Tate–Chafarevich group of K); this takes place in a deep
p-adic context, beyond Leopoldt’s conjecture and so on.

Remark 1.3. We have proven the criterion (ii) of stability of Theorem 1.1 in
[Gra2022b, Theorem 3.1, Corollaire 3.2], generalizing similar results [Fuk1994,
LOXZ2022, MiYa2021]. More precisely, this criterion can be applied at some
layer n0 and one obtains #HKn = #HKn0

for all n ≥ n0, if and only if the
equality holds for n = n0+1; so, this means that HKn0

capitulates in Kn0+en0
,

where pen0 is the exponent of HKn0
, but a fortiori, HK capitulates in Kn0+en0

.

We shall give again a proof in our particular simpler framework (Theorem 4.10).

1.3. Methodology. We shall obtain Theorem 1.1 by means of a classical exact
sequence describing H G

L , in cyclic p-extensions L/K of Galois group G, in
terms of the units and image of the extension HK → H G

L of p-classes, which
gives, under the phenomenon of capitulation, the needed information about
the index of cyclotomic units, taking into account their norm properties in
abelian extensions (Corollary 4.7 and Proposition 5.3). For that, we shall need
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the order of the “ϕ-components”, for all ϕ ∈ ΦK , of the Chevalley–Herbrand
formula giving #H G

L , that is to say, the computation of #H G
ϕ , where H G

ϕ :=

(Hϕ)
G = (H G)ϕ. This will give the opportunity to write cohomological exact

sequences linking invariant classes and capitulation to the norm properties of
the units (local and global); for this, we shall follow [Jau1986, III, p. 167]. This
step is crucial since Chevalley–Herbrand formula writes, for p-class groups in
L/K cyclic real of degree pn, as follows [Che1933, pp. 402-406]:

#H
G
L =

#HK ×
∏

q eq(L/K)

pn × (EK : EK ∩NL/K (L×))
,

where eq(L/K) is the ramification index in L/K of the prime ideals q of K; the
original Chevalley formula depends on the Herbrand theorem [Her1930], intro-
ducing the general “Herbrand quotient” (see Lemme 3, p. 375 of Chevalley’s
Thesis, then [Her1936, Appendice, § 1, p. 57]).

One must obtain the decompositions of each factor into ϕ-components, es-
pecially for #HK since HK is not a submodule of H G

L , the transfer map
JL/K : HK → H G

L being in general non injective (see, e.g., Example 4.9). For
this, we introduce the following elementary principle.

Definition 1.4. Let K/Q be an abelian extension of Galois group g and let X

be a finite Z[g]-module. Assume that we know that #X =
∏
i

#Ui ×
∏
j
(#Vj)

−1

depending on finite Z[g]-modules Ui, Vj.

We say that X (or the formula giving #X) is p-localizable if there exist exact
sequences 1 → Ak → Bk → Ck → 1 of finite Z[g]-modules of the form Ui, Vj
and X, such that #X is obtained by means of the relations #Bk = #Ak×#Ck.

Under this property, the flatness of Zp allows to deduce the exact sequences
of Zp[g]-modules 1 → Ak := Ak ⊗Zp → Bk := Bk ⊗Zp → Ck := Ck ⊗Zp → 1,
then, taking the isotopic components (for instance by means of the fundamental
idempotents eϕ of Zp[g], ϕ ∈ ΦK), we get the exact sequences:

1 → Ak,ϕ → Bk,ϕ → Ck,ϕ → 1

and the formulas #Bk,ϕ = #Ak,ϕ × #Ck,ϕ yielding #Xϕ.

For instance, cohomology groups Hn(G,X), n ∈ {1, 2}, G =: 〈σ〉, are p-
localizable, as soon as X is p-localizable; indeed, H1(G,X) := KerX(νG)/X

1−σ

and H2(G,X) := XG/νG(X), where νG is the algebraic norm. Of course, this
principle applies in all cohomology.

2. Introduction to the real abelian Main Conjecture

The Main Conjecture for real abelian fields K (to be called Main Theorem
because of its numerous proofs; but this name has become common) essentially
says that, when p ∤ #g, one has, for all p-adic irreducible characters ϕ ∈ ΦK :

#HK,ϕ = (EK,ϕ : FK,ϕ),

for the ϕ-components of HK , where EK = EK ⊗ Zp, FK = FK ⊗ Zp denote
the groups of global units and of cyclotomic units of K, respectively.

The following obvious property of rational characters is to be considered as
the “Main Theorem” for rational components (e.g., [Leo1954, Chap. I, § 1, 1]):

Theorem 2.1. Let K/Q be an abelian extension and let (Aχ)χ∈XK , (A
′
χ)χ∈XK ,

be two families of positive numbers, indexed by the set XK of irreducible rational
characters of K. If for all subfields k of K, one has

∏
χ∈Xk

A′χ =
∏
χ∈Xk

Aχ,

then A′χ = Aχ for all χ ∈ XK .

So this result applies to the well-known complex analytic global formula
#HK = (EK : FK) for K cyclic real, which implies immediately #HK,χ =
(EK,χ : FK,χ) for all χ ∈ XK , in the semi-simple case. But when χ is a sum of
several p-adic irreducible characters ϕ, the complex analytic theory does not
give precise relation between #HK,ϕ and (EK,ϕ : FK,ϕ).
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One may think that p-adic analysis must solve the problem; but in fact
the p-adic framework, using the p-adic ζp-function and the corresponding Lp-
functions, gives essentially the same relations between χ-components. In other
words, there is no sufficient information.

Deep geometrical methods (Ribet, Mazur–Wiles) were successful, then more
elementary ones were used to solve the problem (see e.g., [CoSu2006, Grei1992,
Kol2007, PeRi1990, Rib2008, Rub1990, Thai1988] among others. A more com-
plete story is available in Washington book [Was1997, Chap. 8].

The non-semi-simple case of the real abelian Main Conjecture does exist and
may be be split into two frameworks.

(i) The Iwasawa formulation [Iwa1964] (“replacing” K by its cyclotomic
Zp-extension K∞) also called Main Conjecture without any precision (Lang–
Rubin [Lan1990], Greither [Grei1992], exposed in Washington’s book [Was1997,
§§ 13.6, 15.4]); nevertheless, in the real case, Greenberg’s conjecture makes it
somewhat unnecessary and brings back to the finite cases Kn/K as we have
explained.

(ii) The case of cyclic extensions K/Q when p | [K : Q] and K = Kχ;
this case corresponds to our conjecture given in [Gra1976, Gra1977] and still
unproved for real fields. We refer to the survey [Gra2022a] devoted to this non
semi-simple case using the specific notion of ϕ-objects that we had introduced
in the 1976’s. Indeed, classical works deal with an algebraic definition of the ϕ-

components of p-class groups, denoted H
alg
K,ϕ, which presents an inconsistency

regarding analytic formulas; that is to say, when g := Gal(K/Q) is cyclic of
order gχ ≡ 0 (mod p):

H
alg
K,ϕ := HK ⊗Zp[g]

Zp[µgχ ], for all ϕ | χ,
with the Zp[µgχ]-action τ ∈ g 7→ ψ(τ) (ψ | ϕ of order gχ). We then have:

H
alg
K,ϕ = {x ∈ HK , νK/k(x) = 1, ∀ k & K} ⊗Zp[g]

Zp[µgχ ]

(where νK/k is the algebraic norm), contrary to our arithmetic definition:

H
ar
K,ϕ := {x ∈ HK , NK/k(x) = 1, ∀ k & K} ⊗Zp[g]

Zp[µgχ ].

This specific notion gives rise to an unexpected semi-simplicity especially in
accordance with analytic formulas:

H
ar
K,χ := {x ∈ HK , NK/k(x) = 1, ∀ k & K} ⊗ Zp =

⊕
ϕ|χ

H
ar
K,ϕ.

3. The higher rank Chevalley–Herbrand formulas

LetK/Q be any extension. To avoid technical complications, we assume that
the given extension L/K, cyclic of degree pn, n ≥ 1, of Galois group G =: 〈σ〉,
is such that any prime ideal of K, ramified in L/K, is totally ramified and that
infinite places do not ramify when p = 2. Moreover we assume that the set of
ramified primes is non-empty.

The basic principle of Chevalley–Herbrand formula for p-class groups defines
a filtration of the form {H i

L}i≥0, where H 0
L := 1, H 1

L := H G
L , H

i+1
L /H i

L :=
(HL/H

i
L)
G, up to a minimal bound m for which H m

L = HL [Gra2017]:

(3.1)





#H
G
L = #HK × pn(r−1)

(EK : EK ∩NL/K(L×))
,

#(H i+1
L /H i

L) =
#HK

#NL/K(H i
L)

× pn(r−1)

(Λi
K : Λi

K ∩NL/K(L×))
, i ≥ 0,

where r ≥ 1 is the number of prime ideals of K ramified (totally) in L/K, and
Λi
K := {x ∈ K×, (x) = NL/K(A), APL ∈ H i

L} ⊗ Zp is a subgroup of finite

type ofK× containing EK (withΛ0
K = EK); the quotientΛi

K/Λ
i
K∩NL/K(L×)

is of course a p-group of order a divisor of pn(r−1). The first factor is called the
class factor and the second one the norm factor.
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In the case r = 1 (which will be our context, taking a prime ℓ inert in the
cyclic extension K/Q and L ⊂ K(µℓ)), one obtains only the class factors:

(3.2) #H
G
L = #HK & #(H i+1

L /H i
L) =

#HK

#NL/K(H i
L)
, i ≥ 1.

There are a lot of other generalizations of the original Chevalley–Herbrand
formula. See for instance [Jau1986, III, p. 167], [Gra2017] with modulus,
[LiYu2020] in the spirit of Chevalley’s theory of idèles, then [Gon2008] showing
universality of the Chevalley–Herbrand principle in arithmetic and geometry.

4. The p-localization of the Chevalley–Herbrand formula

We choose to privilege the aspect “fixed points formula”, instead of genus
theory (that is also p-localizable and may lead to parts of the results), to deduce
(in § 4.2) the p-localization of the filtration (H i

L)i≥1, which is of fixed points
type, and to prove the stability Theorem 4.10 using Chevalley–Herbrand for-
mula in the p-tower L/K. We think that this is more suitable in a logical point
of view since proofs of the deep statements of class field theory in the classi-
cal way rely first on Chevalley–Herbrand formula, whence Herbrand theorem
[Gra2005, § II.6 ], genus theory dealing only with local norms in non necessar-
ily cyclic p-extensions [Gra2005, IV (b)] for which Chevalley–Herbrand formula
is not valid but refers to global norms. So, to justify the integrality of some
p-localized expressions, one may use, at the end, the deep Hasse norm theorem
saying that, in the cyclic case, x ∈ K× is in NL/K(L×) if and only if x is
everywhere local norm (except one place) [Gra2005, Theorem II.6.2].

4.1. Exact sequence of the ambiguous classes. The p-localization of the
Chevalley–Herbrand formula will exist from the definitions of class groups, ideal
groups and units. Such p-localizations were given many years ago ([Gra1978,
Théorèmes II.1, II.2], [Jau1986, Théorèmes III.1.12, III.1.13]); these papers be-
ing written in french, we give again, in a more direct manner, the computations
for the convenience of the reader.

