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THE CHEVALLEY–HERBRAND FORMULA

AND THE REAL ABELIAN MAIN CONJECTURE

NEW CRITERION USING CAPITULATION OF THE CLASS GROUP

GEORGES GRAS

Abstract. The Main Theorem for abelian fields K (often called Main
Conjecture in the literature despite proofs in most cases) has a long his-

tory which has found its solution by means of “elementary arithmetic
properties”, as detailed in Washington’s book from Thaine’s method hav-

ing led to Kolyvagin’s Euler systems and many developments. The ana-

lytic theory of real abelian fields says (in the semi-simple case p - [K : Q])
that the order of the p-class group HK is equal to the index (EK : FK) of

the subgroup of cyclotomic units in the group of units. Believing in the

relevance of mathematical theories, we have conjectured (1977) the same
relations #Hϕ = (Eϕ : Fϕ) for the isotypic p-adic components corre-

sponding to the irreducible p-adic characters ϕ of K. We develop, in this

article, new promising links between: (i) the Chevalley–Herbrand formula
giving the order of the group of “ambiguous classes” in L/K ⊂ K(µ`)/K,

of degree pN , for the auxiliary prime number ` ≡ 1 (mod 2pN ) inert in K;

(ii) the phenomenon of capitulation of HK in L; (iii) the Main Conjecture
#Hϕ = (Eϕ : Fϕ) for all ϕ, which is fulfilled as soon as HK capitulates

in L (Theorem 1.1). Many computations with PARI programs support
this new philosophy of the Main Conjecture.
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1. Introduction – Statement of the main result

1.1. Abelian characters. Let Qab be the maximal abelian extension of Q
contained in an algebraic closure Q of Q; let Qp be the p-adic field and Qp an

algebraic closure of Qp containing Q.

Let Ψ be the set of irreducible characters of Gal(Qab/Q), of degree 1 and
finite order, with values in Qp. We define the set Φ of irreducible p-adic
characters and the set X of irreducible rational characters. For a subfield
K of Qab, we define the subsets ΨK , ΦK , XK , whose kernels fixe K. The set
X is in one-to-one correspondence with the set of cyclic subfields of Qab.

The notation ψ | ϕ | χ (for ψ ∈ Ψ, ϕ ∈ Φ, χ ∈ X) means that ϕ is a term
of χ and ψ a term of ϕ; so ϕ is the sum of the Qp-conjugates of ψ and χ the
sum of the Q-conjugates of ψ (cf. [Ser1998]).

Let χ ∈ X; we denote by gψ = gϕ = gχ the order of ψ | ϕ | χ; the field of
values of these characters is by definition the cyclotomic field Q(µgψ ).

Let K/Q be an abelian extension of Galois group g of prime-to-p order. For
any Z[g]-module A of finite type of K, we denote by Aχ (resp. Aϕ) the χ-
component (resp. the ϕ-component) of A := A ⊗ Zp; we get Aχ =

⊕
ϕ|χ Aϕ,

then A =
⊕

χ∈XK

⊕
ϕ|χ Aϕ =

⊕
ϕ∈ΦK

Aϕ. These ϕ-components may be

obtained by means of the system of idempotents of the algebra Zp[g].

In this semi-simple case all reasonings reduce to the arithmetic of the cyclic
subfields of K; so in what follows, we only consider cyclic extensions K/Q.

1.2. Main theorem. We have obtained the following result (Theorem 5.6 and
Corollary 5.7):

Theorem 1.1. Let p ≥ 2 be a prime number. Let K/Q be a real cyclic exten-
sion of prime-to-p degree and Galois group g. Denote by HK =

⊕
ϕ∈ΦK

Hϕ

the p-class group of K.

Consider primes ` ≡ 1 (mod 2pN ), ` totally inert in K, and let Kn be the
subfield of K(µ`) of degree pn over K, n ∈ [1, N ], where µ` is the group of
`-roots of unity.

Let EK (resp. FK) be the group of units (resp. of cyclotomic units) of K and
put EK =

⊕
ϕ∈ΦK

Eϕ (resp FK =
⊕

ϕ∈ΦK
Fϕ). Then:

(i) As soon as HK capitulates by extension in Kn, the Main Conjecture
holds in K, that is to say, #Hϕ = (Eϕ : Fϕ) for all ϕ ∈ ΦK .

(ii) We have #HKn = #HK for all n ∈ [1, N ], if and only if #HK1
= #HK .

Moreover, if this stability property holds, we have the following consequences:

• The p-class groups HKn are invariant by Gal(Kn/K) and the norms
NKn/K : HKn −→HK are isomorphisms.

• Let pe be the exponent of HK and assume N ≥ e; then the p-class group
HK capitulates in Ke and (from (i)) the Main Conjecture #Hϕ = (Eϕ : Fϕ),
for all ϕ ∈ ΦK , holds.

We have proposed in [Gra2022b] the following Conjecture of capitulation for
any totally real number field K, without any assumption of splitting on `:
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Conjecture 1.2. Let K be any totally real number field and let HK be its
p-class group. There are infinitely many primes `, ` ≡ 1 (mod 2pN ), such that
HK capitulates in the subfield of K(µ`) of degree pN over K.

We shall give Section 6 extensive numerical computations with PARI pro-
grams [Pari2013] showing that capitulation in such auxiliary cyclic p-extensions
is, surprisingly, very frequent and conjecturally holds for infinitely many `. The
criterion (ii) of the theorem allows easy effective verifications; but capitulation
may hold without any stability.

We do not intend to evoke the case of the abelian capitulations of class
groups proved in the literature (Gras [Gra1997], Kurihara [Kur1999], Bosca
[Bos2009], Jaulent [Jau2022]); all techniques in these papers need to built
abelian p-extensions L0 of Q, ramified at various primes and requiring many
local arithmetic conditions, whose compositum L with K gives a capitulation
field of HK ; the method is completely incomparable to ours since it must apply
to any real abelian field K, of arbitrary degree, obtained in an iterative process
giving that the maximal real subfield of Q

(⋃
n>0 µn

)
is principal.

However, these results together with Theorem 1.1 and the help of extensive
computations, among many other results of the literature, support the fact that
the phenomenon of capitulation governs many aspects of abelian arithmetic,
independently of the well-known case of capitulation in the Hilbert class field,
from Hilbert’s theorem 94 and a lot of improvements (see the surveys [Jau1988,
Jau1998, Mai1997, Mai1998] and their references giving a good idea of the
story).

In a slightly different, but related, context of the p-adic class field theory,
mention for instance that the capitulation of the logarithmic class group of K
[Jau1994, Jau1998], in its cyclotomic Zp-extension K∞ =

⋃
n≥0Kn, is equiv-

alent to Greenberg’s conjecture [Gree1976] saying that the Iwasawa invariants
λ, µ for lim

←−
HKn are zero [Jau2016, Jau2019a, Jau2019b]. Analogous criteria of

stability of the #HKn were given by Greenberg itself and by Fukuda [Fuk1994];
for instance, in the similar context as ours where one considers p inert in K,
the condition λ = µ = 0 in L = K∞ is equivalent to the capitulation of HK in
some layer Kn0 [Gree1976, Theorem 1].

In a numerical setting, let’s point out the work of Kraft–Schoof [KrSc1995a,
KrSc1995b] (resp. Pagani [Pag2022]), verifying Greenberg’s conjecture for some
real quadratic fields of conductor f < 104 and p = 3 (resp. p = 2), by means
of the analytic formula.

But Greenberg’s conjecture is still unproved and depends on random algo-
rithmic process, as explain in [Gra2021], governed by the torsion group of the
Galois group of the maximal abelian p-ramified pro-p-extension of K (essen-
tially, the second Tate–Chafarevich group of K); this takes place in a deep
p-adic context, beyond Leopoldt’s conjecture and so on.

Remark 1.3. We have proven the criterion (ii) of stability of Theorem 1.1 in
[Gra2022b, Theorem 3.1, Corollaire 3.2], generalizing similar results [Fuk1994,
LOXZ2022, MiYa2021]. More precisely, this criterion can be applied at some
layer n0 and one obtains #HKn = #HKn0

for all n ≥ n0, if and only if the
equality holds for n = n0 +1; so, this means that HKn0

capitulates in Kn0+en0
,

where pen0 is the exponent of HKn0
, but a fortiori, HK capitulates in Kn0+en0

.

We shall give again a proof in our particular simpler framework (Theorem 4.9).

1.3. Methodology. We shall obtain Theorem 1.1 by means of a classical exact
sequence describing H G

L , in cyclic p-extensions L/K of Galois group G, in
terms of the units and image of the extension HK → H G

L of p-classes, which
gives, under the phenomenon of capitulation, the needed information about the
index of cyclotomic units, taking into account their norm properties in abelian
extensions (Corollary 4.6 and Proposition 5.3). For that, we shall need the order
of the “ϕ-components”, for all ϕ ∈ ΦK , of the Chevalley–Herbrand formula
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giving #H G
L , that is to say, to compute #H G

ϕ , where H G
ϕ := (Hϕ)G = (H G)ϕ

since G is commutative.

This will give the opportunity to write cohomological exact sequences linking
invariant classes and capitulation to the norm properties of the units (local and
global); for this, we shall follow [Jau1986, III, p. 167]. This step is crucial since
Chevalley–Herbrand formula writes, for p-class groups in L/K cyclic of degree
pn, as follows:

#H G
L =

#HK ×
∏

q eq(L/K)

pn × (EK : EK ∩NL/K(L×))
,

where eq(L/K) is the ramification index in L/K of the prime ideals q of K;
see the original Chevalley formula [Che1933, pp. 402-406], depending on the
Herbrand theorem [Her1930], introducing the general “Herbrand quotient” (see
Lemme 3, p. 375 of Chevalley’s Thesis then [Her1936, Appendice, § 1, p. 57]).

One must obtain the decompositions of each factor into ϕ-components, es-
pecially for #HK since HK is not a submodule of H G

L , the transfer map
JL/K : HK → H G

L being in general non injective (see for instance Example
4.8). For this, we introduce the following elementary principle.

Definition 1.4. Let K/Q be an abelian extension of Galois group g and let X

be a finite Z[g]-module. Assume that we know that #X =
∏
i

#Ui ×
∏
j

(#Vj)
−1

depending on finite Z[g]-modules Ui, Vj.

We say that X (or the formula giving #X) is p-localizable if there exist exact
sequences 1 → Ak → Bk → Ck → 1 of finite Z[g]-modules of the form Ui, Vj
and X, such that #X is obtained by means of the relations #Bk = #Ak×#Ck.

Under this property, the flatness of Zp allows to deduce the exact sequences
of Zp[g]-modules 1→ Ak := Ak ⊗Zp → Bk := Bk ⊗Zp → Ck := Ck ⊗Zp → 1,
then, taking the isotopic components (for instance by means of the fundamental
idempotents eϕ of Zp[g], ϕ ∈ ΦK), we get the exact sequences:

1→ Ak,ϕ → Bk,ϕ → Ck,ϕ → 1.

and the formulas #Bk,ϕ = #Ak,ϕ × #Ck,ϕ yielding #Xϕ.

For instance, cohomology groups Hn(G,X), n ∈ {1, 2}, G =: 〈σ〉, are p-
localizable, as soon as X is p-localizable; indeed, H1(G,X) := KerX(νG)/X1−σ

and H2(G,X) := XG/νG(X), where νG is the algebraic norm. But, of course,
this principle applies in all cohomology.

