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Abstract

A foundational theory of compositional categorical rewriting theory is presented, based on a collection of fibration-1

like properties that collectively induce and intrinsically structure the large collection of lemmata used in the proofs2

of theorems such as concurrency and associativity. The resulting highly generic proofs of these theorems are given.3

It is noteworthy that the proof of the concurrency theorem takes only a few lines and, while that of associativity4

remains somewhat longer, it would be unreadably long if written directly in terms of the basic lemmata. In essence,5

our framework improves the readability and ease of comprehension of these proofs by exposing latent modularity.6

A curated list of known instances of our framework is used to conclude the paper with a detailed discussion of the7

conditions under which the Double Pushout and Sesqui-Pushout semantics of graph transformation are compositional.8
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1. Introduction9

The main contribution of the present paper is a novel framework of compositional rewriting double categories10

(crDCs) which, at its core, is based upon mathematical notions of fibrational structures relevant to categorical rewriting11

theories. Our motivation for this development has been the technically highly involved nature of the definitions of12

rule compositions and the resulting concurrency theorems for generic Double-Pushout (DPO) semantics and Sesqui-13

Pushout (SqPO) semantics as presented in [1] (with additional details and proofs presented in [2]).14

In this extended version, we show that one can modularize the statement of the rewriting semantics, its list of15

prerequisites and also the statement and proof of the concurrency theorem in a uniform fashion by establishing the16

notion of crDCs: once, for a given semantics, the notion of direct derivations is specified (and thus, in a certain sense,17

the very definition of the semantics itself is provided), rather than trying to follow the steps prescribed by the categor-18

ical rewriting literature in the tradition of the work of Ehrig et al. [3], our novel concept of crDCs permits to decide19

whether or not the given semantics is compositional (i.e., admits both a concurrency theorem and an associativity20

theorem) purely based upon the properties of the direct derivations themselves.21
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It should be noted that establishing that a given semantics indeed yields a crDC structure is still a technically22

involved task (as will become evident when presenting instantiations of our novel framework for some concrete23

examples of rewriting semantics in Section 6); however, the required reasoning has a rather more mechanical character24

than that of the proofs of complex theorems in compositional rewriting theory—which are automatically guaranteed25

to hold once a crDC structure is verified for a given semantics.26

1.1. Rewriting27

The theory of graph transformation has been under development for about the last fifty years. Over this time, it28

has gradually evolved from working with specific concrete settings—such as multi or simple graphs, with or without29

attributes—to being expressed in terms of certain classes of categories—such as adhesive [4, 5, 6], quasi-adhesive/rm-30

adhesive [5, 6, 7] and M-adhesive [3, 8] categories—that provide sufficient structure to reprove abstractly the key31

theorems that hold in those concrete settings. This theory has found application in a variety of contexts such as32

model-driven software engineering [9], graph databases [10, 11], graph-based knowledge representation [12, 13, 14]33

and executable representation of complex systems [15, 16, 17] as well as more theoretical uses in graph grammars,34

structural graph theory and string diagrams.35

In this theory, a graph transformation rule O ↼ r − I is interpreted in a given category as a span, i.e., as two36

morphisms O ← or − Kr − ir → I with a common source object Kr, called the context or preserved region, an input37

(or LHS) object I and an output (or RHS) object O. Note that we depart from the classical representation of rules in38

this theory in two ways: the application to rule algebra [18, 19, 20] makes it more natural to reverse the orientation39

of a rule, so as to match with the usual right-to-left ordering of composition of functions, whereupon the traditional40

terminology of ‘LHS’ and ‘RHS’ becomes rather confusing; as such, we prefer the neutral, self-explanatory terms41

‘input’ and ‘output’. Similarly, we use the terms ‘input-linear’ and ‘output-linear’ instead of the more usual ‘left-42

linear’ and ‘right-linear’ when speaking of rules where ir or, respectively, or are monomorphisms of some kind.43

In typical concrete settings, the two arrows express the correspondence between the entities (nodes or edges, etc.)44

in I and those in O. This naturally suggests a small set of primitive operations—deletion and addition, where ir and or45

are non-surjective, and cloning and merging, where they are non-injective—that correspond to our intuitive ideas of46

how graphs can be transformed; a rule then interprets a combination of these primitive operations. In order to formalize47

the effect of a rule, several distinct, but closely related, semantics have been proposed, the most prominent of which48

are the Double Pushout (DPO) [21], Single Pushout (SPO) [22] and, more recently, Sesqui-Pushout (SqPO) [23]49

semantics.50

In all of these approaches, a rule is applied to an object X through a so-called matching I�m → X, where m is51

a monomorphism1 potentially chosen from a specified restricted class M. In the case of DPO or SqPO semantics,52

rewriting proceeds in two steps: first, we use ir and m to construct an intermediate object Krm , a monomorphism53

Kr�krm → Krm and a morphism Krm − irm → X (i.e., the square (*) below); then we use or and krm to construct54

an object rm(X) (i.e., the direct derivation of X along r with match m), a monomorphism O�m∗ → rm(X), and a55

morphism Krm − orm → rm(X) (i.e. the square (†) below):56

O Kr I

rm(X) Krm X

m∗

or

krm

orm

ir

irm

m(∗)(†) (1)

In both DPO and SqPO semantics, the second step is determined by taking the pushout (PO) of krm and or as in square57

(†); the difference between these semantics arises in the first step: the DPO approach specifies that the square (∗) be a58

PO while the SqPO approach specifies it to be the final pullback complement of m and ir [24]: given two composable59

arrows A− f ′ → B and B−g→ D, a final pullback complement (FPC; cf. diagram below) consists of two composable60

arrows A − g′ → C and C − f → D such that (i) the resulting square is a pullback (PB); and (ii) for all PB squares61

such as the outer square in the diagram below, and for all factorizations A′ − a → A of f̄ ′ through f ′, there exists a62

unique arrow C′ − c→ C such that f ◦ c = f̄ and c ◦ ḡ′ = g ◦ f̄ ′.63

1The DPO approach has sometimes been formulated without requiring m to be a monomorphism; we do not consider this variant here.
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A′

B A

D C

C′

f̄ ′

g ḡ′

f̄

a

f ′

g′

f

c

64

65

The notion of FPC is defined by a universal property2 so that, under SqPO semantics, given m and ir, Krm is66

essentially unique (i.e., unique up to unique isomorphism). However, the construction of Krm under the DPO semantics67

need not be uniquely determined because, in general, there may be several non-isomorphic objects for which the68

square (∗) is a PO. Nonetheless, in many concrete settings under the assumption that the rule is input-linear, there69

is in fact at most one way for square (∗) to be a PO: this follows from the fact that, in the category Set of sets and70

functions, there is exactly one Krm for which square (∗) is a PO, provided that ir is injective. In these settings, it is easy71

to show that this square—if it exists, as is characterized by the no-dangling edges condition [3]—satisfies a universal72

property that is categorically dual to that of an FPC: it is the smallest, i.e., most general, Krm together with arrows73

from and to Kr and X respectively for which the resulting square is a PO. This is a mild generalization of the notion of74

what is called the initial pushout complement in [25] or minimal pushout complement in [26]; despite the risk of slight75

confusion, we reuse the terminology of initial pushout complement (IPC) as this is standard practice in the naming of76

categorical duals.77

In the case that ir is not a monomorphism, there is no longer any guarantee of uniqueness: even in typical concrete78

settings based on sets and functions, there may be several minimal but incomparable candidate PO squares. This leads79

us to consider the less familiar categorical notion of multi-IPC (mIPC) which formalizes the notion of a family of80

minimal solutions, i.e., PO squares over m and ir, that are collectively universal: any PO square using ir and factoring81

through m factors uniquely through a unique family member. This multi-universal property is an instance of the82

general theory of Diers [27]; in the case at hand, it effectively states that the family of Krm s contains precisely all83

possible rewrites of X by ir via m that are compatible with the DPO semantics. We will investigate this construction84

in more detail in Sections 4.3 and 5.3.3.85

Finally, in SPO semantics [22], the rewrite is applied in a single step by taking the PO, in the bi-category of spans,86

of m and the rule r—all subject to the condition that ir be a monomorphism, i.e., that the rule is input-linear. Due to87

the well-known fact that SPO semantics in the setting where monic matches are used in fact coincides with a special88

case of Sesqui-Pushout (SqPO) semantics [23], we will not consider SPO semantics separately in the present paper.89

Note in particular that the SqPO approach, unlike SPO, does not require input-linearity and works with fully general90

rules.91

An interesting consequence of the definition of DPO semantics is that rule applications are always reversible92

because squares (∗) and (†) are both POs; in effect, the no-dangling condition prevents the rule from being applied in93

the case that it would otherwise produce an irreversible transformation—or, alternatively, induce a side-effect. This94

is not necessarily the case for SqPO semantics because there is no a fortiori reason that the square (∗), defined by an95

FPC, be a PO: it is well-known that a rule which deletes a node can always be applied under the SqPO semantics,96

but induces an irreversible transformation in the case that the deleted node has incident edges in X. However, such97

a rule can only be applied under the DPO semantics if the no-dangling condition holds, i.e., the targeted node has98

no incident edges. Equally, there is no a fortiori reason that the square (†) be an FPC: a rule that merges two nodes99

generally loses the information about their incident edges that would be required to reverse the transformation—this100

is another kind of side-effect. The special case of reversible SqPO, where the FPC is also always a PO and the PO101

is also always an FPC, was studied in [28, 29]; in practice, at least for linear rules, this amounts to restricting to the102

DPO semantics since this constraint is then equivalent to the no-dangling condition.103

2It can be seen as a categorical generalization of the notion of set difference: the FPC is the largest, i.e., least general, C together with arrows
A − g′ → C and C − f → D for which the resulting square is a PB.
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The use of input-non-linear rules under the SqPO semantics allows for the expression of the natural operation104

of the cloning of a node or an edge (when this is meaningful), as explained in [23, 26, 30]. More recently, such105

rules have also been used to express operations such as concept refinement in schemata for graph databases [11] and,106

more generally, in graph-based knowledge representation [14]. In combination with output-non-linear rules, as for107

(non-linear) DPO rewriting, the SqPO semantics thus allows the expression of all natural primitive operations on108

graphs: addition and deletion of nodes and edges; and cloning and merging of nodes and edges. Moreover, the SqPO109

semantics also allows for all natural side-effects, or failures of reversibility, that arise intuitively in the case of deletion110

and merging, as mentioned above, and also in the case of cloning; this has notably been exploited in the definition111

of the semantics of the Kappa language where all rules are linear—so no cloning or merging—but deletion may have112

side-effects [31], and in the KAMI bio-curation framework [13], where fully general rules are used with the SqPO113

semantics.114

1.2. Compositional rewriting115

In the discussion above, we have seen that the definition of a setting for graph transformation requires us to specify116

a number of things, including: the category in which we work, the classes of rules and matchings under consideration,117

the semantics we use to apply rules, etc. In this paper, we adopt the stance that a choice of parameters in this design118

space should be compatible with compositionality in the sense that a notion of rule composition exists, which amounts119

to requiring that the concurrency theorem holds, and that this satisfies an appropriate form of associativity theorem.120

These properties enable the static analysis of collections of rules, such as rule algebras [18, 19, 20] or the causal121

analysis found in the Kappa language [31, 32], that ultimately depend on the notion of tracelets [33] that follows from122

having such an associative rule composition.123

1.2.1. Rule composition124

The composition of two rules, O1 ↼ r1 − I1 and O2 ↼ r2 − I2, is a third rule r2 ◦ r1 whose effect on an object X125

should be the same as that of applying first r1 to X then r2 to the resulting rm1 (X). However, the effect of applying first126

r1 then r2 depends critically on the way in which the images of the matchings m∗1 and m2, of O1 and I2 respectively,127

overlap in rm1 (X): given an initial matching m1 of I1 in X, the resulting m∗1 is uniquely determined; however, there may128

be many possible choices for the matching m2 of I2 in rm1 (X). As such, in general, there is not one single composite129

rule r2 ◦ r1 but rather one such composite for each possible overlap of m∗1 with some such m2.130

In order to express these ideas independently of the particular choice of X, we use Diers’ notion of multi-sum [27]131

as the means to express the family of all possible overlaps of matchings from O1 and I2. This is a generalization of the132

familiar categorical notion of co-product which replaces the single co-product O1 → O1 + I2 ← I2 with a family of133

co-spans satisfying a multi-universal property: essentially, any given co-span from O1 and I2 factors through exactly134

one family member and does so uniquely3.135

This kind of multi-universal construction often arises in concrete settings, based on the category of sets, where136

we wish to restrict our attention to injective functions. In this case, although the inclusions O1 → O1 + I2 ← I2 are137

injective, the universal arrow is generally non-injective (unless the images of O1 and I2 are disjoint). The multi-sum138

construction side-steps this problem by providing all possible overlaps of the images of O1 and I2, including the case139

where they are disjoint, so that all identifications—that would lead to violations of injectivity—necessary for the usual140

universal arrow can instead be accounted for by choosing the appropriate family member.141

The general notion of rule composition can thus be stated purely at the level of r1 and r2, provided that we are142

working in a setting where the multi-sum of O1 and I2 is guaranteed to exist, and it provides one composite rule143

per family member of that multi-sum. The synthesis part of the concurrency theorem then states that a sequential144

application, of r1 then r2, can be simulated in a single step by identifying the relevant multi-sum element and using145

the appropriate induced composite rule; and the analysis part of the theorem states, conversely, that the direct appli-146

cation of such a composite rule can be decomposed back into a sequential application of its constituents with overlap147

determined by the corresponding multi-sum element.148

3We give a formal definition in Section 2.1 which, although its precise statement differs from this informal account by allowing for essential
uniqueness, remains essentially equivalent.
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1.2.2. Compositionality149

In this paper, we seek to provide foundations for compositional rewriting that apply equally to DPO and SqPO150

semantics. In particular, we provide a single proof of the concurrency theorem in Section 3.3) and a single proof151

of an appropriate associativity property of the induced notion of rule composition, i.e., an associativity theorem, in152

Section 3.4) that work for linear and non-linear rules under both semantics. This associativity property is important153

as it guarantees that, for any sequence of rule applications, their overall composite transformation can be computed,154

by iterating the concurrency theorem, in any order without changing the result (up to isomorphism): this is precisely155

what we mean by ‘compositionality’.156

In this paper, we consider a rule application as a single unit (analogous to SPO semantics) rather than decomposing,157

as usual, into two stages that proceed via an intermediate object. This choice eases the path to a characterization of the158

necessary categorical structure for compositional rewriting in terms of (i) the existence of certain kinds of fibrations;159

and (ii) a small number of additional axioms specific to rewriting.160

From this point of view, the large collection of lemmata used in these proofs—as, for example, collected in the161

appendix of [2]—fall into two groups: a first group of fundamental results that do not specifically relate to rewriting;162

and a second group that specializes this theory precisely to the case of rewriting. The advantage of this new approach163

is that it enables the use of macros that express the key steps in proofs at a higher level of abstraction than usual and,164

indeed, the resulting proof of the concurrency theorem is very compact. The proof of the associativity theorem is165

significantly longer and technically more involved—although this seems to be intrinsic to its nature—but would have166

been essentially impossible to express at a lower level of abstraction. Our new approach makes a clear and clean167

separation of the basic building blocks from their means of combination; we return to this point in the conclusion.168

Outline of the paper169

The paper is structured as follows. In Section 2, we present all the preliminary material necessary for the definition170

of compositional rewriting double categories with a particular emphasis on the required fibrational structures. In171

Section 3, we define this novel concept and apply it to state and prove the concurrency theorem and the associativity172

theorem in a universal fashion. In Section 4, we investigate the fibrational structure of various categories of squares173

(pullbacks, pushouts and final pullback complements). In Section 5, we study some classes of categories that admit174

constructions that are necessary in order to formulate compositional rewriting theories, and, in Section 6, we focus175

on the DPO- and SqPO-semantics in order to clarify under what conditions, and for what classes of rules, these176

semantics are compositional. Finally, we conclude with a detailed comparison of the approach in this paper with177

that of its conference version [1, 2] as well as a discussion of related and future work. The reader interested in our178

fibration-based proofs of concurrency and associativity can therefore read Sections 2 and 3 only; one more interested179

in how our new framework can be put to use might prefer to skim those sections and focus principally on Sections 4,180

5 and 6.181

2. On multi-sums and fibrational structures182

In this section, we provide some prerequisite material for our compositional rewriting theory framework. We begin183

with the notion of multi-sum which is an instance of the general theory of multi-co-limits developed by Diers [27].184

We then introduce the mathematical theory for a number of fibrational structures, namely the well-known notions185

of Grothendieck fibration and Grothendieck opfibration, but also multi-opfibrations and residual multi-opfibrations186

which, to the best of our knowledge, are original results of our work.187

2.1. Multi-sums188

An atypical feature of fibrational structures relevant for compositional rewriting theories is the following type of189

mathematical property, which may eventually play an important role in the static analysis of rewriting systems.190

Definition 2.1. Let C be a category. A multi-sum
∑
M(A, B) of two objects A and B of C is a family of cospans

191 {A − a j → M j ← b j − B} j∈J such that for every cospan A − a → X ← b − B, there exists a j ∈ J and morphism192

M j − x→ X such that a = x ◦ a j and b = x ◦ b j, and with the following (multi-) universal property: for every cospan
193
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A − a′ → Y ← b′ − B and morphism Y − y → X such that a = y ◦ a′ and b = y ◦ b′, there exists a unique morphism194

M j − m j → Y such that a′ = m j ◦ a j and b′ = m j ◦ b j:195

A B

M j

Y

X

a b

a j b j

x

b′

a′

y

∃! m j

(2)

We say that C has multi-sums if every pair of objects has a multi-sum.
196

While we postpone the presentation of some concrete examples of multi-sum structures to Section 5.3.1, suffice it197

here to introduce a technical result that will be necessary in our ensuing constructions:198

Lemma 2.2 (Multi-sum extension). Let C be a category that has multi-sums and that has pullbacks. Then for every
199

commutative diagram such as in (3) below, where A→ M ← B and C → N ← D are multi-sum elements, there exists200

a universal arrow M → N that makes the diagram commute.201

A B

M

X C D

N

Y

∃!
(3)

The proof of this lemma, and indeed of all the results in Section 2, can be found in Appendix B.1.202

2.2. Grothendieck fibrations and opfibrations203

In the technical constructions developed in this paper, we will require certain generalizations of the notion of204

Grothendieck opfibration. We will therefore employ a notation for fibrations that slightly differs from the standard205

conventions in category theory (cf. e.g. [34, 35, 36, 37]). Let us therefore briefly recall the definitions of Grothendieck206

fibrations and Grothendieck opfibrations for the readers convenience, expressed in our notational conventions:207

Definition 2.3. A functor G : E→ B is a Grothendieck fibration if the following property holds:
208

∀
e

b′ bf

G : ∃
e′ e

b′ b

G

f=G(γ( f ))

γ( f )

G :

∀
e′′ e′ e

b′′ b′ b

G

g f

G G

α

G(α)

γ( f )

:

e′′ e′ e

b′′ b′ b

G G G

α

G(α)

∃! β γ( f )

f
g=G(β)

(4)
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The second line encodes that γ( f ) is a Cartesian morphism, hence we will refer to it as a Cartesian lifting of f .
209

Definition 2.4. A functor G : E→ B is a Grothendieck opfibration if the following property holds:
210

e e e′

∀ : ∃ :

b b′ b b′

e e′ e′′ e e′ e′′

∀ :

b b′ b′′ b b′ b′′

G

f

G

f=G(ε( f ))

ε( f )

G

G

f g

ε( f )

G G

α

G(α)

G

ε( f )

G

f
g=G(β)

G

α

G(α)

∃! β

(5)

The second line encodes that ε( f ) is an op-Cartesian morphism, so we will refer to it as an op-Cartesian lifting of f .
211

It is well known that the above definitions imply that the (op-)Cartesian lifting of f is essentially unique, i.e.,212

unique up to unique isomorphism; see, for example, Proposition 1.1.4 of [35].213

2.3. Multi-opfibrations214

The definition of a Grothendieck opfibration may be generalized in the following form, whereby instead of requir-215

ing the existence of op-Cartesian lifts neither existence nor essential uniqueness are required. This particular variant of216

a fibrational structure postulates instead the existence of a (possibly empty) family of multi-op-Cartesian lifts, subject217

to a somewhat more intricate universal property. As will be demonstrated in Section 4.3, this generalized notion is218

the appropriate fibrational concept capable of formalizing so-called multi-initial pushout complements, which in turn219

play a key role in categorical rewriting semantics.220

Definition 2.5. A functor M : E→ B is a multi-opfibration if the following property holds:
221

∀
e

b b′

M

f

: ∃


e e′j

b b′

µ j( f )

M

f=M(µ j( f ))

M


j∈J f ;e

:

∀
e e′′

b b′ b′′

M

f g

M

α

M(α)

:

e e′j e′′

b b′ b′′

M

∃ µ j( f )

M

f
g=M(β j)

M

α

M(α)

∃! β j

:

∀
e ẽ e′′

b b′ b′′

M

χ

M

f=M(χ) g=M(τ)

M

α

M(α)

τ

:

e e′j e′′

ẽ

b b′ b′′

M

M

f g

M

α

M(α)

τ

µ j( f ) β j

M

χ ∃! ϕ

(6)

In words:222
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(i) For every b − f → b′ in B and e ∈ E with M(e) = b, there exists a (possibly empty) family J f ;e of multi-op-
223

Cartesian liftings e − µ j( f )→ e′f (with M(µ j( f )) = f ).224

(ii) Universal property of multi-opfibrations: Multi-op-Cartesianity of the liftings entails that for all e − α→ e′′ in
225

E and b′ − g → b′′ in B with M(α) = g ◦ f , there exists a j ∈ J f ;e such that there exists a unique e′j − β j → e′′226

with α = β j ◦ µ j( f ) and M(β j) = g.227

(iii) Essential uniqueness: for a given multi-op-Cartesian lifting as in (ii), if there exists some e − χ → ẽ and
228

ẽ − τ→ e′′ such that τ ◦ χ = α, M(χ) = f and M(τ) = g, then there exists a unique morphism e′j − φ→ ẽ such229

that χ = φ ◦ µ j( f ), β j = τ ◦ φ, and M(φ) = idb′ .230

We say that a multi-opfibration is strong if the morphisms φ in (iii) above are isomorphisms.
231

It is useful to note that a Grothendieck opfibration is a special case of a multi-opfibration, namely when for every232

f ∈ B, the family of multi-op-Cartesian lifts is non-empty, and such that all members of a given family are in the same233

equivalence class under the universal property (i.e., for all j, k ∈ Je; f , there exists an isomorphism e′j − φ jk → e′j such234

that M(ϕ jk) = idb′ and µk( f ) = ϕ jk ◦ µ j( f )). However, a Grothendieck opfibration is in general not a special case of235

a strong multi-opfibration. This is relevant since strong multi-opfibrations enjoy two important technical properties236

(isomorphism lifting and pullback lifting, see below) that are crucial for obtaining compositional rewriting theories:237

Lemma 2.6. Let M : E → B be a strong multi-opfibration. Then the following lifting property of isomorphisms is
238

satisfied:239

∀
e e′′

b b′ b′′

M

f g

M

α

M(α)

: ∀

e e′j e′′

b b′ b′′

M

ε j( f )

M

f
g=M(β j)

M

α

M(α)

