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Abstract. This paper concerns quantum heuristics based on Mixer Hamiltonians that allow to restrict 

investigation on a specific subspace. Mixer Hamiltonian based approaches can be included in QAOA 

algorithm and we can state that Mixer Hamiltonians are mapping functions from the set of qubit-strings to 

the set of solutions. Mixer Hamiltonian offers an approach very similar to indirect representations 

commonly used in routing or in scheduling community for decades. After the initial publication of Cheng 

et al. in 1996 (Cheng et al., 1996), numerous propositions in OR lies on 1-to- 𝑛 mapping functions, 

including the split algorithm that transform one TSP solution into a VRP solution.   

The objective is at first to give a compact and readable presentation of these Mixer Hamiltonians 

considering the functional analogies that exist between the OR community practices and the quantum field. 

Our experiments encompass numerical evaluations of circuit using the Qiskit library of IBM meeting the 

theoretical considerations. 

1. Introduction 

Quantum optimization is a new and attractive area with potential significant implication in operation 

research. Minimization problems can now be investigated using quantum metaheuristics with the promise 

of a strongly effective approach avoiding trapping into local minima that standard local search. Simulated 

Annealing based methods efficiency (commonly used in OR field) is performed by slowly reducing to 0 a 

parameter 𝑡 that permits  to follow the potential barriers. The metaheuristic methods differ by the way used 

to avoid premature convergence to local minima and to conserve a strong capacity in search space 

investigation. The sequel simulated annealing is an example of a large class of metaheuristics that 

encompasses (but are not limited to): memetic algorithms, GRASP, VNS… 

 

From a quantum mechanics point of view, quantum fluctuations are similar to thermal fluctuation. Quantum 

mechanics differ from classical approaches considering that waves can tunnel through potential barriers 

(energy) (Martoòák et al., 2004). In the last few years several quantum metaheuristics have been introduced 

coming from the quantum physic community, defining a family of quantum approximate algorithms that 

encompasses for example the sequel Adiabatic based Algorithms that provides an approximate solution of 

the Schrödinger equation. 

 

Lately (Farhi et al., 2014) have introduced a new class of algorithms based on alternation between two 

families of operators referred to as Hamiltonian and mixing Hamiltonian leading to Quantum Approximate 
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 2 

Optimization Algorithms referred to as QAOA. Such algorithms are hybrid algorithms where the search 

space investigation is devoted to a classical computer to optimize a set of parameters and the distribution 

of probabilities evaluation is achieved by a quantum device. This algorithm that does no support local 

search consideration and that provides a full search space investigation, has been extended in the famed 

publication of (Farhi and Harrow, 2019). They defined new ansatz that support the exploration of the 

feasible subspace only, meaning that hard constraints are satisfied by definition. This approach is very 

similar to classical approaches of the OR community since the exploration of the feasible subspace is 

achieved by a careful definition of classical operation including for example permutation of qubit into the 

qubit-string used to model solutions; 

 

2. QAOA based approach 

 

Quantum Approximate Optimization Algorithms (Farhi et al, 2014) take advantage of alternations 

between the cost function investigation which is modeled by a Hamiltonian 𝐻𝑃 from one side and a driver 

Hamiltonian operator 𝐻𝐷. The Quantum Alternating Operator Ansatz (Hadfield et al, 2018) takes into 

consideration a general parameterized family of unitary operators to efficiently modelize the Hamiltonian. 

This algorithm supports a restricted number of states and create an efficient alternative to the Adiabatic 

Optimization 

 

2.1. QAOA Principles 

 

QAOA based approaches can be seen as metaheuristic-based methods taking advantages of time-

discretization of adiabatic computing. It is a hybrid algorithm because it combines: 

 a Quantum parametrized circuit executed on a quantum machine,  

 a Classical meta-optimization loop executed on a classical machine. 

As introduced by (Schrödinger, 1926)  the wave function evolution of a quantum-mechanical system is 

given by  
𝜕.

𝜕𝑡
|𝜓(𝑥, 𝑡)⟩ = −

𝑖

ℏ
. 𝐻(𝑡). |𝜓(𝑥, 𝑡)⟩ 

where the energy is defined by 𝐻(𝑡), ℏ is derived from Plank constant and |𝜓(𝑥, 𝑡)⟩ are states vectors. If 

𝐻 is time independent the solution is |𝜓𝑡⟩ = 𝑒
−
𝑖

ℏ
.𝑡.𝐻. |𝜓0⟩. Note that the solution is |𝜓𝑇⟩ =

𝑒−
𝑖

ℏ
.∫ 𝐻(𝑢)
𝑇
𝑜

.𝑑𝑢. |𝜓0⟩ in the general time dependent situation. Describing a problem with a Hamiltonian 𝐻 and 

an initial state |𝜓0⟩ allows to compute the ground state. 

 

A specific resolution can be achieved considering an iterative approximation of the Schrödinger solution 

taking advantages of a very specific 𝐻 Hamiltonian (based on  𝑍𝑖, 𝑍𝑖𝑍𝑗 operators).  In Adiabatic Quantum 

Optimization, the system must be tuned in a ground state of one Hamiltonian 𝐻𝐷 commonly referred to as 

the "driver Hamiltonian" where this Hamiltonian should not commute with the Hamiltonian that model the 

combinatorial problem. It requires to slowly tuned from 𝐻𝐷 to 𝐻𝑃 using an interpolation based on one 

parameter 𝑠(𝑡) assumed to smoothly decrease from 1 to 0: 𝐻(𝑡) = 𝑠(𝑡). 𝐻𝐷 + [1 − 𝑠(𝑡)]. 𝐻𝑃 (Farih et al., 

2000). 