2. Introduction to the real abelian Main Conjecture

The Main Conjecture for real abelian fields K (to be called Main Theorem
because of its numerous proofs; but this name has become common) essentially
says that, when p - #g, one has, for all p-adic irreducible characters ϕ ∈ ΦK :

#HK,ϕ = (EK,ϕ : FK,ϕ),

for the ϕ-components of HK , where EK = EK ⊗ Zp, FK = FK ⊗ Zp denote
the groups of global units and of cyclotomic units, respectively.

The following obvious property of rational characters is to be considered as
the “Main Theorem” for rational components (e.g., [Leo1954, Chap. I, § 1, 1]):

Theorem 2.1. Let K/Q be an abelian extension and let (Aχ)χ∈XK
, (A′χ)χ∈XK

,
be two families of positive numbers, indexed by the set XK of irreducible rational
characters of K. If for all subfields k of K, one has

∏
χ∈Xk

A′χ =
∏
χ∈Xk

Aχ,

then A′χ = Aχ for all χ ∈ XK .

So this result applies to the well-known complex analytic global formula
#HK = (EK : FK), which implies immediately #HK,χ = (EK,χ : FK,χ) for
all χ ∈ XK , in the semi-simple case. But when χ is a sum of several p-adic
irreducible characters ϕ, the complex analytic theory does not give any relation
between #HK,ϕ and (EK,ϕ : FK,ϕ).
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One may think that p-adic analysis must solve the problem; but in fact
the p-adic framework, using the p-adic ζp-function and the corresponding Lp-
functions, gives essentially the same relations between χ-components. In other
words, there is no sufficient information.

Deep geometrical methods (Ribet, Mazur–Wiles) were successful, then more
elementary ones were used to solve the problem (see e.g., [CoSu2006, Grei1992,
Kol2007, PeRi1990, Rib2008, Rub1990, Thai1988] among others. A more com-
plete story is available in Washington book [Was1997, Chap. 8].

The non-semi-simple case of the real abelian Main Conjecture does exist and
may be be split into two frameworks.

(i) The Iwasawa formulation [Iwa1964] (“replacing” K by its cyclotomic
Zp-extension K∞) also called Main Conjecture without any precision (Lang–
Rubin [Lan1990], Greither [Grei1992], exposed in Washington’s book [Was1997,
§§ 13.6, 15.4]); nevertheless, in the real case, Greenberg’s conjecture makes it
somewhat unnecessary and brings back to the finite cases Kn/K as we have
explained.

(ii) The case of cyclic extension K/Q when p | [K : Q]; this case corresponds
to our conjecture given in [Gra1976, Gra1977] and still unproved for real fields.
We refer to the survey [Gra2022a] devoted to this non semi-simple case using
the specific notion of ϕ-objects that we had introduced in the 1976’s. Indeed,
classical works deal with an algebraic definition of the ϕ-components of p-class

groups, denoted H alg
K,ϕ, which presents an inconsistency with analytic formulas;

that is to say, when G := Gal(K/Q) is cyclic, of order gχ ≡ 0 (mod p):

H alg
K,ϕ := HK ⊗Zp[G] Zp[µgχ ], for all ϕ | χ,

with the Zp[µgχ]-action σ ∈ G 7→ ψ(σ) (ψ | ϕ of order gχ). We then have:

H alg
K,ϕ = {x ∈HK , νK/k(x) = 1, ∀ k & K} ⊗Zp[G] Zp[µgχ ]

(where νK/k is the algebraic norm), contrary to our arithmetic definition:

H ar
K,ϕ := {x ∈HK , NK/k(x) = 1, ∀ k & K} ⊗Zp[G] Zp[µgχ ].

This specific notion gives rise to an unexpected semi-simplicity:

H ar
K,χ := {x ∈HK , NK/k(x) = 1, for all k & K} ⊗ Zp =

⊕
ϕ|χ

H ar
K,ϕ,

especially in accordance with analytic formulas.

3. Prerequisites on Class field theory

We recall, for the convenience of the reader, well-known aspects about class
field theory that we shall consider in this article:

3.1. The higher rank Chevalley–Herbrand formulas. Let K/Q be a
cyclic extension, with p - [K : Q]. To avoid technical complications, we as-
sume that the extension L/K, cyclic of degree pn, n ≥ 1, of Galois group
G =: 〈σ〉, is such that any prime ideal of K, ramified in L/K, is totally ram-
ified and that infinite places do not ramify when p = 2. Moreover we assume
that the set of ramified primes is non-empty. Later, we shall take L ⊂ Qab,
but this assumption is not needed in this subsection nor that L/Q is Galois.

Generalizations of the Chevalley–Herbrand formula for p-class groups defines
a filtration of the form {H i

L}i≥0, where H 0
L := 1, H 1

L := H G
L , H i+1

L /H i
L :=

(HL/H i
L)G, up to a minimal bound m for which H m

L = HL:

(3.1)


#H G

L = #HK ×
pn(r−1)

(EK : EK ∩NL/K(L×))
,

#(H i+1
L /H i

L) =
#HK

#NL/K(H i
L)
× pn(r−1)

(Λi
K : Λi

K ∩NL/K(L×))
, i ≥ 0,

where r ≥ 1 is the number of prime ideals of K ramified (totally) in L/K, and
Λi
K := {x ∈ K×, (x) = NL/K(A), APL ∈H i

L} is a subgroup of finite type of
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K× containing EK (with Λ0
K = EK); the quotient Λi

K/Λ
i
K ∩NL/K(L×) is of

course a p-group of order a divisor of pn(r−1).

In the case where r = 1 (which will be our context, taking a prime ` inert
in the cyclic extension K/Q and L ⊂ Q(µ`)), one obtains:

(3.2) #H G
L = #HK & #(H i+1

L /H i
L) =

#HK

#NL/K(H i
L)
, i ≥ 0.

There are a lot of generalizations of the original formulas. See for in-
stance [Jau1986, III, p. 167], [Gra2017] with modulus, [LiYu2020] in the
spirit of Chevalley’s theory of idèles, then [Gon2008] showing universality of
the Chevalley–Herbrand principle in arithmetic and geometry, etc.

3.2. Genus exact sequence. Denote by HK and HL the p-Hilbert class fields
of K and L, respectively. In the canonical isomorphism HL ' Gal(HL/L), the
image of H G

L fixes a subfield of HL which has not a clear interpretation; on the

contrary, H G
L appears as the quotient of Gal(HL/L) by the image of H 1−σ

L

which has a canonical interpretation. This “duality” leads to genus theory as
follows.

We still consider a cyclic p-extension L/K, of Galois group G =: 〈σ〉, in
which the prime ideals q of K, ramified in L/K, are totally ramified.

Let HL/K be the p-genus field of L defined as the maximal sub-extension of
HL, abelian over K, as given by the following diagram, HL/K being the fixed

field of the image of H 1−σ
L , by the Artin map (the commutator subgroup [Γ,Γ]

of Γ = Gal(HL/K) is Gal(HL/L)1−σ since Γ/Gal(HL/L) is cyclic):∏
q s
′
q 'H 1−σ

L

'HK

HL/K HLLHKL

HKK

G
〈Iq(HL/K/K)〉q

By assumption, the inertia groups Iq(L/K) in L/K are equal to G.

We consider the map ω which associates with x ∈ EK the family of norm

Hasse symbols
(x , L/K

q

)
∈ G. This gives the genus exact sequence interpreting

the product formula of Hasse symbols of a unit (see, e.g., [Gra2005, § II.3 (a),
then Proposition IV.4.5.1]):

1→ EK/EK ∩NL/K
ω−→Ω(L/K) ⊆

⊕
q
Iq(L/K)

π−→ Gal(HL/K/LHK)→ 1,

where Ω(L/K) :=
{

(sq)q ∈
⊕
q
Iq(L/K),

∏
q
sq = 1

}
. The image of ω is con-

tained in Ω(L/K). Then π associates, with (sq)q ∈
⊕

q Iq(L/K), the product∏
q s
′
q of the extensions s′q of the sq in the inertia groups Iq(HL/K/K) gen-

erating Gal(HL/K/HK); product formula of class field theory implies that if

(sq)q ∈ Ω(L/K),
∏

q s
′
q fixes both HK and L, hence LHK . Thus π

(
Ω(L/K)

)
=

Gal(HL/K/LHK) and Ker(π) = ω(EK).

Now, assume L ⊂ Qab of degree pn over K and g = Gal(K/Q) of prime-to-p
order. Since

⊕
q Iq(L/K) '

⊕
q Z/pnZ, is a sum of permutation representa-

tions, its p-localization is canonical and depends on the decomposition fields,
in K/Q, of the ramified primes q, so that

(⊕
q Iq(L/K)

)
ϕ
' (Zp/pnZp)dϕ , for

some explicit dϕ ≥ 0.

Whence the p-localized exact sequences for all ϕ ∈ Φk \ {1}:
1→ EK,ϕ/EK,ϕ ∩NL/K −→ (Zp/pnZp)dϕ−→ Gal(HL/K/LHK)ϕ → 1,

If moreover K/Q is cyclic and L ⊂ K(µ`), where ` ≡ 1 (mod 2pN ) is totally
inert in K/Q, then dϕ = 0 and EK,ϕ = EK,ϕ ∩NL/K , which means that any

ε ∈ EK,ϕ is norm in L/K of an element of L× (Hasse’s norm theorem); then,
HL/K = LHK and one finds again that, as expected:

#(HL,ϕ/H
1−σ
L,ϕ ) = #H G

L,ϕ = #HK,ϕ.
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4. The p-localization of the Chevalley–Herbrand formula

4.1. Exact sequence of the ambiguous classes. The p-localization of the
Chevalley–Herbrand formula will exist from the definitions of class groups, ideal
groups and units. Such p-localizations were given many years ago ([Gra1978,
Théorèmes II.1, II.2], [Jau1986, Théorèmes III.1.12, III.1.13]); these papers
being written in french, we give again the computations for the convenience of
the reader.

To get a formula of the orders of the ϕ-components of H G
L , we follow the

process given in Jaulent’s Thesis [Jau1986, Chapitre III, p. 167] (note that
large generalizations of such methods, with ramification and decomposition,
are also given in [Mai1997, Mai1998] and, in the Galois case L/K, [Gon2006]
with many references):

Theorem 4.1. Let L0/Q be a real cyclic extension of degree pn, n ≥ 1. Let
K/Q be a real abelian extension of Galois group g of prime-to-p order. Put
L = L0K and G := Gal(L/K) =: 〈σ〉. We identify Gal(L/L0) and g.

Let IK , IL (resp. PK , PL) be the ideal groups (resp. the subgroups of principal
ideals), of K and L, respectively. Then, put HK := IK/PK and HL := IL/PL.

(i) We have the exact sequence of Z[g]-modules:

(4.1)
1→ Ker(JL/K) −→H1(G,EL) −→ Coker(ιL/K) −→

Coker(JL/K) −→ H2(G,EL) −→ H2(G,L×),

where JL/K is the transfer map HK → HG
L defined by aPK 7→ aPL and ιL/K

is the extension of ideals IK → IGL ,

(ii) Let ϕ be an irreducible p-adic character of K. Then:

• If ϕ = 1, then #H G
L,ϕ = #HK,ϕ = 1;

• If ϕ 6= 1, then #H G
L,ϕ = #HK,ϕ ×

#Coker(ιL/K)ϕ

(EK,ϕ : EK,ϕ ∩NL/K(L×))
.