To get a formula for the orders of the ϕ-components of H G
L , we follow the

process given in Jaulent’s Thesis [Jau1986, Chapitre III, p. 167] (note that
large generalizations of such methods, with ramification and decomposition,
are also given in [Mai1997, Mai1998] and, in the Galois case L/K, [Gon2006]
with many references):

Theorem 4.1. Let L0/Q be a real cyclic extension of degree pn, n ≥ 1. Let
K/Q be a real abelian extension of Galois group g and of prime-to-p degree.
Put L = L0K and G := Gal(L/K) =: 〈σ〉. We identify Gal(L/L0) and g.

Let IK , IL (resp. PK , PL) be the ideal groups (resp. the subgroups of principal
ideals), of K and L, respectively. Then, put HK := IK/PK and HL := IL/PL.

(i) We have the exact sequence of Z[g]-modules:

(4.1)
1 → Ker(JL/K) −→H1(G,EL) −→ Coker(jL/K) −→

Coker(JL/K) −→ H2(G,EL) −→ H2(G,L×),

where JL/K is the transfer map HK → HG
L defined by aPK 7→ aPL and jL/K

is the extension of ideals IK → IGL ,

(ii) Let ϕ be an irreducible p-adic character of K. Then:

• If ϕ = 1, then #H G
L,ϕ = #HK,ϕ = 1;

• If ϕ 6= 1, then #H
G
L,ϕ = #HK,ϕ ×

#Coker(jL/K)ϕ

(EK,ϕ : EK,ϕ ∩NL/K(L×))
.

Proof. We note that each prime number ℓ, ramified in L/K, is totally ramified.

Consider the exact sequences of Z[g]-modules:

(4.2)
(a) 1 → EL → L× → PL → 1, (b) 1 → EK → K× → PK → 1

(c) 1 → PL → IL → HL → 1, (d) 1 → PK → IK → HK → 1.
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Lemma 4.2. We have the following properties:

(i) PGL /jL/K(PK) ≃ H1(G,EL);

(ii) H1(G,PL) ≃ Ker
[
H2(G,EL) → H2(G,L×)

]
= EK/EK ∩NL/K(L×);

(iii) H1(G, IL) = 1.

Proof. We have, from the above exact sequences (4.2) (a), (b):

1 → EGL = EK → L×G = K× → PGL → H1(G,EL) → H1(G,L×)

→H1(G,PL) → H2(G,EL) → H2(G,L×).

Since H1(G,L×) = 1 (Hilbert’s Theorem 90), this yields (i) and (ii).

The claim (iii) is classical since IL is a Z[G]-module generated by the prime
ideals of L on which the Galois action is canonical. �

From the above exact sequences (4.2) (c), (d), we have the following commu-
tative diagram:

1 −−−→ PK −−−→ IK −−−→ HK −−−→ 1y
yj

L/K

yJL/K

1 −−−→ PGL −−−→ IGL −−−→ HG
L −−−→ H1(G,PL) .

The snake lemma gives the exact sequence:

1 → 1 −→ Ker(jL/K) −→ Ker(JL/K) −→ H1(G,EL) −→
Coker(jL/K) −→ Coker(JL/K) −→H2(G,EL) −→ H2(G,L×);

since Ker(jL/K) = 1 and H2(G,L×) ≃ K×/NL/K(L×), it becomes:

1 → Ker(JL/K) → H1(G,EL) → Coker(jL/K)

→ Coker(JL/K) → H2(G,EL) → EK/EK ∩NL/K(L×) → 1.

Remark 4.3. The representation Coker(jL/K) depends on the splitting of

the prime ideals of K ramified in L/K and gives standard ϕ-components; we
refer to [Gra1978] or [Jau1986] for the most general formula. Moreover, from

Hsse’s norm theorem, the factors
#Coker(j

L/K
)ϕ

(EK,ϕ : EK,ϕ ∩NL/K(L×))
are always integers.

In our particular context, where ramified primes ℓ are inert in K/Q and totally
ramified in L/K, Coker(jL/K) is of character 1, so all these factors will be

trivial for ϕ 6= 1.

We obtain the p-localized exact sequences of Zp[g]-modules:

1 → Ker(JL/K)ϕ →H1(G, EL,ϕ) → Coker(jL/K)ϕ →
Coker(JL/K)ϕ → H2(G, EL,ϕ) → EK,ϕ/EK,ϕ ∩NL/K(L×) → 1

(by p-localization, H1(G,EL)ϕ = H1(G, EL,ϕ), H
2(G,EL)ϕ = H2(G, EL,ϕ)).

All these Zp[g]-modules are finite, which gives the p-localized formula:

#(H G
L,ϕ)

#(HK,ϕ)
=

#Coker(JL/K)ϕ
#Ker(JL/K)ϕ

=
#Coker(jL/K)ϕ

(EK,ϕ : EK,ϕ ∩NL/K(L×))
×

#H2(G, EL,ϕ)

#H1(G, EL,ϕ)
,

where
#H2(G, EL,ϕ)

#H1(G, EL,ϕ)
is the Herbrand quotient of EL,ϕ we talked about, whose

computation requires some algebraic reasonings and leads, for EL, to the global

value
1

[L : K]
in the real case (cf. [Lan1990], [Lan2000, Chap. IX, §§ 1,4]).

Lemma 4.4. The Herbrand quotient of EL,ϕ is trivial for ϕ ∈ ΦK \ {1}.
Proof. We know that (EL⊗Q)⊕Q is the regular representation Q[G× g] (see,
e.g., [Gra2005, Theorem I.3.7]); so there exists a “Minkowski unit” ε such that
the Z[G×g]-module generated by ε is of finite index in EL that one may choose
prime to p; so EL is such that EL ⊕ Zp ≃ Zp[G][g] as g-modules.

Thus, (EL ⊕ Zp)ϕ = EL,ϕ ≃ Zp[µgϕ ][G] for ϕ 6= 1; whence the result. �
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We obtain #(H G
L,ϕ) = #(HK,ϕ) ×

#Coker(jL/K)ϕ

(EK,ϕ : EK,ϕ ∩NL/K(L×))
, for ϕ 6= 1,

and H G
L,1 = HK,1 = 1, which completes the proof of the Theorem. �

4.2. The main exact sequences associated to the filtration. We give,
without proofs, the exact sequences leading to the formulas (3.1) giving the
orders of H

i+1
L /H i

L := (HL/H
i
L)
G for i ≥ 1, and justifying the p-localizations

of the formulas (see [Gra2017, Section 3] for the details).

Let H be a sub-G-module of HL. Put H̃ = {h ∈ HL, h1−σ ∈ H }; so(
HL/H

)G
= H̃ /H . We have the exact sequences:

1 −→ H
G
L −−−→H̃

1−σ−−−→(H̃ )1−σ −→ 1

1 −→ NH −−−→H
NL/K−−−→NL/K(H ) −→ 1.

Let I ⊂ IL be such that IPL/PL = H ; thenNL/K(H ) = NL/K(I )PK/PK .

Let Λ := {x ∈ K×, (x) ∈ NL/K(I )}; the fundamental exact sequence is then:

1 →
(
EKNL/K(L×)

)
∩Λ −→ Λ

ϕ−→NH
/
(H̃ )1−σ → 1,

where, for all x ∈ Λ, ϕ(x) = APL (mod (H̃ )1−σ), for any A ∈ I such that
NL/K(A) = (x). This exact sequence is p-localizable since Λ, containing EK ,

is a sub-Z-module of finite type of K×. We deduce from the above:

(H̃ : H ) =
#H G

L · #(H̃ )1−σ

#NL/K(H ) · #NH
=

#H G
L

#NL/K(H ) · (NH : (H̃ )1−σ)
;

thus #
(
HL/H

)G
=

#H G
L

#NL/K(H ) · (ΛEKNL/K(L×) : EKNL/K(L×))
. Then

Chevalley–Herbrand formula gives the final result with p-localization.

Corollary 4.5. Let L ⊂ K(µℓ), with ℓ ≡ 1 (mod 2pN ), inert in the cyclic
real field K of prime-to-p degree, and [L : K] = pn, n ∈ [1, N ]. Then for all
ϕ ∈ ΦK :

#H
G
L,ϕ = #HK,ϕ and #

(
H

i+1
L,ϕ /H

i
L,ϕ

)
=

#HK,ϕ

#NL/K(H i
L,ϕ)

, for all i ≥ 0.

Proof. We then have a unique place (ℓ) of K, totally ramified in L/K. So any
x ∈ Λ being norm of an ideal (that we may choose prime to (ℓ)), it is local norm
at any place distinct from (ℓ); then the product formula of the Hasse’s norm
symbols [Gra2005, Theorem II.3.4.1] gives that x is everywhere local norm,
hence global norm (Hasse’s norm theorem). This applies to the group of units
for which EK,ϕ ⊂ NL/K(L×), whence (EK,ϕ : EK,ϕ ∩ NL/K(L×)) = 1 (recall
that under the unicity of the ramified prime ideal in L/K, Coker(jL/K)ϕ = 1

for ϕ 6= 1; see Remark 4.3). �

Of course, this does not mean H G
L,ϕ = JL/K(HK,ϕ) since there is most

often capitulation of classes; this expresses the subtlety of Chevalley–Herbrand
formula for which we shall give another description of H G

L,ϕ likely to involve
the kernel of capitulation.

4.3. Exact sequence of capitulation. We still consider a real cyclic exten-
sion K/Q of prime-to-p degree, then the compositum L = KL0 with L0/Q
cyclic of degree pn, n ≥ 1. Put G := Gal(L/K) =: 〈σ〉.

Let APL ∈ HL be a class invariant under G; thus A1−σ = αPL, α ∈ L×,
and NL/K(α) is a unit ε ∈ EK ∩ NL/K(L×); if α′ = αη, η ∈ EL, is another

generator of A1−σ, then NL/K(α′) = εNL/K(η). This defines the map:

HG
L −→ EK ∩NL/K(L×)/NL/K(EL),

which associates with APL ∈ HG
L the class of the unit ε = NL/K(α).
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Theorem 4.6. We have, for all ϕ ∈ ΦK , the exact sequences:

1 → JL/K(HK,ϕ) · H ram
L,ϕ → H

G
L,ϕ → EK,ϕ ∩NL/K(L×)/NL/K(EL,ϕ) → 1,

where H ram
L ⊆ HL is generated by the classes of the ramified prime ideals.

Proof. We have the global exact sequence:

1 → JL/K(HK) ·Hram
L → HG

L → EK ∩NL/K(L×)/NL/K(EL) → 1.

(i) Image. Let ε ∈ EK ∩NL/K(L×); put ε = NL/K(α), then the ideal αPL
being of norm 1 is of the form A1−σ, A ∈ IL (Lemma 4.2 (iii)), and its class is
invariant giving the pre-image.

(ii) Kernel. Suppose that the image of the invariant class APL is ε =
NL/K(η), η ∈ EL; then NL/K(α) = NL/K(η) and NL/K(αη−1) = 1 giving

αη−1 = β1−σ, β ∈ L× (Hilbert’s Theorem 90) then αPL = A1−σ = (βPL)
1−σ.