β j

:

(g ∈ iso(B) ⇒ β j ∈ iso(E)) ∧ ( f ∈ iso(B) ⇒ ε j( f ) ∈ iso(E))

(7)

We conclude the general discussion of multi-opfibrations with the following technical result which will be used in240

the proof of the associativity theorem for compositional rewriting theories in Section 3.4:241

Lemma 2.7 (Pullback-lifting lemma for strong multi-opfibrations). Let E be a category that has pullbacks, and
242

let M : E→ B be a strong multi-opfibration. Then the following property holds:243

∀

e e′′′

b′′1

b b′ b′′′

b′′2

M

f

g2 h2

g1
h1

M

α

PB

:

e′′j,k

e e′j e′′′

e′′j,ℓ b′′1

b b′ b′′′

b′′2

M

f

g2 h2

g1

h1

M

α

PB

∃ ε j( f )

M

∃ ε j,k(g1)
∃! γ j,k

M

M

∃ ε j,ℓ(g2) ∃! δ j,ℓ

∃! β j
PB

(8)

More explicitly, for every diagram such as on the left of (8), whose bottom part contains a pullback square in B, the244

following properties hold:245

(i) There exists an E-morphism e − ε j( f ) → e′j such that there exists a unique E-morphism e′j − β j → e′′′ with246

M(ε j( f )) = f and M(β j) = h1 ◦ g1 = h2 ◦ g2, and such that the diagram commutes.247
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(ii) There then exist E-morphisms e′j − ε j,k(g1) → e′′j,k and e′j − ε j,`(g2) → e′′j,` such that there exist unique E-248

morphisms e′′j,k − γ j,k → e′′′ and e′′j,` − δ j,` → e′′′ such that M(ε j,k(g1)) = g1, M(ε j,`(g2)) = g2, M(γ j,k) = h1 and249

M(δ j,`) = h2, and such that the diagram commutes.250

(iii) Moreover, the square in E into e′′′ is a pullback.251

2.4. Residual multi-opfibrations252

The following concept constitutes yet a further generalization of fibrational concepts – while multi-opfibrations253

generalize Grothendieck opfibrations via replacing (essentially unique) op-Cartesian lifts with multi-op-Cartesian lifts,254

one encounters in compositional rewriting theory situations where moreover morphisms may in general not possess255

such liftings, but only certain extensions of morphisms, referred to as residues in the definition below. The reason for256

introducing this concept will become evident only when considering the salient examples of fibrational properties of257

final pullback complement squares, and of sesqui-pushout direct derivations in the later parts of this paper.258

Definition 2.8. A functor R : E→ B is a residual multi-opfibration if the following property holds:
259

∀
e

b b′

R

f

: ∃



e e′j

b b′ b′j

ρ j( f )

RR

f f⋆ j

R(ρ j( f ))


j∈J f ;e

:

∀
e e′′

b b′ b′′

R

f g

R

α

R(α)

:

e e′j e′′

b j

b b′ b′′

R

∃ ρ j( f )

f

R

α

R(α)

∃! β j

R

f⋆ j

g

R(β j)

:

∀

e e′′

ẽ

b b′ b′′

b̃

R

f

R

α

h

R

χ
τ

R(τ)

g

R(χ)

R(α)
:

e e′j e′′

ẽ

b j

b b′ b′′

b̃

R

ρ j( f )

f

R

α

β j

R

f⋆ j R(β j)

h

R

χ
τ

R(τ)

g

R(χ)

∃!ψ

R(ψ)

(9)

In words:260

(i) For every b − f → b′ in B and e ∈ E with R(e) = b, there exists a (possibly empty) family J f ;e of residual
261

multi-op-Cartesian liftings e − ρ j( f ) → e′j (with R(ρ j( f )) = f? j ◦ f , and with f? j referred to as a residue with
262

respect to (e; f )).263

(ii) Universal property of residual multi-opfibrations: Residual multi-op-Cartesianity of the liftings entails that for
264

all e−α→ e′′ in E and b′ −g→ b′′ in B with R(α) = g◦ f , there exists a j ∈ J f ;e such that there exists a unique265

e′j − β j → e′′ with α = β j ◦ ρ j( f ) and g = R(β j) ◦ f? j.266

(iii) Essential uniqueness: For all b−h→ b̃, e−χ→ ẽ and ẽ− τ→ e′′ such that R(χ) = h◦ f and g = R(τ)◦h, there
267

exists a unique e′j − ψ→ ẽ such that χ = ψ ◦ ρ j( f ), β j = τ ◦ ψ (which then implies moreover that h = R(ψ) ◦ f? j268

and R(β j) = R(τ) ◦ R(β j)).269

10



We record the following technical result for residual multi-opfibrations which will be crucial later in the paper270

when it plays a central role in the proof of the associativity theorem of Section 3.4:271

Lemma 2.9. Let R : E→ B be a residual multi-opfibration. Then residues have the following universal property:
272

∀

e e′j

b b′ b′j

R

f f⋆ j

R

ρ j

R(ρ j( f ))

: ∃

ē

e e′j

b̄

b b′ b′j

R

χ

f

R

ρ j

R(ρ j( f ))

τ

R

h

f⋆ j

R(τ)
R(χ)

⇒ τ ∈ iso(E) ∧ R(τ) ∈ iso(B) (10)

In particular, this property entails that if a residue f?k factorizes a residue f? j as f? j = R(βk) ◦ f?k for some βk ∈ E,273

then the residues f? j and f?k (both of the same morphism f ∈ B) are related by an isomorphism R(βk) ∈ iso(B), as274

are their liftings ρ j( f ) = βk ◦ ρk( f ) via βk ∈ iso(E).275

Finally, we note the following specialization of residual multi-opfibration:276

Definition 2.10. A functor R : E → B is a residual opfibration if it is a residual multi-opfibration such that for all
277

objects e of E and morphisms R(e) − f → b of B the family of residual multi-op-Cartesian lifts is non-empty, and278

such that all lifts in the family are equivalent up to universal isomorphisms (i.e., for all (ρ j( f ), f? j ) and (ρk( f ), f?k ),279

there exists a unique isomorphism ϕ in E such that ρk( f ) = ϕ ◦ ρ j( f ) and f?k = R(ϕ) ◦ f? j ). We will sometimes refer280

to such lifts as residual op-Cartesian for brevity.281

3. Fundamentals of compositional rewriting theories282

Taking the notion of double categories as a convenient “book-keeping” device, we will demonstrate in this key283

section of the present paper that a very general class of compositional rewriting theories—including in particular the284

“non-linear” variants of DPO- and SqPO-semantics [1]—may be elegantly expressed and studied from a fibrational285

viewpoint. More precisely, based upon and motivated by the fibrational structures presented in Section 2, we introduce286

the novel notion of compositional rewriting double category (crDC) . We then demonstrate that crDCs provide a287

very high-level representation of categorical rewriting theories with compositionality properties in the sense that every288

crDC admits a concurrency theorem (Section 3.3) and an associativity theorem (Section 3.4). The crucial point of our289

novel approach to proving compositional properties via crDCs is that the aforementioned concurrency theorems and290

associativity theorems may be established in an entirely universal form, i.e., entirely independently of the concrete291

rewriting semantics underlying a given crDC.292

3.1. Double categories293

Throughout this paper, we work exclusively with the “algebraic” order in compositions of morphisms and com-294

mutative squares (i.e., g ◦ f rather than the “diagram” order notation f ; g common in category theory). For reasons of295

convenience, we will swap the roles of the classes of morphisms that have a weakly associative composition, usually296

the vertical morphisms [38], to be the class of horizontal morphisms. (We opted for this particular convention so that it297

is essentially a 90 degrees clockwise rotation of the standard mathematical one.) Finally, since we will be exclusively298

interested in finitary categories, we will often not mention finitarity explicitly in what follows.299

Definition 3.1 (Cf. e.g. [38, 39, 40]). A double category (DC)D is a weakly internal category in the 2-category CAT
300

of all categories [41]4.301

4Some authors prefer the term “pseudo double category”, cf. also nLab article on double categories.
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Figure 1: Convention for source and target functors for double categories.

In particular, this entails that a double category consists of a category D0 of objects and vertical morphisms, and
302

a category D1 of horizontal morphisms and squares of D, equipped with functors S ,T : D1 → D0, referred to as
303

source and target functors, respectively (cf. Figure 1), and with a functor U : D0 → D1 which maps every object
304

A of D0 to a horizontal unit UA (depicted in Figure 2(d) as identity horizontal morphisms), and every morphism f
305

of D0 to a horizontal unit square U f (depicted in Figure 2(d) as squares annotated with the symbol id... for better
306

readability). We denote vertical morphisms by � and horizontal morphisms by ↼, respectively. We denote by �v307

the vertical composition of squares as in Figure 2(a) (i.e., the associative composition operation of D1). D moreover
308

carries a weakly associative horizontal composition of squares (cf. Figure 2(b)) �h : D1 ×D0 D1 → D1. Finally, for
309

technical convenience, we assume without loss of generality5 that both types of compositions are strictly unitary (cf.310

Figures 2(c) and 2(d)).311

3.2. Compositional rewriting double categories312

Definition 3.2. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:
313

(i) D0 has multi-sums.
314

(ii) D0 and D1 have pullbacks.
315

(iii) The horizontal composition functor �h : D1 ×D0 D1 → D1 is an isoglobular residual opfibration, namely a
316

residual opfibration such that6 all residues are globular isomorphisms (i.e., isomorphisms ϕ of D1 such that
317

T (ϕ) and S (ϕ) are identity morphisms).318

(iv) The source functor S : D1 → D0 is a strong multi-opfibration.
319

(v) The target functor T : D1 → D0 is a residual multi-opfibration.
320

Remark 3.3. It is worthwhile unpacking the fibrational property of the horizontal composition functor in a crDC into321

a more explicit form in view of later applications in the proof of the associativity theorem (cf. Section (3.4)):322

• Squares in a crDC D have the following horizontal decomposition property:
323

∀
△ ◦ □

▲ ■

r1r2

r21

n m
s

α21

: ∃
△ ◦ □

▲ • ■

r1r2

r21

n ms m′

r′1r′2

α21

α2 α1

σ �

: α2 �h α1 = σ �v α21 (11)

In particular, utilizing the notation �• for equality up to globular isomorphism, one has s�• r′2 �h r′1.
324

5We follow here the viewpoint of [42], whereby utilizing the strictification theorem of pseudo double categories [38, Thm. 7.5], this amounts to
implicitly utilizing a pseudo-functor into an equivalent double category where unitarity is strict, thus not reducing generality of our constructions.

6The definition in fact amounts to a special case of a so-called Street opfibration; this aspect and further variations of fibrational structures in
rewriting theory are studied in [43].
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· · · ·

∀ · · : ∃ · ·

· · · ·

β

α

β⋄vα

α

β

(a) Vertical composition �v.

· · · · · ·

∀ : ∃

· · · · · ·

α β

α⋄hβ

α β

(b) Horizontal composition �h.

· ·

· ·

∀α ∈ D1 :

· ·

· ·

r

n m

s

r

s

n m

n m

α

idr

ids

α⋄vidr=α

ids⋄hα=α

(c) (Strict) vertical unitarity.

· · · ·

∀β ∈ D1 :

· · · ·

n n

r

m

s

m

r

s

r

s

idn β idm

β⋄hidm=β

idn⋄hβ=β

(d) (Strict) horizontal unitarity.

Figure 2: On the definition of double categories.
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• Unpacking the definition of the universal property of residual multi-opfibrations for the case at hand, we find325

the following complex decomposition property (where in the diagram below γ2 �h γ1 = β21 �v α21):
326

∀

△ ◦ □

▲ ■

◀ ♦ ▶

r1r2

r21

s

t21

t2 t1

α21

β21

γ1γ2
: ∃

△ ◦ □

▲ • ■

◀ ♦ ▶

r1r2

r21

s

t21

t2 t1

s1s2

α21

β21

α1α2

β1β2

σ
� :

α2 �h α1 = σ �v α21

∧ β2 �h β1 = β21 �v σ
−1 (12)

3.3. Concurrency theorem327

Let us finally put the fibrational structures, introduced in Section 2, and the above concept of compositional328

rewriting double category to use by proving a first theorem—the concurrency theorem—that plays a key role in the329

static analysis of rewriting systems.330

Theorem 3.4. Let D be a compositional rewriting double category. Then the following statements hold:331

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

m1m2

m1⋆

r2

r′2 r′1

r′2⋄r′1

1:1

r2 r1

r′′21

r′′2 r′′1

β2 β1

β′21

α2 α1 (13)

• Synthesis: For every pair of squares (α1, α2) of D “adjacent at the foot” (left diagram above), there exist
332

a multi-sum element (m2,m1) ∈ ∑
M(S (r2),T (r1)), a residue m1? for (r1; m1), and squares (β1, β2, β

′
21) (with333

T (β1) = m1? ◦ m1 and S (β2) = m1? ◦ m2), uniquely determined up to universal isomorphisms, such that334

r′′21 �• r′′2 �h h′′1 .335

• Analysis: For every multi-sum element (m2,m1) ∈ ∑
M(S (r2),T (r1)), residue m1? for (r1; m1), and squares

336

(β1, β2, β
′
21) (with T (β1) = m1? ◦ m1 and S (β2) = m1? ◦ m2), there exist squares (α1, α2) of D, determined337

uniquely up to universal isomorphisms, such that r′′2 �h r′′1 �• r′′21, where r′′2 = codom(α2), r′′1 = codom(α1), and338

r′′21 = codom(β′21).339

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-340

tions), the resulting sets of equivalence classes are isomorphic.341

Proof. Synthesis part: Construct the diagram in (14) from the premise as follows:342

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms (m2,m1) into an object ♦ and343

a mediating D0-morphism ♦ � ·.344

• Since the target functor T : D1 → D0 is a residual multi-opfibration, there exists a residue m1? : ♦ � � with345

respect to (r1; m1) and a D0-morphism � � · such that T (β1) = m1? ◦ m1 and α1 = β′1 �v β1.346

• Since the source functor S : D1 → D0 is a multi-opfibration, there exist squares β2 and β′2 such that S (β1) =347

m1? ◦ m2 and α2 = β′2 �v β2. Thus the claim follows by letting β′21 := β′2 �h β
′
1.348
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· · · ·

♢

· ♦ ·

· · ·

r1

r′′2 r′′1

m2 m1

m1⋆

r′1r′2

r2

α1α2

β2

β′2

β1

β′1

(14)

Analysis part: Construct the diagram in (15) as follows:349

• By the horizontal decomposition property of squares in D, there exist squares β′2 and β′1 such that σ ◦ β′21 =350

β′2 �h β
′
1 (for some globular isomorphism σ).351

• The claim follows be letting αi := β′i �v βi for i = 1, 2, since r′′2 �h r′′1 �• r′′21.352

· · · ·

·

· · ·

· · ·

r1

⋆

r2

r′2 r′1

r′2⋄r′1

r′′21

r′′2 r′′1

β2

β′21

β1

β′1β′2

σ
�

(15)

�353

While an interesting mathematical structure on double categories in its own right, the deeper meaning and im-354

portance of the concurrency theorem in formulating compositional rewriting semantics becomes apparent when in-355

terpreting squares in a compositional rewriting double category as rewriting steps (traditionally referred to as direct356

derivations in rewriting theory). To this end, consider a two-step rewriting sequence, where the result of the first step357

is the starting object of the second step, as depicted in the form of the squares α2 and α1 in (13). The concurrency358

theorem then implies that there exists a one-step rewrite, depicted as the square β21 in (13), from the start object to the359

end object of the two-step sequence, and uniquely determined up to universal isomorphisms. Moreover, the particular360

property of the one-step rewrite operation is that it is taken along some composite rule (here: r′2 �h r′1), which—-again
361

up to universal isomorphisms—is uniquely determined from the data of the two-step rewrite sequence. One may thus362

interpret the top half of the right diagram in (13) (i.e., the squares β2 and β1, the D1-object r′2 �h r′1 as well as the multi-363

sum and residue) as defining a notion of rule composition. Indeed, as we shall illustrate in Section 6.4, the abstract
364

crDC-based formulation of the concurrency theorem instantiates precisely to the traditional concepts of concurrency365

and rule compositions when considering linear Double-Pushout semantics [3], but also provides an abstraction of366

compositional rewriting for more general semi-linear and generic Double-Pushout as well as Sesqui-Pushout seman-367

tics, as first introduced in [1].368

369

Let us finally note that in comparison to the instantiations of compositional rewriting theories to concrete choices370

of semantics, our abstract crDC-based approach as presented here allows an efficient modularization of the proof of the371

concurrency theorem by clearly separating the concrete definitions of compositional rewriting theories (i.e., proving372

that a certain semantics and choice of base category gives rise to a crDC) from the universal structures provided by373

crDCs.374
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3.4. Associativity theorem375

Unlike for the case of the concurrency theorem, the statement and proof of which were a straightforward and376

efficient application of the multi-sum and fibrational concepts, our second main theorem has indeed such a complex377

statement that its proof relies much more non-trivially upon fibrational structures—which serve in a certain sense as a378

form of “proof macros”—without which the proof would be extremely long and presumably difficult to follow.379

Theorem 3.5. LetD be a compositional rewriting double category. Then every diagram as in (16) below (interpreted
380

as encoding a composition of rules r2 and r1, and of the composite with r3),381

· · · · · ·

◦

· • ·

♢

· ♦ ·

r1

⋆

r2

r′2 r′1

r′2⋄r′1

r3

⋆

r′′3

r′′21

α′′3

α21

α2 α1

(16)

determines uniquely up to universal isomorphisms a diagram as in (17) below (interpreted as encoding a composition382

of rules r3 with r2, and of the composite with r1), and vice versa:383

· · · · · ·

□

· ■ ·

△

· ▲ ·

r3 r2 r1

⋆

r′2r′3

r′3⋄r2′

⋆

r′′1

r′′32

α32

α3 α2

α′′1 (17)

Moreover, the equivalence is such that in addition384

r′′3 �h r′′21 � r′′32 �h r′′1 . (18)

Thus for a suitable notion of equivalence up to isomorphisms (induced by the essential uniqueness of the respective385

constructions), there exists an isomorphism between the sets of equivalence classes of nested composites of the three386

rules in the two different nesting orders. This amounts to a notion of associativity for the rule composition operation.387

Proof. For the ⇒ direction of the equivalence, construct the following diagram from the premise by applying the388

horizontal decomposition property to the square α21, obtaining a globular isomorphism σ21 in D1 and squares α′2 and389
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α′1 such that σ21 �v α21 = α2 �h α1 (and with r′′2 �h r′′1 �• r′′21):390

· · · · · ·

◦

· • ·

♢

· ♦ ⊗ ·

r1

⋆

r2

r′2 r′1

r′2⋄r′1

r3

⋆

r′′3

r′′21

r′′2 r′′1

α′′3

α21

α2 α1

α′2 α′1

σ21

�

(19)

Next, we apply a part of the synthesis construction of the concurrency theorem, in that we synthesize from the391

squares α′′3 and α′2 �v α2 a composite of rules r3 and r2 (as encoded via the squares β3 and β2, with the composite rule392

itself omitted for clarity) and squares β′3 and β′2 such that α′′3 = β′3 �v β3 and α′2 �v α2 = β′2 �v β2:393

· · · · · ·

□ ◦

· ■ ·

· • ·

♢

· ♦ ⊗ ·

r1

⋆

r2

r′2 r′1

r3

⋆

r′′3 r′′2 r′′1

⋆

r′3 r′2

α′′3

α2

α1

α′2 α′1

β3

β′3

β2

β′2

(20)

By applying the synthesis construction of the concurrency theorem to the pair of squares β′3 �h β
′
2 and α′1 �v α1, we394

may obtain the diagram in (21) below (where γ′32 �v γ32 = β′3 �h β
′
2, and γ′1 �v γ1 = α′1 �v α1):395

· · · · · ·

□ ◦

· ■ ·

△

· • ·

::: ♢ ▲ :

· ♦ ⊗ ·

r1

⋆

r2

r′2 r′1

r3

⋆

r′′3 r′′2 r′′1

⋆

r′3 r′2

⋆

r′3⋄hr′2

s32

r′′3 ⋄hr′′2

α′′3

α2

α1

α′2 α′1

β3

β′3

β2

β′2

γ1

γ′1

γ32

γ′32

(21)

We now apply the following sequence of manipulations to obtain the diagram in (22):396
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• Via the multi-sum extension Lemma, there exists aD0-morphism ◦� 4 between the multi-sum objects ◦ and 4397

(and analogously between the multi-sum objects � and ♦, albeit this is irrelevant for the proof and thus omitted398

from the diagrams).399

• Via the complex decomposition property, there exist squares γ3, γ′3, γ′2 and γ2 and a globular isomorphism τ32400

such that γ3 �h γ2 = τ32 �v γ32 and γ′3 �h γ
′
2 = γ′32 �v τ

−1
32 .401

· · · · · ·

□ ◦

· ■ ·

△

· • ·

::: :: ♢ ▲ :

· ♦ ⊗ ·

r1

⋆

r2

r′2 r′1

r3

⋆

r′′3 r′′2 r′′1

⋆

r′3 r′2

⋆

α′′3

α2

α1

α′2 α′1

β3
β2

γ3

γ′3

γ2

γ′2

γ1

γ′1

(22)

For the final step of the⇒ part of the proof, we construct the diagram in (23) below via the following steps:402

• Take a pullback (admissible since D0 has pullbacks) in order to obtain the object marked ; on the back rightmost403

part of the diagram in (23), yielding a number of morphisms as indicated (all of which are in D0, again since D0404

has pullbacks).405

• Since the source functor is a strong multi-opfibration, by applying the pullback lifting lemma for strong multi-406

opfibrations we obtain squares δ1, δ′1 and ε1 such that α1 = ε1�vδ1 and γ1 = δ′1�vδ1. The lemma also implies that407

since the square from the object marked ; was by construction a pullback, so is the square from O, which by the408

universal property of pullbacks yields the existence of a morphism into O (marked +), which is a D0-morphism409

since D0 has pullbacks.410

• Applying the pullback lifting lemma for strong multi-opfibrations once again, we may obtain the configuration411

in the middle of the diagram in (23), i.e., squares δ2, δ′2 and ε2 such that α2 = ε2�v δ2 and γ2�vβ2 = δ′2�v δ2. The412

lemma also entails that since the commutative square from O is a pullback, the square from the object marked413

; ; is a pullback, too, and there exists the D0-morphism codom(r2)�; ;.414

• By the universal property of residues, since α1 = ε1 �v δ1, and since the residue ◦ � • marked ? (which415

forms the second factor of T (α1)) factors through O � • (i.e., through T (ε1)), we find that the square ε1 is an416

isomorphism in D1. By the lifting property of isomorphisms for strong multi-opfibrations, the square ε2 is then417

an isomorphism in D1, too.418

• The latter point entails that we may form the cospan · − S (γ3 �v β3)→::← T (δ′2 �v ε
−1
2 ) − · of morphisms in D0;419

hence by the universal property of multi-sums, there exists a D0-morphism ♦ �::.420

• The existence of the morphism ♦ �:: together with α′2 �h α
′
1 = (γ′2 �h γ

′
1) �v (δ′2 �h δ

′
1) �v (ε−1

2 �h ε
−1
1 ) implies421

via the universal property of residues that γ′2 �h γ
′
1 is an isomorphism in D1.422