 

Adiabatic quantum optimization and all quantum optimization based annealing approaches are limited 

to small-scale instances due to the slow evolution that is required from 𝐻𝐷 to 𝐻𝑃. In 2014 (Farih et al., 

2014) have introduced a new trend of approaches referred to as quantum heuristics leading to a more 

https://en.wikipedia.org/wiki/Wave_function
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compact decomposition scheme denoted Quantum Approximate Optimization Algorithm (QAOA). QAOA 

received a considerable amount of attention including but not limited to (Farih and Harrow, 2019), (Yang 

and al., 2017), (Jiang et al., 2017), (Wecker et al., 2016) and (Wang et al., 2018). 

 

Lately (Farhi and Harrow, 2019) prove that the output distribution obtained at the end of one QAOA 

algorithm cannot be efficiently approximated using one classical algorithm because of the undue 

complexity of the required algorithms. Over the past few years QAOA has attracted attention to many 

researchers, because it seems to be one candidate for demonstration of quantum  supremacy as stressed by 

(Farhi and Harrow, 2019). A quantum supremacy demonstration consists in defining one circuit with results 

requiring an exponential number of operations into a classical algorithm.  

 

2.2. Modelling function to Hamiltonian 

 

QAOA seeks to solve a hard optimization problem i.e. minimizing or maximizing one objective function 

𝑓(𝑥) that is assumed to act on 𝑛 − 𝑏𝑖𝑡𝑠 strings 𝑥. QAOA is based on 𝑝 consecutive iterations of one 

Hamiltonian 𝐻𝑃 cumulated with a driver Hamiltonian 𝐻𝐷, where this weighted sum of Hamiltonian terms 

varies in time. The Hamiltonian 𝐻 maps the function 𝑓 with 2𝑛 eigenvalues that model the 2𝑛 values of 𝑓. 

The optimal solution (i.e. the extremal value of 𝑓) is an eigenvalue of 𝐻 and 𝐻 is satisfying: 

𝐻. |x⟩ = 𝑓(𝑥)|x⟩ 

Because a Hamiltonian is a Hermitian operator it has a spectral decomposition: 𝐻 = ∑ 𝑒𝑖𝑖 |𝑒𝑖⟩⟨𝑒𝑖| where 

|𝑒𝑖⟩ is the 𝑖𝑡ℎ basis vector. 

 

The Hamiltonian is defined with Pauli operator-basis and takes advantages of the Pauli 𝑍 leading to 

expression 

𝐻 = 𝛼0. 𝐼 + 𝛼1. 𝑍0. 𝑍1 + 𝛼2. 𝑍0. 𝑍2… 

where 𝛼𝑖 are real numbers. 

 

Note that Hadfield in 2021 (Hadfield, 2021) gives a concise description of rules for composing 

Hamiltonians representing clauses that model clauses or functions including Boolean formulas. A 

Hamiltonian is implemented into a quantum circuit by deriving 𝑈𝐻(𝑡) = 𝑒
−𝑖.𝐻.𝑡 with 𝑡 ∈ [0; 2𝜋] and using 

both CNOT and Z-rotations. 𝑡 refers to the weight in the iterative search process of QAOA. 

 

2.3. Search space investigation 

The 𝛽 and �⃗� weights parametrized a quantum state |𝜑(𝛽, �⃗� )⟩ that defines a solution 𝑦 with probability 

|⟨𝑦||𝜑(𝛽, �⃗�) ⟩|
2
 and an expectation value ⟨𝜑(𝛽, �⃗�)|𝐻|𝜑(𝛽, �⃗�) ⟩ estimated by sampling. This value estimate 

the average cost of the problem P : 𝐶𝑝 (�⃗⃗⃗�⃗⃗ ⃗, �⃗⃗⃗�⃗⃗ ⃗). The overall algorithm description is illustrated in Figure 1. 

 

Hamiltonian definition

1) Define p the number if 
iterations between the 

Hamiltonian and the mixer
2) Define the initial weight

Compute                       that 
leading  to the best 

estimated expectation 
value

 

Sampling 

One 
problem

One solution
itérations

 
Fig. 1. QAOA principles 

 



 4 

We encompass that QAOA efficiency strongly relies on some key-points (figure 2):  

 providing a good ratio between the estimation of quality of 𝐶𝑝 (�⃗⃗⃗�⃗⃗ ⃗, �⃗⃗⃗�⃗⃗ ⃗) versus the number of shots is 

required and must be tuned carefully. 

 The last computed distribution |𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩ must be collected on a subset of solutions strongly smaller 

than the total number of solutions to avoid a costly inefficient enumerations i.e. the algorithm has 

converged to the optimal solutions and quasi solutions. 

 

In the following Figure 2 we illustrate two separated search spaces computed in a hybrid way on two 

separated machines (one classical, one quantum computer).  