So, the class APL is the class of the invariant ideal A(β)−1; but the group of in-
variants ideals is generated by jL/K(IK) and the ramified primes of L. Whence

the result. �

Corollary 4.7. We still consider a prime ℓ ≡ 1 (mod 2pN), inert in the cyclic
real field K, and L ⊂ K(µℓ), of degree p

n over K, n ∈ [1, N ]. Then:

(i) For all ϕ ∈ ΦK \ {1}, we have #H G
L,ϕ = #HK,ϕ (Corollary 4.5) and the

exact sequences 1 → JL/K(HK,ϕ) → H G
L,ϕ → EK,ϕ/NL/K(EL,ϕ) → 1.

(ii) The capitulation of HK in L/K is equivalent to:

H
G
L,ϕ ≃ EK,ϕ/NL/K(EL,ϕ) ≃ Zp[µgϕ ]/(p

aϕ)Zp[µgϕ ], for all ϕ ∈ ΦK ,

aϕ being such that pρϕaϕ = #HK,ϕ where ρϕ = [Qp(µgϕ) : Qp].

(iii) The capitulation of HK in L/K is equivalent to:

#HK,ϕ = (EK,ϕ : NL/K(EL,ϕ)), for all ϕ ∈ ΦK .

Proof. Exact sequence in (i) comes from the fact that H ram
L , generated by the

prime ideal L | l for the unique prime ideal l = (ℓ) of K, is of character ϕ = 1
and from the fact that Coker(jL/K)ϕ = (EK,ϕ : EK,ϕ ∩ NL/K(L×)) = 1 for

ϕ 6= 1 (Remark 4.3).
Equivalence (ii) comes from the exact sequence and the monogenicity of EK,ϕ

as Zp[µgϕ ]-module. Equivalence (iii) is obvious since #H G
L,ϕ = #HK,ϕ. �

4.4. Test of capitulation – Numerical illustrations. Recall that for ℓ ≡ 1
(mod pN ), inert in K, we consider L ⊂ K(µℓ) of degree p

n over K, n ∈ [1, N ].
In the computations L is often denoted Kn and G is denoted Gn, etc.

To verify in practice some capitulations in L/K, we use the relation:

JL/K(HK) = JL/K(NL/K(HL)) = νL/K(HL),

since NL/K : HL → HK is surjective (L/K is totally ramified), and we com-
pute the algebraic norm of the generators hi of HL given by PARI. So, we
obtain explicite relations νL/K(hi) =

∏
j h

ai,j
j in HL, the complete capitula-

tion being given by the identity νL/K(HL) =
〈
. . . ,

∏
j h

ai,j
j , . . .

〉
i
⊗ Zp = 1

and incomplete capitulations are deduced from the matrices (ai,j).

We will give numerical examples showing what happens, in the isomorphism
(ii) of the corollary since EK,ϕ/NL/K(EL,ϕ) is monogenic as Galois module,
while HK,ϕ is not in general.

(i) Let’s give, first, a few words about the important PARI instruction
bnfisprincipal, of constant use in the computations, to prove capitulation of
a class aPK in L, whence that aPL is principal; it is described as follows by
[Pari2013]:

bnfisprincipal(bnf,x,{flag=1}):bnf being output by bnfinit (with flag<=2),

gives [v,alpha], where v is the vector of exponents on the class group

generators and alpha is the generator of the resulting principal ideal.

In particular x is principal if and only if v is the zero vector.
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Thus, the most important output is the vector of exponents like [0, 0] meaning
total capitulation of the selected p-class. Nevertheless, these vectors may be
only 0 modulo the order of the p-classes.

(ii) Let’s give an example for K cubic and p = 2.

Example 4.8. We consider a cyclic cubic field with p = 2, for which HK ≃
Z/4Z×Z/4Z and HK2

≃ Z/16Z×Z/16Z×Z/2Z×Z/2Z, but there is complete
capitulation of HK in K2 for ℓ = 449 inert in K:

conductor f=2817 PK=x^3 - 939*x + 6886 CK=[12,4]

ell=449 N=2 Nn=2 n=2 CK2=[48,16,2,2]

algebraic norm in K2/K of the component 1 of CK2: [16,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

so, the exponent 16 is to be read 0 (mod 16) since 16 is the order of the first
component of the 2-class group HK2

.

(iii) Let’s give an example for K quadratic and p = 3.

Example 4.9. Let m = 32009, K = Q(
√
m) for which HK ≃ Z/3Z × Z/3Z.

Take ℓ = 19 (inert in K) and let L = K2 be the extension of degree 9 of K
in K(µℓ); we denote by K1 the intermediate field of degree 3. The general
Program 7.1 gives an incomplete capitulation in K1, then a total capitulation
in K2 (in this last data for n = 2, we give the 18 integer coefficients of a
generator of the ideal on the integral basis computed by PARI):

PK=x^2 - 32009 CK=[3,3]

ell=19 N=2 Nn=2 n=1 CK1=[9,3]

algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

ell=19 N=2 Nn=2 n=2 CK2=[9,3]

algebraic norm in K2/K of the component 1 of CK2: [0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0]~

[[0,0]~,[1439216371631838382,473754414131112320,454228965737496519,

-536418025036156085,919689041243214339,207983767848706102,-1036595574155274193,

128338672307382267,840355575133838069,14736364857686206,6548993298829283,

8896045582984518,3839859983910278,7389856141626720,10096758515087182,

-895338434531174,-1442732225425698,8004210362478777]~]

In K1/K, the exact sequence looks like:

1 → JK1/K(HK) ≃ Z/3Z −→ H
G1

K1
−→ EK/NK1/K(EK1

) ≃ Z/3Z → 1,

the structure of H
G1

K1
being a priori unknown. A direct computation shows

that H
G1

K1
≃ Z/3Z× Z/3Z, but it is not JK1/K(HK) since #Ker(JK1/K) = 3.

In K2/K, the exact sequence becomes the isomorphism:

H
G2

K2
≃ EK/NK2/K(EK2

) ≃ Z/9Z,

since JK2/K(HK) = 1 and EK ≃ Z3. So, we intend to find a generator of H
G2

K2
.

Taking the class of order 9 (first component of HK2
given by the instruc-

tion A0 = Kn.clgp[3][1]), we compute its conjugate by the automorphism S

of order 9, B0 = nfgaloisapply(Kn, S,A0), then C0 = idealpow(Kn,B0, 8) and
R = idealmul(Kn,A0,C0) for which we apply the test U = bnfisprincipal(Kn,R)
giving a principal integer with huge integer coefficients:

A0=Kn.clgp[3][1];B0=nfgaloisapply(Kn,S,A0);C0=idealpow(Kn,B0,8);

R=idealmul(Kn,A0,C0);U=bnfisprincipal(Kn,R);print(U)

[[0, 0]~,[-15352694895259448716005913288179,-4937712840022370286191878614596,

10234788031577460568990927971879,9473644150178364411380147768767,

919093855688240643550377510520,4933150036914472598668945255159,

-8186088867315265238068365774860,-12462519184163404099427848753248,

-10116044365250124206306632744945,-32490191902858719490198341631,

-25043275245516486863055415213,150430762033938424462889500018,

83650512449675221885273689474,-243856275294066992198407658217,

229543001775729020765314244564,-195555194837852410495787525040,
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140098686428490793581998673118,26378140206989683079187437611]~]

This confirms that H
G2

K2
is cyclic of order 9.

This phenomenon is general (when the capitulation is complete), for a p-
class group of the form (say, for K quadratic) HK ≃ Z/pa1Z × · · · × Z/parZ
and gives, at a layer n ≥ a := a1 + · · ·+ ar, the isomorphism:

H
Gn
Kn

≃ EK/NKn/K(EKn) ≃ Z/paZ,

but #H
Gn
Kn

= #HK .

This is typical of the Main Conjecture philosophy and will be enforced by
the analytic framework, recalled in the next subsection, showing that non-cyclic
structures of the base field K (i.e., that of HK,ϕ) leads to canonical ones by
extension in L (i.e., as quotients of EK,ϕ ≃ Zp[µgϕ ]), whatever the p-rank and
the exponent of HK .

It seems that this “monogenicity”, by suitable cyclic p-extensions, has not
been remarked in the literature. Unfortunately, general proofs of capitulations
are perhaps out of reach despite their obviousness in the practice.

4.5. The stability as sufficient condition of capitulation. Now, we give
a sufficient condition of capitulation (see the comments given in Remark 1.3):

Theorem 4.10. Consider a prime ℓ ≡ 1 (mod 2pN), inert in the cyclic real
field K, and Kn ⊂ K(µℓ), of degree p

n over K, n ∈ [1, N ].
Then #HKn = #HK for all n if and only if #HK1

= #HK . If this criterion

applies, then H
Gn
Kn

= HKn for all n, Ker(JKn/K) = NKn/K(HKn [p
n]), and if

pe is the exponent of HK , then HK capitulates in Ke (assuming N ≥ e).

Proof. Consider Gal(Kn/K1) = Gpn. Then we have the Chevalley–Herbrand

formulas #H
Gn
Kn

= #HK and #H
Gpn
Kn

= #HK1
. But H

Gn
Kn

⊆ H
Gpn
Kn

; then under

the condition #HK1
= #HK , we get H

Gn
Kn

= H
Gpn
Kn

, which is equivalent to

H
1−σn
Kn

= H
1−σpn
Kn

= H
(1−σn) · θ
Kn

,

where θ = 1 + σn + · · · + σp−1n ∈ (p, 1 − σn), a maximal ideal of Zp[Gn] since
Zp[Gn]/(p, 1− σn) ≃ Fp; so H

1−σn
Kn

= 1, thus HKn = H
Gn
Kn

for all n ∈ [1, N ].

Reciprocal is trivial.

From NKn/K(HKn) = HK , HKn = H
Gn
Kn

and JKn/K ◦NKn/K = νKn/K ,
one obtains:

JKn/K(HK) = JKn/K(NKn/K(HKn)) = νKn/K(HKn) = H
pn

Kn
.

Let c ∈ Ker(JKn/K) and put c = NKn/K(C), C ∈ HKn ; then 1 = JKn/K(c) =

JKn/K(NKn/K(C)) = Cp
n

, so Ker(JKn/K) ⊆ NKn/K(HKn [p
n]); reciprocally,

if c = NKn/K(C), Cp
n

= 1, then JKn/K(c) = Jn(NKn/K(C)) = Cp
n

= 1;
whence Ker(JKn/K) = NKn/K(HKn [p

n]) ⊆ HK [pn].

For n = e, one obtains the capitulation of HK in Ke. �

Remarks 4.11. (i) Since all the relations and exact sequences defining the
filtration p-localize, the stability relation #HK1,ϕ = #HK,ϕ implies the capit-
ulation of HK,ϕ in Ke. In practice, it suffices to obtain capitulation of HK .

(ii) From formula of Corollary 4.5, the assumption #HK1
= #HK is equiva-

lent to
#HK

#NK1/K(H G1

K1
)
= 1; indeed, if #HK1

= #HK , then from Theorem 4.10,

HK1
= H

G1

K1
, so NK1/K(H G1

K1
) = NK1/K(HK1

) = HK .

If
#HK

#NK1/K(H G1

K1
)
= 1, then the filtration stops and H

G1

K1
= HK1

, whence

#HK1
= #H

G1

K1
= #HK .