Proof. We note that each prime number `, ramified in L/K, is totally ramified.

Consider the exact sequences of Z[g]-modules:

(4.2)
(a) 1→ EL → L× → PL → 1, (c) 1→ EK → K× → PK → 1

(b) 1→ PL → IL → HL → 1, (d) 1→ PK → IK → HK → 1.

Lemma 4.2. We have the following properties:

(i) PGL /ιL/K(PK) ' H1(G,EL);

(ii) H1(G,PL) ' Ker
[
H2(G,EL)→ H2(G,L×)

]
;

(iii) H1(G, IL) = 1.

Proof. We have, from the above exact sequences (4.2) (a), (c):

1→ EG
L = EK → L×G = K× → PGL → H1(G,EL)→ H1(G,L×)

→H1(G,PL)→ H2(G,EL)→ H2(G,L×).

Since H1(G,L×) = 1 (Hilbert’s Theorem 90), this yields (i) and (ii).

The claim (iii) is classical since IL is a Z[G]-module generated by the prime
ideals of L on which the Galois action is canonical. �

From the above exact sequences (4.2) (b), (d), we have the following com-
mutative diagram:

(4.3)

1 −−−→ PK −−−→ IK −−−→ HK −−−→ 1y yιL/K yJL/K
1 −−−→ PGL −−−→ IGL −−−→ HG

L −−−→ H1(G,PL) .

The snake lemma gives the exact sequence:

(4.4)
1→ EG

L/EK → Ker(ιL/K)→ Ker(JL/K)→ H1(G,EL)→
Coker(ιL/K)→ Coker(JL/K)→ H2(G,EL)→ H2(G,L×)
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since EG
L/EK = Ker(ιL/K) = 1 and H2(G,L×) ' K×/NL/K(L×), it becomes:

1→ Ker(JL/K)→ H1(G,EL)→ Coker(ιL/K)

→ Coker(JL/K)→ H2(G,EL)→ EK/EK ∩NL/K(L×)→ 1.

The representation Coker(ιL/K) depends on the splitting of the prime ideals
ofK ramified in L/K and gives standard ϕ-components similar to that obtained
for the representation

⊕
q Iq(L/K) of genus theory; since we do not need the

most general formula, we refer to [Gra1978] or [Jau1986]. In our particular
context all these ϕ-components will be trivial for ϕ 6= 1.

We know that, from Hasse’s norm theorem, EK ∩NL/K(L×) = EK ∩NL/K ,

where NL/K ⊂ K× is the subgroup of local norms in L/K (see § 3.2).

We obtain the p-localized exact sequences of Zp[g]-modules:

1→ Ker(JL/K)ϕ → H1(G,EL,ϕ)→ Coker(ιL/K)ϕ →
Coker(JL/K)ϕ → H2(G,EL,ϕ)→ EK,ϕ/EK,ϕ ∩NL/K → 1;

by p-localization, H1(G,EL)ϕ = H1(G,EL,ϕ) and H2(G,EL)ϕ = H2(G,EL,ϕ).

All these Zp[g]-modules are finite, which gives the p-localized formula:

#(H G
L,ϕ)

#(HK,ϕ)
=

#Coker(JL/K)ϕ
#Ker(JL/K)ϕ

=
#Coker(ιL/K)ϕ

(EK,ϕ : EK,ϕ ∩NL/K)
×

#H2(G,EL,ϕ)

#H1(G,EL,ϕ)
,

where:
#H2(G,EL,ϕ)

#H1(G,EL,ϕ)

is the Herbrand quotient of EL,ϕ we talked about before, whose computation

requires some algebraic reasonings and leads, for EL, to the global value
1

[L : K]

in the real case (cf. [Lan1990], [Lan2000, Chap. IX, §§ 1,4]).

Lemma 4.3. The Herbrand quotient of EL,ϕ is trivial for ϕ ∈ ΦK \ {1}.

Proof. We know that (EL⊗Q)⊕Q is the regular representation Q[G× g] (see,
e.g., [Gra2005, Theorem I.3.7]); so there exists a “Minkowski unit” ε such that
the Z[G×g]-module generated by ε is of finite index in EL that one may choose
prime to p; so EL is such that EL ⊕ Zp ' Zp[G][g] as g-modules.

Thus, (EL ⊕ Zp)ϕ = EL,ϕ ' Zp[µgϕ ][G] for ϕ 6= 1; whence the result. �

We obtain:

#(H G
L,ϕ) = #(HK,ϕ)×

#Coker(ιL/K)ϕ

(EK,ϕ : EK,ϕ ∩NL/K)
, for ϕ 6= 1,

and H G
L,1 = HK,1 = 1, which completes the proof of the Theorem. �

Corollary 4.4. If L ⊂ K(µ`), with ` ≡ 1 (mod 2pN ) inert in the cyclic real
field K and [L : K] = pn, n ∈ [1, N ], then #H G

L,ϕ = #HK,ϕ for all ϕ ∈ ΦK .

More generally, we have #
(
H i+1
L,ϕ /H

i
L,ϕ

)
=

#HK,ϕ

#NL/K(H i
L,ϕ)

for all i ≥ 0.

Of course, this does not mean H G
L,ϕ = JL/K(HK,ϕ) since there is most

often capitulation of classes; this expresses the subtlety of Chevalley–Herbrand
formula for which we shall give another description of H G

L,ϕ likely to involve
the kernel of capitulation.

4.2. Exact sequence of capitulation. We still consider a real cyclic exten-
sion K/Q of prime-to-p degree, then the compositum L = KL0 with L0/Q
cyclic of degree pn, n ≥ 1. Put G := Gal(L/K) =: 〈σ〉.

Let APL ∈ HL be a class invariant under G; thus A1−σ = αPL, α ∈ L×

and NL/K(α) is a unit ε ∈ EK ∩NL/K(L×); if α′ = αη, η ∈ EL, is another

generator of A1−σ, then NL/K(α′) = εNL/K(η). This defines the map:

HG
L −→ EK ∩NL/K(L×)/NL/K(EL),

which associates with APL ∈ HG
L the class of the unit ε = NL/K(α).
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Theorem 4.5. We have, for all ϕ ∈ ΦK , the exact sequences:

1→ JL/K(HK,ϕ) ·H ram
L,ϕ →H G

L,ϕ → EK,ϕ ∩NL/K(L×)/NL/K(EL,ϕ)→ 1,

where H ram
L ⊆HL is generated by the classes of the ramified prime ideals.

Proof. We have the global exact sequence:

1→ JL/K(HK) ·Hram
L → HG

L → EK ∩NL/K(L×)/NL/K(EL)→ 1.

(i) Surjectivity. Let ε ∈ EK ∩NL/K(L×); put ε = NL/K(α), then the ideal

αPL being of norm 1 is of the form A1−σ, A ∈ IL (Lemma 4.2 (iii)), and its
class is invariant giving the pre-image.

(ii) Kernel. Suppose that the image of the invariant class APL is ε =
NL/K(η), η ∈ EL; then NL/K(α) = NL/K(η) and NL/K(αη−1) = 1 giving

αη−1 = β1−σ, β ∈ L× (Hilber’s Theorem 90) then αPL = A1−σ = (βPL)1−σ.
So, the class APL is the class of the invariant ideal A(β)−1; but the group of in-
variants ideals is generated by ιL/K(IK) and the ramified primes of L. Whence

the result. Recall that EK ∩NL/K(L×) = EK ∩NL/K . �

Corollary 4.6. We still consider a prime ` ≡ 1 (mod 2pN ), inert in the cyclic
real field K, and L ⊂ K(µ`), of degree pn over K, n ∈ [1, N ]. Then:

(i) For all ϕ ∈ ΦK , we have #H G
L,ϕ = #HK,ϕ and the exact sequences

1→ JL/K(HK,ϕ)→H G
L,ϕ → EK,ϕ/NL/K(EL,ϕ)→ 1.

(ii) The capitulation of HK in L/K is equivalent to the isomorphisms:

H G
L,ϕ ' EK,ϕ/NL/K(EL,ϕ) ' Zp[µgϕ ]/(p)aϕ , for all ϕ ∈ ΦK ,

aϕ being such that pρϕaϕ = #HK,ϕ where ρϕ = [Qp(µgϕ) : Qp].
(iii) The capitulation of HK in L/K is equivalent to:

#HK,ϕ = (EK,ϕ : NL/K(EL,ϕ)), for all ϕ ∈ ΦK .

Proof. Exact sequence in (i) comes from the fact that H ram
L , generated by the

prime ideal L | l for the unique prime ideal l = (`) of K, is of character ϕ = 1.
The first equivalence comes from the exact sequence and the monogenicity of
EK,ϕ as Zp[µgϕ ]-module. The second one is obvious since #H G

L,ϕ = #HK,ϕ. �

Let’s say once again that the Chevalley–Herbrand formula #H G
L,ϕ = #HK,ϕ

cannot suggest a “trivial” isomorphism between HK,ϕ and EK,ϕ/NL/K(EL,ϕ),
all the more that EK,ϕ is a free Zp-module of rank rϕ equal to the degree of
the field of values of the characters, giving monogenic quotients in the present
case while HK,ϕ may have arbitrary structure.

4.3. Test of capitulation – Numerical illustrations. Recall that for ` ≡ 1
(mod pN ), inert in K, we consider L ⊂ K(µ`) of degree pn over K, n ∈ [1, N ].
In the practice of computations L is often denoted Kn and G is denoted Gn,
etc.

To verify in practice some capitulations in L/K, we use the relation:

JL/K(HK) = JL/K(NL/K(HL)) = νL/K(HL),

since NL/K : HL → HK is surjective (L/K is totally ramified), and compute
the algebraic norm of the generators hi of HL given by PARI. So, we obtain
explicite relations νL/K(hi) =

∏
j h

ai,j
j in HL, the complete capitulation being

given by the identity
〈
. . . ,

∏
j h

ai,j
j , . . .

〉
i
⊗ Zp = 1 and partial capitulations

are deduced from the matices (ai,j).

We will give numerical examples showing what happens, in the isomorphism
(ii) of the corollary since EK,ϕ/NL/K(EL,ϕ) is monogenic as Galois module,
while HK,ϕ is not in general.

(i) Let’s give, first, a few words about the important PARI instruction
bnfisprincipal, of constant use in the computations, to prove capitulation of
a class aPK in L, whence that aPL is principal; it is described as follows by
[Pari2013]:
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bnfisprincipal(bnf,x,{flag=1}):bnf being output by bnfinit (with flag<=2),

gives [v,alpha], where v is the vector of exponents on the class group

generators and alpha is the generator of the resulting principal ideal.

In particular x is principal if and only if v is the zero vector.

Thus, the most important output is the vector of exponents like [0, 0] meaning
total capitulation of the selected p-class. Nevertheless, these vectors may be
only 0 modulo the order of the p-classes (see § 4.3).

(ii) Let’s give an example for K cubic and p = 2.

Example 4.7. We consider a cyclic cubic field with p = 2, for which HK '
Z/4Z×Z/4Z and HK2 ' Z/16Z×Z/16Z×Z/2Z×Z/2Z, but there is complete
capitulation of HK :

conductor f=2817 PK=x^3 - 939*x + 6886 CK=[12,4]

ell=449 N=2 Nn=2 n=2 CK2=[48,16,2,2]

algebraic norm in K2/K of the component 1 of CK2: [16,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

so, the exponent 16 is to be read 0 (mod 16) since 16 is the order of the first
component of the 2-class group HL.