 

First, we have to compute analytically a Hamiltonian 𝐻 with 2 angles (�⃗⃗⃗�⃗⃗ ⃗, �⃗⃗⃗�⃗⃗ ⃗). Second, we should be 

capable to convert this as a circuit. Finally we have to estimate by sampling the expected value  

𝐶𝑝 (�⃗⃗⃗�⃗⃗ ⃗, �⃗⃗⃗�⃗⃗ ⃗). This give information to investigate new value parameter to compute a new Hamiltonian. 

The success of QAOA relies on the algorithm capacity to find a good set of 2. 𝑝 parameters and by 

consequence an efficient search strategy is required in this variational phase. 

 

Circuit definition Set of quantum circuits

Sampled expectated value Set of Hamiltoniens 
investigated during the 

search process

Circuit definition

Circuit definition
sampling

sampling

sampling

Quantum processor

 
Fig. 2. Links between the weighted Hamiltonian and the expected cost. 

3. Mixer Hamiltonian with QAOA 

A wide majority of Operational Research problems can be defined to both minimization of one objective 

function and satisfaction of problem dependent constraints. Resolution approaches are based on exact 

methods, heuristics or metaheuristics depending on the problem and the computation time available to 

provide a solution. For a practical point of view, heuristics and metaheuristics are commonly used in 

resolution of large instances and they address the following key-points during the search space 

investigation:  

 generation of good initial solutions by powerful constructive heuristics dedicated to the problem; 

 application of a local search to solutions to find local minima and by consequence favoring convergence; 
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 diversification mechanisms to avoid premature convergence and search space trap; 

 Indirect representation of solutions to relax constraints and alternate between several search spaces. 

 

In the next section, we will focus on representations of solutions. 

 

3.1. Mapping function in O.R. field 

 

Quantum annealing optimization principles (QA) consists into a smooth decreases of quantum fluctuations 

to traverse barriers in the energy landscapes investigating the global minima of the function. 

 

Quantum annealers are limited in resolution of optimization problems by the Hamiltonian circuit size and 

specifically by constraints included in the objective function using penalty terms. Driven Hamiltonian based 

approaches are designed to avoid this penalty term and the all-to-all connectivity and to defined new 

Hamiltonian that commutes with the constraints.  

 

Mixer Hamiltonians are tuned to favor investigation of operational researches where the feasible subspace 

is strongly lower that the full space (set of 𝑛-bit strings used for 𝐻) using a mapping from initial states to 

final solutions. Investigating only feasible subspace has received attention to the Operation Research (O.R.) 

community for decades and such approaches have been successful in several research areas leading to very 

efficient metaheuristics. 

 

In Job-Shop Scheduling a common indirect representation is based on the Bierwith vector (Bierwith, 1996) 

that can be transform (in 𝑂(𝑛)) into one oriented disjunctive graph that model one solution of the job-shop. 

We can also cite scheduling problems based on disjunctive graph, the local search approaches take 

advantages of the longest path (see the block definition of Grabowski for example) (Grabowski et al., 1986). 

In flow based scheduling problems (RCPSP for example) the local search is based on the cut (Artigues et 

al., 2003), and in routing problems based on the geometry of solutions. The diversification mechanisms are 

metaheuristic dependent, for example they are based on the temperature for the simulated annealing (SA) 

or mutation in memetic algorithms (MA) (Moscato, 1999), and permits to accept transitions from one 

solution to worst solutions with a non-zero probability to cross the barriers in the objective function 

landscape. 

 

In VRP a well-known representation is the giant trip that can be transformed into one VRP solution using 

the Split Algorithm (Lacomme et al., 2001). The Split algorithm defines a mapping from the set of giant 

trip of a TSP (Traveling Salesman Problem) to solutions of the VRP and the metaheuristic based approaches 

manipulate efficiently the set of giant trips only.  

Cheng et al. in 1996 (Cheng et al., 1996) are the very first who made a full analysis of non-string coding 

approach and decoding mechanisms in the global context of constraint optimization.  

 

Their remarks encompass both scheduling and routing by emphasizing the principle of a mapping 

perspective from the problem constraint in order to have indirect representation that generate either an 

initial phase and evolutionary process production of feasible solution only.  

 

The split algorithms (see (Prins et al., 2014)) are one classical approach in routing by transforming a giant 

trip of the TSP into (for example) a solution of the VRP. 

 

In this context most order-first/split-second methods generate in a first phase an indirect solution 

representation, referred to as giant tour or task ordering. Feasible routes are deduced from this indirect 
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representation in a second phase. This approach offers the following advantages: (i) any solution of the 

routing problem has an indirect string representation (ISR); (ii) using a splitting procedure, each ISR can 

be decoded into a solution to the original problem, and this splitting can be made optimally and (iii) there 

exists at least one "optimal" ISR, i.e., one that gives an optimal solution to the original problem after 

splitting. It has been proved by (Prins, 2004) that the local search operator must be defined both in 

modification of a VRP solution including basic moves (2-OPT, insert….) and also moves applied to the 

giant trip. The global performance of the local search is based on alternation between the two spaces.  

 

The Mixer Hamiltonians are on the same trend of research considering that a careful definition of the 

mapping function, should permit to transform one qubit-strings into one solution to favor exploration of the 

"feasible" search space only. Contrary to the OR classical field, the explicit local search dynamic is 

embedded by the Mixer Hamiltonien. 

 

3.2. Mixer Hamiltonian: Mapping function to feasible solutions 

 

A wide and important class of optimization problems seeks to minimize an objective function 𝑓: 𝐹 → ℝ to 

be optimized under a set of constraints. 