(iii) The same criterion holds if one replacesK byKn0
for some n0 ≥ 1, under

the condition N ≥ n0+e; the fact that Kn0
/Q is not of prime-to-p degree does

not matter (proof of Theorem 4.10 does not need this assumption and requires
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that L/Kn0
be totally ramified at a single place; the notation HKn,ϕ is still

relative to characters of K, which makes sense since Gal(Kn/Q) ≃ Gn × g).

5. Crucial link between Capitulation and the Main Conjecture

5.1. Analytics – The group of cyclotomic units. This aspect being very
classical, we just recall the main definitions and needed results. For the main
definitions and properties of cyclotomic units, see [Leo1954, § 8 (1)], [Leo1962]
or [Was1997, Chap. 8].

Definition 5.1. (i) Let χ ∈ X be even of conductor fχ; we define the “cyclo-

tomic numbers” θχ :=
∏
a∈Aχ

(ζa2fχ − ζ−a2fχ
), with ζ2fχ := exp

(
iπ
fχ

)
, where Aχ is

a half-system of representatives, in (Z/fχZ)×, of Gal(Q(µfχ)/Kχ).

(ii) Let K be a real abelian field and let FK be the intersection with EK of
the multiplicative group generated by the conjugates of θχ, for all χ ∈ XK .

Recall that θ2χ ∈ Kχ and that
θ′χ

θχ
∈ EKχ for any conjugate θ′χ of θχ. If fχ is

not a prime power, θχ ∈ EKχ . Since we will consider ϕ-components of the θχ,
for ϕ 6= 1, one gets always units.

These units lead to an analytic computation of #Hχ, χ ∈ X even, χ 6= 1
(using Theorem 2.1). One obtains, in the semi-simple case p ∤ #g:

Proposition 5.2. For all χ ∈ X, χ even, then #Hχ = (Eχ : Fχ).

The philosophy of the abelian Main Conjecture is to ask if the analogous
relations #Hϕ = (Eϕ : Fϕ) exist or not, since we only know that:

(5.1) #Hχ =
∏
ϕ|χ

#Hϕ = (Eχ : Fχ) =
∏
ϕ|χ

(Eϕ : Fϕ).

5.2. Norm properties of cyclotomic units. We mention, first, the classical
norm property of cyclotomic units that are given in many books and articles,
but are crucial for our purpose:

Proposition 5.3. Let f > 1 and then let m | f , with m > 1, be any modulus;
let Qm := Q(ζm) ⊆ Qf := Q(ζf ) be the corresponding cyclotomic fields with
ζt := exp

(
2iπ
t

)
, for all t ≥ 1. Put ηQf := 1− ζf , ηQm := 1− ζm; we have:

NQf/Qm(ηQf ) = ηΩQm , with Ω =
∏
ℓ|f, ℓ∤m

(
1−

(
Qm

ℓ

)−1)
,

where
(
Qm

ℓ

)
∈ Gal(Qm/Q) denotes the Frobenius (or Artin) automorphism of

the prime number ℓ ∤ m, that is to say such that ζm 7→ ζℓm.

Proof. To simplify, denote by τa, a prime to f , the Artin automorphism
(
Qf

a

)

defined by ζf 7→ ζaf , then put ηQf =: ηf , ηQm =: ηm.

We consider, by induction, the case f = ℓ ·m, with ℓ prime and examine the
two cases ℓ ∤ m and ℓ | m. We have NQf/Qm(ηf ) =

∏
a
ητaf where a runs trough

the integers a ∈ [1, f ] prime to f and such that a ≡ 1 (mod m).

(i) Case ℓ ∤ m. Put a = 1+λ ·m, λ ∈ [0, ℓ−1], but we must exclude a unique
λ∗ ∈ [0, ℓ− 1] such that 1 + λ∗ ·m ≡ 0 (mod ℓ); put 1 + λ∗m = µℓ. Thus:

NQf/Qm(ηf ) =
∏

λ∈[0,ℓ−1], λ6=λ∗

(1 − ζ1+λmf )

=

∏
λ∈[0,ℓ−1](1 − ζfζ

λ
ℓ )

1− ζµℓf
=

1− ζℓf
1− ζµm

=
1− ζm
1− ζµm

.

Since µ ≡ ℓ−1 (mod m), we get NQf/Qm(ηf ) = η
1−τ−1

ℓ
m .

(ii) If ℓ | m, any λ ∈ [0, ℓ− 1] is suitable, giving NQf/Qm(ηf ) = ηm. �
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Corollary 5.4. Let L/K/Q be a real abelian extension where L is of conductor
f and K of conductor m; set ηL := NQf/L(ηf ) and ηK := NQm/K(ηm). Then:

NL/K(ηL) = ηΩK , with Ω =
∏
ℓ|f, ℓ∤m

(
1−

(
K
ℓ

)−1)
.

If moreover K/Q is a cyclic extension of prime-to-p degree, and if all the primes

ℓ | f , ℓ ∤ m, are inert in K, then Ωeϕ =
∏
ℓ|f, ℓ∤m

(
1−

(
K
ℓ

)−1)
eϕ is an invertible

element of Zp[g]eϕ for all ϕ ∈ ΦK \ {1}. In particular, NL/KFL,ϕ = FK,ϕ for
all ϕ ∈ ΦK \ {1}.

Proof. Indeed, τℓ,K :=
(
K
ℓ

)
is a generator of g since ℓ is inert in K/Q; so for

ψ | ϕ 6= 1, ψ
(
1 − τ−1ℓ,K

)
= 1 − ψ

(
τ−1ℓ,K

)
is a unit of Q(µgϕ) if ψ

(
τ−1ℓ,K

)
is not of

prime power order, otherwise, if gϕ is a power of a prime q, then since q 6= p,(
1 − ψ

(
τ−1ℓ,K

))
is a prime ideal above q in Q(µgϕ) and 1 − ψ

(
τ−1ℓ,K

)
is a p-adic

unit. Whence the norm relation between the p-localized groups of cyclotomic
units for ϕ 6= 1. �

Remark 5.5. The link with the Leopoldt definition of cyclotomic units is easy
since we get ζ2f − ζ−12f = −ζ−12f (1− ζ22f ) = −ζ−12f (1− ζf ) = −ζ−12f ηf , which has
no consequence for the Proposition and its Corollary since norms are taken
over real fields L, K.

5.3. Final statement. So, we can state and prove the main result involving
the transfer map JL/K and its p-localized images JL/K(HK,ϕ):

Theorem 5.6. Let K/Q be a real cyclic extension of prime-to-p degree. Let
ℓ ≡ 1 (mod 2pN), N ≥ 1, and assume ℓ totally inert in K. Let L ⊂ K(µℓ) of
degree pn over K, n ∈ [1, N ], and put G := Gal(L/K) =: 〈σ〉.

(i) Then, we have the relations (product of two integers):

(EK,ϕ : FK,ϕ) =
(
NL/K(EL,ϕ) : FK,ϕ

)
×

#HK,ϕ

#JL/K(HK,ϕ)
, for all ϕ ∈ ΦK .

(ii) If HK,ϕ capitulates in L, then (EK,ϕ : FK,ϕ) ≥ #HK,ϕ.

(iii) The Main Conjecture #HK,ϕ = (EK,ϕ : FK,ϕ) for all ϕ ∈ ΦK , holds
under the existence, for each ϕ ∈ ΦK \{1}, of an inert prime ℓ ≡ 1 (mod 2pN),
N large enough, such that HK,ϕ capitulates in K(µℓ).

Proof. Recall that, from Corollary 4.7 (i) to Theorem 4.6, we have, for all ϕ the
exact sequences 1 → JL/K(HK,ϕ) → H G

L,ϕ → EK,ϕ/NL/K(EL,ϕ) → 1, whence

the relations #H G
L,ϕ = #HK,ϕ = (EK,ϕ : NL/K(EL,ϕ))× #JL/K(HK,ϕ).

From Corollary 5.4, FK,ϕ = NL/K(FL,ϕ), whence the inclusions:

FK,ϕ ⊆ NL/K(EL,ϕ) ⊆ EK,ϕ,

where (EK,ϕ : NL/K(EL,ϕ)) =
#HK,ϕ

#JL/K(HK,ϕ)
, proving the claims (i) and (ii).

For (iii), formula (5.1),
∏

ϕ∈ΦK
(EK,ϕ : FK,ϕ) =

∏
ϕ∈ΦK

#HK,ϕ, implies equalities

for all ϕ ∈ ΦK . �

Recall that a sufficient condition of capitulation (whence of the Main Con-
jecture) is the stability of the p-class groups in the cyclic p-tower

⋃
n∈[1,N ]Kn

of K(µℓ)/K, that is to say, the existence of n0, 0 ≤ n0 ≤ N − e, such that
#HKn0+1,ϕ = #HKn0

,ϕ, where p
e is the exponent of HK . Let’s note that, as

soon as there is an incomplete capitulation of HK,ϕ in some Kn/K, n ∈ [1, N ],
the index (EK,ϕ : FK,ϕ) is non trivial. In practice, one obtains often the whole
capitulation of HK using a single prime ℓ among, probably, infinitely many.
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6. Numerical experiments over cyclic cubic fields

Let L = KN ⊂ K(µℓ), ℓ ≡ 1 (mod 2pN), be a cyclic p-tower of degree pN

of K. We still assume K/Q cyclic and ℓ totally inert in K.

The following program gives, at the begining, the complete list of cyclic
cubic fields of conductor f ∈ [bf,Bf] and selects those having a suitable p-class
group to study the capitulation in L/K. The test is about the order of HK ,
so various structures may occur. The fields Kn ⊆ L are given by means of the
polynomial P of degree 3 ·pn, n ∈ [1, Nn], where Nn ≤ N , not too large, defines
the layers n in which the computations are done (regrettably the execution time
becomes rapidly out of reach). A test on the order of HKn is also available.

As the instruction bnfinit(P, 1) takes huge time if the degree of P increases, we
are limited to p = 2 and possibly p = 5 and 7 (minimal prime giving two p-adic
characters). The purpose being to suggest the randomness of the phenomenon
of capitulation, we hope that these cases constitute a good heuristic.

6.1. General program for cyclic cubic fields. In the following general pro-
gram, one must precise the following data:

(i) The numbers N (and Nn ≤ N, the number of layers to be tested by the
program) to define the primes ell limited by the bound Bell and congruent to 1
modulo 2pN; it is possible, to get capitulations at a sufficient layer, to take N

large, but Nn very small.

(ii) The bounds bf,Bf defining an interval for the conductors f.

(iii) The instructions valuation(HK, p) < vHK, valuation(HKn, p) < vHKn to
get only interesting p-class groups forK andKn; note that from the Chevalley–
Herbrand formula, #HKn is a multiple of #HK , and one must take vHK ≤ vHKn

STUDY OF THE CAPITULATION OF HK IN Kn/K FOR CYCLIC CUBIC FIELDS

{p=2;N=2;Nn=2;bf=7;Bf=5*10^3;vHK=4;vHKn=6;Bell=500;

\\List of cubic fields of any conductor f:

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;if(core(F)!=F,next);

F=factor(F);Div=component(F,1);d=matsize(F)[1];for(j=1,d,D=Div[j];

if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),if(h==2 & Mod(b,3)==0,next);

A=4*f-27*b^2;if(issquare(A,&a)==1,\\a and b such that f=(a^2+27b^2)/4

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);

\\End of computation of PK defining K of conductor f.