• Since γ′2 �h γ
′
1 is an isomorphism in D1, S (γ′2 �h γ

′
1) = S (γ′1) is an isomorphism in D0; thus applying the lifting423

property of isomorphisms for strong multi-opfibrations repeatedly, we find that the squares γ′1, γ′2 and γ′3 are all424

isomorphisms in D1, which concludes the proof of the⇒ part of the theorem.425
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· · · · · ·

□ ◦

· ■ ·

△

; ; ▽ ;

· • ·

::: :: ♢ ▲ :

· ♦ ⊗ ·

r1

⋆

r2

r′2 r′1

r3

⋆

r′′3 r′′2 r′′1

⋆

r′3 r′2

⋆

×

+

α′′3

α2

α1

α′2
α′1

β3
β2

γ3

γ′3

γ2

γ′2

γ1

γ′1

δ1

δ′1

ε1

δ2

δ′2

ε2

(23)
For the ⇐ part of the claim, via the horizontal decomposition property (here for the square α32), we obtain a426

globular isomorphism σ32 and squares α′3 and α′2 such that σ32 �v α32 = α′3 �h α
′
2 (and with r′32 �• r′3 �h r′2):427

· · · · · ·

□

· ■ ·

△

· :: ▲ ·

r3 r2 r1

⋆

r′2r′3

r′3⋄r′2

⋆

r′′1

r′′32

r′′2r′′3

α32

α3 α2

α′′1

α′3 α′2

σ32 �

(24)

To proceed, we may now apply the synthesis part of the concurrency theorem to the sequence formed by the428

composite square α′2 �v α2 and the square α′′1 , again not explicitly carrying out the horizontal composition of squares429

in the last step of the construction. We thus arrive at a diagram as in (25) below, with the squares β1, β′1, β2 and430

β′2 arising from the aforementioned construction (where the existence of the D0-morphism ◦ � 4 follows from the431

multi-sum extension Lemma):432

· · · · · ·

□ ◦

· • ·

· ■ ·

△

· :: ▲ ·

r3 r2 r1

⋆

r′2r′3

⋆

r′′1r′′2r′′3

⋆

r̃1r̃2

α3

α2

α′′1

α′3 α′2

β2

β′2

β1

β′1

(25)
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By applying the synthesis construction of the concurrency theorem to the pair of squares α′3 �v α3 and β′2 �h β
′
1, we433

may obtain the diagram in (26) below (where γ′3 �v γ3 = α′3 �v α3, and γ′21 �v γ21 = β′2 �h β
′
1):434

· · · · · ·

□ ◦

· • ·

♢

· ■ ·

△

− ◁ ▷

· :: ▲ ·

r3 r2 r1

⋆

r′3

⋆

r′′1r′′2r′′3

⋆

r̃1

r′2

⋆

r̃2

r̃2⋄h r̃1

r′′2 ⋄hr′′1

α3

α′′1

α′3

β1

β′1

α2

α′2

γ3

γ′3

β2

β′2

γ′21

γ21

(26)

Next, we apply the following sequence of manipulations to obtain the diagram in (27):435

• Via the multi-sum extension Lemma, there exists a D0-morphism�� ♦ between the multi-sum objects� and436

♦.437

• Via the complex decomposition property, there exist squares γ2, γ′2, γ′1 and γ1 and a globular isomorphism τ21438

such that γ2 �h γ1 = τ21 �v γ21 and γ′2 �h γ
′
1 = γ′21 �v τ

−1
21 .439

· · · · · ·

□ ◦

· • ·

♢

· ■ ·

△

− ◁ ⊙ ▷

· :: ▲ ·

r3 r2 r1

⋆

r′3

⋆

r′′1r′′2r′′3

⋆

r′2

⋆

r̃2α3

α′′1

α′3

β1

α2

α′2

γ′2

γ3

γ′3

β2

γ2 γ1

γ′1

(27)

In order to complete the proof, we proceed as follows (yielding the diagram in (28)):440

• Take a pullback to obtain the span ·� ⊕� �. SinceD0 has pullbacks, the span consists of twoD0-morphisms.441

By the universal property of pullbacks, there exists a morphism ·� ⊕ (marked as a dashed arrow in (28)), which442

again since D0 has pullbacks is also a D0-morphism.443
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• Applying the pullback lifting lemma for strong multi-opfibrations to the pullback square over the object ⊕, we444

obtain squares δ2, δ′2 and ε2 such that α2 = ε2 �v δ2 and γ2 �v β2 = δ′2 �v δ2. The lemma also entails that the445

square under the object marked ⊗ is a pullback. By the universal property of pullbacks, this entails the existence446

of a morphism �→ ⊗, which is a D0-morphism since D0 has pullbacks.447

• By the universal property of residues, since α2 = ε2 �v δ2, and since the residue � � � marked ? (which448

forms the second factor of of T (α2)) factors through ⊗� � (i.e., through T (ε2)), we find that the square ε2 is449

an isomorphism in D1. Thus in particular the morphism ⊕� · marked † in (28), i.e., S (ε2), is an isomorphism.450

• The latter fact entails that by applying the universal property of multi-sums to the cospan dom(r′2) � ⊕ �451

�� codom(r1), there exists a D0-morphism 4� � (marked †† in (28)).452

• By the universal property of residues, since α′′1 = γ′1�v (γ1�vβ1), and since the residue 4� Nmarked ? (which453

forms the second factor of of T (α1)) factors through � � N (i.e., through T (γ′1)), we find that the square γ′1454

is an isomorphism in D1, and thus in particular T (γ′1) is an isomorphism in D0; thus by repeated application455

of the lifting property of isomorphisms for strong multi-opfibrations, the squares γ′2 and γ′3 are found to be456

isomorphisms in D1. This concludes the proof of the⇐ part of the theorem.457

· · · · · ·

□ ◦

· • ·

♢

⊗ ⊕

· ■ ·

△

− ◁ ⊙ ▷

· :: ▲ ·

r3 r2 r1

⋆

r′3

⋆

r′′1r′′2r′′3

⋆

r′2

⋆

†

††

α3

α′′1

α′3

β1

α2

α′2

γ′2

γ3

γ′3

β2

γ2

γ1

γ′1

δ2

δ′2

ε2
(28)

�458

This proof of the associativity theorem in a crDC provides a strong indication that modularizing the categorical459

structures in this form renders vastly complex mathematical developments feasible and, at the same time, provides460

some deep structural insights. Most importantly, our characterization of a given categorical rewriting semantics to461

qualify as being compositional is based exclusively on verifying properties of just the squares of a double category462

(which model direct derivations) and on the existence of multi-sums, i.e., only on the very definition of the rewriting463

semantics being formalized as a compositional rewriting double category.464

4. Examples of fibrational structures relevant for rewriting theory465

In this section, we demonstrate that a number of constructions of commutative squares that form the building466

blocks of standard categorical rewriting semantics in fact carry fibrational structures; this will eventually allow us to467
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instantiate our general compositional rewriting theory to these standard semantics. After a quick review of the notion468

of stable system of monics, we define various categories of pullback, pushout or final pullback complement squares469

where composition is defined by either horizontal or vertical pasting. In the remainder of the section, we then analyze470

the fibrational structures on the four natural boundary functors (domain, codomain, target and source) from these471

categories of squares.472

4.1. Categories of squares473

A system of monicsM in a category C is a collection of monomorphisms that includes all isomorphisms and is
474

stable under composition. Throughout the remainder of this paper, we will reserve the notation� for monos inM,
475

and ↪→ for generic monomorphisms. We say that C has pullbacks alongM-morphisms if pullbacks of cospans of the
476

form A→ B� B′ always exist in C.477

For a category C, M is a stable system of monics [44] if C has pullbacks alongM-morphisms andM is stable
478

under pullback: if A ← m′ − A′ → B′ is a pullback of A → B ← m�B′ then m′ ∈ M. The morphisms in m ∈ M479

satisfy the following decomposition property ofM-morphisms [44]: if m = m′ ◦ f where m′ is a mono then f ∈ M.
480

481

For later convenience, we introduce the following auxiliary definitions, which permit us to succinctly express482

whether or not a given category admits pullbacks, pushouts or final pullback complements for generic input data, or483

only when the morphisms on the input are of a certain nature relative to a stable system of monics:484

Definition 4.1. Let C be a category.485

(i) C has pullbacks if C admits pullbacks of all cospans.
486

(ii) C has pushouts if C admits pushouts of all spans.
487

(iii) C has final pullback complements (FPCs) if C admits FPCs along arbitrary sequences of composable morphisms
488

A→ B→ B′.489

If C has a stable system of monicsM, we define also the following variants and additional concepts:490

(i’) C has pushouts alongM-morphisms if pushouts of spans of the form A← B� B′ exist in C.
491

(ii’) C has final pullback complements (FPCs) alongM-morphisms iff FPCs of sequences of composable morphisms
492

of the form A→ B� B′ exist in C.493

(iii’) M-morphisms are stable under pushout in C if whenever A′ → B′ ← β − B is a pushout of a span of the form
494

A′ ← α�A→ B, then β ∈ M.495

(iv’) pushouts alongM-morphisms are stable underM-pullbacks7 in C if for all diagrams of the form below,
496

A B

A′ B′

C D

C′ D′

g

γ′

g′

δ′
PO

γ δ

α′ β′

α

f ′

f

PB

PB
β

PB

PB

(29)

where the bottom square is a pushout along an M-morphism, and the vertical squares are pullbacks along497

M-morphisms, then the top square is a pushout.498

7Throughout this paper, in order to avoid confusion, we follow the convention that “stable under pullback” exclusively refers to the stability
of morphisms when considering individual pullback squares (as in the definition of M-morphisms stable under pullback), while “stable under
pullbacks” always refers to stability properties that involve commutative cubes with vertical squares being pullbacks (as in the definition of stability
ofM-pushouts underM-pullbacks).
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A B

A A B B

A′ A′ B′ B′

A′ B′

f

n

f ′

m
T

n
S

m

dom

codom

f ′

f

T

Figure 3: Boundary functors.

Definition 4.2. Let C be a category with a stable system of monics M. Let T be a type of commutative squares,499

for which we consider PB (pullbacks), PO (pushouts), or FPC (final pullback complements). Then we define the500

following categories:501

(i) Th(C,M) has as objects the morphisms ofM, and as morphisms commutative squares of type T along arbitrary502

morphisms of C, and a morphism composition induced by horizontal pasting of squares of type T.503

(ii) Tv(C,M) has as objects the morphisms of C, and as morphisms commutative squares of type T along M-504

morphisms, and a morphism composition induced by vertical pasting of squares of type T.505

In Figure 3, we depict a square of type T (with M-morphism drawn vertically) and the action of four “boundary506

functors” that naturally arise from the above definitions:507

(a) The domain functor dom : Th(C,M)→ C and the codomain functor codom : Th(C,M)→ C.
508

(b) The source functor S : Tv(C,M) → C|M and the target functor codom : Tv(C,M) → C|M, where C|M has the
509

same objects as C, and as morphisms those ofM.510

The following result, whose proof can be found in Appendix B.2, establishes that these categories are indeed511

well-defined.512

Lemma 4.3. The categories Th(C,M) and Tv(C,M) for T ∈ {PB,PO,FPC} as introduced in Definition 4.2 are513

well-defined, i.e., their composition operations are well-typed, associative and unital.514

4.2. Fibrational properties of the domain and codomain functors515

We now begin to investigate a number of interesting fibrational structures carried by the boundary functors of the516

various categories of squares, considering first the case of the domain functor.517

Theorem 4.4. Let C be a category with a stable system of monicsM, and with the following additional properties:518

1. C has pullbacks.519

2. C has pushouts and final pullback complements (FPCs) alongM-morphisms.520

3. Pushouts alongM-morphisms are stable under pullbacks.
521

4. Pushouts alongM-morphisms are pullbacks.
522
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Then the domain functor dom : PBh(C,M) → C from the category of pullback squares along M-morphisms and523

under horizontal composition to the underlying category C satisfies the following properties:524

(i) dom : PBh(C,M)→ C is a Grothendieck fibration, with the Cartesian liftings given by FPCs.
525

(ii) dom : PBh(C,M)→ C is a Grothendieck opfibration, with the op-Cartesian liftings given by pushouts.
526

(iii) dom : PBh(C,M)→ C satisfies a Beck-Chevalley condition (BCC): adopting the notation m − ( f , f ′)→ n for
527

morphisms in PBh(C,M) (cf. Figure 3), consider a commutative square in PBh(C,M) that is mapped by dom528

into a pullback square in C:529

m n A B

o p C D

( f , f ′)

(h.h′)

(i,i′)

(g,g′) dom h

i

f

gPB (30)

Then the following two equivalent conditions hold:530

• (BCC-1): ( f , f ′) is op-Cartesian if (i, i′) is op-Cartesian and (g, g′) and (h, h′) are Cartesian.
531

• (BCC-2): (g, g′) is Cartesian if (h, h′) is Cartesian and ( f , f ′) and (i, i′) are op-Cartesian.
532

Proof. As the first two parts of the proof will demonstrate, the dom functor is in a certain sense a prototypical example533

of a Grothendieck bifibration, in that the fibration and opfibration structures arise directly from universal properties of534

FPCs and pushouts, respectively.535

Ad (i) — dom is a Grothendieck fibration: this statement follows by specializing the defining equation (4) to the536

case of the dom functor. The existence of Cartesian liftings is guaranteed since the category C by assumption has537

FPCs alongM-morphisms, while the requisite universal property that qualifies the liftings as being Cartesian (i.e., the538

second line of (4)) is satisfied via the universal property of FPCs.539

Ad (ii) — dom is a Grothendieck opfibration: specializing the defining equation (5) to the case of the dom functor,540

we find that the op-Cartesian liftings exist in the form of pushouts (which are guaranteed to exist since C by assumption541

has pushouts along M-morphisms), while the universal property which qualifies these liftings as op-Cartesian (i.e.,542

the second line of (5)) is satisfied via pullback-pushout decomposition.543

Ad (iii) — Beck-Chevalley condition (BCC): The proof can be found in Appendix B.2. �544

As the above results indicate, the domain functor dom : PBh(C,M) → C is (for suitable categories C) a545

Grothendieck bifibration, i.e., simultaneously a Grothendieck fibration and opfibration. An interesting variant of546

this type of result—which moreover has important computational meaning in its own right—arises when considering547

the domain functors from the categories POh and FPCh instead, which permits to state fibrational properties under548

considerably weaker assumptions on the underlying categories C:549

Theorem 4.5. Let C be a category with a stable system of monicsM.550

(i) If C has pushouts alongM-morphisms, the functor dom : POh(C,M)→ C is a Grothendieck opfibration.551

(ii) If C has FPCs alongM-morphisms, the functor dom : FPCh(C,M)→ C is a Grothendieck fibration.552

Proof. It is straightforward to demonstrate that, for case (i), pushouts alongM-morphisms provide the op-Cartesian553

liftings (as was also the case for dom : PBh(C,M) → C), while the op-Cartesianity properties of the liftings are554

realized in the form of pushout-pushout decomposition. For case (ii), FPCs alongM-morphisms provide the Cartesian555

liftings, while the Cartesianity properties of liftings are realized in the form of horizontal FPC decomposition. �556

Let us briefly compare the results of Theorem 4.4 and Theorem 4.5. The op-Cartesianity of op-Cartesian liftings557

for the functor dom : PBh(C,M) → C relies on pullback-pushout decomposition while, for dom : POh(C,M) → C,558

pushout-pushout decomposition, valid in any category, is all that is required. On the other hand, the Cartesianity559
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of Cartesian liftings for the functor dom : PBh(C,M) → C relies on the universal property of FPCs while it is560

a consequence of horizontal FPC decomposition for dom : FPCh(C,M) → C. Since the requisite properties of561

FPCs hold in any category that admits FPCs, it appears interesting to note that the strong requirements necessary for562

dom : PBh(C,M) → C to carry bifibrational structures appear to be caused mainly by the Grothendieck opfibration563

part of the structure.564

Remark 4.6. In contrast to the domain functors discussed in the previous section, only the codomain functor codom :565

PBh(C,M) → C appears to admit some fibrational structure (see below), while codom : POh(C,M) → C and566

codom : FPCh(C,M)→ C fail to do so. Since none of these three codomain functors play a role in our constructions,567

this causes no technical problems, but we found it interesting to mention the following result here for symmetry568

nonetheless.569

Theorem 4.7. Let C be a category with a stable system of monics. Then codom : PBh(C,M)→ C is a Grothendieck570

fibration.571

Proof. Cartesian liftings are provided by taking pullbacks, while the Cartesianity of the liftings amounts to pullback-572

pullback decomposition. �573

4.3. Fibrational properties of the target functors574

As we show in this section, the target functors will have rather different fibrational structures:575

• T : PBv(C,M)→ C|M carries no fibrational structures.576

• T : FPCv(C,M)→ C|M carries a Grothendieck opfibration structure.577

• T : POv(C,M)→ C|M carries a strong multi-opfibration structure.578

We begin with the following theorem, that deals with the case of T : FPCv(C,M) → C|M, whose full proof can579

be found in Appendix B.2.580

Theorem 4.8. Let C be a category with a stable system of monicsM and that has FPCs alongM-morphisms. Then
581

the target functor T : FPCv(C,M)→ C|M is a Grothendieck opfibration.582

It is interesting to note that the proof strategy for op-Cartesianity (cf. Appendix B.2) would fail if we were to work583

in the category PBv(C,M) rather than in FPCv(C,M), since the existence of the isomorphism A′ − η → P and the584

uniqueness of A′ − α′ → A′′ relied upon the universal property of FPCs (i.e., both of the FPC in the front and in the585

back of the diagram). Indeed, if we were to consider the analogue of the diagrams in (B.18) in PBv(C,M), i.e., where586

the front vertical square would be merely a pullback, taking a pullback as indicated would only yield that the squares587

under and over P − p′ → B′ are pullbacks. By the universal property of FPCs (of the back vertical FPC square, i.e.,588

the one of the lifting), we could only conclude that there exists a unique mediating arrow P − η′ → A′, but this arrow589

will in general not be an isomorphism, hence we can indeed not prove op-Cartesianity of the liftings in PBv(C,M).590

Let us now turn our attention to the remaining variant of the target functor, i.e., T : POv(C,M) → C|M. This591

yields a first example of a multi-opfibration. In order to formulate this result, we require the following multi-universal592

notion:593

Definition 4.9. Let C be a category with a stable system of monicsM. For all composable sequences of morphisms594

of the form A − f → B�β→ B′ (i.e., with β ∈ M), we define the following class:595

P( f , β) := {(A�α→ A′, A′ − f ′ → B′) ∈ mor(C) ×mor(C) | α ∈ M ∧ ( f ′, β) = PO(α, f )} . (31)

More explicitly, P( f , β) consists of all composable sequences of morphisms A�α → A′ − f ′ → B′ such that there596

exists a pushout square in C whose boundary is given by (α, f ′) and ( f , β). We refer to P( f , β) as the (M-) multi-initial
597
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pushout complement (mIPC) of ( f , β) if the class satisfies the following universal property:
598

∀

A B

B′

A′′ B′′

f

β

β′

α′′

f ′′

β′′PO :∃(α, f ′) ∈ P( f , β) : ∃!α′ ∈ M :

A B

A′ B′

A′′ B′′

f

βα

α′

f ′

f ′′

β′

α′′ β′′PO

PO

PO

:

∀

A B

C′ B′

A′′ B′′

f

βγ

γ′

g′

f ′′

β′

α′′ β′′

PO

PO

: ∃! A′ − ϕ→ C′ ∈ iso(C) : γ = ϕ ◦ α ∧ α′ = γ′ ◦ ϕ

(32)

We say that C has has multi-initial pushout complements (mIPCs) alongM-morphisms if C has an mIPC for every
599

composable sequence of morphisms of the form A − f → B�β→ B′.600

Remark 4.10. It is worthwhile pointing out that just as for ordinary (“non-multi-”) pushout complements, a multi-601

IPC for a given composable sequence of morphisms may be an empty set. For example, in Graph, the category of602

directed multigraphs , the multi-IPC of the sequence ∅ � • → •→−◦ is empty, a well-known phenomenon in the603

graph rewriting literature, interpreted as the impossibility to apply a vertex-deletion operation in DPO-semantics to a604

vertex with incident edges (i.e., since deletion of a vertex with incident edges would leave “dangling” edges).605

The following lemma establishes sufficient conditions to guarantee that C has mIPCs along M-morphisms; the606

proof is given in Appendix B.2.607

Lemma 4.11. Let C be a category with a stable system of monics M. If pushouts along M-morphisms are stable608

underM-pullbacks, and if pushouts alongM-morphisms are pullbacks, then C has multi-initial pushout complements
609

(mIPCs) alongM-morphisms.610

After this somewhat lengthy excursion, a direct comparison of the notion of strong multi-opfibration (Definition 6)611

and of multi-initial pushout complement yields the following important result:612

Theorem 4.12. Let C be a category with a stable system of monicsM. If pushouts alongM-morphisms are stable613

underM-pullbacks in C, and if pushouts alongM-morphisms are pullbacks, then the target functor T : POv(C,M)→
614

C|M is a strong multi-opfibration.615

Proof. The multi-op-Cartesian liftings are provided by multi-initial pushout complements (mIPCs), whose existence616

and uniqueness up to isomorphism are guaranteed under the stated assumptions according to Lemma 4.11. �617

4.4. Fibrational properties of the source functors618

Finally, let us investigate the fibrational structures of the source functors. This gives rise to the following results:619

• S : PBv(C,M)→ C|M carries no fibrational structures.620

• S : POv(C,M)→ C|M carries a Grothendieck opfibration structure.621

• S : FPCv(C,M)→ C|M carries a residual multi-opfibration structure.622
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Theorem 4.13. Let C be a category with a stable system of monicsM, that has pushouts alongM-morphisms, and623

such thatM-morphisms are stable under pushout. Then the source functor S : POv(C,M)→ C|M is a Grothendieck
624

opfibration, with the op-Cartesian liftings provided by pushouts.625

Proof. It suffices to instantiate the definition of Grothendieck opfibration to the case at hand:626

∀
A B

A′

f

α : ∃
A B

A′ B′

f

α α

f ′

PO : ∀

A B

A′ B′

A′′ B′′

f

α α

f ′

α′

f ′′

β′′α′′

PO
PO

:

A B

A′ B′

A′′ B′′

f

α α

f ′

α′

f ′′

β′′α′′

PO

∃! β′

PO

PO

(33)

Here, the existence of op-Cartesian liftings is provided by the assumption that C has pushouts alongM-morphisms,627

while the op-Cartesianity of the liftings follows from the universal property of pushouts (yielding the existence of a628

unique morphism B′ − β′ → B′′), pushout-pushout decomposition (which ensures the bottom square in the rightmost629

diagram in (33) is a pushout), and finally from the assumption thatM-morphisms are stable under pushout (ensuring630

that β′ ∈ M, so that the pushout square over it indeed qualifies as a morphism in POv(C,M)). �631

It is worthwhile considering whether the above proof strategy for the Grothendieck opfibration structure of S :632

POv(C,M) → C|M could be adapted to the case of the source functor S : PBv(C,M) → C|M. However, even under633

the additional assumption that pushouts alongM-morphisms are pullbacks, we could not prove that β′ ∈ M for the634

analogue of the last diagram in (33) where the outer square is merely a pullback (this was true for (33), because here635

we could rely upon the assumed stability ofM-morphisms under pushout). Nevertheless, it is interesting to observe636

that S : PBv(C|M,M) → C|M (i.e., restricting to pullback squares where all morphisms are in M) does have the637

structure of a Grothendieck opfibration, with the op-Cartesian liftings given by pushouts, and op-Cartesianity ensured638

if the pullback-pushout decomposition lemma holds (which requires certain additional assumptions on C).639