(iii) Let’s give an example for K quadratic and p = 3.

Example 4.8. Let m = 32009, K = Q(
√
m) for which HK ' Z/3Z × Z/3Z.

Take ` = 19 (inert in K) and let L = K2 be the extension of degree 9 of K
in K(µ`); we denote by K1 the intermediate field of degree 3. The general
Program 7.1 gives a partial capitulation in K1, then a total capitulation in K2

(in this last data for n = 2, we give the 18 integer coefficients of a generator of
the ideal on the (unknown) integral basis computed by PARI):

PK=x^2 - 32009 CK=[3,3]

ell=19 N=2 Nn=2 n=1 CK1=[9,3]

algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

ell=19 N=2 Nn=2 n=2 CK2=[9,3]

algebraic norm in K2/K of the component 1 of CK2: [0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0]~

[[0,0]~,[1439216371631838382,473754414131112320,454228965737496519,

-536418025036156085,919689041243214339,207983767848706102,-1036595574155274193,

128338672307382267,840355575133838069,14736364857686206,6548993298829283,

8896045582984518,3839859983910278,7389856141626720,10096758515087182,

-895338434531174,-1442732225425698,8004210362478777]~]

In K1/K, the exact sequence looks like:

1→ JK1/K(HK) ' Z/3Z −→H G1

K1
−→ EK/NK1/K(EK1

) ' Z/3Z→ 1,

the structure of H G1

K1
being a priori unknown. A direct computation shows

that H G1

K1
' Z/3Z× Z/3Z, but it is not JK1/K(HK) since #Ker(JK1/K) = 3.

In K2/K, the exact sequence becomes the isomorphism:

H G2

K2
' EK/NK2/K(EK2) ' Z/9Z,

since JK2/K(HK) = 1 and EK ' Z3. So, we intend to find a generator of H G2

K2
.

Taking the class of order 9 (first component of HK2
given by the instruc-

tion A0 = Kn.clgp[3][1]), we compute its conjugate by the automorphism S
of order 9, B0 = nfgaloisapply(Kn,S,A0), then C0 = idealpow(Kn,B0, 8) and
R = idealmul(Kn,A0,C0) for which we apply the test U = bnfisprincipal(Kn,R)
giving a principal integer with huge integer coefficients:

A0=Kn.clgp[3][1];B0=nfgaloisapply(Kn,S,A0);C0=idealpow(Kn,B0,8);

R=idealmul(Kn,A0,C0);U=bnfisprincipal(Kn,R);print(U)

[[0, 0]~,[-15352694895259448716005913288179,-4937712840022370286191878614596,

10234788031577460568990927971879,9473644150178364411380147768767,

919093855688240643550377510520,4933150036914472598668945255159,

-8186088867315265238068365774860,-12462519184163404099427848753248,
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-10116044365250124206306632744945,-32490191902858719490198341631,

-25043275245516486863055415213,150430762033938424462889500018,

83650512449675221885273689474,-243856275294066992198407658217,

229543001775729020765314244564,-195555194837852410495787525040,

140098686428490793581998673118,26378140206989683079187437611]~]

This confirms that H G2

K2
is cyclic of order 9.

This phenomenon is general (when the capitulation is complete), for a p-
class group of the form (say, for K quadratic) HK ' Z/pn1Z × · · · × Z/pnrZ
and gives, at a layer n ≥ a := n1 + · · ·+ nr, the isomorphism:

H Gn
Kn
' EK/NKn/K(EKn) ' Z/paZ,

but #H Gn
Kn

= #HK .

This is typical of the Main Conjecture philosophy and will be enforced by
the analytic framework, recalled in the next subsection, showing that non-cyclic
structures of the base field K (i.e., that of HK,ϕ) leads to canonical ones by
extension in L (i.e., as quotients of EK,ϕ ' Zp[µgϕ ]), whatever the p-rank and
the exponent of HK .

It seems that this “monogenicity”, by suitable cyclic p-extensions, has not
been remarked in the literature. Unfortunately, general proofs of capitulations
are perhaps out of reach despite its obviousness in the practice.

4.4. The stability as sufficient condition of capitulation. Now, we give
a sufficient condition of capitulation (see the comments given in Remark 1.3):

Theorem 4.9. Consider a prime ` ≡ 1 (mod 2pN ), inert in the cyclic real
field K, and Kn ⊂ K(µ`), of degree pn over K, n ∈ [1, N ].
Then #HKn = #HK for all n if and only if #HK1 = #HK . If this criterion

applies, then H Gn
Kn

= HKn for all n, Ker(JKn/K) = NKn/K(HKn [pn]), and if
pe is the exponent of HK , assuming N ≥ e, then HK capitulates in Ke.

Proof. Consider Gal(Kn/K1) = Gpn. Then we have the Chevalley–Herbrand

formulas #H Gn
Kn

= #HK and #H
Gpn
Kn

= #HK1
. But H Gn

Kn
⊆H

Gpn
Kn

; then under

the condition #HK1 = #HK , we get H Gn
Kn

= H
Gpn
Kn

, which is equivalent to

H 1−σn
Kn

= H
1−σpn
Kn

= H
(1−σn) · θ
Kn

,

where θ = 1 + σn + · · · + σp−1
n ∈ (p, 1 − σn), a maximal ideal of Zp[Gn] since

Zp[Gn]/(p, 1− σn) ' Fp; so H 1−σn
Kn

= 1, thus HKn = H Gn
Kn

for all n ∈ [1, N ].

Reciprocal is trivial.

From NKn/K(HKn) = HK , HKn = H Gn
Kn

and JKn/K ◦NKn/K = νKn/K
(the algebraic norm), one obtains:

JKn/K(HK) = JKn/K(NKn/K(HKn)) = νKn/K(HKn) = H pn

Kn
.

Let c ∈ Ker(JKn/K) and put c = NKn/K(C), C ∈HKn ; then 1 = JKn/K(c) =

JKn/K(NKn/K(C)) = Cp
n

, so Ker(JKn/K) ⊆ NKn/K(HKn [pn]); reciprocally,

if c = NKn/K(C), Cp
n

= 1, then JKn/K(c) = Jn(NKn/K(C)) = Cp
n

= 1;
whence Ker(JKn/K) = NKn/K(HKn [pn]) ⊆HK [pn].

For n = e, one obtains the capitulation of HK in Ke. �

Remarks 4.10. (i) All the relations and exact sequences defining the filtration
p-localize. In particular, the stability relation #HK1,ϕ = #HK,ϕ implies the
capitulation of HK,ϕ in Ke. But in practice, it suffices to obtain capitulation
of HK .

(ii) From formula of Corollary 4.4, the assumption #HK1 = #HK is equiv-

alent to
#HK

#NK1/K(H G1
K1

)
= 1; indeed, if #HK1

= #HK , then from Theorem 4.9,

HK1 = H G1

K1
, so NK1/K(H G1

K1
) = NK1/K(HK1

) = HK .

If
#HK

#NK1/K(H G1
K1

)
= 1, then the filtration stops and H G1

K1
= HK1

, whence

#HK1
= #H G1

K1
= #HK .
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(iii) The same criterion holds if one replacesK byKn0
for some n0 ≥ 1, under

the condition N ≥ n0 +e; the fact that Kn0/Q is not of prime-to-p degree does
not matter (proof of Theorem 4.9 does not need this assumption and requires
that L/Kn be totally ramified at a single place; the notation HKn,ϕ is still
relative to characters of K, which makes sense since GalKn/Q ' Gn × g).

5. Crucial link between Capitulation and the Main Conjecture

5.1. Analytics – The group of cyclotomic units. This aspect being very
classical, we just recall the main definitions and needed results. For the main
definitions and properties of cyclotomic units, see [Leo1954, § 8 (1)], [Leo1962]
or [Was1997, Chap. 8].

Definition 5.1. (i) Let χ ∈ X be even of conductor fχ; we define the “cyclo-
tomic numbers” θχ :=

∏
a∈Aχ(ζa2fχ − ζ

−a
2fχ

), with ζ2fχ := exp
(
iπ
fχ

)
, where Aχ is

a half-system of representatives, in (Z/fχZ)×, of Gal(Q(µfχ)/Kχ).

(ii) Let K be a real abelian field and let FK be the intersection with EK of
the multiplicative group generated by the conjugates of θχ, for all χ ∈ XK .

Recall that θ2
χ ∈ Kχ and that

θ′χ

θχ
∈ EKχ for any conjugate θ′χ of θχ. If fχ is

not a prime power, θχ ∈ Eχ. Since we will consider ϕ-components of the θχ,
for ϕ 6= 1, one gets always units.

These units lead to an analytic computation of #Hχ, χ ∈ X even, χ 6= 1
(using Theorem 2.1). One obtains in the semi-simple case p - #g:

Proposition 5.2. For all χ ∈ X, χ even,then #Hχ = (Eχ : Fχ).

The philosophy of the abelian Main Conjecture is to ask if the analogous
relations #Hϕ = (Eϕ : Fϕ) exist or not, since we only know that:

#Hχ =
∏
ϕ|χ

#Hϕ = (Eχ : Fχ) =
∏
ϕ|χ

(Eϕ : Fϕ).

5.2. Norm properties of cyclotomic units. We mention, first, the classical
norm property of cyclotomic units that are given in many books and articles,
but are crucial for our purpose:

Proposition 5.3. Let f > 1 and then let m | f , with m > 1, be any modulus;
let Qm := Q(ζm) ⊆ Qf := Q(ζf ) be the corresponding cyclotomic fields with
ζt := exp

(
2iπ
t

)
, for all t ≥ 1. Let NQf/Qm be the arithmetic norm in Qf/Qm.

Put ηQf := 1− ζf , ηQm := 1− ζm; we have:

NQf/Qm(ηQf ) = ηΩ
Qm , with Ω =

∏
`|f, `-m

(
1−

(Qm
`

)−1)
,

where
(Qm
`

)
∈ Gal(Qm/Q) denotes the Frobenius (or Artin) automorphism of

the prime number ` - m, that is to say such that ζm 7→ ζ`m.

Proof. To simplify, denote by τa, a prime to f , the Artin automorphism
(Qf
a

)
defined by ζf 7→ ζaf , then put ηQf =: ηf , ηQm =: ηm.

We consider, by induction, the case f = ` ·m, with ` prime and examine the
two cases ` - m and ` | m. We have NQf/Qm(ηf ) =

∏
a
ητaf where a runs trough

the integers a ∈ [1, f ] prime to f and such that a ≡ 1 (mod m).

(i) Case ` - m. Put a = 1+λ ·m, λ ∈ [0, `−1], but we must exclude a unique
λ∗ ∈ [0, `− 1] such that 1 + λ∗ ·m ≡ 0 (mod `); put 1 + λ∗m = µ`. Thus:

NQf/Qm(ηf ) =
∏

λ∈[0,`−1], λ 6=λ∗
(1− ζ1+λm

f )

=

∏
λ∈[0,`−1](1− ζfζλ` )

1− ζµ`f
=

1− ζ`f
1− ζµm

=
1− ζm
1− ζµm

.

Since µ ≡ `−1 (mod m), we get NQf/Qm(ηf ) = η
1−τ−1

`
m .