K=bnfinit(PK,1);HK=K.no;\\Whole class number of K

\\Test on the order of the p-class group of K:

if(valuation(HK,p)<vHK,next);CK=K.clgp;\\Class group of K

\\Definition of the primes ell inert in K:

forprime(ell=1,Bell,if(Mod(ell-1,2*p^N)!=0,next);if(Mod(f,ell)==0,next);

F=factor(PK+O(ell));if(matsize(F)[1]!=1,next);

\\Definitions of the fields Kn<L, computation of their class group:

for(n=1,Nn,QKn=polsubcyclo(ell,p^n);P=polcompositum(PK,QKn)[1];

Kn=bnfinit(P,1);HKn=Kn.no;

\\Test on the order of the p-class group of Kn:

if(valuation(HKn,p)<vHKn,break);

print();print("conductor f=",f," PK=",PK," CK=",CK[2]);

print("ell=",ell," N=",N," Nn=",Nn," n=",n);

CKn=Kn.clgp;print("CKn=",CKn[2]);rKn=matsize(CKn[2])[2];\\rank of CKn

\\Calcul de Gal(Kn/K) and search of a generator S of order p^n:

G=nfgaloisconj(Kn);Id=G[1];for(k=2,3*p^n,Z=G[k];ks=1;

while(Z!=Id,Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

\\Computation of the algebraic norms of the generators of CKn:

for(j=1,rKn,A0=CKn[3][j];A=1;

for(t=1,p^n,As=nfgaloisapply(Kn,S,A);A=idealmul(Kn,A0,As));

\\Test of capitulation (incomplete or total):

X=bnfisprincipal(Kn,A)[1];

print("algebraic norm in K",n,"/K of the component ",j," of CK",n,": ",X)))))))}

6.2. Case of cyclic cubic fields and p = 2. We give an excerpt of the various
forms of examples, with HK ≃ Z/2Z× Z/2Z and HK1

of order at least 26:
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conductor f=1777 PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=41 N=3 Nn=2 n=1 CK=[4,4] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [0,0,0,1]~

algebraic norm in K1/K of the component 2 of CK1: [2,2,1,1]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=41 N=3 Nn=2 n=2 CK=[4,4] CK2=[8,8,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Complete capitulation in K2 without stabilization in K2/K1

_____

conductor f=1777 PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=113 N=3 Nn=2 n=1 CK=[4,4] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [0,0,1,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,1]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=113 N=3 Nn=2 n=2 CK=[4,4] CK2=[8,8,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,4,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [4,4,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Incomplete capitulation in K2

_____

conductor f=1777 PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=257 N=3 Nn=2 n=1 CK=[4,4] CK1=[72,24]

algebraic norm in K1/K of the component 1 of CK1: [18,12]~

algebraic norm in K1/K of the component 2 of CK1: [36,6]~

No capitulation in K1

ell=257 N=3 Nn=2 n=2 CK=[4,4] CK2=[72,24]

algebraic norm in K2/K of the component 1 of CK2: [36,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,12]~

Incomplete capitulation in K2+stability from K1-->capitulation in K3

_____

conductor f=2817 PK=x^3 - 939*x + 6886 CK=[12,4]

ell=449 N=2 Nn=2 n=1 CK=[4,4] CK1=[24,8,2,2]

algebraic norm in K1/K of the component 1 of CK1: [20,0,0,1]~

algebraic norm in K1/K of the component 2 of CK1: [12,0,1,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=449 N=2 Nn=2 n=2 CK=[4,4] CK2=[48,16,2,2]

algebraic norm in K2/K of the component 1 of CK2: [16,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Complete capitulation in K2

_____

conductor f=4297 PK=x^3 + x^2 - 1432*x + 20371 CK=[4,4]

ell=449 N=2 Nn=2 n=1 CK=[4,4] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [0,2,1,1]~

algebraic norm in K1/K of the component 2 of CK1: [2,2,0,1]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=449 N=2 Nn=2 n=2 CK=[4,4] CK2=[292,4,4,4]

algebraic norm in K2/K of the component 1 of CK2: [0,2,0,2]~

algebraic norm in K2/K of the component 2 of CK2: [0,0,2,2]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,2,2]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,2,2]~

Incomplete capitulation in K2

_____

conductor f=5409 PK=x^3 - 1803*x + 29449 CK=[12,4]

ell=113 N=2 Nn=2 n=1 CK=[4,4] CK1=[12,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [2,2,0,1]~



16 GEORGES GRAS

algebraic norm in K1/K of the component 2 of CK1: [0,0,1,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=113 N=2 Nn=2 n=2 CK=[4,4] CK2=[24,8,2,2,2,2]

algebraic norm in K2/K of the component 1 of CK2: [16,4,0,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [12,4,0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 5 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 6 of CK2: [0,0,0,0,0,0]~

Incomplete capitulation in K2

Remark 6.1. For the first example above, the capitulation in K2 is complete,
even if the stability does not occur from the first layer; the step n = 1 shows
an incomplete capitulation giving, JK1/K(HK) ≃ Z/2Z × Z/2Z (indeed the
exponent of HK is 4).

To be more convincing, let’s give the coefficients of the extensions of the gen-
erating ideals representatives of the four classes of orders 8, 8, 2, 2, respectively;
one gets 12 huge integer coefficients:
PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=41 CK=[4,4] CK2=[8,8,2,2]

algebraic norm in K2/K of the component 1 of CK2:

[[0,0,0,0]~,[-31780222254443,-12898232803596,15554698429537,

-11030242667244,699234644603,-1433180593820,-97846196830,

480428807611,70679128541,581754438178,701511836521,497443446811]~]

algebraic norm in K2/K of the component 2 of CK2:

[[0,0,0,0]~,[-409139735188114,-166218206982845,200303000159397,

-142025979393819,10482585098180,32200771380552,-1471046798500,

7172751349077,1043934050162,-13082943399099,-15769847218663,

-11179282571565]~]

algebraic norm in K2/K of the component 3 of CK2:

[[0,0,0,0]~,[4595853941743,7574362186256,-7431095890343,3180376719682,

-878235409486,520990038484,351933447679,127583225152,327914236819,

-381696290156,-181901226812,-173412643330]~]

algebraic norm in K2/K of the component 4 of CK2:

[[0,0,0,0]~,[206178918528161385818507,45009133745540603328818,

109639228343931043367320,18671957635985615261071,13770653000372358842954,

7958894412958725580875,13213450239959129254028,3845666006771496793309,

2250298427236450403785,-1737437297938711409589,4232280623726481124024,

-720772717060054219812]~]

6.3. Case of cyclic cubic fields and p = 7. For p = 7, due to the execution
time, let’s give some examples of the case n = 1 with HK of order 7, then one
case of order 72, and Bℓ = 100.

We obtain complete capitulations inK1, except few cases; we give an excerpt
of some possibilities:
conductor f=313 PK=x^3 + x^2 - 104*x + 371 CK=[7]

ell=29 N=1 Nn=1 n=1 CK=[7] CK1=[7]

algebraic norm in K1/K of the component 1 of CK1: [0]~

Complete capitulation in K1 (stability)

______

conductor f=1261 PK=x^3 + x^2 - 420*x - 1728 CK=[21]

ell=43 N=1 Nn=1 n=1 CK=[7] CK1=[21]

algebraic norm in K1/K of the component 1 of CK1: [7]~

Complete capitulation in K1 (stability)

______

conductor f=1567 PK=x^3 + x^2 - 522*x - 4759 CK=[7]

ell=29 N=1 Nn=1 n=1 CK=[7] CK1=[49]

algebraic norm in K1/K of the component 1 of CK1: [7]~

No capitulation in K1

______

ell=71 N=1 Nn=1 n=1 CK=[7] CK1=[49]
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algebraic norm in K1/K of the component 1 of CK1: [7]~

No capitulation in K1

______

conductor f=8563 PK=x^3 + x^2 - 2854*x + 57721 CK=[49]

ell=71 N=1 Nn=1 n=1 CK=[49] CK1=[49]

algebraic norm in K1/K of the component 1 of CK1: List([7])

Incomplete capitulation+stability but N too small

The last case shows an incomplete capitulation giving JK1/K(HK) ≃ Z/7Z.
Since N = 1, there is no possible complete capitulation despite the stability
from K1. The case of primes ℓ with N = n = 2 seems out of reach.

Let’s give an example of generator of the principal ideal obtained after ca-
pitulation (first example above):

conductor f=313 PK=x^3 + x^2 - 104*x + 371 CK=[7]

ell=29 N=1 Nn=1 n=1 CK=[7] CK1=[7]

algebraic norm in K1/K of the component 1 of CK1:

[[0]~,[4529357,2479589,125622,-2879283,2922668,4270474,-6202812,

-107453,1865872,37436,-613198,1546287,-1637834,1355628,1276626,

886508,944469,-900999,474890,508450,962907]~]

6.4. About the sufficient condition of capitulation. We consider cyclic
cubic fields and p = 2. We only search examples of primes ℓ giving the stability
of the 2-class groups in K1/K, so that the capitulation applies in L = KN if N
is large enough; we compute the 2-valuation of #HK (in N = valuation(HK, p)),
which is the minimal possible bound. We illustrate the case HK ≃ Z/2Z ×
Z/2Z; a great lot of examples are found giving capitulation in K1, even with
ℓ < 100 (one writes only f,PK, ell,CK,CK1):

{p=2;bf=7;Bf=10^4;nell=100;for(f=bf,Bf,h=valuation(f,3);

if(h!=0 & h!=2,next);F=f/3^h;if(core(F)!=F,next);F=factor(F);

Div=component(F,1);d=matsize(F)[1];for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));

for(b=1,sqrt(4*f/27),if(h==2 & Mod(b,3)==0,next);

A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);

K=bnfinit(PK,1);HK=K.no;v=valuation(HK,p);if(v!=2,next);

for(t=2,nell,ell=prime(t);if(Mod(ell-1,4)!=0,next);if(Mod(f,ell)==0,next);

F=factor(PK+O(ell));if(matsize(F)[1]!=1,next);

QK1=polsubcyclo(ell,p);P=polcompositum(PK,QK1)[1];

K1=bnfinit(P,1);if(valuation(K1.no,p)==2,print("f=",f," PK=",PK," ell=",ell,

" CK=",K.clgp[2]," CK1=",K1.clgp[2]);break)))))}

f=163 PK=x^3 + x^2 - 54*x - 169 ell=29 CK=[2,2] CK1=[2,2]

f=277 PK=x^3 + x^2 - 92*x + 236 ell=5 CK=[2,2] CK1=[2,2]

f=349 PK=x^3 + x^2 - 116*x - 517 ell=5 CK=[2,2] CK1=[2,2]

f=397 PK=x^3 + x^2 - 132*x - 544 ell=5 CK=[2,2] CK1=[2,2]

f=547 PK=x^3 + x^2 - 182*x - 81 ell=5 CK=[2,2] CK1=[2,2]

(...)