Finally, let us consider the case of the source functor S : FPCv(C,M) → C|M from the category of FPCs along640

M-morphisms with vertical pasting. This case requires the introduction of a novel universal construction, that of641

M-final pullback complement pushout augmentation. Before giving the definition, we first quote some prerequisite642

standard concepts from category theory pertaining to factorization structures on morphisms, which will be used in643

this paper for instance in the form of epi-M-factorizations, but also to demonstrate a certain factorization structure on644

FPC squares (seen as morphisms in FPCv(C,M)).645

Definition 4.14 ([45], Def. 14.1). For a category C, let E and M be classes of morphisms. By convention, in com-646

mutative diagrams, let morphisms in E be depicted as �, and morphisms in M by �. Then (E,M) is called a647

factorization structure for morphisms in C, and C is called (E,M)-structured iff
648

(i) both E and M are closed under composition with isomorphisms,
649

(ii) C has (E,M)-factorizations of morphisms (i.e., for every morphism f in C, there exist m ∈ M and e ∈ E such
650

that f = m ◦ e),651

(iii) C has the unique (E,M)-diagonalization property:
652

∀
A B

C D

e

gf

m

:

A B

C D

e

gf

m

∃! d (34)

In words: for all commutative squares as in (34) above, where e ∈ E and m ∈ M, there exists a unique morphism653

d (referred to as the diagonal) such that f = d ◦ e and g = m ◦ d.
654
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Proposition 4.15 ([45], Prop. 14.4 and 14.6). Let C be a category that is (E,M)-structured. Then the following655

properties hold:656

(i) E ∩ M = iso(C).
657

(ii) the classes E and M are both closed under composition.
658

(iii) (E,M)-factorizations are essentially unique:
659

(a) If e1◦m1 = e2◦m2 (for m1,m2 ∈ M and e1, e2 ∈ E), then there exists an isomorphism h such that e2 = h◦e1660

and m1 = m2 ◦ h.661

(b) If f = e ◦m (for e ∈ E and m ∈ M), and if e′ = h ◦ e and m′ = m ◦ h for an isomorphism h, then (e′,m′) is662

also an (E,M)-factorization of f .663

Definition 4.16. Let C be a category with a stable system of monicsM, and such that8 C is (E,M)-structured. Given664

a pushout square along anM-morphism as in back of the diagram below,665

A B

A B

A′ B′

C E

f

α β

f ′

γ e

g

γ◦α e◦β

f

FPC

PO

PB (35)

we define anM-final pullback complement pushout augmentation (FPA) as a triple of morphisms (γ, g, e) such that
666

(i) γ ∈ M, e ∈ E, e ◦ β ∈ M, and g ◦ γ = e ◦ f ′,667

(ii) (γ ◦ α, g) is an FPC of ( f , e ◦ β), and668

(iii) (idB, β) is a pullback of (e ◦ β, e).669

We denote the class of all FPAs of a given pushout square ( f , β, α, f ′) by FPA( f , β, α, f ′).670

Remark 4.17. It appears worthwhile to note that for a diagram as in (35), since the left vertical square is a pullback671

(given that γ is inM and thus a monomorphism), and since the front vertical square is an FPC and thus a pullback,672

by pullback-pullback composition the composite of the right and back vertical squares is a pullback; therefore, we673

find that the morphism γ must coincide with the unique morphism from A′ to C that exists by the universal property674

of FPCs. The subtlety in the definition of FPAs then lies in the nature of γ as being inM: supposing for a moment675

that γ is a generic morphism, if the pushout square in the back is known to be a pullback (which will be the case in676

all categories of interest), then the composite of the right and back vertical is again a pullback, thus γ again has to677

coincide with the unique morphism that exists by the universal property of FPCs; however, we would not be able to678

conclude from this set of assumptions that γ must be inM, hence this is indeed found to be a non-trivial part of our679

set of assumptions.680

Throughout this paper, we will exclusively be interested in situations where the definition above may be slightly681

simplified:682

Lemma 4.18. Let C be a category with a stable system of monicsM, and such that C is (E,M)-structured. If pushouts683

alongM-morphisms are stable underM-pullbacks in C, condition (iii) in Definition 4.16 is automatically satisfied,684

i.e., (idB, β) is a pullback of (e ◦ β, e) in the notations of (35).685

8Here and in the following, it is important to emphasize that we do not require any particular properties of the class of morphisms E other than
that it is a class such that C is (E,M)-structured. While in many applications of interest E will coincide with the class of epimorphisms of C or a
subclass thereof, in some cases E will not even be a class of epimorphisms [8].
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Proof. The proof follows by invoking pullback-pushout decomposition (which holds due to the assumption that686

pushouts along M-morphisms are stable under M-pullbacks in C) to the commutative diagram in (35): since the687

front and left vertical squares compose into a pullback, the vertical morphisms are inM, and since the back vertical688

square is a pushout along anM-morphism, the right vertical square is a pullback. �689

The concept of FPC-pushout-augmentations (FPAs) introduced above gives rise to an interesting factorization690

system on FPCs as the following theorem explains; its proof is in Appendix B.2.691

Theorem 4.19. Let C be a category with a stable system of monicsM, that is (E,M)-structured, that has pushouts692

and FPCs along M-morphisms, such that M-morphisms are stable under pushout, and such that pushouts along693

M-morphisms are stable underM-pullbacks. Then the category FPCv(C,M) is (auto-augmented, inert)-structured.
694

Here, the class of auto-augmented FPCs is defined as
695

A B

A′ B′

f

βα

f ′

FPC ∈ mor(FPCv(C,M))|auto−augmented :⇔ ∃

A B

P

A′ B′

f

βα

f ′

p

η

e

PO

(36)

In words: an FPC square along an M-morphism (seen as a morphism in FPCv(C,M) is auto-augmented iff when696

taking a pushout of the span within the FPC, the mediating morphism into the cospan object of the FPC is a morphism697

in E.9 Moreover, the class of inert FPCs is defined as
698

mor(FPCv(C,M))|inert :=


A B

A′ B′

α

f

β

f ′

FPC

∣∣∣∣∣∣∣∣∣∣∣∣α ∈ E ∩M = iso(C)

 (37)

We refer the interested readers to Example 5.29 of Section 5.3.4 for an illustration of the practical meaning of the699

(auto-augmented, inert) factorization of FPCs, for the case of directed simple graphs, where it will be demonstrated700

that, in a certain sense, the factorization provides a static analysis of the classes of cloning with implicit deletion that701

can be modeled by FPCs.702

Besides its quintessential role in factorizations of FPCs, the concept of FPC-pushout-augmentations (FPAs) is also703

crucial for the fibrational structure of the source functor S : FPCv(C,M)→ C|M as the following theorem shows. Its704

proof can be found in Appendix B.2.705

Theorem 4.20. Let C be a category with a stable system of monicsM, that is (E,M)-structured, that has pullbacks,706

pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts707

alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)→ C|M is a residual multi-opfibration.
708

Let us finally note here that, in all of our applications, we will only consider base categories which are finitary, so709

that one may indeed provide algorithms for the various universal constructions that yield finite sets of solutions up to710

isomorphisms.711

5. Examples of categories suitable for defining categorical constructions with fibrational properties712

This section is structured into two parts: in Sections 5.1 and 5.2, we present two classes of categories that may713

ultimately serve as a basis for defining compositional rewriting theories (cf. Section 6), i.e., categories with adhesivity714

properties and quasi-topoi, respectively; and in Section 5.3, we demonstrate that these classes of categories admit715

certain key categorical constructions of with fibrational properties.716

9Note that since we admit arbitrary morphisms of C for the horizontal morphisms, the mediating morphism would in general be a morphism
with a non-trivial E-M-factorization, hence for this morphism to be an cE-morphism is indeed a non-trivial requirement.
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5.1. Categories with adhesivity properties717

Starting in the early 2000s, the seminal work of Lack and Sobocinski [4, 5, 7] introducing adhesive and quasi-718

adhesive categories, which was later generalized by Ehrig et al.[3, 46, 47] to adhesive HLR and weak adhesive HLR719

categories and their variants, constituted a significant breakthrough in formalizing and standardizing the theory of720

Double-Pushout (DPO) rewriting. In this section, we will quote the salient definitions as well as key results from this721

research, with the purpose of providing a curated list of categories of practical interest that carry one of the variants of722

adhesivity properties mentioned above. We refer the interested readers to [3, 47] (cf. also [18]) for further background723

materials.724

In order to formulate the various notions of adhesivity, we require the following definitions:725

Definition 5.1 (Notions of van Kampen (VK) squares). Let C be a category. Then a pushout square is a van Kam-
726

pen (VK) square iff for any commutative diagram as in (38) below, where the bottom square highlighted in blue is the727

aforementioned pushout square, and where the back squares are pullbacks, the following conditions hold:728

• (VK-a) If the front and the right squares are pullbacks, then the top square is a pushout.
729

• (VK-b) If the top square is a pushout, then the front and the right squares are pullbacks.
730

A B

A′ B′

C D

C′ D′

g

γ′

g′

δ′
PO

γ δ

α′ β′

α

f ′

f

PB

PB
β

(38)

If C has a stable system of monicsM, we define the following weakenings of the notion of VK squares:731

• horizontal weak VK squares are defined as pushouts whose morphism are all inM, and that are VK squares.
732

• vertical weak VK squares are defined as pushouts which satisfy the defining properties of VK squares modulo
733

the constraint that all vertical morphisms in (38) are inM (i.e., when α′, β′, γ, δ ∈ M).734

Definition 5.2. We define the following variants of adhesivity properties for categories:
735

1. Let A be a category. Then A is said to be an adhesive category [4] iff it has the following properties:
736

(A-i) A has pullbacks.737

(A-ii) A has pushouts along monomorphisms.738

(A-iii) Pushouts along monomorphisms in A are van Kampen squares.
739

2. Let Q be a category, and let rm(Q) denote the class of regular monomorphisms of Q. Then Q is said to be740

quasi-adhesive [5] (sometimes also referred to as rm-adhesive [6]) iff Q satisfies the following properties:
741

(Q-i) A has pullbacks.742

(Q-ii) A has pushouts along regular monomorphisms.743

(Q-iii) Pushouts along regular monomorphisms in A are van Kampen squares.
744

3. Let L be a category that admits a stable system of monics M. Then L is said to be an adhesive high-level
745

replacement (HLR) category [3] iff L satisfies the following properties:746

(L-i) L has pullbacks alongM-morphisms.747
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(L-ii) L has pushouts alongM-morphisms, andM-morphisms are stable under pushout.748

(L-iii) Pushouts alongM-morphisms in L are van Kampen squares.
749

4. Let H be a category that admits a stable system of monicsM. Then H is said to be a horizontal weak adhesive
750

HLR category [47] iff H satisfies the following properties:751

(H-i) H has pullbacks alongM-morphisms.752

(H-ii) H has pushouts alongM-morphisms, andM-morphisms are stable under pushout.753

(H-iii) H has horizontal weak VK squares.
754

5. Let V be a category that admits a stable system of monicsM. Then V is said to be a vertical weak adhesive HLR
755

category [47] (often alternatively referred to as anM-adhesive category) iff V satisfies the following properties:756

(V-i) V has pullbacks alongM-morphisms.
757

(V-ii) V has pushouts alongM-morphisms, andM-morphisms are stable under pushout.
758

(V-iii) Pushouts alongM-morphisms in V are vertical weak van Kampen squares.
759

6. Let W be a category that admits a stable system of monics M. Then W is said to be a weak adhesive HLR
760

category [47] iff W has the properties of both a horizontal and a vertical weak adhesive HLR category.761

Finally, since in many of the proofs that rely upon the above adhesivity properties one in fact needs different sub-762

statements of the axioms (X-iii) (i.e., of the VK-type axioms), we will use the notation (X-iii-a) for the part of axiom
763

(X-iii) referring to stability under pullbacks, and to (X-iii-b) for the variant of the statement of axiom (VK-b) in the
764

definition of van Kampen squares.765

Remark 5.3. The above list of definitions of categories with adhesivity properties might appear to have a certain766

“asymmetry” in that for adhesive and for quasi-adhesive categories, stability of the relevant class of monics under767

pushout is not explicitly stated. However, one may prove [5, Prop. 6.4] that this stability in fact follows from the other768

axioms for these kinds of adhesivity.769

The motivation of the seemingly peculiarly long list of adhesivity properties for categories is indeed given by the770

intricate nature of requirements on categories to admit various notions of rewriting semantics (cf. Section 6). It should771

also be noted that an oddity in this line of research is [47] that to date only a single example of a category is known772

that is a vertical, but not a horizontal weak adhesive HLR category (namely the category lSet of list sets as introduced773

by Heindel in [48]), while all other known examples of categories with weak forms of adhesivity properties are indeed774

weak adhesive HLR categories. This is illustrated in Table 2, which is an adaptation of a similar table presented775

in [18], and which lists both examples of categories with adhesivity properties as well as examples of quasi-topoi (cf.776

Section 5.2).777

Before presenting some examples of categories with adhesivity properties in further detail, it is worthwhile stat-778

ing the following sufficient condition for when vertical implies horizontal weak HLR adhesivity, which requires the779

following well-known result:780

Theorem 5.4 ([3], Thm. 4.26(1)). Let C be a category with one of the variants of adhesivity properties for some781

stable system of monicsM (which for the case of C being an adhesive category isM = mono(C)). Then pushouts
782

alongM-morphisms are pullbacks in all cases but one, i.e., when C is a horizontal weak adhesive HLR category, in783

which case pushouts of spans ofM-morphisms are pullbacks.
784

Lemma 5.5. Let V be a vertical weak adhesive HLR category with respect to a stable system of monicsM. Then a785

sufficient condition for V to also carry the structure of a horizontal weak adhesive HLR category (and thus overall of786

a weak adhesive HLR category) is that pushouts alongM-morphisms are stable under pullbacks.787
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Proof. Since by assumption pushouts alongM-morphisms are stable under pullbacks, it remains to prove that in the788

diagram below, where the top and bottom squares are pushouts of spans ofM-morphisms, and where the left and back789

squares are pullbacks, the front and right squares are pullbacks:790

A′ C′

B′ D′

A C

B D

m′

f ′

n′

g′

b d

a c

m

g

f

n

PO

PO

PB

PB

(39)

Since yet again by assumption pushouts alongM-morphisms are stable under pullbacks, and since in a vertical weak791

adhesive HLR category, pushouts alongM-morphisms are pullbacks, the claim follows by invoking pullback-pushout792

decomposition. �793

The paradigmatic example of an adhesive category is the following one:794

Definition 5.6. The category Graph of directed multigraphs is defined as the presheaf category Graph := (Gop →
795

Set), where G := (· ⇒ ?) is a category with two objects and two morphisms [4]. Objects G = (VG, EG, sG, tG) of796

Graph are given by a set of vertices VG, a set of directed edges EG and the source and target functions sG, tG : EG →797

VG. Morphisms of Graph between G,H ∈ obj(Graph) are of the form ϕ = (ϕV , ϕE), with ϕV : VG → VH and798

ϕE : EG → EH such that ϕV ◦ sG = sH ◦ ϕE and ϕV ◦ tG = tH ◦ ϕE .799

Theorem 5.7. The category Graph is an adhesive category and (by definition) a presheaf topos [4] (and thus in800

particular a quasi-topos), with strict-initial object ∅ = (∅, ∅, ∅ → ∅, ∅ → ∅) the empty graph, and with the following801

additional properties:802

• Morphisms are in the classes mono(Graph)/epi(Graph)/iso(Graph) if they are component-wise injective/surjective/bijective803

functions, respectively. All monos in Graph are regular, and Graph therefore possesses an epi-mono-factorization.804

• For each G ∈ obj(Graph) [30, Sec. 2.1], ηG : G → T (G) is defined as the embedding of G into T (G), where805

T (G) is defined as the graph with vertex set V ′G := VG ] {?} and edge set EG ] E′G. Here, E′G contains one806

directed edge en,p : vn → vp for each pair of vertices (vn, vp) ∈ V ′G × V ′G.807

Many of the examples listed in Table 2 are obtained via the following construction:808

Definition 5.8 ([3], Def. A.41). Let F : A → C and G : B → C be two functors, and let I be an index set. Then the809

comma category ComCat(F,G;I) is defined as a category whose objects are of the form
810

obj(ComCat(F,G;I)) := {(A, B, op = {opi}i∈I) | ∀i ∈ I : opi ∈ mor(F(A),G(B))} , (40)

and whose morphisms f : (A, B; op)→ (A′, B′; op′) consist of pairs of morphisms fA : A→ A′ and fB : B→ B′ such811

that G( fB) ◦ opi = op′i ◦ F( fA) for all i ∈ I.812

The main interest in this definition of comma categories is that they enjoy a number of important properties813

that render them extremely useful for determining whether various datatypes of practical importance have adhesivity814

properties:815

Theorem 5.9. Let ComCat(F,G;I) be a comma category, for F : A → C and G : B → C two functors, and where816

I is an index set.817

(i) Morphisms f = ( fA, fB) in ComCat(F,G;I) are mono-/epi-/isomorphisms iff they are component-wise mono-818

/epi-/isomorphisms, respectively [3, Fact A.43].819
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(ii) If A and B have pushouts and F preserves pushouts, then ComCat(F,G;I) has pushouts, and these are con-820

structed component-wise [3, Fact A.43].821

(iii) If A and B have pullbacks and G preserves pullbacks, then ComCat(F,G;I) has pullbacks, and these are822

constructed component-wise [3, Fact A.43].823

(iv) If (A,M1) and (B,M2) are adhesive HLR categories, F : A → C preserves pushouts along M1-morphisms824

and G : B → C preserves pullbacks, then ComCat(F,G;I) is an adhesive HLR category with respect to the825

stable system of monicsM = (M1 ×M2) ∩mor(ComCat(F,G;I)) [3, Thm. 4.15.4].826

(v) If (A,M1) and (B,M2) are adhesive HLR categories, F : A→ C preserves pushouts alongM1-morphisms and827

G : B→ C preserves pullbacks alongM2-morphisms, then ComCat(F,G;I) is a weak adhesive HLR category828

with respect to the stable system of monicsM = (M1 ×M2) ∩mor(ComCat(F,G;I)) [3, Thm. 4.15.4].829

Generalizing from directed graphs to hypergraphs, it is interesting to note that the various notions of hypergraphs830

yield different notions of adhesivity properties. We present here one of the standard constructions in the literature:831

Definition 5.10. Let HyperGraph denote the category of directed ordered hypergraphs [3, Fact 4.17], defined as the832

comma category (IdSet,�∗; {1, 2}). Here, IdSet denotes the identity functor on the category Set, while �∗ : Set→ Set833

denotes the free monoid functor (which assigns to each set A the free monoid A∗ on A, and to each set morphism834

f : A → B the free monoid morphism f ∗ : A∗ → B∗). More explicitly, an object of HyperGraph is a tuple835

H = (VH , EH , sH , tH), where VH is the set of vertices, EH the set of hyperedges, and where sH , tH : E → V∗ are836

the source and target functions (assigning to each edge an ordered list of source and target vertices). A morphism837

ϕ : H → H′ in HyperGraph is given by a pair of morphisms ϕV : VH → VH′ and ϕE : EH → EH′ such that the838

diagram in (41) below commutes.839

EH

VH V∗H

EH′

VH′ V∗H′ EH

EH′

sH

tH

φE

sH′

φ∗V

t∗H′ φE

□∗

φV

□∗

(41)

Proposition 5.11 ([3], Fact 4.17). The category HyperGraph is an adhesive HLR category with respect to the stable840

system of monicsMHyperGraph given by morphisms ϕ = (ϕV , ϕE) where ϕV and ϕE are both monomorphisms.841

We conclude our brief presentation of examples by mentioning a number of slightly more sophisticated cases.842

Many interesting examples of categories with adhesivity properties may be obtained by using the construction of843

presheaves (cf. e.g. [49, Sec. 5] for a review within the context of categorical rewriting theory). Remarkable examples844

include the category of asynchronous graphs as introduced in [50], which permit to model certain structures in game845

semantics, and various notions of attributed and symbolic graphs as discussed in [49]. Many other examples concern846

comma category constructions, with a number of illustrative examples provided in Table 1. More intricate examples847

still have been developed in the context of so-called hierarchical graphs, which are obtained via comma-categorical848

constructions along various notions of super-power functors, and whose adhesivity properties have been studied in [51,849

52] (see also [53]).850

5.2. Quasi-topoi851

Quasi-topoi have been considered in the context of rewriting theories as a natural generalization of adhesive852

categories in [5]. While several adhesive categories of interest to rewriting are topoi, including in particular the853
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E F(V) × F(V) F(V) V

E′ F(V ′) × F(V ′) F(V ′) V ′

ι ∆ F

φE ∆◦F(φV ) F(φV ) φV

ι′ ∆ F

F Description

IdSet directed multigraphs

�∗
directed “ordered” hypergraphs with multiple
incidences (HyperGraph [3, Fact 4.17] aka PNet [7,
Ex. 7])

M directed “unordered” hypergraphs with multiple
incidences (= PTNets of [3, Fact 4.21])

P directed “unordered” hypergraphs with simple
incidences (= ElemNets of [3, Fact 4.20])

E F(V) V

E′ F(V ′) V ′

F

φE F(φV ) φV

F

ι

ι′

F Description

P(1,2) undirected multigraphs [18]

�∗ undirected “ordered” hypergraphs with multiple
incidences (i.e. lists)

M undirected “unordered” hypergraphs with multiple
incidences

P undirected “unordered” hypergraphs with simple
incidences

Table 1: Collection of examples for categories with adhesivity properties based upon two “schemas” of comma category constructions. Here, we
employ the notations �∗ for the free monoid functor, M (also denoted ⊕∗ in [3]) for the free commutative monoid functor, P for the covariant
powerset functor, and P(1,2) for the restricted version thereof (cf. e.g. [52]).

category Graph of directed multigraphs (cf. Definition 5.6), it is not difficult to find examples of categories equally854

relevant to rewriting theory that fail to be topoi. A notable such example is the category SGraph of directed simple855

graphs (cf. Definition 5.17).856

Let us first recall a number of results from the work of Cockett and Lack [44, 57] on restriction categories. We857

will only need a very small fragment of their theory, namely the definition and existence guarantees for M-partial858

map classifiers, so we will follow mostly [30]. We will in particular not be concerned with the notion ofM-partial859

maps itself.860

Definition 5.12 ([30], Sec. 2.1; compare [57], Sec. 2.1). For a stable system of monics M in a category C, an M-
861

partial map classifier (T, η) is a functor T : C→ C and a natural transformation η : IDC
.−→ T such that862

1. for all X ∈ obj(C), ηX : X → T (X) is inM.863

2. for each span (A
m←− X

f−→ B) with m ∈ M, there exists a unique morphism A
ϕ(m, f )−−−−−→ T (B) such that (m, f ) is a864

pullback of (ϕ(m, f ), ηB).865

Proposition 5.13 ([30], Prop. 6). For every M-partial map classifier (T, η), T preserves pullbacks, and η is Carte-866

sian, i.e., for each X
f−→ Y, (ηx, f ) is a pullback of (T ( f ), ηY ).867

Definition 5.14 ([7], Def. 9). A category C is a quasi-topos iff
868

1. it has finite limits and colimits.869

2. it is locally Cartesian closed.870

3. it has a regular-subobject-classifier.871
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Category