(ii) If ` | m, any λ ∈ [0, `− 1] is suitable, giving NQf/Qm(ηf ) = ηm. �
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Corollary 5.4. Let L/K/Q be an abelian extension where L is of conductor
f and K of conductor m; set ηL = NQf/L(ηf ) and ηK = NQm/K(ηm). Then:

NL/K(ηL) = ηΩ
K , with Ω =

∏
`|f, `-m

(
1−

(
K
`

)−1)
.

If moreover K/Q is a cyclic extension of prime-to-p degree, and if all the primes

` | f , ` - m, are inert in K, then Ω =
∏
`|f, `-m

(
1 −

(
K
`

)−1)
is an invertible

element of Zp[g]. In particular, NL/KFL,ϕ = FK,ϕ for all ϕ ∈ ΦK \ {1}.

Proof. Indeed, τ`,K :=
(
K
`

)
is a generator of g since ` is inert in K/Q; so

for ψ | ϕ 6= 1, ψ
(
1 − τ−1

`,K

)
= 1 − ψ

(
τ−1
`,K

)
is a unit if ψ

(
τ−1
`,K

)
∈ µgϕ \ {1}

and is not a prime power, otherwise, if gϕ is a power of a prime q, then since

q 6= p,
(
1− ψ

(
τ−1
`,K

))
is a prime ideal above q and 1− ψ

(
τ−1
`,K

)
is a p-adic unit.

Whence the norm relation between the p-localized groups of cyclotomic units
for ϕ 6= 1. �

Remark 5.5. The link with the Leopoldt definition of cyclotomic units is easy
since we get ζ2f − ζ−1

2f = −ζ−1
2f (1− ζ2

2f ) = −ζ−1
2f (1− ζf ) = −ζ−1

2f ηf , which has
no consequence for the Proposition and its Corollaries since norms are taken
over real fields L, K.

5.3. Final statement. So, we can state and prove the main result involving
the transfer map JL/K and its p-localized images JL/K(HK,ϕ):

Theorem 5.6. Let K/Q be a real cyclic extension of prime-to-p degree. Let
` ≡ 1 (mod 2pN ), N ≥ 1, and assume ` totally inert in K. Let L ⊂ K(µ`) of
degree pn over K, n ∈ [1, N ], and put G := Gal(L/K) =: 〈σ〉.
Then, for all n ∈ [1, N ] we have the relations (product of two integers):

(EK,ϕ : FK,ϕ) =
(
NL/K(EL,ϕ) : FK,ϕ

)
×

#HK,ϕ

#JL/K(HK,ϕ)
, for all ϕ ∈ ΦK .

Proof. Recall that, from Corollary 4.6 (i) to Theorem 4.5, we have, for all ϕ the
exact sequences 1→ JL/K(HK,ϕ)→ H G

L,ϕ → EK,ϕ/NL/K(EL,ϕ)→ 1, whence

the relations #H G
L,ϕ = #HK,ϕ = (EK,ϕ : NL/K(EL,ϕ))× #JL/K(HK,ϕ).

From Corollary 5.4, FK,ϕ = NL/K(FL,ϕ), whence the inclusions:

FK,ϕ ⊆ NL/K(EL,ϕ) ⊆ EK,ϕ,

where (EK,ϕ : NL/K(EL,ϕ)) =
#HK,ϕ

#JL/K(HK,ϕ)
, proving the claim. �

Corollary 5.7. The Main Conjecture, for the real abelian number fields K of
prime-to-p degree, holds under the existence, for each irreducible p-adic char-
acter ϕ 6= 1, of an inert prime ` ≡ 1 (mod 2pN ), N ≥ 1, such that HK,ϕ

capitulates in K(µ`).

A sufficient condition of capitulation (whence of the Main Conjecture) is the
stability of the p-class groups in the cyclic p-tower

⋃
n∈[1,N ]Kn of K(µ`)/K,

that is to say, the existence of n0, 0 ≤ n0 ≤ N − e, such that #HKn0+1,ϕ =
#HKn0

,ϕ, where pe is the exponent of HK .

Let’s note that as soon as there is a partial capitulation in some Kn/K,
n ∈ [1, N ], the index (EK,ϕ : FK,ϕ) is non trivial. In practice, one obtains
often the whole capitulation of HK using a single prime ` among, probably,
infinitely many.

6. Numerical experiments over cyclic cubic fields

Let L = Kn ⊂ K(µ`), ` ≡ 1 (mod 2pN ), be a cyclic p-tower of degree pn of
K, n ∈ [1, N ]. We still assume K/Q cyclic and ` totally inert in K.

The following program gives, at the begining, the complete list of cyclic
cubic fields of conductor f ∈ [bf,Bf] and selects those having a suitable p-class
group to study the capitulation in L/K. The test is about the order of HK ,
so various structures may occur. The fields Kn ⊆ L are given by means of
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the polynomial P of degree 3 · pn, n ∈ [1, Nn], where Nn ≤ N , not too large,
define the layers n ∈ [1, Nn] in which the computations are done (regrettably
the execution time becomes rapidly out of reach). A test on the order of HKn

is also proposed.

Since the PARI instruction bnfinit(P, 1) may take huge time if the degree of P
increases, we are limited to p = 2 and possibly p = 5 and 7 (the minimal prime
giving two p-adic characters). But the purpose being to suggest the randomness
of the phenomenon of capitulation, we hope that these cases constitute a good
heuristic.

6.1. General program for cyclic cubic fields. In the following general pro-
gram, one must precise the following data:

(i) The numbers N (and Nn ≤ N, the number of layers to be tested by the
program) to define the primes ell limited by the bound Bell and congruent to 1
modulo 2pN; it is possible, to get capitulations at a sufficient layer, to take N
large, but Nn very small.

(ii) The bounds bf,Bf defining an interval for the conductors f.

(iii) The instructions valuation(HK, p) < vHK, valuation(HKn, p) < vHKn to
get only interesting p-class groups for K and Kn; note that from the Chevalley–
Herbrand formula, #HKn is a multiple of #HK , and one must take vHK ≤ vHKn

STUDY OF THE CAPITULATION OF HK IN Kn/K FOR CYCLIC CUBIC FIELDS

{p=2;N=2;Nn=2;bf=7;Bf=5*10^3;vHK=4;vHKn=6;Bell=500;

\\List of cubic fields of any conductor f:

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;if(core(F)!=F,next);

F=factor(F);Div=component(F,1);d=matsize(F)[1];for(j=1,d,D=Div[j];

if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),if(h==2 & Mod(b,3)==0,next);

A=4*f-27*b^2;if(issquare(A,&a)==1,\\a and b such that f=(a^2+27b^2)/4

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);

\\End of computation of PK defining K of conductor f.

K=bnfinit(PK,1);HK=K.no;

\\Test on the order HK of the p-class group of K:

if(valuation(HK,p)<vHK,next);CK=K.clgp;

\\Definition of the primes ell inert in K:

forprime(ell=1,Bell,if(Mod(ell-1,2*p^N)!=0,next);

F=factor(PK+O(ell));if(matsize(F)[1]!=1,next);

\\Definitions of the fields Kn<L, computation of their class group:

for(n=1,Nn,QKn=polsubcyclo(ell,p^n);P=polcompositum(PK,QKn)[1];

Kn=bnfinit(P,1);HKn=Kn.no;

\\Test on the order HKn of the p-class group of Kn:

if(valuation(HKn,p)<vHKn,break);

print();print("conductor f=",f," PK=",PK," CK=",CK[2]);

print("ell=",ell," N=",N," Nn=",Nn," n=",n);

CKn=Kn.clgp;print("CKn=",CKn[2]);rKn=matsize(CKn[2])[2];

\\Calcul de Gal(Kn/K) and search of a generator S of order p^n:

G=nfgaloisconj(Kn);Id=G[1];for(k=2,3*p^n,Z=G[k];ks=1;

while(Z!=Id,Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

\\Computation of the algebraic norms of the generators of CKn:

for(j=1,rKn,A0=CKn[3][j];A=1;

for(t=1,p^n,As=nfgaloisapply(Kn,S,A);A=idealmul(Kn,A0,As));

\\Test of capitulation (partial or total):

X=bnfisprincipal(Kn,A)[1];

print("algebraic norm in K",n,"/K of the component ",j," of CK",n,": ",X)))))))}

6.2. Case of cyclic cubic fields and p = 2. We give an excerpt of the various
forms of examples, with HK ' Z/2Z× Z/2Z and HK1

of order at least 26:

conductor f=1777 PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=41 N=2 Nn=2 n=1 CK=[4,4] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [0,0,0,1]~

algebraic norm in K1/K of the component 2 of CK1: [2,2,1,1]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=41 N=2 Nn=2 n=2 CK=[4,4] CK2=[8,8,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,0,0,0]~
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algebraic norm in K2/K of the component 2 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Complete capitulation in K2 without stabilization in K2/K1

_____

conductor f=1777 PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=113 N=2 Nn=2 n=1 CK=[4,4] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [0,0,1,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,1]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=113 N=2 Nn=2 n=2 CK=[4,4] CK2=[8,8,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,4,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [4,4,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Incomplete capitulation in K2

_____

conductor f=1777 PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=257 N=2 Nn=2 n=1 CK=[4,4] CK1=[72,24]

algebraic norm in K1/K of the component 1 of CK1: [18,12]~

algebraic norm in K1/K of the component 2 of CK1: [36,6]~

No capitulation in K1

ell=257 N=2 Nn=2 n=2 CK=[4,4] CK2=[72,24]

algebraic norm in K2/K of the component 1 of CK2: [36,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,12]~

Incomplete capitulation in K2, stability from K1-->capitulation in K3

_____

conductor f=2817 PK=x^3 - 939*x + 6886 CK=[12,4]

ell=449 N=2 Nn=2 n=1 CK=[4,4] CK1=[24,8,2,2]

algebraic norm in K1/K of the component 1 of CK1: [20,0,0,1]~

algebraic norm in K1/K of the component 2 of CK1: [12,0,1,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=449 N=2 Nn=2 n=2 CK=[4,4] CK2=[48,16,2,2]

algebraic norm in K2/K of the component 1 of CK2: [16,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Complete capitulation in K2

_____

conductor f=4297 PK=x^3 + x^2 - 1432*x + 20371 CK=[4,4]

ell=449 N=2 Nn=2 n=1 CK=[4,4] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [0,2,1,1]~

algebraic norm in K1/K of the component 2 of CK1: [2,2,0,1]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=449 N=2 Nn=2 n=2 CK=[4,4] CK2=[292,4,4,4]

algebraic norm in K2/K of the component 1 of CK2: [0,2,0,2]~

algebraic norm in K2/K of the component 2 of CK2: [0,0,2,2]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,2,2]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,2,2]~

Incomplete capitulation in K2

_____

conductor f=5409 PK=x^3 - 1803*x + 29449 CK=[12,4]

ell=113 N=2 Nn=2 n=1 CK=[4,4] CK1=[12,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [2,2,0,1]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,1,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Incomplete capitulation in K1

ell=113 N=2 Nn=2 n=2 CK=[4,4] CK2=[24,8,2,2,2,2]

algebraic norm in K2/K of the component 1 of CK2: [16,4,0,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [12,4,0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 5 of CK2: [0,0,0,0,0,0]~
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algebraic norm in K2/K of the component 6 of CK2: [0,0,0,0,0,0]~

No capitulation in K2

Remark 6.1. For the first example above, the capitulation in K2 is complete,
even if the stability does not occur from the first layer; the step n = 1 shows a
partial capitulation giving, JK1/K(HK) ' Z/2Z× Z/2Z (indeed the exponent
of HK is 4).