f=9703 PK=x^3 + x^2 - 3234*x - 16531 ell=5 CK=[6,2] CK1=[6,2]

f=9709 PK=x^3 + x^2 - 3236*x + 21216 ell=5 CK=[6,6] CK1=[6,6]

f=9721 PK=x^3 + x^2 - 3240*x - 39244 ell=5 CK=[2,2] CK1=[2,2]

f=9891 PK=x^3 - 3297*x + 70336 ell=29 CK=[6,6] CK1=[6,6]

f=9961 PK=x^3 + x^2 - 3320*x - 74523 ell=5 CK=[6,2] CK1=[6,2]

Some cases of more complex structures of HK do not give stabilization at
the first step; this clearly depends on the exponent of the class groups as we
have explained; but this sufficient condition is not necessary and capitulation
does appear at larger layers; we illustrate the cases HK ≃ (Z/2Z)4 or HK ≃
(Z/4Z)2 × (Z/2Z)2:
conductor f=7687 PK=x^3 + x^2 - 2562*x - 48969 CK=[2,2,2,2]

ell=17 N=3 Nn=3 n=1 CK=[2,2,2,2] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [2,2,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,2,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [2,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,2,0,0]~

Incomplete capitulation in K1
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ell=17 N=3 Nn=3 n=2 CK=[2,2,2,2] CK2=[4,4,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Stability from K1-->complete capitulation in K2

______

conductor f=20887 PK=x^3 + x^2 - 6962*x - 225889 CK=[4,4,2,2]

ell=193 N=3 Nn=3 n=1 CK=[4,4,2,2] CK1=[8,8,2,2]

algebraic norm in K1/K of the component 1 of CK1: [2,4,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [4,6,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [4,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [4,4,0,0]~

Incomplete capitulation in K1

ell=193 N=3 Nn=3 n=2 CK=[4,4,2,2] CK2=[8,8,2,2]

algebraic norm in K2/K of the component 1 of CK2: [4,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,4,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Incomplete capitulation in K2+Stability from K1-->Complete capitulation in K3

______

conductor f=31923 PK=x^3 - 10641*x + 227008 CK=[6,2,2,2]

ell=97 N=3 Nn=3 n=1 CK=[6,2,2,2] CK1=[12,4,2,2,2,2]

algebraic norm in K1/K of the component 1 of CK1: [8,0,1,0,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,1,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0,0,0]~

algebraic norm in K1/K of the component 5 of CK1: [6,0,0,0,0,0]~

algebraic norm in K1/K of the component 6 of CK1: [6,2,0,0,0,0]~

No capitulation in K1

ell=97 N=3 Nn=3 n=2 CK=[6,2,2,2] CK2=[312,8,4,4,4,4]

algebraic norm in K2/K of the component 1 of CK2: [208,0,2,0,0,2]~

algebraic norm in K2/K of the component 2 of CK2: [0,4,0,0,2,2]~

algebraic norm in K2/K of the component 3 of CK2: [156,0,0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [156,4,0,0,0,0]~

algebraic norm in K2/K of the component 5 of CK2: [156,0,0,0,0,0]~

algebraic norm in K2/K of the component 6 of CK2: [156,0,0,0,0,0]~

No capitulation in K2

So we must try another ℓ for f = 31923:
conductor f=31923 PK=x^3 - 10641*x + 227008 CK=[6,2,2,2]

ell=257 N=3 Nn=2 n=1 CK=[6,2,2,2] CK1=[18, 6, 2, 2, 2, 2]

algebraic norm in K1/K of the component 1 of CK1: [6,4,0,0,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [12,2,0,0,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [9,0,1,1,0,1]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0,1,0]~

algebraic norm in K1/K of the component 5 of CK1: [0,0,0,0,0,0]~

algebraic norm in K1/K of the component 6 of CK1: [9,0,1,1,1,1]~

Incomplete capitulation in K1

conductor f=31923 PK=x^3 - 10641*x + 227008 CK=[6,2,2,2]

ell=257 N=3 Nn=2 n=2 CK=[6,2,2,2] CK2=[36,12,2,2,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,8,0,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,4,0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 5 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 6 of CK2: [0,0,0,0,0,0]~

Complete capitulation in K2

For this new ℓ, the complete capitulation is obtained in K2. We note that
the 2-rank of HK is 4, which implies, from Corollary 4.7 (ii), the isomorphism

H
G2

K2
≃ Z2[j]/(4) but never Z2[j]/(2)× Z2[j]/(2), where j = exp(2iπ3 ).

6.5. Statistics. Let’s consider an example of cyclic cubic field K such that,
for p = 2, HK ≃ Z/4Z× Z/4Z× Z/2Z× Z/2Z; we give some heuristics about
the capitulation of HK in K1 and K2 (necessarily incomplete in K1), for all
prime numbers ℓ ≡ 1 (mod 8).

{p=2;Nn=2;PK=x^3+x^2-6962*x-225889;Bell=10^3;K=bnfinit(PK,1);CK=K.clgp[2];

print("PK=",PK," CK=",CK);forprime(ell=5,Bell,N=valuation((ell-1)/2,p);
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if(N<Nn+1,next);F=factor(PK+O(ell));if(matsize(F)[1]!=1,next);for(n=1,Nn,

print();print("ell=",ell," N=",N," Nn=",Nn," n=",n);QKn=polsubcyclo(ell,p^n);

P=polcompositum(PK,QKn)[1];Kn=bnfinit(P,1);CKn=Kn.clgp;

print("CK=",CK," CK",n,"=",CKn[2]);

rKn=matsize(CKn[2])[2];G=nfgaloisconj(Kn);Id=G[1];

for(k=2,3*p^n,Z=G[k];ks=1;while(Z!=Id,Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);

if(ks==p,S=G[k];break));for(j=1,rKn,A0=CKn[3][j];A=1;

for(t=1,p^n,As=nfgaloisapply(Kn,S,A);A=idealmul(Kn,A0,As));

X=bnfisprincipal(Kn,A)[1];

print("norm in K",n,"/K of the component ",j," of CK",n,": ",X))))}

The most frequent structure of HK1
is:

Z/8Z× Z/8Z× Z/2Z× Z/2Z (272 cases over 396),

and there is never capitulation in K1/K (existence of elements of order 4), but
for N large enough, capitulation (and even stability) is possible from K2, as
shown by the following examples with capitulation in K3:

conductor f=20887 PK=x^3+x^2-6962*x-225889 CK=[4,4,2,2]

ell=193 N=5 Nn=2 n=1

CK=[4, 4, 2, 2] CK1=[8, 8, 2, 2]

algebraic norm in K1/K of the component 1 of CK1: [2, 0, 0, 0]~

algebraic norm in K1/K of the component 2 of CK1: [4, 6, 0, 0]~

algebraic norm in K1/K of the component 3 of CK1: [4, 4, 0, 0]~

algebraic norm in K1/K of the component 4 of CK1: [4, 0, 0, 0]~

ell=193 N=5 Nn=2 n=2

CK=[4, 4, 2, 2] CK2=[8, 8, 2, 2]

algebraic norm in K2/K of the component 1 of CK2: [4, 0, 0, 0]~

algebraic norm in K2/K of the component 2 of CK2: [0, 4, 0, 0]~

algebraic norm in K2/K of the component 3 of CK2: [0, 0, 0, 0]~

algebraic norm in K2/K of the component 4 of CK2: [0, 0, 0, 0]~

ell=241 N=3 Nn=2 n=1

CK=[4, 4, 2, 2] CK1=[8, 8, 2, 2]

algebraic norm in K1/K of the component 1 of CK1: [6, 0, 0, 0]~

algebraic norm in K1/K of the component 2 of CK1: [0, 6, 0, 0]~

algebraic norm in K1/K of the component 3 of CK1: [0, 4, 0, 0]~

algebraic norm in K1/K of the component 4 of CK1: [4, 0, 0, 0]~

ell=241 N=3 Nn=2 n=2

CK=[4, 4, 2, 2] CK2=[8, 8, 2, 2]

algebraic norm in K2/K of the component 1 of CK2: [4, 0, 0, 0]~

algebraic norm in K2/K of the component 2 of CK2: [0, 4, 0, 0]~

algebraic norm in K2/K of the component 3 of CK2: [0, 0, 0, 0]~

algebraic norm in K2/K of the component 4 of CK2: [0, 0, 0, 0]~

ell=1777 N=3 Nn=2 n=1

CK=[4, 4, 2, 2] CK1=[8, 8, 2, 2]

algebraic norm in K1/K of the component 1 of CK1: [6, 4, 0, 0]~

algebraic norm in K1/K of the component 2 of CK1: [4, 2, 0, 0]~

algebraic norm in K1/K of the component 3 of CK1: [4, 0, 0, 0]~

algebraic norm in K1/K of the component 4 of CK1: [0, 4, 0, 0]~

ell=1777 N=3 Nn=2 n=2

CK=[4, 4, 2, 2] CK2=[56, 56, 2, 2]

algebraic norm in K2/K of the component 1 of CK2: [28, 0, 0, 0]~

algebraic norm in K2/K of the component 2 of CK2: [0, 28, 0, 0]~

algebraic norm in K2/K of the component 3 of CK2: [0, 0, 0, 0]~

algebraic norm in K2/K of the component 4 of CK2: [0, 0, 0, 0]~

Then the following structures are often obtained:

Z/4Z× Z/4Z× Z/4Z× Z/4Z (42 cases over 396),
Z/4Z× Z/4Z× Z/2Z× Z/2Z× Z/2Z× Z/2Z (35 cases over 396),
Z/8Z× Z/8Z× Z/4Z× Z/4Z (34 cases over 396).

Some cases of:

Z/8Z× Z/8Z× Z/2Z× Z/2Z× Z/2Z× Z/2Z (8 cases over 396),

may give capitulation. Then we obtain a unique case of each of the following
structures:

Z/4Z× Z/4Z× Z/4Z× Z/4Z× Z/2Z× Z/2Z,
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Z/8Z× Z/8Z× Z/4Z× Z/4Z× Z/2Z× Z/2Z,
Z/8Z× Z/8Z× Z/8Z× Z/8Z,
Z/16Z× Z/16Z× Z/2Z× Z/2Z× Z/2Z× Z/2Z,
Z/32Z× Z/32Z× Z/2Z× Z/2Z× Z/2Z× Z/2Z.

These examples suggest that for suitable N , capitulation is always obtained
in the tower in a wide variety of ways, and that each structure gives, most
often, the same kind of results. These phenomena are certainly governed by
precise probabilities.