(underlying data type) qu
asi

-to
po

s

ad
he

siv
e

qu
asi

-ad
he

siv
e

ad
he

siv
e HLR

ho
r. w

ea
k ad

h.
HLR

ve
rt.

wea
k ad

h.
HLR

references

Set
(sets)

X X X X X X [5]

Graph

(directed multigraphs)
X X X X X X [5]

HyperGraph

(directed ordered hypergraphs)
X X X X X X [7, Ex. 7]

Sig

(algebraic signatures)
X X X X X X [7, Ex. 6]

Ŝ
(presheaves on category S)

X X X X X X [49, 54]

T̂Σ

(term graphs over a signature Σ)
? X X X X [55]

TripleGraph

(functor category [S3,Graph])
? X X X [3, Fact 4.18]

AGraphΣ

(attributed graphs over signature Σ)
? X X X [3, Thm. 11.11], [8, 49]

SymbGraphD

(symbolic graphs over Σ-algebra D)
? X X X [49], [56, Thm. 2]

uGraph

(undirected multigraphs)
? X X [18]

ElemNets
(elementary Petri nets)

? (!) X X [8]

PTnets
(place/transition nets)

? X X [3, Fact 4.21], [8]

Spec

(algebraic specifications)
X X X [3, Fact 4.24], [7, Ex. 6]

SGraph

(directed simple graphs)
X X X [7, Prop. 17], Corollary 5.15(q-v)

SetF

(coalgebras for F : Set→ Set)
(∗) (†) [7], [52, Thm. 1]

lSets
(list sets)

? X [48]

Table 2: Examples of categories exhibiting various forms of adhesivity properties. The symbol ? indicates when a certain property is (to the best of
our knowledge) not known to hold. Note that for the HLR variants of adhesivity properties, the information not contained in the table is the precise
nature (cf. references provided) of the stable system of monicsM for which the adhesivity properties hold. Moreover, the precise conditions (∗)
and (†) under which the category SetF of F-coalgebras has quasi-topos or adhesivity properties are provided in [7] and [52, Thm. 1], respectively.
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Based upon a variety of different results from the rich literature on quasi-topoi, we will now exhibit that quasi-topoi872

indeed possess all technical properties required in order for non-linear SqPO-rewriting to be well-posed:873

Corollary 5.15. Every quasi-topos C enjoys the following properties:874

(q-i) It has (by definition) a stable system of monicsM = rm(C) (the class of regular monos), which coincides with875

the class of extremal monomorphisms [45, Cor. 28.6], i.e., if m = f ◦ e for m ∈ rm(C) and e ∈ epi(C), then
876

e ∈ iso(C).877

(q-ii) It has (by definition) anM-partial map classifier (T, η).878

(q-iii) It is rm-quasi-adhesive, i.e., it has pushouts along regular monomorphisms, these are stable under pullbacks,
879

and pushouts along regular monomorphisms are pullbacks [6].
880

(q-iv) It is a vertical weak adhesive HLR category (sometimes referred to asM-adhesive category) [48, Lem. 13].881

(q-v) The latter entails according to Lemma 5.5 that every quasi-topos is in fact a weak adhesive HLR category.
882

(q-vi) For all pairs of composable morphisms A
f−→ B and B

m−→ C with m ∈ M, there exists a final pullback-
883

complement (FPC) A
n−→ F

g−→ C, and with n ∈ M ([30, Thm. 1]; cf. Theorem 5.23).884

(q-vii) It possesses an epi-M-factorization [45, Prob. 28.10]: each morphism A
f−→ B factors as f = m ◦ e, with885

morphisms A
e−→ B̄ in epi(C) and B̄

m−→ A inM (uniquely up to isomorphism in B̄).886

(q-viii) It possesses a strict initial object ∅ ∈ obj(C) [58, A1.4], i.e., for every object X ∈ obj(C), there exists a
887

morphism iX : ∅→ X, and if there exists a morphism X → ∅, then X � ∅.888

If in addition the strict initial object ∅ isM-initial, i.e., if for all objects X ∈ obj(C) the unique morphism iX : ∅→ X
889

is in M, then C has disjoint coproducts, i.e., for all X,Y ∈ obj(C), the pushout of the M-span X � ∅ � Y is
890

X � X + Y � Y (cf. [59, Thm. 3.2], which also states that this condition is equivalent to requiring C to be a solid
891

quasi-topos), and the coproduct injections areM-morphisms as well. Finally, if pushouts along regular monos of C892

are van Kampen, C is a rm-adhesive category [6, Def. 1.1].893

Remark 5.16. An interesting (and, as it turns out, highly relevant) curiosity of the above list of properties enjoyed by894

every quasi-topos is that, while quasi-topoi in general fail to be adhesive HLR categories (cf. e.g. [7, 8] for the famous895

and paradigmatic example of SGraph, the category of directed simple graphs), they do satisfy axiom (L-iii-a), i.e.,896

pushouts along regular monomorphisms are stable under pullbacks. Therefore, as we will demonstrate in Section 6,897

(finitary) quasi-topoi are a suitable type of category for all variants of Sesqui-Pushout (SqPO) semantics, while they898

in general do not have sufficient properties to support generic Double-Pushout (DPO) semantics (cf. Table 3).899

The prototypical example of quasi-topoi in rewriting is the following notion of directed simple graphs:900

Definition 5.17. Let SGraph, the category of directed simple graphs10, be defined as the category of binary relations
901

BRel � Set // ∆ [7]. Here, ∆ : Set → Set is the pullback-preserving diagonal functor defined via ∆X := X × X, and902

Set //∆ denotes the full subcategory of the slice category Set/∆ defined via restriction to objects m : X → ∆X that are903

monomorphisms. More explicitly, an object of Set // ∆ is given by S = (V, E, ι), where V is a set of vertices, E is a set904

of directed edges, and where ι : E → V × V is an injective function. A morphism f = ( fV , fE) between objects S and905

S ′ is a pair of functions fV : V → V ′ and fE : E → E′ such that ι′ ◦ fE = ( fV × fV ) ◦ ι (see (43)).906

The category SGraph satisfies the following well-known properties:907

10Some authors prefer to not consider directly the category BRel, but rather define SGraph as some category equivalent to BRel, where simple
graphs are of the form 〈V, E〉 with E ⊆ V × V . This is evidently equivalent to directly considering BRel, whence we chose to not make this
distinction in this paper.
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Theorem 5.18. The category SGraph is not adhesive, but it is a quasi-topos [7], and with the following additional908

properties:909

(S-i) In SGraph [7] (compare [26, Prop. 9]), morphisms f = ( fV , fE) are monic (epic) if fV is monic (epic), while910

isomorphisms satisfy that both fV and fE are bijective. Regular monomorphisms in SGraph are those for which911

(ι, fE) is a pullback of (∆( fV ), ι′) [7, Lem. 14(ii)], i.e., a monomorphism is regular iff it is edge-reflecting. As is912

the case for any quasi-topos, SGraph possesses an epi-regular mono-factorization.913

(S-ii) The regular mono-partial map classifier (T, η) of SGraph is defined as follows [45, Ex. 28.2(3)]: for every914

object S = (V, E, ι) ∈ obj(SGraph),915

T (S ) := (V? = V ] {?}, E? = E ] (V × {?}) ] ({?} × V) ] {(?,?)}, ι?) , (42)

where ι? is the evident inclusion map, and moreover ηS : S � T (S ) is the (by definition edge-reflecting)916

inclusion of S into T (S ).917

(S-iii) SGraph possesses a regular mono-initial object ∅ = (∅, ∅, ∅ → ∅).918

Proof. While most of these results are standard, we briefly demonstrate that the epi-regular mono-factorization of919

SGraph [7] is “inherited” from the epi-mono-factorization of the adhesive category Set. To this end, given an arbitrary920

morphism f = ( fV , fE) in SGraph as on the left of (43), the epi-mono-factorization fV = mV ◦ eV lifts via application921

of the diagonal functor ∆ to a decomposition of the morphism fV × fV . Pulling back (∆(mv), ι′) results in a span (ι̃, f ′′E )922

and (by the universal property of pullbacks) an induced morphism f ′E that makes the diagram commute. By stability of923

monomorphisms under pullbacks, ι̃ is a monomorphism, thus the square marked (∗) precisely constitutes the data of a924

regular monomorphism in SGraph, while the square marked (†) is an epimorphism in SGraph (since eV ∈ epi(Set)).925

�926

E E′ E Ẽ E′

V × V V ′ × V ′ V × V im( fV ) × im( fV ) V ′ × V ′

V V ′ V im( fV ) V ′eV mV

∆ ∆ ∆

ι

eV×eV mV×mV

∃! f ′E f ′′E

ι′ι̃

fE

fV

fV× fV

fV

∆ ∆

fE

ι ι′ PB
(∗)

(†)

(43)

A number of additional examples of quasi-topoi relevant for rewriting applications is referenced in Table 2. Most927

of these examples arise via so-called Artin gluing as demonstrated in [7].928

5.3. Explicit constructions of universal categorical operations (multi-sums, FPCs, multi-IPCs and FPAs)929

The focus of this section is to provide some results on constructions (as opposed to merely existence) of some of930

the key concepts necessary for practically working with compositional rewriting theories.931

5.3.1. M-multi-sums932

An important technical ingredient for our constructions is the notion ofM-multi-sum (see Definition 2.1), a special933

case of the general theory of multi-(co-)limits due to Diers [27]. In order to provide a more constructive version of this934

definition, it is in practice often useful to consider a certain notion of finiteness of objects in the underlying categories935

in the sense of [8]:936

Definition 5.19 ([8], Def. 2.8 & Def. 4.1). Let C be a category with a stable system of monicsM.937
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(F-i) An object A of C is said to be finitary (or finitelyM-well-powered) if it has only finitely manyM-subobjects
938

up to isomorphism. Here, anM-subobject of A is anM-morphism X�x→ A, and anM-subobject Y�y→ A
939

is defined to be isomorphic to x if there exists an isomorphism X − φ → Y such that y = φ ◦ x. C is a finitary
940

category (w.r.t.M) if every object of C is finitary.941

(F-ii) The finitary restriction of C, denoted Cfin, is defined by the restriction to finitary objects and morphisms thereof.
942

The importance of the work presented in [8] for constructing compositional rewriting theories is in particular that943

it provides an elegant method to demonstrate that finitary restrictions of suitable base categories preserve the requisite944

adhesivity properties, and in addition yield categories that are guaranteed to possess a certain form of factorization945

system:946

Theorem 5.20 ([8], Thm. 4.6 & Fact 3.4). Let C be a vertical weak adhesive HLR category with respect to a stable947

system of monicsM. Denote by Cfin the finitary restriction of C.948

(i) Cfin has a stable system of monicsMfin =M∩Cfin.949

(ii) Cfin is a vertical weak adhesive HLR category with respect toMfin.950

(iii) Cfin is (Efin,Mfin)-structured, where Efin denotes the class of extremal morphisms (w.r.t.Mfin) defined as11
951

Efin := {e ∈ Cfin | ∀m, f ∈ Cfin : e = m ◦ f : m ∈ M f in ⇒ m ∈ iso(Cfin)} . (44)

With these preparations, we may verify that as presented below, under suitable conditions on the underlying952

category,M-multi-sums (as e.g. also considered in [60]) coincide with the concept referred to as (E′,M)-pair factor-953

izations in the graph rewriting literature [3]:954

Lemma 5.21 ([3]; [8], Fact A.3.7). Let C be a finitary vertical weak adhesive HLR category with respect to a stable955

system of monicsM, and denote by E the class of extremal morphisms with respect toM.956

(i) Existence: If C has binary coproducts, then every cospan of M-morphisms A�a → Z ← b�B factors es-
957

sentially uniquely through a cospan ofM-morphisms A�yA → Y ← yB�B and anM-morphism Y�m → Z,958

where m is obtained via the E-M-factorization A+B−e� Y�m→ Z of the induced morphism A+B−[a, b]→959

Z, and where yA = e ◦ inA and yB = e ◦ inB.960

(ii) Construction: if C in addition has anM-initial object ∅, then
∑
M(A, B) consists of cospans ofM-morphisms

961

obtained as pushouts A�pA → P ← pB�B ofM-spans A ← xA�X�xB → B (i.e., “M-partial overlaps”)962

extended by E-morphisms P − q� Q such that qA = q ◦ pA and qB = q ◦ pB are inM.963

(iii) Refinements: if C in addition has pullbacks, and if pushouts alongM-morphisms in C are stable under pull-
964

backs, then the extension morphisms P − q� Q are morphisms in E ∩mono(C) (so-called “refinements”).965

Corollary 5.22. Every quasi-topos withM-initial object∅ hasM-multi-sums and refinements according to Lemma 5.21.966

Since in an adhesive category all monomorphisms are regular [4], in this case the multi-sum construction simplifies967

to the statement that every monic cospan can be uniquely factorized as a cospan obtained as the pushout of a monic968

span composed with a monomorphism. It is however worthwhile emphasizing that for generic quasi-topoi C one may969

have M , mono(C), as is the case in particular for the quasi-topos SGraph of simple graphs. We illustrate this970

phenomenon in Figure 4, via presenting the multi-sum construction for A = B = •.971

11It is instructive to compare this definition to the case of a category with epi-mono-factorizations: here, since m ◦ f being an epimorphism
implies that m is an epimorphism, then if m is also a monomorphism, this indeed implies that it is an isomorphism. However, it is important to note
that as highlighted in [8], there exist finitary categories where Efin is not a class of epimorphisms.

38



<latexit sha1_base64="XsHpRdPCEeo5RNeeypueN1Q/95o="></latexit>

G
<latexit sha1_base64="8enB5mTGkVYWd6sKG5YcdfuACEk="></latexit>

H

<latexit sha1_base64="PAePFhWLDknrShoufrjOi3bvy10="></latexit>

S0

<latexit sha1_base64="SwsntXIUiqcEFplZCf4xs2zn+W8="></latexit>

S1

<latexit sha1_base64="hdBEZeJN6Ubsvk1Rqx6dQU6lZpk="></latexit>

S2

<latexit sha1_base64="GiHkwAnwfl4xhO7PQR+cdS5ZiN4="></latexit>

S3

<latexit sha1_base64="E1QhzHw2SY1E4+Gw6n1OZbbvzDc="></latexit>

S4

<latexit sha1_base64="2Llu+uEGofPY5htX7fBZrChZ8xY="></latexit>

I

Figure 4: Example for anM-multi-sum
∑
M(•, •) of one-vertex graphs in SGraph (i.e., forM = rm(SGraph)). Note in particular the monic-epis

that extend the two-vertex graph S 0 into the graphs S 1, S 2 and S 3, all of which have the same vertices as S 0 (recalling that a morphism in SGraph
is monic/epic if it is so on vertices), yet additional edges, so that in particular none of the morphisms S 0 → S j for j = 1, 2, 3 is edge-reflecting.

5.3.2. FPCs alongM-morphisms972

Let us now turn to the question of the existence of FPCs. To this end, it will prove useful to recall from [30] the973

following constructive result:974

Theorem 5.23 ([30], Thm. 1). For a category C withM-partial map classifier (T, η), the final pullback complement975

(FPC) of a composable sequence of arrows A
f−→ B and B

m−→ C with m ∈ M is guaranteed to exist, and is constructed976

via the following algorithm:977

1. Let m̄ := ϕ(m, idB) (i.e., the morphism that exists by the universal property of (T, η), cf. square (1) below).978

2. Construct T (A)
n̄←− F

g−→ C as the pullback of T (A)
T ( f )−−−→ T (B)

m̄←− C (cf. square (2) below); by the universal979

property of pullbacks, this in addition entails the existence of a morphism A
n−→ F.980

Then (n, g) is the FPC of ( f ,m), and n is inM.981

A B

A B

F C B

C

T (A) T (B) B

f

m

f

m∃!n

g

n̄

T ( f )

m̄

ηA

ηb

m

(1)(2)
PB PB

(45)

An interesting (and to the best of our knowledge open) question that arises in considering (input-) linear Sesqui-982

Pushout (SqPO) rewriting semantics concerns the nature of the morphism g in the above definition of FPCs under the983

constraint that f is anM-morphism, which we refer to as stability ofM-morphisms under FPCs. We may provide a
984

first partial answer for the case whereM = mono(C):985

Lemma 5.24. Let C be a category with a stable system of monicsM = mono(C) that comprises all monomorphisms986

of C, that has pullbacks along monomorphisms, and that has a mono(C)-partial map classifier. Then an FPC A−n→987

F − g → C of a composable sequence of monomorphisms A�f → B�m → C satisfies the property that both n and988

g are monomorphisms.989

Proof. The property that n ∈ mono(C) follows from the stability of monomorphisms under pullback, hence it remains990

to show that g is a monomorphism. This is by definition equivalent to showing that for arbitrary morphisms H−h1 → F991
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and H − h2 → F such that g ◦ h1 = g ◦ h2, it follows that h1 = h2. To this end, let dH = g ◦ h1 = g ◦ h2, and obtain the992

span 〈p, pB〉 via taking a pullback of the cospan 〉dH ,m〈:993

P

A A

B

A F

H F

C

F

g

m

dH
h1

p

h2

g

g

f

n

∃!pA ∃!p′′A

f

n

f

∃!p′A

n

pB

∃!h

(46)

• By the universal property of pullbacks, there exist unique morphisms p′A and p′′A that make the front and back994

parts of the diagram commute, and since f is a monomorphism and thus the span 〈idA, idA〉 is a pullback of the995

cospan 〉 f , f 〈, there also exists a unique morphism pA that makes the inner part of the diagram commute. The996

latter entails in particular that pA = p′A = p′′A .997

• Since by assumption (n, g) is an FPC of ( f ,m), by the universal property of FPCs there exists a unique morphism998

H − h → F that makes the inner diagram commute, and such that in particular h ◦ g = h1 ◦ g = h2 ◦ g. Thus999

uniqueness entails that h = h1 = h2, which proves the claim.1000

The above result ensures in particular that adhesive categories with mono-partial map classifiers yield suitable1001

“linear” SqPO rewriting semantics (as already noted in [23]). For more general scenarios, we quote here the following1002

result from the literature on restriction categories:1003

Proposition 5.25 ([57], Prop. 4.16). Let C be a category with a stable system of monicsM and anM-partial map1004

classifier (T, η). Then T (m) ∈ M for all m ∈ M iff T (ηC) ∈ M for all objects C in C.1005

We suspect that the above result should provide a method for determining whether or not, e.g., comma categories1006

constructed from categories with partial map classifiers that preserve the respective stable systems of monics will1007

have the sought-after stability properties of monics under FPCs, as is the case for the example of directed simple1008

graphs, yet we leave further investigations to future work.1009

5.3.3. Multi-initial pushout complements1010

While the standard literature on graph rewriting (cf. [3]) provides some examples of explicit constructions of1011

pushout complements, we require in general a construction of multi-initial pushout complements, as in Definition 4.9,1012

for the “non-linear” variants of rewriting semantics. In this subsection, we demonstrate sufficient conditions under1013

which a construction for such mIPCs can be made explicit.1014

Proposition 5.26. Let C be a category with a stable system of monicsM that has pushouts alongM-morphisms and1015

that possesses anM-partial map classifier (T, η). Assume further that pushouts alongM-morphisms are pullbacks in1016

C. Then for any composable sequence of morphisms A − f → B�m → C with m inM, the following construction1017

provides P( f ,m):1018

1. Take the FPC A − n→ F − g→ C of ( f ,m) (cf. diagram (i) in (47) below).1019

2. For every factorization A�n′ → F′ − n′′ → F of A�n → F, where n′ is an M-morphism, take a pushout1020

F′ − f ′ → C′ ← m′�B, which by the universal property of pushouts entails that there exists a universal1021

morphism C′ − m′′ → C. If m′′ is an isomorphism, then A�n′ → F′ − m′′ ◦ f ′ → C is an element of P( f ,m).1022
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A B

F′ C′

F C

(i)

f

m′′

n′

n′′

g

f ′n

m′

m

PO
(1)

(2)

A B

A B

F′ C′

F C

f

n′

∃!γ

g

f ′

m′

PO

m
n

f

FPC

(ii)

(47)

1023

Proof. Since C is assumed to possess an M-partial map classifier, by Theorem 5.23 this entails that C has FPCs1024

alongM-morphisms. For any element of P( f ,m), i.e., for a pushout square as the vertical back square in diagram (ii)1025

of (47), if (n, g) is an FPC of ( f ,m), then by the universal property of FPCs there exists a unique morphism F′−γ → F1026

that makes the diagram commute. Consequently, up to essential uniqueness, every pushout square that is an element1027

of P( f , β) fits a diagram of shape (i) in (47). �1028

The above construction is typically assumed to be applied in situations where the underlying category is finitary1029

with respect to a stable system of monicsM. According to [45, Prop. 14.9(2)], a sufficient condition for a composition1030

of morphisms f ◦ g that is anM-morphism to also satisfy that g ∈ M is that f is a monomorphism (not necessarily in1031

M). In concrete examples (see below), it seems that all factorizations used in constructions of mIPCs in the finitary1032

setting are of the aforementioned form, yet it remains unclear to us whether this is in fact the only possible situation,1033

hence we defer a full investigation of this point to future work.1034

An example of anM-multi-IPC construction both in SGraph and in Graph is given in the diagram below. Note1035

that in Graph, theM-multi-IPC does not contain the FPC contribution (since in Graph the pushout of the relevant1036

span would yield to a graph with a multi-edge).1037

PBPB

FPC

IPC

IPC

(1)(2) PBPB

FPC

IPC

IPC

(1)(2)

IPC
(48)

We conclude this subsection by mentioning the following useful result, which clarifies that under suitable as-1038

sumptions on the underlying category, mIPCs along sequences of composableM-morphisms are essentially unique1039

when they exist (in which case it is customary to speak of (“non-multi-”) pushout complements, compare e.g. [3,1040

Fact 4.27.4])]1041

Proposition 5.27. Let C be a category with a stable system of monicsM and with anM-partial map classifier (T, η),1042

such that pushouts alongM-morphisms are stable underM-pullbacks, such that pushouts alongM-morphisms are1043
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pullbacks, and such that M-morphisms are stable under FPCs. Then if the M-multi-initial pushout complement1044