𝑓(𝑥) =∑ 𝑐𝑖. 𝑥𝑖
𝑛

𝑖=1
 

∀𝑗 = 1. .𝑚 𝑔𝑗(𝑥) ≥ 𝑏𝑗 

Despite the fact that it is possible to create a QAOA circuit for an objective function of order higher that 

quadratic, and for a large majority of classical O.R. quadratic expressions can be used: 

𝑓(𝑥) =∑ 𝑐𝑖. 𝑥𝑖
𝑛

𝑖=1
+∑ 𝐴𝑗

𝑚

𝑗=1
. (𝑏𝑗 − 𝑔𝑗(𝑥))

2

 

 

Using a classical Hamiltonian construction, an initial state |𝑠⟩ = | + ⟩⨂𝑛 gives an initial Hamiltonian 

decomposition composed only of 𝐼 and 𝑋 Pauli gates applied to 𝐻 to |0⟩⨂𝑛 leading to one uniform 

distribution over the 2𝑛 values of 𝑓. 

 

The major drawback of the classical Hamiltonian formulation concerns the weighted quadratic terms in the 

objective function meaning that the search space investigation is not limited to "feasible" solutions but also 

encompasses 𝑥𝑖 assignments where the constraints do not hold. The second drawback concerns theweighted 

parameters 𝐴𝑗 that must be large enough to favor convergence to the feasible solution set, but must permit 

to avoid to be trapped into local minima. 

 

 The Mixer Hamiltonians extend the initial proposal of (Hen and Spedalieri, 2016) in the adiabatic context 

where they identify the 𝐻𝑗𝑘 = 𝑋𝑗. 𝑋𝑘 + 𝑌𝑗 . 𝑌𝑘 permitting to restrict the state evolution to feasible subspace 

for some problems. Note that 𝐻𝑗𝑘 and 𝐻𝑖𝑘 do not commute in general and that trotterization is required 

using the Masuo's proposition (Suzuki, 1976). A more compact and readable demonstration has been 

introduced lately by Barthel et Zhang in 2019 (Barthel and Zhang, 2019) and it concludes by the following 

proposition. 

 

Proposition. 𝑙𝑖𝑚
𝑛→∞

(𝑒𝑖.𝐴.𝑡/𝑛. 𝑒𝑖.𝐵.𝑡/𝑛)
𝑛
= 𝑒𝑖.(𝐴+𝐵).𝑡 

And as a consequence 𝑒𝑖.(𝐴+𝐵).𝑡 ≈ 𝑒𝑖.(𝐴).𝑡. 𝑒𝑖.(𝐵).𝑡 
where 𝐴 and 𝐵 are matrices. 
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Defining one Mixer Hamiltonian consists in including restriction in search space investigation in the mixing 

operator, is supposed to reduce the efficiency required in terms of gates and avoiding inclusion of extra 

weighted terms in the objective. 

 

3.3. XY-Hamiltonian analysis 

 

The 𝑋𝑌-Hamiltonian  

𝐻(𝛾) =∑[(1 + 𝛾). 𝑋𝑖. 𝑋𝑖+1 + (1 − 𝛾). 𝑌𝑖. 𝑌𝑖+1]

𝑖=𝑁

𝑖=1

  

can be expressed as a quadratic form in creation and annihilation operators and can be diagonalized to full 

describe the complete set of states, excitation energies. 

 

It is very similar to the generalized Heisenberg model described by the Hamiltonian:  

𝐻(𝛾) =∑[(1 + 𝛾). 𝑋𝑖. 𝑋𝑖+1 + (1 − 𝛾). 𝑌𝑖. 𝑌𝑖+1 + (1 − 𝛾). 𝑍𝑖 . 𝑍𝑖+1]

𝑖=𝑁

𝑖=1

  

 

Note that when 𝛾 → 1, this Hamiltonian tends to the Ising model where the 𝑥-componants are fully ordered. 

The transverse terms (i.e. 𝑌𝑖 . 𝑌𝑖+1 and 𝑍𝑖 . 𝑍𝑖+1) consist in favoring the ordered of both 𝑦-components and 𝑧-
components. A complete description of this operator has been introduced in antiferromagnetic chain by 

(Lieb and al., 1961). 

 

Qudit operators and basic principles 

 

Let us denote |𝜑⟩ = |𝜑1𝜑2𝜑3⟩ a qubit composed of 3 qubits |𝜑1⟩ = (
𝑎
𝑏
), |𝜑2⟩ = (

𝑐
𝑑
), |𝜑3⟩ = (

𝑒
𝑓). The 

operator 𝑋1𝑋2 + 𝑌1𝑌2 is the application of operator 𝑋1 + 𝑌1 to qubit 1 and 𝑋2 + 𝑌2 to qubit 2. 