7. Numerical experiments over quadratic fields and p = 3

Of course, this case has no interest for verifications of the Main Conjecture
since it is true for the trivial reason χ = ϕ; but it remains interesting to study
the capitulation phenomenon. The program is analogous to the general one
with slight modifications due to the quadratic context; we give some excerpt:

7.1. General program for quadratic fields.

{p=3;N=2;Nn=2;bm=2;Bm=10^4;vHK=2;vHKn=2;Bell=500;

for(m=bm,Bm,if(core(m)!=m,next);PK=x^2-m;K=bnfinit(PK,1);HK=K.no;

if(valuation(HK,p)<vHK,next);CK=K.clgp;

forprime(ell=1,Bell,if(Mod(ell-1,2*p^N)!=0,next);if(Mod(m,ell)==0,next);

if(kronecker(m,ell)!=-1,next);

for(n=1,Nn,QKn=polsubcyclo(ell,p^n);P=polcompositum(PK,QKn)[1];

Kn=bnfinit(P,1);HKn=Kn.no;if(valuation(HKn,p)<vHKn,break);CKn=Kn.clgp[2];

print("PK=",PK," CK=",CK[2]," ell=",ell,

" N=",N," Nn=",Nn," n=",n," CK",n,"=",CKn);

rKn=matsize(CKn)[2];G=nfgaloisconj(Kn);Id=G[1];for(k=2,2*p^n,Z=G[k];ks=1;

while(Z!=Id,Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(j=1,rKn,e=CKn[j];A0=Kn.clgp[3][j];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));X=bnfisprincipal(Kn,A)[1];

print("algebraic norm in K",n,"/K of the component ",j," of CK",n,": ",X)))))}

7.2. Case of quadratic fields and p = 3.

7.2.1. Examples with N = 1. For instance, the configuration:

PK=x^2 - 1129 CK=[9]

ell=13 N=2 Nn=1 n=1 CK=[9] CK1=[27]

algebraic norm in K1/K of the component 1 of CK1: [3]~

means νK1/K(HK1
) = JK1/K(HK) = H 3

K1
of order 9; there is no capitulation

of HK1
. But in the following cases, there is an incomplete capitulation in K1:

PK=x^2 - 1129 CK=[9]

ell=307 N=2 Nn=1 n=1 CK=[9] CK1=[9,3]

algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

PK=x^2 - 1654 CK=[9]

ell=283 N=2 Nn=1 n=1 CK=[9] CK1=[9,3,3]

algebraic norm in K1/K of the component 1 of CK1: [3,1,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0]~

The following case shows an incomplete capitulation and since #HK1
=

#HK , we have the stability in the tower and the complete capitulation in K2:

PK=x^2 - 1129 CK=[9]

ell=19 N=2 Nn=1 n=1 CK=[9] CK1=[9]

algebraic norm in K1/K of the component 1 of CK1: [3]~

Many examples are of the same kind as above; we do not write them.

Finally we have the case of the following structure of HK :

PK=x^2 - 32009 CK=[3,3]

ell=19 N=2 Nn=2 n=1 CK=[3,3] CK1=[9,3]

algebraic norm in K1/K of the component 1 of CK1:[0,0]

algebraic norm in K1/K of the component 2 of CK1:[0,0]

We see the complete capitulation despite the lack of stability.
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7.2.2. Examples with n = N = 2. The next case shows an incomplete capitu-
lation giving JKn/K(HKn) ≃ Z/3Z.
PK=x^2 - 1129 CK=[9]

ell=73 N=2 Nn=2 n=1 CK=[9] CK1=[189,3]

algebraic norm in K1/K of the component 1 of CK1: [147,0]

algebraic norm in K1/K of the component 2 of CK1: [0,0]

ell=73 N=2 Nn=2 n=2 CK=[9] CK2=[567,9]

algebraic norm in K2/K of the component 1 of CK2: [441,0]

algebraic norm in K2/K of the component 2 of CK2: [0,0]

______

PK=x^2 - 3137 CK=[9]

ell=199 N=2 Nn=2 n=1 CK=[9] CK1=[27,3]

algebraic norm in K1/K of the component 1 of CK1: [21,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

ell=199 N=2 Nn=2 n=2 CK=[9] CK2=[27,9]

algebraic norm in K2/K of the component 1 of CK2: [9,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0]~

______

PK=x^2 - 8761 CK=[27]

ell=19 N=2 Nn=2 n=1 CK=[27] CK1=[81]

algebraic norm in K1/K of the component 1 of CK1: [3]~

ell=19 N=2 Nn=2 n=2 CK=[27] CK2=[81]

algebraic norm in K2/K of the component 1 of CK2: [9]~

7.2.3. Examples of stability from K1. Let’s give the program testing the sta-
bility in K1/K; some cases of non-stability are present. We put ell = prime(t),
t ∈ [2, nell]:

{p=3;bm=2;Bm=10^4;nell=20;for(m=bm,Bm,if(core(m)!=m,next);PK=x^2-m;

K=bnfinit(PK,1);v=valuation(K.no,p);if(v!=2,next);CK=K.clgp[2];

for(t=1,nell,ell=prime(t);if(t==nell,print("m=",m," nell insufficient");break);

if(Mod(ell-1,3)!=0,next);if(Mod(m,ell)==0,next);if(kronecker(m,ell)!=-1,next);

P=polcompositum(PK,polsubcyclo(ell,p))[1];K1=bnfinit(P,1);

v1=valuation(K1.no,p);if(v1!=2,next);

print("m=",m," PK=",PK," ell=",ell," CK=",K.clgp[2]," CK1=",K1.clgp[2]);break))}

m=1129 PK=x^2 - 1129 ell=19 CK=[9] CK1=[9]

m=1654 PK=x^2 - 1654 ell=43 CK=[9] CK1=[9]

m=3137 PK=x^2 - 3137 ell=19 CK=[9] CK1=[9]

m=3719 PK=x^2 - 3719 ell=31 CK=[9] CK1=[18,2]

(...)

m=9217 PK=x^2 - 9217 ell=7 CK=[18] CK1=[18]

m=9606 PK=x^2 - 9606 ell=31 CK=[18] CK1=[18,2,2]

m=9799 PK=x^2 - 9799 ell=19 CK=[18] CK1=[18,2,2]

m=9998 PK=x^2 - 9998 ell=37 CK=[9] CK1=[9]

The most impressive is that, up to m ≤ 1010, small primes ℓ are sufficient
to get stability for cyclic groups HK .

Other examples where there is sometimes no stabilization up to the upper
bound for ℓ; this depends on the structure of HK since if HK is not cyclic, we
know that total capitulation needs to compute in larger layers:

m=23659 PK=x^2 - 23659 CK=[6,3] NO STABILIZATION UP TO nell

ell=73 N=2 Nn=2 n=1 CK=[6,3] CK1=[18,3]

algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

Incomplete capitulation in K1

______

m=32009 PK=x^2 - 32009 CK=[3,3] NO STABILIZATION UP TO nell

ell=19 N=2 Nn=2 n=1 CK=[3,3] CK1=[9,3]

algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

ell=19 N=2 Nn=2 n=2 CK=[3,3] CK2=[9,3]

algebraic norm in K2/K of the component 1 of CK2: [0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0]~

Complete capitulation in K2

______

m=42817 PK=x^2 - 42817 CK=[3,3] NO STABILIZATION UP TO nell

ell=19 N=2 Nn=2 n=1 CK=[3,3] CK1=[9,3]
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algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

ell=19 N=2 Nn=2 n=2 CK=[3,3] CK2=[27,3]

algebraic norm in K2/K of the component 1 of CK2: [9,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0]~

Incomplete capitulation in K2

7.3. Case of quadratic fields and p = 5. We give some excerpt of numerical
results, analogous to the case p = 3; most of examples give stability, whence
capitulation in some layer. We have taken N = 2,Nn = 1. For some rare cases,
the capitulation is incomplete in the first layer.

PK=x^2 - 24859 CK=[25]

ell=251 N=2 Nn=1 n=1 CK=[25] CK1=[50,2,2,2]

algebraic norm in K1/K of the component 1 of CK1: [30,0,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation+stability-->capitulation in K_3

ell=401 N=2 Nn=1 n=1 CK1=[1525]

algebraic norm in K1/K of the component 1 of CK1: [305]~

Incomplete capitulation

________

PK=x^2 - 27689 CK=[25]

ell=101 N=2 Nn=1 n=1 CK=[25] CK1=[25]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Incomplete capitulation+stability-->capitulation in K_2

________

PK=x^2 - 68119 CK=[50]

ell=251 N=2 Nn=1 n=1 CK=[50] CK1=[250]

algebraic norm in K1/K of the component 1 of CK1: [5]~

No capitulation

________

PK=x^2 - 68819 CK=[25]

ell=101 N=2 Nn=1 n=1 CK=[25] CK1=[25]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Incomplete capitulation+stability-->capitulation in K_2

ell=151 N=2 Nn=1 n=1 CK=[25] CK1=[125]

algebraic norm in K1/K of the component 1 of CK1: [5]~

No capitulation

________

PK=x^2 - 69403 CK=[25]

ell=251 N=2 Nn=1 n=1 CK=[25] CK1=[25,5]

algebraic norm in K1/K of the component 1 of CK1: [5,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

Incomplete capitulation

ell=401 N=2 Nn=1 n=1 CK=[25] CK1=[50,2,2,2]

algebraic norm in K1/K of the component 1 of CK1: [30,0,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation+stability-->capitulation in K_2

________

PK=x^2 - 88211 CK=[25]

ell=101 N=2 Nn=1 n=1 CK=[25] CK1=[125]

algebraic norm in K1/K of the component 1 of CK1: [5]~

No capitulation

ell=151 N=2 Nn=1 n=1 CK=[25] CK1=[25]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Incomplete capitulation+stability-->capitulation in K_2

________

PK=x^2 - 119029 CK=[50]

ell=251 N=2 Nn=1 n=1 CK=[50] CK1=[250]

algebraic norm in K1/K of the component 1 of CK1: [5]~

No capitulation

ell=401 N=2 Nn=1 n=1 CK=[50] CK1=[50]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Incomplete capitulation+stability-->capitulation in K_2
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8. On the use of the auxiliary extensions K(µℓ)/K

8.1. Remarks on the classical proof of the real Main Conjecture. Con-
trary, to our point of view, some proofs of the Main Conjecture, as that of
Thaine [Thai1988], have a fundamental difference. The brief overview that we
give now must be completed by technical elements that the reader can find
especially in [Was1997, §§ 15.2, 15.3].

Let f be the conductor of K. Let ℓ ∤ f , ℓ ≡ 1 (mod 2pN), totally split in K
and pN ≥ pe, the exponent of HK ; put M0 = Q(µℓ) and M := M0K. From
Proposition 5.3, the cyclotomic unit ηM ofM is such that NM/K(ηM ) = 1 and
the link with ηK is only a congruence modulo (1− ζℓ).

Put ηM = α1−σ
M where αM ∈M× is such that (αM ) ∈ IGM ; modulo K×, we

can take αM integer in M , whence:

(8.1) (αM ) = jM/K(aK) · LΩℓ
1 ,

where aK ∈ IK and L1 is a fixed prime ideal dividing ℓ in M , thus totally
ramified in M/K, with Ωℓ =

∑
s∈g

rs · s−1, rs ≥ 0; thus, since NM/K(L1) = l1,

L1 | l1 | ℓ in M/K/Q, this yields (αK) := (NM/K(αM )) = aℓ−1K · lΩℓ1 . But aℓ−1K

is principal since ℓ− 1 ≡ 0 (mod pe), whence lΩℓ1 principal.

Lemma 8.1. Except a finite number of primes ℓ, the ideal LΩℓ
1 of (8.1) gives

a non trivial relation, in the meaning that Ωℓ is not of the form λ · νM/M0
,

λ ≥ 0, giving lΩℓ1 = (ℓ)λ.