P( f , β) for a composable sequence of M-morphisms A�f → B�β → B′ (i.e., where both f and β are in M) is1045

non-empty, then P( f , β) is essentially unique, and moreover every element of P( f , β) yields a square that is both a1046

pushout and an FPC.1047

Proof. It suffices to note that assumptions on C ensure that pullback-pushout decomposition is applicable, and that1048

according to Proposition 5.26, every element of an mIPC fits into a diagram of the shape (i) in (47), where f , f ′ and1049

c are inM, and where p is an isomorphism: since the outer square in (47)(i) is an FPC and thus a pullback, the top1050

square is a pushout, and the horizontal morphisms are inM, the bottom square is a pullback. Since isomorphisms are1051

stable under pullback, γ is an isomorphism, hence every pushout that is an element of P( f , β) is isomorphic (via the1052

respective morphism γ) to the FPC square, demonstrating that if P( f , β) is non-empty, then every element yields both1053

a pushout and an FPC. �1054

5.3.4. Final pullback complement pushout augmentations (FPAs)1055

Let us now consider the final construction of interest, that of FPAs, as given in Definition 4.16. This naturally1056

suggests the following explicit construction:1057

Lemma 5.28. Let C be a category with a stable system of monicsM that is a vertical weak adhesive HLR category1058

and finitary with respect to M (which entails by Theorem 5.20(iii) that C is (E,M)-structured, for E the class of1059

extremal morphisms w.r.t.M), such that pushouts alongM-morphisms are stable underM-pullbacks in C, and such1060

that pushouts alongM-morphisms are pullbacks. Then given a pushout along anM-morphism such as the square in
1061

the diagram below, one may construct the FPAs of this pushout as follows:1062

1. For every E-morphism P − e� E such that e ◦ β is inM, and such that (β, idB) is a pullback of (e, e ◦ β), take1063

an FPC (ϕ, g) of ( f , e ◦ β).1064

2. Since by assumption pushouts alongM-morphisms are pullbacks, by pullback-pullback composition (α, f ) is a1065

pullback of (e ◦ f ′, e ◦ β), hence by the universal property of FPCs, there exists a unique morphism A′ − γ → F1066

into the FPC object F. If γ is inM, then (γ, g, e) is in the FPA of the pushout square.1067

A B

A′ P

F E

f

e

α

g

f ′φ

β

e◦β

PO

∃!γ
FPC

(49)

In the above definition, while we assumed that C is finitary with respect to the stable system of monicsM, i.e.,1068

M-well-powered, in order for construction to be practicable, we strictly speaking also have to assume that C is E-1069

well-copowered (“co-finitary”). The latter entails that every object X of C has only finitely many quotients, where a1070

quotient of X is an isomorphism class of E-morphisms X − e � E, with X − e′ � E isomorphic to e if there exists
1071

an isomorphism E − ε → E′ such that e′ = ε ◦ e. One might wonder whether under the assumptions of the above1072

definition, the assumptions on C (i.e., C being finitary, having FPCs along M-morphisms, being a vertical weak1073

adhesive HLR category and thus (E,M)-structured) might be sufficient in order for C to be E-well-copowered, albeit1074

this does not seem to be a standard result in category theory to the best of our knowledge (perhaps apart from the1075

special case of Grothendieck topoi [58], which are adhesive categories [54] and thus in particular also vertical weak1076

adhesive HLR categories).1077

Example 5.29. In order to illustrate the notion of FPAs in their application to (auto-augmented, inert)-factorizations1078

of final pullback complements, consider the example of an FPC in the category Graph of directed multigraphs as1079
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shown in the diagram below left:1080

take PO−−−−−→ epi-mono-fact.−−−−−−−−−−→
take PB

(50)

In order to exhibit the FPC factorization, first take a pushout of the span of the FPC, which by the universal property of1081

pushouts yields the dashed arrow. Since Graph is (epi, mono)-structured, we may take the epi-mono-factorization of1082

the dashed arrow, followed by taking a pullback along the monomorphism produced by the factorization. By vertical1083

FPC-pullback decomposition, the bottom square as well as the vertical composite of the middle and the top square are1084

FPCs. One may verify that the aforementioned composite square is indeed an auto-augmented FPC, while the bottom1085

square is an inert FPC, in the sense of Theorem 4.19. If we interpret the original FPC as a direct derivation under1086

sesqui-pushout (SqPO) semantics (i.e., along a rule of the form r = (K ← idK −K − i→ I)), the auto-augmented FPC1087

encodes the minimal context for a SqPO-type direct derivation along the given rule to produce the graph at the bottom1088

left of the original FPC square. On the other hand, the inert FPC encodes a context extension that does not modify the1089

outcome of the SqPO-type direct derivation, since it only adds edges to the context that are in effect implicitly deleted1090

during the direct derivation.1091

6. Examples of compositional rewriting semantics1092

In this section, we investigate a number of variants of DPO-semantics and SqPO-semantics, and illustrations1093

thereof, for categorical rewriting, parametrized by the choice of the class of rules considered. The results of this1094

section are summarized in Table 3, which makes explicit the conditions under which DPO and SqPO rewriting are1095

compositional.1096

6.1. DPO and SqPO semantics1097

In much of the traditional work on graph- and categorical rewriting theories [3], while it was appreciated early in1098

its development that SqPO-rewriting permits the cloning of subgraphs [23], and that both SqPO- and DPO-semantics1099

permit the fusion of subgraphs (i.e., via input-linear, but output-non-linear rules), the non-uniqueness of pushout1100

complements along non-monic morphisms for the DPO- and the lack of a concurrency theorem in the SqPO-case1101

in general has prohibited a detailed development of non-linear rewriting theories to date. Interestingly, the SqPO-1102

type concurrency theorem for linear rules as developed in [19] exhibits the same obstacle for the generalization to1103

non-linear rewriting as the DPO-type concurrency theorem, i.e., the non-uniqueness of certain pushout complements.1104

Our proof for non-linear rules identifies in addition a new and highly non-trivial “back-propagation effect”, which1105

will be highlighted in Section 6.4 (cf. also Example 6.12 for an in-detail heuristic discussion of this effect). It may be1106

worthwhile emphasizing that there exists previous work that aimed at circumventing some of the technical obstacles of1107

non-linear rewriting either via specializing the semantics e.g. from double pushout to a version based upon so-called1108

minimal pushout complements [26], or from sesqui-pushout to reversible SqPO-semantics [28, 29] or other variants1109

such as AGREE-rewriting [30]. In contrast, we will in the following introduce the “true” extensions of both SqPO-1110

and DPO-rewriting to the non-linear setting, with our constructions based upon multi-sums, multi-IPCs and FPAs.1111

We focus here on the following eight variants of categorical rewriting semantics:1112

Definition 6.1. Let C be a category with a stable system of monicsM.1113

(i) A rule, denoted O ↼ r − I, is a span r = (O← or − Kr − ir → I) in C. We refer to a rule as
1114

• output-linear if or is inM,
1115
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Double-Pushout semantics Sesqui-Pushout semantics

Property linear semi-
linear generic linear output-

linear
input-
linear generic

D0 has
multi-sums X (Lemma 5.21)

∃ horizon-
tal/vertical units X (Corollary 6.2)

vertical
composition X (by pushout-pushout composition) X (by PO-PO- and vertical FPC composition)

horizontal
composition

(Proposition 6.3)

C has pullbacks
alongM-morphisms

C has
pullbacks C has pullbacks

∧ (V-iii-a) ∧
(W-iii-a) ∧ (L-iii-a) ∧ (V-iii-a) ∧ (H-iii-a) ∧ (V-iii-a) ∧ (L-iii-a)

horizontal
decomposition

(Proposition 6.5)

C has pushouts alongM-morphisms C has pullbacks ∧ has pushouts and FPCs
alongM-morphisms

∧ has pullbacks
alongM-morphisms

∧ (V-iii-b)

∧ has
pullbacks
∧ (L-iii-b)

∧ (V-iii-a)
∨ (H-iii-a) ∧ (H-iii-a) ∧ (V-iii-a) ∧ (L-iii-a)

D1 has pullbacks
(Proposition 6.6) (V-iii-a)

S is a
multi-opfibration

(Theorem 6.7)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

T is a residual
multi-opfibration

(Theorem 6.7)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

Table 3: Requirements on the underlying category for giving rise to compositional rewriting semantics of the various kinds. For all cases, we
minimally assume that C has a stable system of monics, with respect to which C is finitary, with respect to which the variants of adhesivity
properties are required to hold, and such that D0 := C|M has pullbacks. The latter is equivalent to requiring that C has pullbacks of cospans of
M-morphisms, which is true for all of the listed adhesivity properties. We moreover use the abbreviation (W-iii) to denote (V-iii) ∧ (H-iii).

• input-linear if ir is inM, and
1116

• linear if both or and ir are inM.
1117

We will also refer to arbitrary spans as generic rules.
1118

(ii) In Double-Pushout (DPO) semantics, a direct derivation is defined as a commutative diagram as in (51) below,
1119

where the vertical morphisms are inM, and where the square marked (†α) is a pushout, while the square marked1120

(∗α) is an element of anM-multi-IPC (and thus in particular also a pushout). A category C is thus suitable for
1121

DPO-semantics if it has multi-initial pushout complements (mIPCs) along M-morphisms, if it has pushouts1122

alongM-morphisms, and ifM-morphisms are stable under pushout.1123

(iii) In Sesqui-Pushout (SqPO) semantics, a direct derivation is defined as a commutative diagram as in (51) below,
1124

where the vertical morphisms are inM, and where the square marked (†α) is a pushout, while the square marked1125

(∗α) is a final pullback complement (FPC). A category C is thus suitable for SqPO-semantics if it has FPCs along
1126 M-morphisms, if it has pushouts alongM-morphisms, and ifM-morphisms are stable under pushout.1127
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O I O Kr I

:=

O′ I′ O′ Kr′ I′

r

m∗ m

r′

m∗

or

kα

or′

ir

ir′

m(†α) (∗α)α (51)

It is conventional to refer to theM-morphisms m and m∗ as match and co-match, respectively. Finally, we will refer to
1128

either of the two semantics as generic if no special restrictions are imposed upon the underlying rules, and as linear,
1129

output-linear or input-linear if rules are restricted to being linear, output-linear or input-linear, respectively. We will
1130

sometimes also use the term semi-linear as an abbreviation for “output-linear or input-linear”.
1131

As discussed in further detail in Section 1.1, each of these eight types of semantics permits a different set of features,1132

e.g., for the rewriting of directed multigraphs, where the type of linearity of the rules entails whether or not fusing1133

or cloning of subgraphs are possible, and where the choice of SqPO- versus DPO-semantics yields a difference also1134

in whether or not edges may be implicitly deleted (in addition to modifying the precise type of cloning semantics for1135

the non-input-linear variants of the semantics). It should also be noted that evidently there are many more kinds of1136

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not1137

required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a sufficiently1138

diverse set of test cases for our new theoretical framework for categorical rewriting theories.1139

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine1140

efficiently sets of sufficient conditions under which the eight different semantics of Definition 6.1 give rise to compo-1141

sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to1142

demonstrate the high level of modularization afforded by our novel approach, and at the same time highlight some of1143

the similarities and crucial mathematical differences between the various rewriting semantics.1144

6.2. Double-categorical structures1145

For all eight semantics of Definition 6.1, we will let D0 be defined as C|M, i.e., the restriction of C along M1146

(with objects the objects of C, and morphisms the morphisms ofM). We let D1 be defined as rules for the horizontal1147

morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (51)) for the squares (i.e.,1148

the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the1149

double category Span(C) of spans (cf. e.g. [61, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms1150

(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares1151

other than commutativity) for the squares of Span(C).1152

O I O Kr I

:=

O′ I′ O′ Kr′ I′

r

m∗ m

r′

m∗

or

kα

or′

ir

ir′

mα (52)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double1153

categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the1154

following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical1155

units, and with horizontal and vertical compositions:1156

Corollary 6.2. For all eight semantics of Definition 6.1, the resulting definitions of D0 and D1 have horizontal and1157

vertical units in the following form:1158

I I

I′ I′

UI

m m

UI′

Um :=

I I I

I′ I′ I′

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O′ Kr′ I′

or

or′

ir

ir′

(53)
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Proof. The only non-trivial statement to prove is that the diagrams in (53) qualify as direct derivations of the respective1159

types in a given semantics according to Definition 6.1. But this follows immediately from the results of Lemma 4.3,1160

whereby all commutative squares of the types occurring in the direct derivations depicted in (53) are simultaneously1161

pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains1162

in particular all isomorphisms, which completes the proof that the direct derivations in (53) are well-formed.1163

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout1164

composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal1165

composition is well-posed, which is the first instance where adhesivity properties are required in different forms1166

depending on the precise nature of the chosen rewriting semantics:1167

Proposition 6.3. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of1168

Definition 6.1 yields a well-posed horizontal composition for direct derivations.1169

Proof. Since the crDCs for the different semantics are obtained via suitable restrictions of the double category
Span(C), the operation �h is for all situations induced via span composition of the horizontal morphisms:

· · · · · ·

⋄h :=

· · · · · ·

r2

o n

r′2

r1

n m

r′1

o

r′21

r21

mα2 α1 α21 (54a)

·

· · · ·

·

· · ♢ · ·

♦

o

or2

kα2

or′2

ir2

ir′2

n

or1

kα1

or′1

ir1

ir′1

m

(∗α2 )
(†α1 )

p

p1p2

p′2 p′1

PB∗

PB∗(†p) (∗p)

or21

or′21

ir′21

ir21 (∗α1 )(†α2 )

(∗α21 )(†α21 )

(54b)

In the commutative diagram in (54b), the notation PB∗ indicates that the definition of �h involves choices of pullbacks1170

for each cospan, so that �h will in particular only be a pesudo-functor.1171

1172

With regards to prerequisites on the underlying category, the definition of �h via taking pullbacks requires that1173

the underlying category has pullbacks for the case of generic rules, while for all variants of linearity it suffices that C1174

has pullbacks alongM-morphisms. Moreover, since by assumptionM is a stable system of monics,M-morphisms1175

are stable under pullback, hence the types of the composite spans are indeed compatible with the types specified in1176

generic, output-linear, input-linear or linear rewriting semantics, respectively.1177

1178

Next, the universal property of pullbacks entails the existence of a unique morphism ♦ − p → � that makes the1179

diagram in (54b) commute. By pullback-pullback decomposition, the front left and right vertical squares marked (†p)1180

and (∗p) in (54b) are pullbacks.1181

1182

It remains to demonstrate that the squares marked (†p) and (∗p) in (54b) are not only pullbacks, but indeed of the1183

correct type (i.e., pushouts or FPCs, respectively) as required for the chosen rewriting semantics.1184

(i) For the square marked (†p), since in all eight types of semantics according to Definition 6.1 the square marked1185

(†α1 ) is a pushout, we require the appropriate notion of stability of this type of pushout under pullbacks (compare1186

Table 3). More precisely, the distinction depends on the character of the horizontal morphisms in the pushout1187

square (†α1 ), and in the nature of the morphisms in the pullback squares over (†α1 ) (i.e., ir2 , ir′2 , p1 and p′1),1188

which depending on the rewriting semantics are either generic morphisms orM-morphisms:1189
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• For generic semantics, (†p) is a pushout along anM-morphism, and the morphisms in the pullback squares1190

over (†α1 ) are generic morphisms, hence we require C to satisfy that pushouts along M-morphisms are1191

stable under pullbacks (i.e., axiom (L-iii-a) of the definition of adhesive HLR categories).1192

• For output-linear semantics, (†p) is a pushout of a span of M-morphisms, and the morphisms in the1193

pullback squares over (†α1 ) are generic morphisms, hence we require C to satisfy axiom (H-iii-a) of the1194

definition of horizontal weak adhesive HLR categories.1195

• For input-linear semantics, (†p) is a pushout along anM-morphism, and the morphisms in the pullback1196

squares over (†α1 ) are M-morphisms, hence we require C to satisfy axiom (V-iii-a) of the definition of1197

vertical weak adhesive HLR categories.1198

• For linear semantics, (†p) is a pushout of a span of M-morphisms, and the morphisms in the pullback1199

squares over (†α1 ) are M-morphisms, hence we require C to satisfy axiom (V-iii-a) of the definition of1200

vertical weak adhesive HLR categories.12
1201

(ii) For the square marked (∗α2 ) in (54b), since this square is a final pullback complement (FPC) for sesqui-pushout1202

semantics, and under the condition that C has pullbacks (which is also one of the necessary assumptions for1203

the construction of FPCs via anM-partial map classifier, cf. Theorem 5.23), we obtain that the square marked1204

(∗p) is an FPC by stability of FPCs under pullbacks. For double-pushout semantics, we may repeat the analysis1205

of the previous step (i) to demonstrate that since the square marked (∗α2 ) is a pushout for this semantics, under1206

suitable conditions on C the square marked (∗p) is a pushout as well. In particular, we find for the output-1207

linear and input-linear variants of DPO-semantics that C has to satisfy axiom (W-iii-a) of the definition of weak1208

adhesive HLR categories, i.e., both of axioms (V-iii-a) and (H-iii-a).1209

Finally, by pushout composition and horizontal FPC composition, respectively, one may demonstrate that the hori-1210

zontal composite of (†α2 ) and (†p) is a pushout, while (∗p) and (∗α1 ) compose into a pushout for DPO-semantics, and1211

into an FPC for SqPO-semantics, which concludes the proof. �1212

Remark 6.4. In earlier work on the linear variant of sesqui-pushout semantics [19, 62], instead of requiring that C has1213

pullbacks, an alternative argument was utilized in order to prove that square (∗p) in (54b) is an FPC: after completing1214

step (i) in order to prove that (†p) is a pushout as above, and utilizing that pushouts ofM-spans are also FPCs (compare1215

Proposition 5.27), the pushout squares (†α1 ) and (†p) are FPCs. Thus by horizontal FPC composition the composite of1216

squares (∗α2 ) and (†p) is an FPC, hence applying horizontal FPC decomposition, one may demonstrate that (∗p) is an1217

FPC. However, there exists to the best of our knowledge no example of a category that has FPCs alongM-morphisms1218

where FPCs are not constructed via an M-partial map classifier as in Theorem 5.23, and since the latter theorem1219

requires that the category has pullbacks, it appears to be more efficient to apply stability of FPCs under pullbacks in1220

order to prove that (∗p) is an FPC.1221

6.3. Properties specific to compositional rewriting double categories1222

Having established the conditions on the underlying category under which direct derivations of one of the eight1223

semantics of Definition 6.1 give rise to a double category, it remains to determine whether additional conditions are1224

required such that these double categories indeed qualify as compositional rewriting double categories. The results of1225

this part of the derivation are summarized in Table 3.1226

Proposition 6.5. Let C be a category suitable for one of the rewriting semantics of Definition 6.1, and such that C1227

also satisfies the relevant additional assumptions stated in Table 3. Then the horizontal composition functor �h of the1228

crDC for the given choice of C and rewriting semantics is a isoglobular residual opfibration.1229

12Coincidentally, it would also be sufficient for C to satisfy axiom (H-iii-a) of the definition of horizontal weak adhesive HLR categories;
however, it will become evident in the following that axiom (V-iii-a) is in fact required for other properties of crDCs to be satisfied (cf. Table 3).
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Proof. Let us first verify that, under the given assumptions, �h possesses residual op-Cartesian lifts whose residues1230

are globular isomorphisms. Consider thus a diagram of the form below, where PB∗ denotes a pullback as chosen in1231

the definition of �h, (†α21 ) is a pushout, and (∗α21 ) is a pushout for DPO-semantics and an FPC for SqPO-semantics:1232

·

· · · ·

· ♢ ·

♦

o

or2

ir2
or1

ir1

m

p

p1p2

PB∗

or21

or′21

ir′21

ir21

(∗α21 )(†α21 )

(55)

We have to prove that for each of the semantics of Definition 6.1, one may obtain essentially uniquely a horizontal1233

composition of direct derivations. To this end, consider first the case of DPO-semantics, for which we transform the1234

diagram of (55) into the diagram below:1235

·

· · · ·

·

· · ♢ · ·

♦

o

or2

kα2

∃!or′2

ir2

∃!ir′2

n

or1

kα1

or′1

ir1

∃!ir′1

m

(∗α2 )
(†α1 )

p

p1p2

p′2 p′1

PB∗

(†p) (∗p)

or21

or′21

ir′21

ir21 (∗α1 )(†α2 )

(?) (∗α21 )(†α21 )

(56)

• Take pushouts to obtain the squares marked (†p) and (∗p), which by the universal property of pushouts entails1236

that there exist unique morphisms or′2 and ir′1 . Moreover, by pushout-pushout decomposition, the squares marked1237

(†α2 ) and (∗α1 ) are pushouts.1238

• Take another pushout to obtain the square13 marked (†α1 ), which by the universal property of pushouts entails1239

that there exists a unique morphism ir′2 . Moreover, by pushout-pushout decomposition, the square marked (∗α2 )1240

is a pushout.1241

• It then remains to invoke the version of the van Kampen square property applicable to the given variant of1242

DPO-semantics (i.e., axiom (L-iii-b) for the generic and axiom (V-iii-b) for the other variants, cf. Table 3) in1243

order to demonstrate that the bottom square marked (?) is indeed a pullback.1244

Finally, the pullback square marked (?) will in general not coincide with the pullback of the cospan chosen as part1245

of the definition of �h; therefore, it remains to form the diagram below (where PB∗ marks the chosen pullback):1246

·

· · · ·

·

· · ♦ · ·

•

or′2

ir′2
or′1

ir′1

p′2 p′1
or′21

ir′21

(?)

∃!�p∗2
o∗

r′21

i∗
r′21

ir′2

or′2

or′1

ir′1

p∗1

PB∗

(57)

13Evidently, we could have equivalently obtained the square marked (∗α2 ) first by taking a pushout.
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• By the universal property of pullbacks, there exists a unique mediating isomorphism between the two pullback1247

squares denoted (?) and PB∗.1248

• Since each of the vertical squares with isomorphisms for vertical morphisms in (57) is a pushout square (and1249

also an FPC square, cf. proof of Lemma 4.3), we conclude that the morphism from the span (or′21
, ir′21

) to1250

(o∗r′21
, i∗r′21

) (i.e., the frontmost curved vertical squares) is indeed a globular isomorphism in the crDC for the1251

chosen DPO-type semantics.1252

For the case of SqPO-semantics, we transform the diagram in (55) as follows (where once again PB∗ marks a1253

pullback as chosen in the definition of �h):1254

·

· · · ·

·

· · ♢ · ·

♦

o

or2

kα2

∃!or′2

ir2

ir′2

n

or1

kα1

or′1

ir1

ir′1

m

(∗α2 )
(†α1 )

p

p1p2

∃!p′2 ∃!p′1

PB∗

(?)(†p) (∗p)

or21

or′21

ir′21

ir21 (∗α1 )(†α2 )

(∗α21 )(†α21 )

(58)

• Take an FPC to obtain the square marked (∗α1 ), which by the universal property of FPCs entails the existence1255

of a unique morphism p′1, and thus by horizontal FPC decomposition that the square marked (∗p) is an FPC.1256

• Take a pushout to obtain the square marked (†α1 ), and an FPC to obtain the square marked (∗α2 ), which by the1257

universal property of FPCs yields also a unique morphism p′2, and thus by pullback-pullback decomposition,1258

the square marked (†p) is a pullback.1259

• For the case of generic SqPO-semantics, by invoking the Beck-Chevalley-Condition (BCC-1) of Theorem 4.4,1260

which allows us to conclude that the square marked (†p) is an FPC, and the bottom square marked (?) is a pull-1261

back. It is then related to the chosen pullback PB∗ according to the definition of �h by a universal isomorphism1262

(i.e., by a span isomorphism).1263

• For the other types of SqPO-semantics, we may develop more general variants of the Beck-Chevalley-Condition1264

(BCC-1) by suitably adapting the proof strategy of Theorem 4.4. To this end, consider the diagrammatic state-1265

ment presented in (59) below (which is a 3D-rotated and relabeled version of the statement in (B.14) in order to1266

facilitate the comparison to the diagram in (58)), where PB∗ marks a chosen pullback according to the defini-1267

tion of �h. In all three cases, the proof strategy consists in (i) taking a chosen pullback (marked PB∗) to obtain1268

the second diagram in (59) (where by the universal property of pullbacks entails that there exist unique arrows1269

♦ − q → • and � − q′ → •); (ii) using pullback-pullback decomposition to prove that all squares of the inte-1270

rior commutative cube are pullbacks; (iii) invoking a suitable variant of stability of pushouts under pullbacks1271

to show that the front left inner vertical square is a pushout; and finally (iv) to apply stability of FPCs under1272

pullbacks in order to demonstrate that the front right inner vertical square is an FPC, such that by the universal1273

property of FPCs the morphism ♦ − q→ • is an isomorphism. It thus remains to clarify the variant of stability1274

property of pushouts necessary for each kind of semantics:1275

– For output-linear SqPO-semantics, all morphisms of the back right vertical square are guaranteed to be1276

M-morphisms, hence the claim follows if C satisfies axiom (H-iii-a).1277

– For input-linear SqPO-semantics, the morphisms ir2 , ir′2 , p1, and (by stability of M-morphisms under1278

pullback) p′′1 are guaranteed to beM-morphisms, hence the claim follows if C satisfies axiom (V-iii-a).1279

– Since linear SqPO-semantics is a special case both of output-linear and input-linear SqPO-semantics, the1280

claim follows if C satisfies either (H-iii-a) or (V-iii-a).1281
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·

·

·

♢

·

·

·

♦

P2

p1

ir2

kr1

n

p or′1

p′1

p′2

ir′2
?