To be more convincing, let’s give the coefficients of the extensions of the
generating ideals representatives of the two classes of order 4; one gets 12 huge
integer coefficients:

PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=41 CK=[4,4] CK2=[8,8,2,2]

algebraic norm in K2/K of the component 1 of CK2:

[[0,0,0,0]~,[-31780222254443,-12898232803596,15554698429537,

-11030242667244,699234644603,-1433180593820,-97846196830,

480428807611,70679128541,581754438178,701511836521,497443446811]~]

algebraic norm in K2/K of the component 2 of CK2:

[[0,0,0,0]~,[-409139735188114,-166218206982845,200303000159397,

-142025979393819,10482585098180,32200771380552,-1471046798500,

7172751349077,1043934050162,-13082943399099,-15769847218663,

-11179282571565]~]

algebraic norm in K2/K of the component 3 of CK2:

[[0,0,0,0]~,[4595853941743,7574362186256,-7431095890343,3180376719682,

-878235409486,520990038484,351933447679,127583225152,327914236819,

-381696290156,-181901226812,-173412643330]~]

algebraic norm in K2/K of the component 4 of CK2:

[[0,0,0,0]~,[206178918528161385818507,45009133745540603328818,

109639228343931043367320,18671957635985615261071,13770653000372358842954,

7958894412958725580875,13213450239959129254028,3845666006771496793309,

2250298427236450403785,-1737437297938711409589,4232280623726481124024,

-720772717060054219812]~]

6.3. Case of cyclic cubic fields and p = 7. For p = 7, due to the execution
time, let’s give some examples of the case n = 1 with HK of orders 7, then one
case of order 72, and B` = 100.

We obtain complete capitulations in K1, except few cases; we give an excerpt
of some possibilities:

conductor f=313 PK=x^3 + x^2 - 104*x + 371 CK=[7]

ell=29 N=1 Nn=1 n=1 CK=[7] CK1=[7]

algebraic norm in K1/K of the component 1 of CK1: [0]~

Complete capitulation in K1

______

conductor f=1261 PK=x^3 + x^2 - 420*x - 1728 CK=[21]

ell=43 N=1 Nn=1 n=1 CK=[7] CK1=[21]

algebraic norm in K1/K of the component 1 of CK1: [7]~

Complete capitulation in K1

______

conductor f=1567 PK=x^3 + x^2 - 522*x - 4759 CK=[7]

ell=29 N=1 Nn=1 n=1 CK=[7] CK1=[49]

algebraic norm in K1/K of the component 1 of CK1: [7]~

No capitulation in K1

______

ell=71 N=1 Nn=1 n=1 CK=[7] CK1=[49]

algebraic norm in K1/K of the component 1 of CK1: [7]~

No capitulation in K1

______

conductor f=8563 PK=x^3 + x^2 - 2854*x + 57721 CK=[49]

ell=71 N=1 Nn=1 n=1 CK=[49] CK1=[49]

algebraic norm in K1/K of the component 1 of CK1: List([7])

Partial capitulation

The last case shows a partial capitulation giving JK1/K(HK) ' Z/7Z. Since
N = 1, there is no possible complete capitulation despite the stability from K1.
The case of primes ` with N = n = 2 seems out of reach.
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Let’s give an example of generator of the principal ideal obtained after ca-
pitulation (first example above):

conductor f=313 PK=x^3 + x^2 - 104*x + 371 CK=[7]

ell=29 N=1 Nn=1 n=1 CK=[7] CK1=[7]

algebraic norm in K1/K of the component 1 of CK1:

[[0]~,[4529357,2479589,125622,-2879283,2922668,4270474,-6202812,

-107453,1865872,37436,-613198,1546287,-1637834,1355628,1276626,

886508,944469,-900999,474890,508450,962907]~]

6.4. About the sufficient condition of capitulation. We consider cyclic
cubic fields and p = 2. We only search examples of primes ` giving the stability
of the 2-class groups in K1/K, so that the capitulation applies in L = KN if N
is large enough; we compute the 2-valuation of #HK (in N = valuation(HK, p)),
which is the minimal possible bound. We illustrate the case HK ' Z/2Z ×
Z/2Z; a great lot of examples are found giving capitulation in K1, even with
` < 100 (one writes only f,PK, ell,CK,CK1):

{p=2;bf=7;Bf=10^4;nell=100;for(f=bf,Bf,h=valuation(f,3);

if(h!=0 & h!=2,next);F=f/3^h;if(core(F)!=F,next);F=factor(F);

Div=component(F,1);d=matsize(F)[1];for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));

for(b=1,sqrt(4*f/27),if(h==2 & Mod(b,3)==0,next);

A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);

K=bnfinit(PK,1);HK=K.no;v=valuation(HK,p);if(v!=2,next);

for(t=2,nell,ell=prime(t);if(Mod(ell-1,4)!=0,next);F=factor(PK+O(ell));

if(matsize(F)[1]!=1,next);QK1=polsubcyclo(ell,p);P=polcompositum(PK,QK1)[1];

K1=bnfinit(P,1);if(valuation(K1.no,p)==2,print("f=",f," PK=",PK," ell=",ell,

" CK=",K.clgp[2]," CK1=",K1.clgp[2]);break)))))}

f=163 PK=x^3 + x^2 - 54*x - 169 ell=29 CK=[2,2] CK1=[2,2]

f=277 PK=x^3 + x^2 - 92*x + 236 ell=5 CK=[2,2] CK1=[2,2]

f=349 PK=x^3 + x^2 - 116*x - 517 ell=5 CK=[2,2] CK1=[2,2]

f=397 PK=x^3 + x^2 - 132*x - 544 ell=5 CK=[2,2] CK1=[2,2]

f=547 PK=x^3 + x^2 - 182*x - 81 ell=5 CK=[2,2] CK1=[2,2]

(...)

f=9703 PK=x^3 + x^2 - 3234*x - 16531 ell=5 CK=[6,2] CK1=[6,2]

f=9709 PK=x^3 + x^2 - 3236*x + 21216 ell=5 CK=[6,6] CK1=[6,6]

f=9721 PK=x^3 + x^2 - 3240*x - 39244 ell=5 CK=[2,2] CK1=[2,2]

f=9891 PK=x^3 - 3297*x + 70336 ell=29 CK=[6,6] CK1=[6,6]

f=9961 PK=x^3 + x^2 - 3320*x - 74523 ell=5 CK=[6,2] CK1=[6,2]

Some cases of more complex structures of HK do not give stabilization at
the first step; this clearly depends on the exponent of the class groups as we
have explained; but this sufficient condition is not necessary and capitulation
does appear at larger layers; we illustrate the cases HK ' (Z/2Z)4 or HK '
(Z/4Z)2 × (Z/2Z)2:

conductor f=7687 PK=x^3 + x^2 - 2562*x - 48969 CK=[2,2,2,2]

ell=17 N=3 Nn=3 n=1 CK=[2,2,2,2] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [2,2,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,2,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [2,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,2,0,0]~

Partial capitulation in K1

ell=17 N=3 Nn=3 n=2 CK=[2,2,2,2] CK2=[4,4,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Stability from K1-->complete capitulation in K2

______

conductor f=20887 PK=x^3 + x^2 - 6962*x - 225889 CK=[4,4,2,2]

ell=193 N=3 Nn=3 n=1 CK=[4,4,2,2] CK1=[8,8,2,2]

algebraic norm in K1/K of the component 1 of CK1: [2,4,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [4,6,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [4,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [4,4,0,0]~

Partial capitulation in K1
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ell=193 N=3 Nn=3 n=2 CK=[4,4,2,2] CK2=[8,8,2,2]

algebraic norm in K2/K of the component 1 of CK2: [4,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,4,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Stability from K1-->Complete capitulation in K3, partial capitulation in K2

______

conductor f=31923 PK=x^3 - 10641*x + 227008 CK=[6,2,2,2]

ell=97 N=3 Nn=3 n=1 CK=[6,2,2,2] CK1=[12,4,2,2,2,2]

algebraic norm in K1/K of the component 1 of CK1: [8,0,1,0,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,1,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0,0,0]~

algebraic norm in K1/K of the component 5 of CK1: [6,0,0,0,0,0]~

algebraic norm in K1/K of the component 6 of CK1: [6,2,0,0,0,0]~

No capitulation in K1

ell=97 N=3 Nn=3 n=2 CK=[6,2,2,2] CK2=[312,8,4,4,4,4]

algebraic norm in K2/K of the component 1 of CK2: [208,0,2,0,0,2]~

algebraic norm in K2/K of the component 2 of CK2: [0,4,0,0,2,2]~

algebraic norm in K2/K of the component 3 of CK2: [156,0,0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [156,4,0,0,0,0]~

algebraic norm in K2/K of the component 5 of CK2: [156,0,0,0,0,0]~

algebraic norm in K2/K of the component 6 of CK2: [156,0,0,0,0,0]~

No capitulation in K2

So we must try another `:

conductor f=31923 PK=x^3 - 10641*x + 227008 CK=[6,2,2,2]

ell=257 N=3 Nn=2 n=1 CK=[6,2,2,2] CK1=[18, 6, 2, 2, 2, 2]

algebraic norm in K1/K of the component 1 of CK1: [6,4,0,0,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [12,2,0,0,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [9,0,1,1,0,1]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0,1,0]~

algebraic norm in K1/K of the component 5 of CK1: [0,0,0,0,0,0]~

algebraic norm in K1/K of the component 6 of CK1: [9,0,1,1,1,1]~

Partial capitulation in K1

conductor f=31923 PK=x^3 - 10641*x + 227008 CK=[6,2,2,2]

ell=257 N=3 Nn=2 n=2 CK=[6,2,2,2] CK2=[36,12,2,2,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,8,0,0,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,4,0,0,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 5 of CK2: [0,0,0,0,0,0]~

algebraic norm in K2/K of the component 6 of CK2: [0,0,0,0,0,0]~

For this new `, the complete capitulation is obtained in K2. We note that
the 2-rank of HK is 4, which implies, from Corollary 4.6 (ii), the isomorphism

H G2

K2
' Z2[j]/(4) but never Z2[j]/(2)× Z2[j]/(2), where j = exp( 2iπ

3 ).