 

𝑋 + 𝑌 can be rewritten:  

1

√2
(𝑋 + 𝑌) =

1

√2
[(
0 1
1 0

) + (
0 −𝑖
+𝑖 0

)] =

(

 
 

0
1

√2
(1 − 𝑖)

1

√2
(1 + 𝑖) 0

)

 
 

 

For our qudit |𝜑⟩ =

(

  
 

𝑎
𝑏
𝑐
𝑑
𝑒
𝑓)

  
 

, the operator 𝑋1𝑋2 + 𝑌1𝑌2 transforms |𝜑⟩ into a new state 
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(

 
 
 
 
 
 
 
 

1

√2
(1 − 𝑖). 𝑏

1

√2
(1 + 𝑖). 𝑎

1

√2
(1 − 𝑖). 𝑑

1

√2
(1 + 𝑖). 𝑐

𝑒
𝑓 )

 
 
 
 
 
 
 
 

 

If we apply the operator 𝑋2𝑋3 + 𝑌2𝑌3, |𝜑⟩ is now 

(

 
 
 
 
 
 
 
 

1

√2
(1 − 𝑖). 𝑏

1

√2
(1 + 𝑖). 𝑎

𝑐
𝑑

1

√2
(1 − 𝑖). 𝑓

1

√2
(1 + 𝑖). 𝑒

)

 
 
 
 
 
 
 
 

 

If we successively apply 𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 to a basis qubit, this will allow to superpose the current state with 

a new one where the 1 value is successively switched to the next position in the qubit. 

 

To implement this operator, we will manipulate: 

𝑒−𝑖.𝑡.𝛾.𝑋1.𝑋2 = cos(𝑡. 𝛾) . 𝐼𝑑 − 𝑖. sin(𝑡. 𝛾) . 𝑋1. 𝑋2 

𝑒−𝑖.𝑡.𝛾.𝑋1.𝑋2 = cos(𝑡. 𝛾) . (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) − 𝑖. sin(𝑡. 𝛾) . (

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

) 

𝑒−𝑖.𝑡.𝛾.𝑋1.𝑋2 = (

cos(𝑡. 𝛾) 0 0 −𝑖. sin(𝑡. 𝛾)

0 cos(𝑡. 𝛾) −𝑖. sin(𝑡. 𝛾) 0

0 −𝑖. sin(𝑡. 𝛾) cos(𝑡. 𝛾) 0

−𝑖. sin(𝑡. 𝛾) 0 0 cos(𝑡. 𝛾)

) 

 

This is easily converted to the following tensor product, using quantum gates CNOT (CXij), Hadamard (H) 

and Rotation on 𝑋 or on 𝑍 axis: 

𝐻⊗𝐻. 𝐶𝑋1,2. 𝑅𝑍
2(𝑡. 2. 𝛾). 𝐶𝑋1,2. 𝐻 ⊗ 𝐻 for 𝑋1𝑋2 and 

𝑅𝑋
1 (

𝜋

2
)⊗ 𝑅𝑋

2 (
𝜋

2
) . 𝐶𝑋1,2. 𝑅𝑍

2(𝑡. 2. 𝛾). 𝐶𝑋1,2. 𝑅𝑋
1 (−

𝜋

2
)⊗ 𝑅𝑋

2 (−
𝜋

2
) for 𝑌1𝑌2. 

4. Graph coloring and max k-coloring 

 

4.1 Definition 

Coloring problem want to find the minimum value of the chromatic number 𝜒(𝐺) where there exists a 𝜒(𝐺)  
coloring for a graph 𝐺. More formally, for a graph 𝐺(𝑉, 𝐸), a proper coloring 𝜑: 𝑉(𝐺) ⟶ 𝐶 exists with 
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𝜑(𝑖) ≠ 𝜑(𝑗) if (𝑖, 𝑗) ∈ 𝐸(𝐺). If there exists (𝑖, 𝑗) ∈ 𝐸(𝐺), with 𝜑(𝑖) = 𝜑(𝑗), then 𝜑 is an improper coloring 

of 𝐺. Figure 3 gives a proper coloring solution for a 5 nodes graph. 

 

1 2 3

4 5

Color 1

Color 1Color 2

Color 4 Color 3

 
Fig. 3. Example of proper coloring 

 

The graph coloring is the corner stone of many OR problems including the timetabling, scheduling and it 

has received a considerable amount of attention for its utility. 

The classical formulation relies on binary variables with 𝑥𝑖𝑘 = 1 if the color 𝑘 is assigned to node 𝑖. With 

such a representation, the solution of figure 5 can be modelized by the following bit-string 

1000 − 0100 − 1000 − 0001 − 0010 
 Each group of 4 digits is a Dirac representation of the color number k, each 5 group of digits represent a 

vertex. Here 𝑐1. = 1000, 𝑐2. = 0100, 𝑐3. = 1000, 𝑐4. = 0001 and 𝑐5. = 0010. 

 

The objective of a max K-coloring dealing with proper and improper colorings is to maximize the number 

of adjacent nodes having different color between 1 to K 

𝑀𝑎𝑥 ∑ ∑(𝑥𝑖𝑘 ≠ 𝑥𝑖𝑘)

𝐾

𝑘=1

𝑛

(𝑖,𝑗)∈𝐸

 

Such that 

C1. ∀𝑖 = 1. . 𝑛,∑𝑥𝑖𝑘

𝐾

𝑘=1

= 1 

The problem can be rewritten into a minimization of a quadratic formulation by considering:  

 𝑆𝑘 = ∑ 𝑥𝑖𝑘.
𝑛
(𝑖,𝑗)∈𝐸 𝑥𝑗𝑘 as the number of adjacent nodes with the same color 

 the weighted penalized term, 𝐴.∑ (1 − ∑ 𝑥𝑖𝑘
𝐾
𝑘=1 )2𝑛

𝑖=1  

 

 

𝑆𝑘 = ∑ 𝑥𝑖𝑘.