FPC

FPC

PO

PB∗

or1

kr2

take PB∗−−−−−−→

·

·

·

♢

·

·

• ·

♦

P2

p1

ir2

kr1

n

p or′1

p′1

p′2

ir′2
?

FPC

FPC

PO

PB∗

or1

kr2

p∗2

p∗1

∃!q′

∃!q

PB∗

(59)

Finally, an argument analogous to the one demonstrated in (57) then reveals that the isomorphism q′ in (59) gives rise1282

to a globular isomorphism in the chosen crDC of SqPO-type.1283

We have thus proved for DPO-semantics and for SqPO-semantics that the functors �h of the corresponding crDCs1284

possess residual op-Cartesian lifts, whose residues are indeed globular isomorphisms. Concretely, we found that from1285

each diagram as in (55), one may obtain a diagram of the following shape:1286

·

· · · ·

·

· · ♢ · ·

· • ·

♦

o

or2

kα2

or′2

ir2

ir′2

n

or1

kα1

or′1

ir1

ir′1

m

(∗α2 )
(†α1 )

p1p2

p∗2 p∗1

PB∗

(†p) (∗p)

or21

o∗
r′21

ir′21

ir21 (∗α1 )(†α2 )

PB∗

�

or′21

ir′21

(∗α21 )(†α21 ) (60)

Moreover, it follows from the universal properties of pushouts, pullbacks and FPCs that the two constructions are1287

essentially unique.1288

1289

It remains to prove the complex decomposition property, which for crDCs of either DPO- or SqPO-semantics1290
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takes as its premise a diagram of the following shape:1291

·

· · · ·

· ♢ ·

·

· · ♦ · ·

□

or2

ir2
or1

ir1

p

p1p2

PB∗

or21

or′21

ir′21

ir21

or′′21
ir′′21

(†α21 ) (∗α21 )

(†β21) (∗β21)

PB∗

(61)

The claim then follows by constructing the following diagram, where the top half is constructed analogously to the1292

DPO- or SqPO-variants of the horizontal decomposition property:1293

·

· · · ·

·

· · ♢ · ·

· • ·

·

· · ♦ · ·

□

or2

ir2
or1

ir1

p

p1p2

PB∗

or21

o∗
r′21

i∗
r′21

ir21

or′′21
ir′′21

(†α21 ) (∗α21 )

(†β21) (∗β21)

PB∗

or′21

�
ir′21

PB∗

∃!

∃!

∃!

(62)

The existence of the dashed vertical arrows in the bottom half of the diagram in (62) may be derived from the respective1294

universal properties of the pushout and FPC squares present. Finally, the various splitting lemmata for pushouts and1295

FPCs then permit to demonstrate that the back squares of the middle and bottom half of the diagram (i.e., the vertical1296

squares adjacent to the dashed arrows) indeed constitutes a horizontal composition of two DPO- or SqPO-type direct1297

derivations, which concludes the proof. �1298

Proposition 6.6. Let C be a category with a stable system of monicsM, and such that C is suitable for the chosen1299

rewriting semantics according to Definition 6.1. Let D1 denote the category of rules as objects and direct derivations1300

of the chosen semantics as morphisms. Then if C is a vertical weak adhesive HLR category, D1 has pullbacks.1301

Proof. Consider a cospan in D1, which amounts to a diagram of the form below:1302

· · ·

· · ·

· · ·

or1

or2 ir2

n1

n2 kr2
ir1

kr1

m2

m1

or21 ir21

(†α2 )

(†α1 ) (∗α1 )

(∗α2 )

(63)
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By assumption on the underlying category, C has pullbacks alongM-morphisms, which permits us to construct the1303

diagram below from the one in (63) via taking three pullbacks:1304

· · ·

· · ·

· · ·

· · ·

∃!orp ∃!irp

n′3 m′2k′2
n′1 k′1

or1

or2 ir2

n1

n2 kr2
ir1

kr1

m2

m1

or21 ir21

m′1

PB PB PB(†α2 )

(†α1 ) (∗α1 )

(∗α2 )

(†β1 )
(†β2 ) (∗β2 )

(∗β1 )

(64)

By the universal property of pullbacks, there exist unique morphisms orp and irp that make the diagram commute, and1305

thus by pullback-pullback decomposition, we find that the squares marked (†β1 ), (†β2 ), (∗β1 ) and (∗β2 ) are pullbacks.1306

• Since axiom (V-iii-a) of the definition of vertical weak adhesive HLR categories holds in C (i.e., if pushouts1307

alongM-morphisms are stable underM-pullbacks), the squares marked (†β1 ) and (†β2 ) are pushouts.1308

• For DPO-semantics, since (V-iii-a) holds in C, the squares marked (∗β1 ) and (∗β2 ) are pushouts.1309

• For SqPO-semantics, by stability of FPCs under pullbacks, (∗β1 ) and (∗β2 ) are FPCs.1310

It then remains to demonstrate that the construction provided indeed yields a pullback in D1. To this end, consider1311

a diagram as below, where the upper blue squares encode a span in D1 that together with the cospan in D1 that was1312

already depicted in (63) yields a commutative square in D1:1313

· · ·

· · ·

· · ·

· · ·

· · ·

os is

orp irp

n′3 m′2k′2
n′1 k′1

or1

or2 ir2

n1

n2 kr2
ir1

kr1

m2

m1

or21 ir21

n′′2 k′′2 m′′2
n′′1 k′1 m′′1n̄ k̄ n̄

m′1

PB PB PB(†α2 )

(†α1 ) (∗α1 )

(∗α2 )

(†σ1 )

(†σ2 )

(∗σ1 )

(∗σ2 )

(†β1 )
(†β2 ) (∗β2 )

(∗β1 )

(†γ) (∗γ)

(65)

We have to prove that there exists a unique mediating morphism in D1 (i.e., the dashed D0-morphisms that make the1314

diagram commute, and such that the squares marked (†γ) and (∗γ) are of the correct kinds for the given semantics:1315

• By the universal property of pullbacks, there exist uniquely the morphisms n̄, k̄ and m̄ marked with dashed1316

arrows in (65), which make the diagram commute. By the decomposition property of M-morphisms, these1317

morphisms are moreover inM.1318

• By pushout-pullback decomposition, the square marked (†γ) is a pushout.1319

• For the case of DPO-semantics, yet again by pushout-pullback decomposition, the square marked (∗γ) is a1320

pushout.1321

• For the case of SqPO-semantics, by vertical FPC-pullback decomposition, the square marked (∗γ) is an FPC.1322

In summary, we have thus demonstrated the unique existence of a D1-morphism consisting of the squares marked (†γ)1323

and (∗γ) that make the diagram in D1 commute, which concludes the proof. �1324

Finally, taking full advantage of the results presented in Section 2, we will investigate the existence of the requisite1325

fibrational structures for the source and target functors on the double categories for all of the categorical rewriting1326

semantics of Definition 6.1. Let us first recall the properties that have to be satisfied by a category C to be suitable to1327

carry DPO-semantics or SqPO-semantics:1328
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• For DPO-semantics, it is required that C hasM-multi-IPCs, that it has pushouts alongM-morphisms, and that1329

M-morphisms are stable under pushout (i.e., the latter two points amount to axiom (V-ii)).1330

• For SqPO-semantics, it is required that C has FPCs along M-morphisms, that it has pushouts along M-1331

morphisms, and thatM-morphisms are stable under pushout (i.e., the latter two points amount to axiom (V-ii)).1332

For DPO-semantics, recall from Lemma 4.11 that a sufficient condition to ensure that C has M-multi-IPCs is1333

that C has pullbacks alongM-morphisms (i.e., axiom (V-i)), that pushouts alongM-morphisms are stable underM-1334

pullbacks (i.e., axiom (V-iii-a)), and that pushouts along M-morphisms are pullbacks (cf. Theorem 5.4); hence, in1335

summary, it is sufficient to require that C is a vertical weak adhesive HLR category. For SqPO-semantics, in addition1336

to asking that C be a vertical weak adhesive HLR category, we must further ask that it has FPCs alongM-morphisms.1337

We can now state the theorem:1338

Theorem 6.7. Let C be a category that is finitary and a vertical weak adhesive HLR category with respect to a stable1339

system of monicsM. For the case of SqPO-semantics, we assume further that C has FPCs alongM-morphisms. Let1340

D denote the double category based upon C and direct derivations of the respective kind as introduced in Section 6.2.1341

Then the following fibrational properties hold:1342

(i) The functor S : D1 → D0 is a multi-opfibration.1343

(ii) The functor T : D1 → D0 is a residual multi-opfibration.1344

Proof. In the case of DPO-semantics, the category C therefore supports the following fibrational structures:1345

• By Theorem 4.12, since C has pullbacks along M-morphisms, and since pushouts along M-morphisms are1346

stable underM-pullbacks in C, the target functor TPO : POv(C,M)→ C|M is a multi-opfibration.1347

• By Theorem 4.13, since C has pushouts alongM-morphisms, and sinceM-morphisms are stable under pushout,1348

the source functor S PO : POv(C,M)→ C|M is a Grothendieck opfibration.1349

As for SqPO-semantics, according to Theorem 5.20(iii) that since C is finitary and a vertical weak adhesive HLR1350

category with respect to the stable system of monicsM, C is (E,M)-structured, for E the class of extremal morphisms1351

(w.r.t.M). We thus find the following results from Section 2:1352

• By Theorem 4.8, since C has pullbacks alongM-morphisms and it has FPCs alongM-morphisms, the target1353

functor TFPC : FPCv(C,M)→ C|M is a Grothendieck opfibration.1354

• By Theorem 4.20, since C is (E,M)-structured, has pullbacks, pushouts and FPCs alongM-morphisms, such1355

that M-morphisms are stable under pushout, and such that pushouts along M-morphisms are stable under1356

M-pullbacks, the source functor S FPC : FPCv(C,M)→ C|M is a residual multi-opfibration.1357

With these preparations, it then remains to prove that indeed the functors S ,T : D1 → D0 from D1 (i.e., the cate-1358

gory with rules as objects, and direct derivations as morphisms) to D0 (i.e., the category C|M) are a residual multi-1359

opfibration in the case of S , and a multi-opfibration in the case of T , respectively.1360

As for the functor S : D1 → D0, the existence of multi-op-Cartesian liftings is induced from the property that1361

the functor TPO : POv(C,M) → C|M is a multi-opfibration, and that both S PO : POv(C,M) → C|M and TFPC :1362

FPCv(C,M)→ C|M are Grothendieck opfibrations:1363

• Consider the following diagram:1364

O I O Kr I

:=

I′ I′

r

ι

or ir

ι (66)
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Since TPO : POv(C,M) → C|M is a multi-opfibration, while TFPC : FPCv(C,M) → C|M is a Grothendieck1365

opfibration (i.e., a special case of a multi-opfibration where each family is a singleton), this entails the existence1366

of a family of multi-op-Cartesian liftings (the κr′j s, in blue in the diagram below), each of whose elements via1367

the Grothendieck opfibration property of S PO : POv(C,M) → C|M (the ω js and or′j s, cf. orange part of the1368

diagram below) lifts into a DPO-type direct derivation or an SqPO-type direct derivation, respectively, i.e., to1369

an element of D1:1370

O Kr I

Or′j Kr′j I′

or ir

ικr′j

ir′j

ω j

or′j

via S PO via TX (67)

Moreover, consider a diagram as the one marked (i) below:1371

O K I

I′

O′′ K′′ I′′

(i)

ω′′ κ′′

ι′

ι′′

ι

via TX−−−−→

O K I

K′ I′

O′′ K′′ I′′

(ii)

ω′′ κ′′

ι′

ι′′

ι

κ′

κ

via S PO−−−−−→

O K I

O′ K′ I′

O′′ K′′ I′′

(iii)

ω′′

κ′′

ι′

ι′′

ι

κ′

κω

ω′
(68)

– Diagram (ii) is obtained via invoking the fact that TPO is a multi-opfibration in the DPO-semantics case,1372

or via the fact that TFPC is a Grothendieck opfibration in the SqPO-semantics case.1373

– Diagram (iii) is obtained via using that S PO is a Grothendieck opfibration.1374

• Since evidently the above constructions are essentially unique, we have thus proved that S : D1 → D0 “inherits”1375

a multi-opfibration structure from the properties of S PO and TPO or TFPC, respectively.1376

Next, for the case of the target functor T : D1 → D0 DPO-semantics, due to the symmetry in the definition1377

of DPO-semantics, the derivation that T is a multi-opfibration follows the same line of arguments as the one for1378

S : D1 → D0 for this semantics. Moreover, since a multi-opfibration is a special case of a residual multi-opfibration,1379

namely the case when each residue is an identity morphism, this demonstrates that indeed T : D1 → D0 also carries1380

the structure of a residual multi-opfibration.1381

Finally, the proof for the fibrational property of T : D1 → D0 for the case of SqPO-semantics is considerably more1382

involved.1383

• Consider a diagram as below:1384

O Kr I

O′ K′j

O′′j;k K′′j;k I′′j;k

or ir

ι j;k

κ jω

or′j

(κ j)⋆k

ir′′j;k

(ω j)⋆k

or′′j;k

via TPO

via S PO

via S FPC (69)

– By the multi-opfibration property of TPO, there exists a family of multi-op-Cartesian liftings (blue part of1385

the diagram in (69)).1386

– By the residual multi-opfibration property of S FPC, for each element of the aforementioned multi-op-1387

Cartesian lifting (indexed by j), there exists a family of residual multi-op-Cartesian liftings (orange part1388
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of the diagram in (69)), where each such lifting (indexed by k) consists of the data of an FPA (i.e., of1389

a residue K′j�(κ j)?k → K′′j;k and a pair of morphisms K′′j;k − ir′′j;k → I′′j;k and I�ι j;k → I′′j;k such that1390

the right commutative square of the above diagram is an FPC). Finally, in order to obtain an SqPO-type1391

direct derivation, we use the Grothendieck opfibration property of S PO to obtain the yellow parts of the1392

diagram in (69) (which in effect amounts to taking a pushout to obtain the cospan O′�(ω′j)?k → O′′j;k ←1393

or′′j;k − K′′j;k). By pushout-pushout composition, the composite of the top left and bottom left commutative1394

squares in (69) yields a pushout, and hence the overall diagram indeed encodes an SqPO-type direct1395

derivation.1396

• In order to prove that T : D1 → D0 indeed satisfies the universal property of residual multi-opfibrations,1397

consider diagram (i) below left:1398

O Kr I

O′

O′′ K′′ I′′

(i)

or ir

ω

or′′ ir′′

ω′′

ω′

ι′′

κ′′

PO FPC

O Kr I

O′ K′j

O′′ K′′ I′′

(ii)

or ir

κ jω

or′j

or′′ ir′′

ω′′

ω′
κ′j

ι′′

κ′′via TPO

(70)

– Invoking the multi-opfibration property of TPO yields a family of multi-op-Cartesian liftings, i.e., the blue1399

parts of diagram (ii) in (70) (indexed by j).1400

– For each element of the aforementioned lifting, which in particular includes a sequence ofM-morphisms1401

K�κ j → K′j�κ′j → K′′, invoke the residual multi-opfibration property of S FPC in order to obtain a family1402

of residual multi-op-Cartesian liftings, i.e., the orange parts of the diagram (iii) in (71) below (indexed by1403

k), where each element of the family consists of an FPA, and with an induced bottom right square in (71)1404

that is an FPC.1405

O Kr I

O′ K′j

K′′j;k I′j;k

O′′ K′′ I′′

or ir

ι j;k

κ jω

or′j

(κ j)⋆k

ir′′j;k

or′′ ir′′

κ′j;k ι′j;k

ω′′

ω′

κ′j

ι′′

(iii)

κ′′
via TPO

via S FPC

(71)

– Finally, invoking the Grothendieck opfibration property of S PO allows to effectively split the bottom left1406

part of the diagram in (71) into two pushout squares, i.e., the parts of diagram (iv) in (72) below colored1407
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in yellow.1408

O Kr I

O′ K′j

O′′j;k K′′j;k I′j;k

O′′ K′′ I′′

or ir

ι j;k

κ jω

or′j

(κ j)⋆k

ir′′j;k

or′′ ir′′

κ′j;k ι′j;k

ω′′

ω′

κ′j

ι′′

(iv)

κ′′

(ω j)⋆k

or′′j;k

ω′j;k

via TPO

via S FPC

via S PO

(72)

• Essential uniqueness of the fibrational properties of S : D1 → D0 are inherited from the essential uniqueness of1409

the functors S PO, S FPC and TPO.1410

In summary, we have thus succeeded in demonstrating that S : D1 → D0 for SqPO-semantics carries a residual1411

multi-opfibration structure, which concludes the proof. �1412

We conclude this discussion of theoretical results with the following observations:1413

Remark 6.8. A folklore result of categorical rewriting theory, and especially in the tradition of Ehrig et al. [47] has1414

been that the notion of vertical weak adhesive HLR categories is a reasonably general characterization of categories1415

with sufficient properties to support some form of compositional semantics. While previous works did not consider1416

the validity of an associativity theorem as a prerequisite for a rewriting theory to be compositional, the main criterion1417

was indeed the existence of a concurrency theorem for the given theory. As our analysis demonstrates, vertical weak1418

adhesive HLR categories are almost the main type of categories to support compositional rewriting, were it not for1419

the additional properties required as presented in Table 3 for the various generalizations of linear semantics (which in1420

effect was the only kind of semantics fully analyzed in the traditional literature [3]). Indeed, the discriminating factors1421

in this regard are the horizontal composition (Proposition 6.3) and the horizontal decomposition (Proposition 6.5)1422

properties required for a given semantics to yield a compositional rewriting double category, which for instance1423

disqualifies the category SGraph of directed simple graphs to support compositional generic DPO-semantics (i.e., due1424

to failure of axiom (L-iii) in SGraph; cf. also the discussion in Example 6.10). On the other hand, referring to Table 21425

for a list of practically relevant examples of categories with adhesivity properties, in many cases properties beyond1426

weak adhesivity such as the existence of all pullbacks are indeed verified, which raises the interesting theoretical1427

question of whether it might be possible to find a more general classification of categories that takes the additional1428

properties presented in Table 3 as its basis, and that would permit an easier access to determining the kind of semantics1429

a given category supports. Moreover, since many examples provided in Table 2 are indeed obtained as some form1430

of comma category construction based upon adhesive categories such as Set, one might envision an extension of1431

Theorem 5.9 that would permit to also determine whether a given comma category possesses additional structures1432

such as anM-partial map classifier, existence of pullbacks or anM-initial object. We leave these open questions to1433

future work.1434

6.4. Illustration: compositional non-linear double- and sesqui-pushout rewriting1435

In this final part of the paper, we will present in some further detail the quintessential examples of compositional1436

rewriting theories in the sense of our novel framework, i.e., the “non-linear” variants of double- and sesqui-pushout1437

rewriting over suitable categories. By suitably restricting the formulae provided in the following to the relevant notion1438

of linearity, one may moreover obtain explicit formulae also for the remaining six types of semantics according to1439

Definition 6.1.1440

1441
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The aim of the ensuing results consists in providing explicit formulae for both the notion of direct derivations and1442

of rule compositions, i.e., in a formulation perhaps somewhat more familiar to experts in graph rewriting theory. This1443

involves in particular extracting the important notion of rule compositions from the concurrency theorems:1444

Lemma 6.9. Let C be a category that has pullbacks, that is finitary and that is an adhesive HLR category with respect1445

to a stable system of monicsM. Consider generic Double-Pushout (DPO) semantics over C, where direct derivations1446

are defined more explicitly as follows (compare Definition 6.1):1447

• The set of DPO-admissible matches of rule r = (O
or←− Kr

ir−→ I) ∈ span(C) into object X ∈ obj(C) is defined as
1448

MDPO
r (X) := {(m, kα, iα) | m ∈ M , (kα, iα) ∈ P(ir,m)}�∼ , (73)

where equivalence ∼ is defined as equivalence up to universal isomorphisms ofM-multi-IPCs.1449

• A DPO-type direct derivation of X ∈ obj(C) with rule r along m ∈ MDPO
r (X) is defined as a diagram in (74)1450

below, where (1) is theM-multi-IPC element chosen as part of the data of the admissible match, while (2) is1451

formed as a pushout.1452

O Kr I

rα(X) Krα X

m∗α

or

kα

orα

ir

irα

m(2) (1) (74)

Moreover, the synthesis part of the concurrency theorem (cf. in particular (13)) yields the following notions:1453

• Given r2, r1 ∈ span(C), let the set of DPO-type admissible matches of rule r2 into r1 (also referred to as the
1454

dependency relation [3]) be defined as follows:1455

MDPO
r2

(r1) := {( j2, j1, κ2, ir2 , κ1, or1 ) | ( j2, j1) ∈
∑
M(I2,O1) , (κ2, ir2 ) ∈ P(ir2 , j2) , (κ1, or1 ) ∈ P(or1 , j1)}�∼

(75)
Here, the equivalence ∼ by which we quotient is defined via the compatible universal isomorphisms ofM-multi-1456

sums andM-multi-IPCs (i.e., “compatible” relative to the diagram in (76) below).1457

O2 Kr2 I2 O1 Kr1 I1

O21 K2 J21 K1 I21

or2 ir2

j2 j1

or1 ir1

ι1

or2

(21)κ2 κ1

or1 ir1

(11)ω2 (22)

mIPC

(12)

ir2

PO
mIPC

PO
(76)

• A DPO-type rule composition of two general rules r1, r2 ∈ span(C) along an admissible match µ ∈ MDPO
r2

(r1) is
1458

defined via a diagram as in (76) above, where (12) and (11) are theM-multi-IPC elements chosen as part of the1459

data of the match, while (22) and (21) are pushouts. We then define the composite rule via span composition:
1460

r2
µ
J r1 := (O21 ← K2 → J21) ◦ (J21 ← K1 → I21) (77)

With these definitions, one recovers a variant of the concurrency theorem whereby the statement of (13) is expressed1461

as follows:1462

• Synthesis: given an object X0 ∈ obj(C), for every pair ((r2, ν2), (r1, ν1)) of rules and admissible matches, where1463