7. Numerical experiments over quadratic fields and p = 3

Of course, this case has no interest for verifications of the Main Conjecture
since it is true for the trivial reason χ = ϕ; but it remains interesting to study
the capitulation phenomenon. The program is analogous to the general one
with slight modifications due to the quadratic context; we give some excerpt:

7.1. General program for quadratic fields.

{p=3;N=2;Nn=2;bm=2;Bm=10^4;vHK=2;vHKn=2;Bell=500;

for(m=bm,Bm,if(core(m)!=m,next);PK=x^2-m;K=bnfinit(PK,1);HK=K.no;

if(valuation(HK,p)<vHK,next);CK=K.clgp;

forprime(ell=1,Bell,if(Mod(ell-1,2*p^N)!=0,next);if(kronecker(m,ell)!=-1,next);

for(n=1,Nn,QKn=polsubcyclo(ell,p^n);P=polcompositum(PK,QKn)[1];

Kn=bnfinit(P,1);HKn=Kn.no;if(valuation(HKn,p)<vHKn,break);CKn=Kn.clgp[2];

print("PK=",PK," CK=",CK[2]," ell=",ell,

" N=",N," Nn=",Nn," n=",n," CK",n,"=",CKn);

rKn=matsize(CKn)[2];G=nfgaloisconj(Kn);Id=G[1];for(k=2,2*p^n,Z=G[k];ks=1;

while(Z!=Id,Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(j=1,rKn,e=CKn[j];A0=Kn.clgp[3][j];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);
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A=idealmul(Kn,A0,As));X=bnfisprincipal(Kn,A)[1];

print("algebraic norm in K",n,"/K of the component ",j," of CK",n,": ",X)))))}

7.2. Case of quadratic fields and p = 3.

7.2.1. Examples with N = 1. For instance, the configuration:
PK=x^2 - 1129 CK=[9]

ell=13 N=2 Nn=1 n=1 CK=[9] CK1=[27]

algebraic norm in K1/K of the component 1 of CK1: [3]~

means that νKn/K(HKn) = H 3
Kn

of order 9; so there is no partial capitulation
of HKn . But in the following case, there is partial capitulation:
PK=x^2 - 1129 CK=[9]

ell=307 N=2 Nn=1 n=1 CK=[9] CK1=[9,3]

algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

PK=x^2 - 1654 CK=[9]

ell=283 N=2 Nn=1 n=1 CK=[9] CK1=[9,3,3]

algebraic norm in K1/K of the component 1 of CK1: [3,1,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0]~

The following case shows a partial capitulation and since #HKn = #HK , we
have the stability in the tower and the complete capitulation in the extension
K2 of degree 9:
PK=x^2 - 1129 CK=[9]

ell=19 N=2 Nn=1 n=1 CK=[9] CK1=[9]

algebraic norm in K1/K of the component 1 of CK1: [3]~

Many examples are of the same kind as above; we do not write them.

Finally we have the case of the following structure of HK :
PK=x^2 - 32009 CK=[3, 3]

ell=19 N=2 Nn=2 n=1 CK=[3, 3] CK1=[9,3]

algebraic norm in K1/K of the component 1 of CK1:[0,0]

algebraic norm in K1/K of the component 2 of CK1:[0,0]

We see the complete capitulation despite the lack of stability. The next case
shows a partial capitulation giving JKn/K(HKn) ' Z/3Z.

7.2.2. Examples with n = N = 2.
PK=x^2 - 1129 CK=[9]

ell=73 N=2 Nn=2 n=1 CK=[9] CK1=[189,3]

algebraic norm in K1/K of the component 1 of CK1: [147,0]

algebraic norm in K1/K of the component 2 of CK1: [0,0]

ell=73 N=2 Nn=2 n=2 CK=[9] CK2=[567,9]

algebraic norm in K2/K of the component 1 of CK2: [441,0]

algebraic norm in K2/K of the component 2 of CK2: [0,0]

______

PK=x^2 - 3137 CK=[9]

ell=199 N=2 Nn=2 n=1 CK=[9] CK1=[27,3]

algebraic norm in K1/K of the component 1 of CK1: [21,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

ell=199 N=2 Nn=2 n=2 CK=[9] CK2=[27,9]

algebraic norm in K2/K of the component 1 of CK2: [9,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0]~

______

PK=x^2 - 8761 CK=[27]

ell=19 N=2 Nn=2 n=1 CK=[27] CK1=[81]

algebraic norm in K1/K of the component 1 of CK1: [3]~

ell=19 N=2 Nn=2 n=2 CK=[27] CK2=[81]

algebraic norm in K2/K of the component 1 of CK2: [9]~

7.2.3. Examples of stability from K1. Let’s give the program testing the sta-
bility in K1/K; some cases of non-stability are present. We put ell = prime(t),
t ∈ [2, nell]:
{p=3;bm=2;Bm=10^4;nell=20;for(m=bm,Bm,if(core(m)!=m,next);PK=x^2-m;

K=bnfinit(PK,1);v=valuation(K.no,p);if(v!=2,next);CK=K.clgp[2];

for(t=1,nell,ell=prime(t);if(t==nell,print("m=",m," nell insufficient");break);

if(Mod(ell-1,3)!=0,next);
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if(kronecker(m,ell)!=-1,next);\\Test of inertia of ell

P=polcompositum(PK,polsubcyclo(ell,p))[1];K1=bnfinit(P,1);

v1=valuation(K1.no,p);if(v1!=2,next);

print("m=",m," PK=",PK," ell=",ell," CK=",K.clgp[2]," CK1=",K1.clgp[2]);break))}

m=1129 PK=x^2 - 1129 ell=19 CK=[9] CK1=[9]

m=1654 PK=x^2 - 1654 ell=43 CK=[9] CK1=[9]

m=3137 PK=x^2 - 3137 ell=19 CK=[9] CK1=[9]

m=3719 PK=x^2 - 3719 ell=31 CK=[9] CK1=[18,2]

(...)

m=9217 PK=x^2 - 9217 ell=7 CK=[18] CK1=[18]

m=9606 PK=x^2 - 9606 ell=31 CK=[18] CK1=[18,2,2]

m=9799 PK=x^2 - 9799 ell=19 CK=[18] CK1=[18,2,2]

m=9998 PK=x^2 - 9998 ell=37 CK=[9] CK1=[9]

The most impressive is that, up to m ≤ 1010, small primes ` are sufficient
to get stability for cyclic groups HK .

Other examples where there is sometimes no stabilization up to the upper
bound for `; this depends on the structure of HK since if HK is not cyclic, we
know that total capitulation needs to compute in larger layers:

m=23659 PK=x^2 - 23659 CK=[6,3]

x^2 - 23659 NO STABILIZATION UP TO nell

ell=73 N=2 Nn=2 n=1 CK=[6,3] CK1=[18,3]

algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

Incomplete capitulation in K1

______

m=32009 PK=x^2 - 32009 CK=[3,3]

x^2 - 32009 NO STABILIZATION UP TO nell

ell=19 N=2 Nn=2 n=1 CK=[3,3] CK1=[9,3]

algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

ell=19 N=2 Nn=2 n=2 CK=[3,3] CK2=[9,3]

algebraic norm in K2/K of the component 1 of CK2: [0,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0]~

Complete capitulation in K2

______

m=42817 PK=x^2 - 42817 CK=[3,3]

x^2 - 42817 NO STABILIZATION UP TO nell

ell=19 N=2 Nn=2 n=1 CK=[3,3] CK1=[9,3]

algebraic norm in K1/K of the component 1 of CK1: [3,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

ell=19 N=2 Nn=2 n=2 CK=[3,3] CK2=[27,3]

algebraic norm in K2/K of the component 1 of CK2: [9,0]~

algebraic norm in K2/K of the component 2 of CK2: [0,0]~

Incomplete capitulation in K2

7.3. Case of quadratic fields and p = 5. We give some excerpt of numerical
results, analogous to the case p = 3; most of examples give stability, whence
capitulation in some layer. We have taken N = 2,Nn = 1. For some rare cases,
the capitulation is partial in the first layer.

PK=x^2 - 24859 CK=[25]

ell=251 N=2 Nn=1 n=1 CK=[25] CK1=[50,2,2,2]

algebraic norm in K1/K of the component 1 of CK1: [30,0,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Partial capitulation

ell=401 N=2 Nn=1 n=1 CK1=[1525]

algebraic norm in K1/K of the component 1 of CK1: [305]~

Partial capitulation

________

PK=x^2 - 27689 CK=[25]

ell=101 N=2 Nn=1 n=1 CK=[25] CK1=[25]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Partial capitulation

________

PK=x^2 - 68119 CK=[50]

ell=251 N=2 Nn=1 n=1 CK=[50] CK1=[250]
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algebraic norm in K1/K of the component 1 of CK1: [5]~

Partial capitulation

________

PK=x^2 - 68819 CK=[25]

ell=101 N=2 Nn=1 n=1 CK=[25] CK1=[25]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Partial capitulation

ell=151 N=2 Nn=1 n=1 CK=[25] CK1=[125]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Partial capitulation

________

PK=x^2 - 69403 CK=[25]

ell=251 N=2 Nn=1 n=1 CK=[25] CK1=[25,5]

algebraic norm in K1/K of the component 1 of CK1: [5,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0]~

Partial capitulation

ell=401 N=2 Nn=1 n=1 CK=[25] CK1=[50,2,2,2]

algebraic norm in K1/K of the component 1 of CK1: [30,0,0,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Partial capitulation

________

PK=x^2 - 88211 CK=[25]

ell=101 N=2 Nn=1 n=1 CK=[25] CK1=[125]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Partial capitulation

ell=151 N=2 Nn=1 n=1 CK=[25] CK1=[25]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Partial capitulation, stability from K2

________

PK=x^2 - 119029 CK=[50]

ell=251 N=2 Nn=1 n=1 CK=[50] CK1=[250]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Partial capitulation

ell=401 N=2 Nn=1 n=1 CK=[50] CK1=[50]

algebraic norm in K1/K of the component 1 of CK1: [5]~

Partial capitulation

8. On the use of the auxiliary extensions K(µ`)/K

8.1. Remarks on the classical proof of the Main Conjecture. Contrary,
to our point of view, some proofs of the Main Conjecture, as that of Thaine,
have a fundamental difference. The brief overview that we give now must be
completed by technical elements that the reader can find especially in [Was1997,
§§ 15.2, 15.3].

Let f be the conductor of K. Let ` - f , ` ≡ 1 (mod 2pN ), totally split in K
and pN ≥ pe, the exponent of HK ; put M0 = Q(µ`) and M := M0K. From
Proposition 5.3, the cyclotomic unit ηM of M is such that NM/K(ηM ) = 1 and
the link with ηK is only a congruence modulo (1− ζ`).

Put ηM = α1−σ
M where αM ∈ M× is such that (αM ) ∈ IGM ; modulo K×, we

can take αM integer in M , whence:

(8.1) (αM ) = JM/K(aK) · LΩ`
0 ,

where aK ∈ IK and L0 is a fixed prime ideal dividing ` in M , thus totally
ramified in M/K, with Ω` =

∑
s∈g

rs · s−1, rs ≥ 0; thus, since NM/K(L0) = l0,

L0 | l0 | ` in M/K/Q, this yields (αK) := (NM/K(αM )) = a`−1
K · lΩ`

0 .

But a`−1
K is principal since `− 1 ≡ 0 (mod pe), whence lΩ`0 principal.

Lemma 8.1. Except a finite number of primes `, the ideal LΩ`
0 of (8.1) gives

a non trivial relation, in the meaning that Ω` is not of the form λ · νM/M0
,

λ ≥ 0, giving lΩ`0 = (`)λ.

Proof. Assume that Ω` = λ · νM/M0
; the character of LΩ`

0 , as Z[g]-module, is
the unit one and any non-trivial ϕ-component αM,ϕ of αM is prime to `, thus
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congruent, modulo any L | ` in M , to ρl ∈ Z, ρl 6≡ 0 (mod `) (residue degrees 1

in M/Q). Since Lσ = L, we obtain ηM,ϕ = ασ−1
M,ϕ ≡ 1 (mod L).