𝑛

(𝑖,𝑗)∈𝐸

𝑥𝑗𝑘 = 0 

 

Quadratic formulation: 

𝑀𝑖𝑛∑ ∑ 𝑥𝑖𝑘.

𝑛

(𝑖,𝑗)∈𝐸

𝑥𝑗𝑘

𝐾

𝑘=1

+ 𝐴.∑(1 −∑𝑥𝑖𝑘

𝐾

𝑘=1

)

2𝑛

𝑖=1
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4.2. Hamiltonian definition 

 

The mapping to the binary variables is obtained considering 𝐻 =
1

2
𝐼𝑑 −

1

2
𝑍 which has two eigenvalues 0 

and 1 that model |0⟩ and 𝐻 =
1

2
𝐼𝑑 +

1

2
𝑍 which has the eigenvalue 1 and 0, that model |1⟩. Reformulation 

of the function of our coloring problem with 𝑍𝑗 variables leads to:  

 

𝐻𝑃 =∑ ∑
1

4
(𝐼𝑑 − 𝑍𝑗𝑘 − 𝑍𝑖𝑘 + 𝑍𝑖𝑘. 𝑍𝑗𝑘)

𝑛

(𝑖,𝑗)∈𝐸

𝐾

𝑘=1

+ 𝐴.∑(1 −∑
1

2
(𝐼𝑑 − 𝑍𝑖𝑘)

𝐾

𝑘=1

)

2𝑛

𝑖=1

 

 

The driver operator 

𝐻𝐷 = −∑∑𝑋𝑖𝑘

𝐾

𝑘=1

𝑛

𝑖=1

 

is applied to |𝜓0⟩ =  𝐻. |0⟩
⨂𝑛 to define the initial fundamental ground state. 

 

The qubits-string encoding a solution is 𝑛 × 𝐾 qubit long and the Hamiltonian mapping function encodes 

a total search space of 2𝑛×𝐾 colorings of 𝐺 that encompasses both proper and improper colorings. For an 

operational research point of view, the mapping function is not an indirect coding function and it is strongly 

different than the Split procedure of the VRP or than the efficient Bierwith vector encoding for the Job-

Shop. 

 

The previous remarks push us to consider that the Driven Hamiltonian must have afforded restrictions of 

exploration to coloring with only one color per node, so that the promise to only switch over coloring that 

satisfies the constraint C1, enabling us to control which qubit-strings must be iteratively investigated. 

 

4.2. A Mixer Hamiltonian definition 

 

The mixing operator  

𝐻𝐷 = −∑∑(𝑋𝑖𝑗𝑋𝑖𝑗+1 + 𝑌𝑖𝑗𝑌𝑖𝑗+1)

𝐾

𝑗=1

𝑛

𝑖=1

 

permits to have Driven Hamiltonian that is a 1-to-1 mapping function i.e. an operator that maps one qubit-

string on the desired subspace where the C1 constraint holds (figure 4). 

Qudit-strings

proper coloring

Coloring with one 
color per node

Assignements of color 
to node

Driven Hamiltonian

 
Fig. 4. Example of proper coloring 
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The next sections are dedicated to numerical experiments achieved on the simulator provided by IBM using 

the Qiskit library. The objective is to evaluate and to illustrate the efficiency for a Mixer Hamiltonian on 

few instances of graph coloring. 

 

5. Experimental validation  

 

With the following widget examples, the goal is to illustrate the bonus achieve by a Mixer Hamiltonian but 

it is not a performance analysis of quantum v.s. classical optimization since only tiny examples are tractable 

on quantum simulator. Of course, any classical metaheuristic will overfit the QAOA results. In a near future, 

if scaling in the number of (denoised) qubits and long enough coherent qubits time occurs, this evaluation 

will give insight on the way to model efficiency combinatorial optimization problems. 

 

5.1. Numerical experiments with QAOA with 5 nodes / 6 edges and 4 colors 

First experiment is achieved on the graph of figure 5 with the following set of parameters:  

 𝑝 = 3 (iterations of Hamiltonian and mixer Hamiltonian); 

 𝐴 = 100 is the weight assigned to the quadratic term in the objective function (it can be lower by this 

value improve the readability of the numeric solutions) ;  

 𝛽0⃗⃗⃗⃗⃗ = (0.0, … 0.0) and 𝛾0⃗⃗ ⃗⃗ = (0.0,… 0.0) ; 
 Cobyla is the iterative numerical method used to minimize the estimated expectation value with 500 

iterations; 

 100 samplings are used to estimate 𝐶𝑝 (�⃗⃗⃗�⃗⃗ ⃗, �⃗⃗⃗�⃗⃗ ⃗) at step 𝑖; 

 100 samplings of |𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩ are achieved at the end of QAOA to compute |𝑠∗⟩. 
 

Results are display in table 1. A very low number of samplings at the end of the QAOA algorithm collects 

subset of solutions strongly smaller than the total number of solutions and avoid a costly inefficient total 

enumeration. The very small value 100 used permits to have the optimal solution and 100 samplings of 

|𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩ samplings is sufficient in this very specific run. Note that with very low number of samplings 

significant differences could appear in the estimation of the distribution and that the optimal solution could 

not appear. 