Proof. Assume that Ωℓ = λ · νM/M0
; the character of LΩℓ

1 , as Z[g]-module, is
the unit one and any non-trivial ϕ-component αM,ϕ of αM is prime to ℓ, thus

congruent, modulo any L | ℓ inM , to ρl ∈ Z, ρl 6≡ 0 (mod ℓ) (residue degrees 1

in M/Q). Since Lσ = L, we obtain ηM,ϕ = ασ−1M,ϕ ≡ 1 (mod L).

We have ηfℓ ≡ ηf (mod (1− ζℓ)) where 1− ζℓ is an uniformizing parameter

at the places above ℓ in M0, so that ηM ≡ ηK (mod (1 − ζℓ)), which leads to
ηK,ϕ ≡ 1 (mod l), for all l | ℓ, giving ηK,ϕ ≡ 1 (mod ℓ) (absurd for almost all

ℓ). �

Reducing modulo νM/M0
, one may get Ωℓ 6= 0, “minimal” in an obvious

sense, with rs ≥ 0 but not all zero. Consider
αsM

(1− ζℓ)rs
modulo L1 and the

conjugations ασM = αM ·ηM and
1− ζσℓ
1− ζℓ

=
1− ζ

gℓ
ℓ

1− ζℓ
≡ gℓ (mod (1− ζℓ)) (where

gℓ is a primitive root modulo ℓ such that ζσℓ =: ζ
gℓ
ℓ ); one gets:

( αsM
(1− ζℓ)rs

)σ
=

ασsM
(1− ζℓ)σrs

≡ ηsMα
s
M

(gℓ(1− ζℓ))rs
≡ ηsM

grsℓ
·
( αsM
(1− ζℓ)rs

)
(mod L1),

whence grsℓ ≡ ηsM ≡ ηsK (mod l1), which identifies the coefficients rs.

So, this yields a non-trivial congruential relation between the classes of the
conjugates of l1 that is p-localizable; this constitute the basis of the reasonings,
on condition to add many more technical arguments to get some annihilation
of EK,ϕ/FK,ϕ, then a final equality #HK,ϕ = (EK,ϕ : FK,ϕ) !

In this way, Thaine’s method is essentially analytic, working on norm prop-
erties and subtle congruences of the cyclotomic units, leading to the principle of
Kolyvagin Euler systems, while that using capitulation (if any) is of class field
theory framework and gives immediately the result without any supplementary
work.

8.2. Heuristics about the Conjecture 1.2 of capitulation. Suppose on
the contrary that for all inert prime numbers ℓ ≡ 1 (mod 2pN), with N ar-
bitrary large, there is never any capitulation in the real cyclic p-tower L/K
of K(µℓ)/K; we get easily the following result, where we denote by Kn the
subfield of L of degree pn over K, n ∈ [0, N ].
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Proposition 8.2. Assume that, for all n,m ∈ [0, N ], with n ≤ m, the transfer
maps Jmn := JKm/Kn are injective. Put Gmn := Gal(Km/Kn), Hn := HKn ,
Hm := HKm .

Then, one has the inequalities #Hm ≥ #Hn ·#Hn[p
m−n] which lead, for all n,

to #HKn ≥ #HK · pn·rK , where rK = dimFp(HK/H
p
K) is the p-rank of HK .

Proof. From the exact sequence of Z[Gmn ]-modules:

1 → Jmn Hn → Hm → Hm/J
m
n Hn → 1,

we get, from the Chevalley–Herbrand formula #H
Gmn
m = #Hn and the injec-

tivity of Jmn , H
Gmn
m /Jmn Hn = 1 and the exact sequence:

1 → (Hm/J
m
n Hn)

Gmn → H1(Gmn ,J
m
n Hn) → H1(Gmn ,Hm),

where H1(Gmn ,J
m
n Hn) = (Jmn Hn)[p

m−n] ≃ Hn[p
m−n] and #H1(Gmn ,Hm) =

#H2(Gmn ,Hm) = #H
Gmn
m /#Jmn ◦Nm

n (Hm) = #H
Gmn
m /#Hn = 1 giving:

(Hm/J
m
n Hn)

Gmn ≃ Hn[p
m−n].

Whence #Hm ≥ #Jmn Hn · #Hn[p
m−n] = #Hn · #Hn[p

m−n]. For m = n + 1,
one obtains #Hn+1 ≥ #Hn · prankp(Hn), then the last claim by induction. �

This result indicates that, for L = KN , the filtration H i
L defined by:

H
0
L = 1, H

1
L := H

G
L and H

i+1
L /H i

L := (HL/H
i
L)
G,

has length unbounded regarding N . Since #(H i+1
L /H i

L) =
#HK

#NL/K(H i
L)

,

giving a decreasing sequence, in an probabilistic point of view, one sees that
the length of the filtration depends on the size of HK

Remark 8.3. One may ask at what condition the transfer maps are injective,
giving increasing #HKn as we have seen; in fact in most cases there is at least
an incomplete capitulation at some layer and, even in the simplest experiments
with JK1/K the injectivity is very rare. We have found, with some difficulties,
the following example for cyclic cubic fields and p = 2; most of primes ℓ give
incomplete capitulation (case of ℓ = 113) or stability from K (case of ℓ = 337),
then the case of ℓ = 2129, with stability from K1:

conductor f=1777 PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=113 n=1 CK=[4,4] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [0,0,1,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,1]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation

ell=337 n=1 CK=[4,4] CK1=[4,4]

algebraic norm in K1/K of the component 1 of CK1: [2,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,2]~

Incomplete capitulation+stability-->capitulation in K2

ell=2129 n=1 CK=[4,4] CK1=[16,16,2,2]

algebraic norm in K1/K of the component 1 of CK1: [8,4,0,1]~

algebraic norm in K1/K of the component 2 of CK1: [12,12,1,0]~

algebraic norm in K1/K of the component 3 of CK1: [8,8,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,8,0,0]~

No capitulation

ell=2129 n=2 CK=[4,4] CK2=[16,16,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,8,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [8,8,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Incomplete capitulation+stability from K1-->capitulation in K_3

For ℓ = 2129, put HK1
= 〈h1, h2, h3, h4〉 where the classes h1, h2, h3, h4

are of orders 16, 16, 2, 2, respectively; one computes easily that νK1/K(HK1
) =〈

h81h
4
2h4, h

12
1 h

12
2 h3, h

8
1h

8
2, h

8
2

〉
is isomorphic to Z/4Z×Z/4Z. But we obtain the

stability in K2/K1 which implies some capitulation of HK1
, but perhaps not
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complete since 2129 = 1+7 · 19 · 24; nevertheless JK2/K(HK) ≃ Z/2Z×Z/2Z,
capitulates in K3 (from the proof of Theorem 4.10). The computation in K3

seems out of reach.

8.3. Conclusion. The behavior of p-class groups in real cyclic p-towers L/K
(with L ⊂ K(µℓ), ℓ ≡ 1 (mod 2pN ) inert in K/Q), suggests that there exist
infinitely many such primes for which HK capitulates at some layer. The
most interesting fact being that if so, this implies the real Main Conjecture
on abelian fields in the semi-simple case with minimal analytic arguments and
almost trivial proof from the classical context of Chevalley–Herbrand formulas.

Regarding some works about these questions of “exceptional classes” (i.e.,
non invariant), it is admitted (and proved in some circumstances) that the
filtrations defining the HKn , for n ∈ [1, N ], are random and that cases of
“unbounded” filtrations are of probabilities tending to 0 with N . For instance,
in [KoPa2022, Smi2022] it is proved that p-class groups of cyclic extensions
L/Q of degree p have a standard distribution, the case of filtrations of length 1
(i.e., HL = H G

L ) being the most probable; but this is another context since the
Chevalley–Herbrand formula #H G

L = pr−1 is non-trivial only if the number r
of ramified primes is at least equal to 2, in which case H G

L = H ram
L (see (4.6))

and #((HL/H
G
L )G) =

pr−1

(Λ : Λ ∩NL/Q(L×))
(see (3.1)), where Λ is generated

by the r prime numbers ramified in L/Q; whence the algorithm giving the

#(H i+1
L /H i

L) =
pr−1

(Λi : Λi ∩NL/Q(L×))
. But, in our case (HK 6= 1 while r = 1),

on the contrary, the norm factors are trivial and #(H i+1
L /H i

L) =
#HK

NL/K(H i
L)

depends of the structure of HK and allows standard probabilities.

Moreover, the context of “fixed points formulas” in cyclic p-towers, is, in
some sense, specific and “easier” or “more accessible” than the most deeper
general one on p-class groups in arbitrary number fields as the reader can see in
the recent papers [EPW2017, PTBW2020, Pier2022], among many others. But
the ǫ-conjectures are of no help, here, since the discriminants of the fields K(µℓ)

are larger than ℓℓ−2 = O(pN ·p
N

) giving dreadful bounds, and the philosophy
is on the contrary (as for Greenberg’s conjecture) that #HL = O(#HK) for
infinitely many ℓ’s. To be more audacious, one may imagine an “Iwasawa
behavior” leading, for N ≫ 0, and some ℓ’s, to formulas of the form #HKn =
pλ(ℓ)·n+ν(ℓ) for n ∈ [n0(ℓ), N ], possibly with λ(ℓ) = 0 (stability).

In other words, ǫ-conjectures are of complex analysis type while capitulation
conjectures are of p-adic type, not in the analytic meaning of p-adic ζ-function,
but in a specific one adding randomness. More generally, the phenomenon of
capitulation in p-towers, logically governs many arithmetic results and conjec-
tures of number theory around class field theory, and remains essentially a new
concept which deserves deepened researches.
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locaux, Thèse no. 155, Jour. of the Faculty of Sciences Tokyo 2 (1933), 365–476.
http://archive.numdam.org/item/THESE 1934 155 365 0/ 4

[CoSu2006] J. Coates, R. Sujatha, Cyclotomic Fields and Zeta Values, Main Con-
jecture, Springer Monographs in Mathematics, Springer 2006, pp. 89–99.
https://doi.org/10.1007/978-3-540-33069-1 6 5

[EPW2017] J.S. Ellenberg, L. B. Pierce, M.M. Wood, On ℓ-torsion in class groups
of number fields, Algebra & Number Theory 11(8) (2017), 1739–1778.
https://doi.org/10.2140/ant.2017.11.1739 25

[Fuk1994] T. Fukuda, Remarks on Zp-extensions of number fields, Proc. Japan Acad. Ser.
A 70(8) (1994), 264–266. https://doi.org/10.3792/pjaa.70.264 3

https://doi.org/10.1142/S1793042109002213
http://archive.numdam.org/item/THESE_1934__155__365_0/
https://doi.org/10.1007/978-3-540-33069-1_6
https://doi.org/10.2140/ant.2017.11.1739
https://doi.org/10.3792/pjaa.70.264


26 GEORGES GRAS

[Gon2006] C.D. González-Avilés, Capitulation, ambiguous classes and the cohomology of
the units, Journal für die reine und angewandte Mathematik 2007 613 (2006),
75–97. https://www.researchgate.net/publication/2128194 6
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http://www.numdam.org/item/?id=AST 1977 41-42 35 0 5
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Minkowski, C. R. Acad. Sc. t. 191 (1930), p. 1282. 4
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des nombres (1996), article no. 2, 32 p. https://doi.org/10.5802/pmb.a-79 3, 6
[Mai1998] C. Maire, Une remarque sur la capitulation du groupe des classes au sens re-
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