We have ηf` ≡ ηf (mod (1 − ζ`)) where 1 − ζ` := η` is an uniformizing

parameter at the places above ` in M0, so that ηM ≡ ηK (mod (1− ζ`)), which
leads to ηK,ϕ ≡ 1 (mod l), for all l | `, giving ηK,ϕ ≡ 1 (mod `) (absurd for

almost all `). �

Reducing modulo νM/M0
, one may get Ω` 6= 0, “minimal” in an obvious

sense, with rs ≥ 0 but not all zero. Consider
αsM

(1− ζ`)rs
modulo L0 and the

conjugations ασM = αM · ηM and
(1− ζ`)σ

(1− ζ`)
=

1− ζg`
`

1− ζ`
≡ g` (mod (1 − ζ`))

(where g` is a primitive root modulo ` such that ζσ` =: ζ
g`
` ); one gets:( αsM

(1− ζ`)rs
)σ

=
ασsM

(1− ζ`)σrs
≡ ηsMα

s
M

(g`(1− ζ`))rs
≡ ηsM

grs`
·
( αsM

(1− ζ`)rs
)

(mod L0),

whence grs` ≡ ηsM ≡ ηsK (mod l0), which identifies the coefficients rs.

So we have obtained a non-trivial congruential relation between the classes
of the conjugates of l0 that is p-localizable; this constitute the basis of the
reasonings, on condition to add many more technical arguments to get some
annihilation of EK,ϕ/FK,ϕ, then a final equality #HK,ϕ = (EK,ϕ : FK,ϕ) !

In this way, Thaine’s method is essentially analytic, working on norm prop-
erties and subtle congruences of the cyclotomic units, leading to the principle of
Kolyvagin Euler systems, while that using capitulation (if any) is of class field
theory framework and gives immediately the result without any supplementary
work.

8.2. Remarks on the method of proof by capitulation. Suppose that for
all inert prime numbers `N ≡ 1 (mod 2pN ), with N arbitrary large, there is
never any capitulation in the real cyclic p-tower L/K of K(µ`)/K; for these
p-towers, we get easily the following more general result.

Proposition 8.2. Let L/K be a real cyclic p-tower of degree pN in which there
is a unique prime `, inert in K, and totally ramified in L/K; we denote by Kn

the subfield of L of degree pn over K, n ∈ [0, N ]. We assume that, for all
n,m ∈ [0, N ], with n ≤ m, the transfer maps Jmn := JKm/Kn are injective. Put
Gmn := Gal(Km/Kn), Hn := HKn , Hm := HKm .

Then, one has the inequalities #Hm ≥ #Hn ·#Hn[pm−n] which lead, for all n,
to #HKn ≥ #HK · pn·rK , where rK = dimFp(HK/H

p
K) is the p-rank of HK .

Proof. From the exact sequence of Z[Gmn ]-modules:

1→ Jmn Hn →Hm →Hm/J
m
n Hn → 1,

we get, from the Chevalley–Herbrand formula #H
Gmn
m = #Hn and the injec-

tivity of Jmn , H
Gmn
m /Jmn Hn = 1 and the exact sequence:

1→ (Hm/J
m
n Hn)G

m
n → H1(Gmn ,J

m
n Hn)→ H1(Gmn ,Hm),

where H1(Gmn ,J
m
n Hn) = (Jmn Hn)[pm−n] ' Hn[pm−n] and #H1(Gmn ,Hm) =

#H2(Gmn ,Hm) = #H
Gmn
m /#Jmn ◦Nm

n (Hm) = #H
Gmn
m /#Hn = 1 giving:

(Hm/J
m
n Hn)G

m
n 'Hn[pm−n].

Whence #Hm ≥ #Jmn Hn · #Hn[pm−n] = #Hn · #Hn[pm−n]. For m = n + 1,
one obtains #Hn+1 ≥ #Hn · prankp(Hn), then the last claim by induction. �

This result indicates that the filtration H i
L defined by:

H 0
L = 1, H 1

L := H G
L and H i+1

L /H i
L := (HL/H

i
L)G,

has length unbounded regarding N since #(H i+1
L /H i

L) ≤ #HK for all i be-
cause of the obvious injective maps giving a decreasing sequence:

H i+1
L /H i

L
1−σ−−−→H i

L/H
i−1
L , for all i ≥ 1.



THE CHEVALLEY–HERBRAND FORMULA AND THE MAIN CONJECTURE 23

Remark 8.3. For all n ∈ [1, N ] (i fixed), we have the following diagram where

the norms Nn+1/n := NKn+1/Kn defined on Hn+1 and (Hn+1)(1−σn+1)i are

surjective, but not necessarily that defined on H i
n+1:

1 −→ H i
n+1 −−−−−→ Hn+1

(1−σn+1)
i

−−−−−→ (Hn+1)(1−σn+1)
i
−→ 1y Nn+1/n

y Nn+1/n

y
1 −→ H i

n −−−−−→ Hn
(1−σn)i−−−−−→ (Hn)(1−σn)

i −→ 1 .

One has Nn+1/n(H i
n+1) ⊆H i

n . For all i ≥ 0, the integers #
(
H i+1
n /H i

n

)
define

an increasing n-sequence of divisors of #HK , thus stationary at the layer ni,
giving the stability of #

(
H i+1
n /H i

n

)
for all n ≥ ni, if ni < N (i fixed).

Thus #
(
H i+1
ni /H i

ni

)
=: pc

i

and the i-sequence pc
i

is decreasing, stationary at
a divisor pc of #HK , c ≥ 0. A stability #Hn0+1 = #Hn0

, from n0 < N , does
exist if and only if the i-sequence of layers ni stabilizes and if c = 0.

One may ask at what condition JL/K is injective, giving increasing #HKn

as we have seen; in fact in most cases there is at least partial capitulation at
some layer and, even in the simplest experiments with JK1/K the injectivity

is very rare. It is clear that it is necessary to the filtration H i
K1

to be large.
We have found, with some difficulties, the following example for cyclic cubic
fields and p = 2; most of primes ` give partial capitulation (case of ` = 113) or
stability (case of ` = 337), then the case of ` = 2129 in K1:

conductor f=1777 PK=x^3 + x^2 - 592*x + 724 CK=[4,4]

ell=113 n=1 CK=[4,4] CK1=[4,4,2,2]

algebraic norm in K1/K of the component 1 of CK1: [0,0,1,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,0,0,1]~

algebraic norm in K1/K of the component 3 of CK1: [0,0,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,0,0,0]~

Partial capitulation

ell=337 n=1 CK=[4,4] CK1=[4,4]

algebraic norm in K1/K of the component 1 of CK1: [2,0]~

algebraic norm in K1/K of the component 2 of CK1: [0,2]~

Partial capitulation, stability-->capitulation in K2

ell=2129 n=1 CK=[4,4] CK1=[16,16,2,2]

algebraic norm in K1/K of the component 1 of CK1: [8,4,0,1]~

algebraic norm in K1/K of the component 2 of CK1: [12,12,1,0]~

algebraic norm in K1/K of the component 3 of CK1: [8,8,0,0]~

algebraic norm in K1/K of the component 4 of CK1: [0,8,0,0]~

No capitulation

ell=2129 n=2 CK=[4,4] CK2=[16,16,2,2]

algebraic norm in K2/K of the component 1 of CK2: [0,8,0,0]~

algebraic norm in K2/K of the component 2 of CK2: [8,8,0,0]~

algebraic norm in K2/K of the component 3 of CK2: [0,0,0,0]~

algebraic norm in K2/K of the component 4 of CK2: [0,0,0,0]~

Partial capitulation, stability from K2

For ` = 2129, put HK1
= 〈h1, h2, h3, h4〉 where the classes h1, h2, h3, h4 are

of orders 16, 16, 2, 2, respectively; one computes easily that

νK1/K(HK1) =
〈
h8

1h
4
2h4, h

12
1 h

12
2 h3, h

8
1h

8
2, h

8
2

〉
is isomorphic to Z/4Z × Z/4Z. But we obtain the stability in K2/K1 which
implies some capitulation of HK1 in K4, but perhaps not complete since 2129 =
1+7 ·19 ·24; nevertheless JK2/K(HK) ' Z/2Z×Z/2Z, capitulates in K3 (from
the proof of Theorem 4.9). The computation in K3 seems out of reach.

8.3. Conclusion. The behavior of p-class groups in cyclic p-towers L/K (with
L ⊂ K(µ`), ` ≡ 1 (mod 2pN ) inert in K/Q), suggests that there exist infinitely
many such primes for which HK capitulates at some layer. The most interesting
fact being that if so, this implies the Main Conjecture on abelian fields in the
semi-simple case with minimal analytic arguments and almost trivial proof
from the classical context of Chevalley–Herbrand formulas.

Regarding some works about these questions of “exceptional classes” (i.e.,
non invariant), it is admitted (and proved in some circumstances) that the
filtrations defining the HKn , for n ∈ [1, N ], are random and that cases of
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unbounded filtrations are of probabilities tending to 0 with N . For instance, in
[KoPa2022, Smi2022] it is proved that p-class groups of cyclic fields of degree p
have a standard distribution, the case of length 1 (i.e., HL = H G

L ) being most
probable.

Moreover, the context of “genus theort type” in cyclic p-towers, is, in some
sense, specific and “easier” than the most deeper general one on p-class groups
in arbitrary number fields as the reader can see in the recent papers [Pier2022,
PTBW2020], among many others. But the ε-conjectures are of no help, here,

since the discriminants of the fields K(µ`) is larger than ``−2 = O(pN ·p
N

)
and the philosophy is on the contrary (as for Greenberg’s conjecture) that
HL = O(HK) for infinitely many `’s.

More generally, the phenomenon of capitulation, logically governs many
arithmetic results and conjectures of number theory, and remains essentially a
class field theory concept which deserves deepened researches.
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abéliens, Bulletin de la S. M. F. 106 (1978), 337–364. https://doi.org/10.24033/
bsmf.1876 7, 8
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483, Progr. Math. 87, Birkhäuser, Boston, MA (1990). https://doi.org/10.1007/
978-0-8176-4575-5 11 5

[KoPa2022] P. Koymans, C. Pagano, On the distribution of Cl(K)[`∞] for degree ` cyclic

fields, J. Eur. Math. Soc. 24(4) (2022), 1189–1283. https://doi.org/10.4171/
JEMS/1112 24

[KrSc1995a] J.S. Kraft, R. Schoof, Computing Iwasawa modules of real quadratic number

fields, Compositio Math. 97(1–2) (1995), 135–155. http://eudml.org/doc/90370
3

[KrSc1995b] J.S. Kraft, R. Schoof, Erratum: “Computing Iwasawa modules of real quadratic

number field” [Compositio Math. 97(1–2) (1995), 135–155], Compositio Math.

103(2) (1996), 241. http://www.numdam.org/item/CM 1996 103 2 241 0/ 3
[Kur1999] M. Kurihara, On the ideal class groups of the maximal real subfields of number

fields with all roots of unity, J. Eur. Math. Soc. 1 (1999), 35–49. https://doi.
org/10.1007/PL00011159 3

[Lan1990] S. Lang, Cyclotomic fields I and II, Graduate Texts in Mathematics 121. With

an appendix by Karl Rubin (Combined 2nd ed.), Berlin, New York, Springer–
Verlag 1990. 5, 8

[Lan2000] S. Lang, Algebraic Number Theory, Addison-Wesley Publ. Comp. 1970, cor-

rected second printing 1986; second edition: Graduate Texts in Math. 110,
Springer-Verlag 1994, corrected third printing 2000. 8
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des nombres (1996), article no. 2, 32 p. https://doi.org/10.5802/pmb.a-79 3, 7

[Mai1998] C. Maire, Une remarque sur la capitulation du groupe des classes au sens re-
streint, Publ. Math. Fac. Sci. Besançon, Algèbre et théorie des nombres (1998),
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