 
Table 1 

One possible run  with 𝐴 = 100 and 100 samplings of |𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩ 

Solution cost Probability 
0 1 

101 1 
102 3 
103 3 
201 7 
202 4 
203 4 
204 1 
300 1 
301 1 
… … 

 



 12 

The overall trend of the probability distribution can be estimated with larger number of samplings and 

conclusively push into considering that the emphasis of probabilities has a global trend to the improve 

probability of solutions where the constraint C1 holds. Note that it pushes us into considering that QAOA 

has aggregated probability on solutions closed to the optimal ones. The experiment of figure 7 has been 

achieved with same parameters and 1000 samplings of |𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩  
 

 

Table 2 

Sampling of |𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩ with 1000 sampling before and after QAOA process 

Solution 

cost 
Probability at the 

end of QAOA 

Cumulative 

probabilities 

at the end of 

QAOA 

Probability 

at the 

beginning of 

QAOA 

Cumulative 

probabilities 

at the end of 

QAOA 

0 0.2 0.0 0.0 0.0 
1 0.3 0.5 0.1 0.1 
2 0.1 0.6 0.0 0.1 

100 0.3 0.9 0.0 0.1 
101 1.6 2.5 0.0 0.1 
102 1.3 3.8 0.2 0.3 
103 0.9 4.7 0.0 0.3 
104 0.2 4.9 0.0 0.3 
106 0.1 5 0.0 0.3 
200 1.3 6.3 0.3 0.6 
… …    

 

To identify the combinatoric problems more closely and the consequence with the objective to propose the 

adequate solutions, we may consider a graph 𝐺 with 5 nodes and 4 colors for which the total number of 

qubit-strings is 220 = 1 048 576. For one node, there is only 4 assignments of exactly one color, over the 

24 = 16 possible assignments. The probability to have one color only assigned to each node is about 

(
4

16
)
5

= 0.00098 𝑖. 𝑒. 0.098%.  

Uniform distribution

After QAOA

%

 
Fig. 5. Distribution of Cost Function values 
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A careful analysis of the table 2 shows that about 0.6% of the distribution is aggregated to proper or 

improper solution without penalty cost (> 100) that is about 60 times bigger than the previous value 

0.098% which is the value of a uniform state distribution. 

The fact that the optimal solutions (solutions with cost 0) have a lowest probability than solutions with cost 

1 or 2, is basically linked to the limited number of optimal solutions.  

 

The representation of figure 6 shows how the probabilities of each cost vary between the uniform 

distribution (in red) used at the beginning of QAOA and the distribution found at the end of QAOA (blue). 

Higher probabilities are assigned to lower costs at the end of QAOA and lower probabilities are assigned 

to higher cost proving that QAOA has be successful in controlling the distribution over iterations to high 

quality states. 

 

The modifications of the distribution shapes of figure 5 can be analyzed considering the ratio between the 

previous curves (after/before) display in figure 6. This ratio is higher on small cost (that are related to high 

quality solutions) that reassures that the theoretical based affirmation of QAOA promises meet our 

experiments. 

 

 
Fig. 6. Overall deformation of probabilities 

 

 

5.2. Numerical experiments with 8 nodes graph 

 

We consider a graph with 8 nodes and 11 arcs introduced in figure 7. The qubit-string space grows to 

4 294 967 296 with 4 colors since length are 32 qubits long (maximum size available on the IBM Qiskit 

simulator). Note that the qubit-strings search space is much larger than the number of graph coloring 

solutions which does not exceed 48 = 65 536 for the 8 nodes/4 colors instances (0.0015% of the qubit 

string search space).  

 

To put it in more concrete terms, there exists a probability of 0.0015% to have a qubit-string in the form 

1000 0100 …0001 0010 where only one color is assigned to each node. With 8 colors the qubit-string space 

is about 167 777 216 strings and the quantum circuit requires only 24 qubits. The number of graph coloring 

solutions is 38 = 6 561 for the 8 nodes/3 colors i.e. 0.00391% of the qubit-string search space.  
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1 2 3

4 5

6 7 8
 

Fig. 7. A graph with 8 nodes, 11 edges to color with 4 colors 

 

For the problem with 3 colors, the following set of parameters has been used:  

 𝑝 = 3 (iterations of Hamiltonian and mixer Hamiltonian); 

 𝐴 = 100 is the weight assigned to the quadratic term in the objective function;  

 Cobyla is the iterative numerical method used to minimize the estimated expectation value with 500 

iterations; 

 100 samplings is used to estimate 𝐶𝑝(𝛽i⃗⃗ ⃗⃗ , 𝛾i⃗⃗⃗⃗ ) at step 𝑖; 

 1000 samplings of |𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩ are achieved at the end of QAOA to compute |𝑠∗⟩ 

 

Table 3 

One possible sampling |𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩ with 8 nodes, 11 edges. 

Solution cost 
Probability 

3 colors 
Probability 

4 colors 

0 0.0 0.0 
1 0.0 0.0 
2 0.3 0.0 
3 0.0 0.0 
4 0.1 0.0 
5 0.1 0.0 
6 0.0 0.0 
7 0.0 0.0 
8 0.0 0.0 
9 0.0 0.0 

101 0.2 0.0 
102 0.3 0.1 
103 0.3 0.1 
104 0.7 0.0 
105 0.9 0.0 
… …  
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We can note in table 3 that the very low value of 𝑝 and the small number of samplings affect the QAOA 

capacity in aggregating the distribution on the optimal and quasi-optimal solutions when the problem scale 

increases. 

 

Resolution of the graph coloring problem with the 8-nodes graph and 4 colors has a modelization based on 

32 qubits which is the larger circuit that can be simulated on the IBM Qiskit simulator. The huge memory 

consumption in the exponentiation of the operators leads to a large time consuming simulation. One hour 

has been experienced for the 4 colors instance, on an Intel(R) Xeon(R) at 3.40GHz with 128GO of memory. 

 

4.4. Numerical experiments of the "Driven Hamiltonian": 5 nodes graph 

 

The previous remarks push us into considering that the Driven Hamiltonian should afforded restrictions of 

exploration to coloring with one color only per node, so that the promise to switch over coloring only that 

satisfy the constraint C1, enabling us to control which qubit-strings have to be iteratively investigated. 

 

QAOA based on the Driven Hamiltonian has been used with the same set of parameters of section 4.2 and 

the results of table 4 show that 100% of the distribution is now aggregated on the solution space with one 

color per node meeting the theoretical considerations. The comparison of QAOA with a Mixer Hamiltonian 

and a classical Hamiltonian proves the competitive advantages of the Mixer Hamiltonian v.s. the classical 

one and establishes a numerical validation of the theoretical considerations on the mapping functions. 

 

Table 4 

Sampling of sampling of |𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩ with the two Hamiltonians 

Solution cost 

Probabilities with the  

classical mixer operator 
𝒑 = 𝟑 

 

Mixer Hamiltonian 

𝒑 = 𝟑 

0 0.2 4.8 
1 0.3 26.9 
2 0.1 34.6 
3 0.0 22.6 
4 0.0 6.8 
5 0.0 2.8 
6 0.0 1.4 

100 0.3 0.0 
101 1.6 0.0 
102 1.3 0.0 
103 0.9 0.0 
104 0.2 0.0 
106 0.1 0.0 
… … … 

 

 

Driven Hamiltonian performances meet the classical well know results in Operation Research community 

where significant improvements in results have been obtained by both dedicated local search that restrict 

neighborhood to feasible solutions and by metaheuristic based approaches where the search space 

investigation is driven by specific information on the solution characteristics.  
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For example, the split algorithm uses such a trick by transforming one giant trip into a VRP solution 

allowing next definition of specific moves in the neighbors. Note that the Bierwith's vector (Bierwith, 1996) 

for the shop-shop is the corner store of the best ever published methods because it permits to investigate 

only the set of acyclic disjunctive graphs that model solution only avoiding exploration of all disjunctive 

graph. The best ever published method on the Job-Shop (Nowicki and Smutnicki 1996) takes advantages 

of this kind of exploration. 

 

The differences between both distributions is strongly significant considering that the probability of a 

solution of cost 0 is 20 times higher with the Driven Hamiltonian (table 5). 

  

The differences between the two distributions that are apparent in table 4 illustrate that the Mixer 

Hamiltonian has a substantial advantage by providing a strongly better aggregation on the optimal and 

quasi-optimal solutions as highlighted on figure 8. 

 

%

 
Fig. 8. Comparison of the two probabilities distribution with 𝑝 = 3 for both Hamiltonians 

 

The Driven Hamiltonian offers competitive advantages since it possible to use lower value of 𝑝 as stressed 

in table 5.  

 

Table 5 

Sampling of sampling of |𝜓(𝛽∗⃗⃗⃗⃗⃗, 𝛾∗⃗⃗⃗⃗⃗)⟩ with the two Hamiltonians 

Solution cost 

Probabilities with the  

classical mixer operator 
𝒑 = 𝟑 

Probabilities with the  

Driven Hamiltonian 

𝒑 = 𝟐 
0 4.8 3.2 
1 26.9 26.7 
2 34.6 37.1 
3 22.6 21.8 
4 6.8 5.4 
5 2.8 3.0 
6 1.4 2.6 
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The global trend of probabilities remains very similar to the trend obtained with 𝑝 = 3 and there is no 

significant differences between the two probabilities distributions (figure 9) pushing into considering that 

more compact circuit (low depth circuit) could be used with Driven Hamiltonian. 

 

p=2
p=3

 
 

Fig. 9. Comparison of the two probabilities distribution with 𝑝 = 2 for the Driven Hamiltonian 

 

The previous remark must be put in the context of optimization of strongly large scale instances where 

quantum algorithms make sense. The Driven Hamiltonian enormously simplifies the optimal solution 

investigation, reducing it to a simple and well-defined feasible search-subspace investigation where a strong 

deformation of probabilities has been applied to a very short number of strongly high quality solutions. 

 

5. Concluding remarks 

This work addresses the question of how to implement Mixer Hamiltonians to restrict investigation on a 

specific subspace for the well-known graph coloring problem that is one of the corner-stone of the operation 

researcher community. We provided general considerations on Mixer Hamiltonians that are mapping 

functions defining an indirect representation which is a quantum equivalent of the well-known indirect 

representation scheme widely used in OR field. The numerical experiments bring into considering the large 

applicability and efficiency such approaches. To conclude we should emphasis that theoretical 

considerations and the capability in numerical experiment should push the researchers of the OR 

community to investigate this new field but keeping in mind that the current quantum computers are 

currently limited in the number of qubits. 
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