ν1 ∈ MDPO
r1

(X0) and ν2 ∈ MDPO
r2

(X1) with X1 := r1ν1 (X0), there exists an admissible match µ ∈ MDPO
r2

(r1) of rule1464

r2 into rule r1 and an admissible match ν21 ∈ MDPO
r2µ1

(X0) of the composite rule r2µ1 defined as in (77) such that1465

(r2µ1)ν21 (X0)�• r2ν2 (r1ν1 (X0))1466

• Analysis: for every admissible match µ ∈ MDPO
r2

(r1) of rule r2 into rule r1 and for every admissible match1467

ν21 ∈ MDPO
r2µ1

(X0) of the composite rule r2µ1 into the object X0, there exists a pair ((r2, ν2), (r1, ν1)) of admissible1468

matches (ν1, ν2), where ν1 ∈ MDPO
r1

(X0) and ν2 ∈ MDPO
r2

(r1ν1 (X0)), such that r2ν2 (r1ν1 (X0))�• (r2µ1)ν21 (X0).1469
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Proof. According to Lemma 4.11, C has M-multi-IPCs, hence the notion of direct derivations is well-posed. The1470

rest of the proof then follows by instantiating (13) for the case of generic DPO-semantics. In particular, the explicit1471

formula for the rule composition is obtained by taking advantage of the results of Theorem 6.7, i.e., noting that the1472

source functor S : D1 → D0 of the compositional rewriting double category is a multi-opfibration, and that the target1473

functor T : D1 → D0 is a multi-opfibration, and hence a special type of residual multi-opfibration. The latter statement1474

is illustrated in the diagram below, which makes explicit the “identity-residue” K1 − idK1
→ K1:1475

O2 Kr2 I2 O1 Kr1 I1

J21 K1 I21

O21 K2 J21 K1 I21

or2 ir2

µ2 µ1

or1 ir1

ι1

or2 ir2
or1 ir1

ι1

(21)

κ2

(3)

κ1

or1 ir1

(4)

(11)

ω2 (22) (12)

mIPC

PO

PO

PO

mIPC

PO

(78)

�1476

Example 6.10. One of the most striking outcomes of the analysis presented in this paper is the failure of the cate-1477

gory SGraph of directed simple graphs to support generic DPO-semantics. It is worthwhile emphasizing that even1478

though in many cases the full-fledged generality of this type of semantics (which, as discussed also in Section 1.1,1479

supports cloning and fusing subobjects) might not be needed, the case of SGraph is indeed much more fundamental,1480

and, in a certain sense, was one of the main motivations for the developments presented in this paper. To wit, it is1481

well-known (cf. e.g. [7]) that SGraph is a vertical weak adhesive HLR category only with respect to the stable system1482

of monics MSGraph = rm(SGraph) of regular monomorphisms, which are the edge-reflecting monomorphisms (cf.1483

Theorem 5.18(S-ii)), i.e., in particular not with respect to the class of all monomorphisms in SGraph. Moreover, it1484

is well-known that SGraph is not an adhesive HLR category w.r.t. the class rm(SGraph) [3, 7, 8], and hence indeed1485

strictly does not support generic DPO-semantics (cf. Table 3). This failure is particularly startling since it is perfectly1486

well possible to define DPO-type direct derivations (withM = rm(SGraph)), as SGraph does possess the properties1487

required according to Definition 6.1. In fact, the examples of multi-initial pushout complements depicted in the left1488

diagram of (48) may be interpreted as DPO-type direct derivations along a rule with an identity output morphism,1489

demonstrating that generic DPO-semantics is at least in principle definable in SGraph.1490

1491

Finally, let us turn towards SqPO-semantics, presented in the remainder of this section in explicit detail for its1492

generic variant14 (from which explicit definitions for the other variants of SqPO-semantics may be obtained by re-1493

stricting the horizontal morphisms to be inM as appropriate for the given semantics).1494

Lemma 6.11. Let C be a category that has pullbacks, that is finitary and that is an adhesive HLR category with1495

respect to a stable system of monics M. Assume further that C has FPCs along M-morphisms. Consider generic1496

Sesqui-Pushout (SqPO) semantics over C, where direct derivations are defined more explicitly as follows (compare1497

Definition 6.1):1498

• The set of SqPO-admissible matches of a rule rule r = (O ← K → I) ∈ span(C) into an object X ∈ obj(C) is
1499

defined as1500

MS qPO
r (X) := {I − m→ X | m ∈ M} . (79)

• A SqPO-type direct derivation [23] of X ∈ obj(C) with rule r along m ∈ MS qPO
r (X) is defined as a diagram as1501

14Note that in the original conference version [1] of this paper, we had provided a variant of this definition for the case of the underlying category
being a quasi-topos, yet the results of the present paper permit to formulate this definition for a more general class of categories.
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in (80) below, where (1) is formed as an FPC, while (2) is formed as a pushout.1502

O Kr I

rm(X) Krm X

m∗

or

kα

orm

ir

irm

m(2) (1) (80)

Moreover, the synthesis part of the concurrency theorem (cf. in particular (13)) yields the following notions:1503

• Given r2, r1 ∈ span(C), the set of SqPO-type admissible matches of rule r2 into r1 is defined as15
1504

MS qPO
r2

(r1) := {( j2, j1, or′1 , κ1, (κ1)?k, ir1k
, e1k ) | ( j2, j1) ∈

∑
M(I2,O1) , (or′1 , κ1) ∈ P(or1 , j1) ,

((κ1)?k, ir1k
, e1k ) ∈ FPA(ir1 , ι1, κ1, ir′1 ) ,

(ir′1 , ι1) ∈ PO(κ1, ir1 )}�∼ ,
(81)

where the notation (ir′1 , ι1) ∈ PO(κ1, ir1 ) entails that the cospan (ir′1 , ι1) is a pushout of the span (κ1, ir1 ), and1505

where equivalence is defined up to the compatible universal isomorphisms of M-multi-sums, M-multi-IPCs1506

and FPAs (i.e., “compatibility” relative to the diagram in (82) below).1507

O2 Kr2 I2 O1 Kr1 I1

J21 K′1 I′1

O21 K2 J21 K1 I21

or2 ir2

j2 j1

or1 ir1

ι1

(µ1)⋆k

or2k
ir2k

or2k

e1k

ir1k

e1k ◦ι1

(2)

κ2k

(3)

κ1

or′1 ir′1

(κ1)⋆k(4)

(1)

ω2k (6) (5)

FPC

PO
mIPC

FPAPO

PO
(82)

• An SqPO-type rule composition of two general rules r1, r2 ∈ span(C) along an admissible match µ ∈ MS qPO
r2 (r1)

1508

is defined via a diagram as in (82) above, which may be constructed step-wise (going clockwise) by letting1509

square (1) be an mIPC, square (2) a pushout, square (3) an FPA, square (4) a pushout, square (5) an FPC, and1510

finally square (6) a pushout. We then define the composite rule via span composition:
1511

r2
µ
^ r1 := (O21 ← K2 → J21) ◦ (J21 ← K1 → I21) (83)

With these definitions, one recovers a variant of the concurrency theorem whereby the statement of (13) is expressed1512

as follows:1513

• Synthesis: given an object X0 ∈ obj(C), for every pair ((r2,m2), (r1,m1)) of rules and admissible matches,1514

where m1 ∈ MS qPO
r1 (X0) and m2 ∈ MS qPO

r2 (X1) with X1 := r1m1
(X0), there exists an admissible match µ ∈ MS qPO

r2 (r1)1515

of rule r2 into rule r1 and an admissible match m21 ∈ MS qPO
r2µ1 (X0) of the composite rule r2µ1 defined as in (83)1516

such that (r2µ1)m21 (X0)�• r2m2
(r1m1

(X0)).1517

• Analysis: for every admissible match µ ∈ MS qPO
r2 (r1) of rule r2 into rule r1 and for every admissible match1518

m21 ∈ MS qPO
r2µ1 (X0) of the composite rule r2µ1 into an object X0, there exists a pair (m1,m2) of admissible matches,1519

where m1 ∈ MS qPO
r1 (X0) and m2 ∈ MS qPO

r2 (r1m1
(X0)), such that (r2µ1)m21 (X0)�• r2m2

(r1m1
(X0)).1520

15In the conference version of this paper, we had opted for a slightly different variant of the definition of FPAs than in the current paper, i.e.,
where the pushout square was not explicitly mentioned; however, due to the nature of the equivalence relation ∼ in (81), we in fact arrive at an
equivalent notion of admissible SqPO-type matches of rules.
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Proof. By assumption, C has FPCs alongM-morphisms, hence the definition of SqPO-type direct derivations is well-1521

posed. Moreover, according to Lemma 5.28, the assumptions on C suffice to demonstrate that C has FPAs, hence the1522

notions of admissible matches of rules and of composite rules are also well-posed. The rest of the proof then follows by1523

instantiating (13) for the case of generic SqPO-semantics. In particular, the explicit formula for the rule composition1524

is obtained by taking advantage of the results of Theorem 6.7, i.e., noting that the source functor S : D1 → D0 of the1525

compositional rewriting double category is a multi-opfibration, and that the target functor T : D1 → D0 is a residual1526

multi-opfibration. �1527

Example 6.12. Let us illustrate the notion of SqPO-type rule composition, as given in Lemma 6.11, with the following1528

example in the setting of directed multigraphs.1529

(84)

In order to provide the interested readers with some further intuitions for the relatively complex structure of rule1530

compositions in generic SqPO-semantics, we will present in the following a heuristic explanation for the precise1531

shape of the diagram in (84) (which is constructed via invoking Lemma 6.11).1532

In this example, we have two rules. The first clones one node16, but not its incident edge, adds a new edge between1533

that original node and its clone and then merges that original node with the other (blue) node of the input graph. The1534

second rule deletes one node and then merges the two remaining nodes. The given applications to the graphs X0 and1535

X1 illustrate some of the idiosyncrasies of SqPO-rewriting:1536

• Since the node of X0 that is being cloned possesses a self-loop, the result of cloning is two nodes, each with a1537

self-loop, with one edge going each way between them.1538

• In the application of the second rule to X1, we see the side-effect whereby all edges incident to the deleted node1539

are themselves deleted (as also occurs in SPO-, but not in DPO-rewriting).1540

16Note that the structure of the homomorphisms may be inferred from the node positions, with the exception of the vertex clonings that are
explicitly mentioned in the text.
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The overall effect of the two rewrites can be seen in X2; as usual, this depends on the overlap between the images of1541

O1 and I2 in X1. This overlap is precisely the multi-sum element J21. Since our example is set in an adhesive category,1542

this can be most easily computed by taking the pullback of m∗1 and m2 and then the pushout of the resulting span. The1543

pushout that defines the rewrite from X0 to X1 can now be factorized by computing the pullback of the arrow j21 from1544

J21 to X1 and the arrow from X0 to X1; this determines K1 and its universal arrow from K1 with the consequence that1545

(11) and (21), the vertical pasting of (2′1) + (2′′1 ), are both pushouts. Let us note that K1 is the appropriate member of1546

the multi-IPC, as determined by the particular structure of X0.1547

The pushout (31) induces a universal arrow from I21 to X0; but an immediate inspection reveals that this homomor-1548

phism is not a monomorphism (nor an epimorphism in this case). As such, we cannot hope to use I21 as the input side1549

of the composite rule. Furthermore, we find that the square (41), the vertical pasting of (4′1)+(4′′1 ), is neither a pullback1550

nor a pushout. However, the FPA I21 resolves these problems by enabling a factorization of this square, based upon1551

a factorization of the morphism I21 → X0 into an epimorphism I21
e21−−→ I21 and a monomorphism I21

m21−−→ X0. Note1552

also that (4′′1 ) and (31) + (4′1) are pullbacks and indeed FPCs. This factorization, as determined by e21, can now be1553

back-propagated to factorize (21) into pushouts (2′1) and (2′′1 ), which gives rise to an augmented version J21 of the1554

multi-sum object J21. Note moreover that the effect of back-propagation concerns also the contribution of the second1555

rule in the composition: the final output graph contains an extra self-loop (compared to the graph O21 defined by the1556

pushout (32)), which is induced by the extra self-loop of J21 that appears due to back-propagation.1557

We may then compute the composite rule via taking a pullback to obtain K21, yielding in summary the rule1558

O21 ← K21 → I21. Performing the remaining steps of the synthesis part of the concurrency theorem then amounts to1559

constructing the commutative cube in the middle of the diagram, yielding the FPC (71) and the pushout (72), and thus1560

finally the one-step SqPO-type direct derivation from X0 to X2 along the composite rule O21 ← K21 → I21.1561

Let us finally note, as a general remark, that if the first rule in an SqPO-type rule composition is output-linear then1562

the mIPC is uniquely determined; and if it is input-linear then the pushout (31) is also an FPC (cf. Lemma 5.24) and1563

(41) is a pullback, by Lemma 2(h) of [19]. In this case, the FPA is trivial, and consequently so is the back-propagation1564

process. Our rule composition can thus be seen as a conservative extension of that defined for linear rules in [19].1565

7. Conclusions1566

7.1. Concluding remarks1567

We have presented a novel formalism for graph transformation and exploited this to provide generic results—the1568

concurrency and associativity theorems—that characterize the categorical rewriting theories as compositional. These1569

results have been proved once and for all and in a universal, i.e., semantics-independent, fashion based upon our novel1570

notion of compositional rewriting double categories (crDCs). We have then investigated the conditions under which1571

a variety of variants of both DPO- and SqPO-semantics yield crDCs, and thus compositional categorical rewriting1572

theories. In the case of SqPO-semantics, we have in particular established that rewriting is compositional for fully1573

general rules in the concrete setting of simple graphs. In the case of DPO-semantics, our results also establish general1574

conditions under which rewriting is compositional; it is worthwhile emphasizing that these conditions exclude the1575

case of non-linear rules on directed simple graphs. This failure (due concretely to SGraph not satisfying axiom (L-1576

iii-b); cf. Table 3) appears to be indicative of the utility of our fine-grained analysis, in that the precise role played by1577

each of the assumptions found to be sufficient for a given compositional rewriting semantics are highlighted, such that1578

perhaps in future work alternative semantics or categorical constructions might be constructible in order to overcome1579

these limitations.1580

Our results are based on a new formalism that expresses the required categorical structure in terms of certain1581

fibrational structures together with a small number of axioms specific to the case of rewriting. One particularly1582

significant aspect of our approach is that it provides an intrinsic, and cognitively convenient, structuring of the very1583

large number of lemmata used in graph transformation whose statements and proofs are scattered across the literature.1584

We hope that this higher-level structuring will aid the process of formalizing this area of mathematics via proof1585

assistants such as Coq [63], Isabelle/HOL [64], or Lean [65]. In this paper, the approach already enables more1586

compact proofs and, indeed, we feel that the associativity theorem would simply not be possible to express without1587

these means. We are convinced that additional benefit may be extracted from this general setting.1588
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7.2. Relation to the extended abstract1589

In the extended abstract of this paper [1, 2], we showed that the important use case of transformation of directed1590

simple graphs under SqPO-semantics requires the use of a restricted notion of matching—to edge-reflecting injective1591

homomorphisms, abstractly characterized by the so-called regular monos—in order to prove the concurrency theorem1592

that provides a proper notion of rule composition. This led us to investigate more generally the categorical structure1593

required to support rule composition, under the SqPO semantics, for fully general non-linear rules, and we estab-1594

lished that quasi-topoi [6, 7, 44, 45, 57] naturally possess all the necessary structure. In particular, our theorems do1595

therefore apply to the category of directed simple graphs—which forms a quasi-topos [7, 45] but fails to satisfy the1596

axioms of adhesive or quasi-adhesive categories [7]—for which no satisfactory prior concurrency theorem has been1597

proved17. These results significantly generalized previous work on concurrency theorems for linear SqPO rewriting1598

over adhesive categories [19], and for linear SqPO rewriting with conditions inM-adhesive categories [32, 62].1599

This proof of the concurrency theorem under the SqPO-semantics relied on the existence of certain structures in1600

quasi-topoi that, to the best of our knowledge, had not been previously noted in the literature: restricted notions of1601

multi-sum and multi-IPC (mIPC) plus that of FPC-pushout-augmentation (FPA). The multi-sum construction provides1602

a generalization of the property of effective unions (in adhesive categories) that guarantees that all necessary monos are1603

regular. The notions of mIPC and FPA handle the “backward non-determinism” introduced by non-linear rules: given1604

a rule and a matching from its output graph, we cannot—unlike with linear or reversible non-linear rules—uniquely1605

determine a matching from the input graph of the rule.1606

In the case of DPO-semantics, we established (again in [1, 2]) a generalization of the concurrency theorem to1607

generic DPO-semantics, and presented rm-adhesive categories as possessing sufficient properties in order to support1608

this semantics. However, unlike in the case of SqPO-rewriting, this does not capture the case of generic DPO-rewriting1609

in the category of simple graphs as this setting is well-known to satisfy only the weaker axioms of rm-quasi-adhesive1610

categories. In the present paper, we have demonstrated that, slightly more generally, adhesive HLR categories can1611

also support generic DPO-semantics, thereby extending the range of applications of this type of semantics, although1612

this still does not cover the important case of simple graphs.1613

In comparison to the much more technically involved “direct” proofs found in [1, 2], the high-level abstraction1614

offered by the novel fibrational approach to compositional rewriting theories permits the modularization of the proofs1615

of the concurrency and associativity theorems in a very efficient manner. In particular, this relies upon making a clear1616

separation of the concrete definitions of compositional rewriting theories, i.e., proving that a certain semantics and1617

choice of base category gives rise to a compositional rewriting double category (crDC), from the universal structures1618

offered by a crDC.1619

7.3. Related work1620

Conditions under which final pullback complements (FPCs) are guaranteed to exist have been studied in [24]1621

and also in [30] which provides a direct construction assuming the existence of appropriate M-partial map classi-1622

fiers [48, 57]. We make additional use of theseM-partial map classifiers in order to construct multi-initial pushout1623

complements. This construction is a mild, but necessary for our purposes, generalization of the notion of minimal1624

pushout complement defined in [26] that requires the universal property with respect to a larger class of encompassing1625

pushouts—precisely analogous to the definition of FPC—that additionally allows us to specify a family of solutions1626

that collectively satisfy this universal property so as to handle the backward non-determinism of non-linear rules.1627

We also exploit the E-M-factorization which every finitary M-adhesive category possesses [8], where E is the1628

class of extremal morphisms with respect toM (cf. Theorem 5.20). Noting that this factorization coincides with the1629

well-known epi-regular mono-factorization [45] in quasi-topoi, we extended our approach from [1, 2] for constructing1630

M-multi-sums to the more general setting of finitaryM-adhesive categories (cf. Lemma 5.21). This makes it clear1631

that the notion of M-multi-sum is in fact nothing other than the well-known notion of (E′, M)-pair factorizations1632

from the traditional literature on DPO-semantics for M-adhesive categories [3, 8]. Moreover, we also find that the1633

notion of E-M-factorization permits a more general construction of FPC-pushout-augmentations (FPAs) than the one1634

we originally presented in [1, 2], thereby opening up generic SqPO-semantics to categories other than quasi-topoi (cf.1635

Section 5.3.4).1636

17The setting ofM-linear rules, whereM is the regular monos, prevents rules from deleting or adding edges and so has limited use in practice.
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Overall, and as discussed throughout the paper, but in particular in full detail in Sections 5 and 6, our approach to1637

determining suitable classes of categories supporting the various rewriting semantics relies heavily on the categorical1638

rewriting and category theory literature, such as the traditional framework of Ehrig et al. that is based upon the notion1639

of M-adhesive categories [3], but also a large number of works on a variety of other categories with adhesivity1640

properties [4, 5, 6, 7, 23, 44, 46, 47, 55, 57].1641

While traditional results mostly concerned linear or semi-linear DPO-semantics, for whichM-adhesive categories1642

were found to pose a very general class of suitable categories [3, 47], and while every quasi-topos is indeed also1643

an M-adhesive category [48, Lem. 13] (for M the class of regular monos), M-adhesive categories or quasi-topoi1644

are in general not adhesive HLR categories, and may thus fail to support generic DPO-semantics. In particular, as1645

mentioned above, the category SGraph of directed simple graphs does not support generic DPO-semantics. This is1646

highly significant in view of practical applications: since restricting to edge-reflecting monomorphisms for defining1647

the rules would mean that no edges could be created or deleted, in many practical applications, even those with no1648

need for cloning or merging, it would be necessary to work with generic monomorphisms, which consequently entails1649

that one no longer has even a concurrency theorem available for analyzing the resulting rewriting systems.1650

A notable application example in this regard is the MØD framework [17], which aims to implement a rewriting1651

system capable of modeling organo-chemical reaction systems. As explained in further detail in [32], since this1652

framework uses typed simple graphs with additional complex type- and degree-constraints for its base category, the1653

operations of rule compositions in MØD [17] would have to be considered strictly not mathematically consistent,1654

since as demonstrated above SGraph does not support even a concurrency theorem in generic DPO-semantics (and1655

thus the same holds for typed and constrained variants of directed simple graphs). This would be a technically1656

severe failure, since ultimately organo-chemical rewriting is intended to faithfully model the continuous-time Markov1657

chains (CTMCs) that encode organo-chemical reaction systems; failure of being a compositional rewriting theory1658

more explicitly would entail the absence of a suitable rule algebra and stochastic mechanics formalism, rendering a1659

mathematically consistent formulation of the CTMCs impossible.1660

In summary, the work presented in the present paper represents a clear warning regarding the imprecise inter-1661

pretation of rewriting semantics, and, more positively, provides a first step towards streamlining the framework of1662

compositional rewriting theory such that verifying the consistency of applications of rewriting theory in a more trans-1663

parent way.1664

7.4. Future work1665

The immediately preceding discussion about the failure of generic DPO-rewriting in certain concrete settings leads1666

us naturally to the notion ofM,N-adhesive categories [66, 67]: according to recent results of [53, Thm. 3.1], SGraph1667

(referred to as “DGraph” in loc. cit.) is in fact (rm(SGraph), mono(SGraph))-adhesive and (mono(SGraph),1668

rm(SGraph))-adhesive, i.e., carries two types of (M,N)-adhesivity structures. Based upon this type of property, as1669

demonstrated in [66, 67] one may modify the definition of generic DPO-semantics to a variant where the vertical1670

morphisms in the definition of direct derivations (cf. (85)) are required to be in the class N , while the horizontal1671

morphisms (i.e., those from which the rules are constructed) to be in the classM ⊆ mono(C). For the concrete case of1672

the category SGraph, one possible choice of this modified type of DPO-semantics would be to let N = rm(SGraph)1673

(depicted in the diagram below with� arrows) andM = mono(SGraph) (depicted below18 with ↪→ arrows):1674

O I O Kr I

:=

O′ I′ O′ Kr′ I′

r

m∗ m

r′

m∗

or

kα

or′

ir

ir′

m(†α) (∗α)α (85)

According to [67, Thm. 1.5], pushout complements in an (M,N)-adhesive category are essentially unique if they1675

exist, so the aforementioned notion of modified DPO-semantics lies in a certain sense “in between” linear and generic1676

18Coincidentally, this diagram is close in structure to the semantics of direct derivations in the aforementioned MØD framework, in that rules
therein are in particular identities on the vertices of the graphs involved (albeit SGraph itself does of course not take into account the type- and
degree-constraints relevant to organic chemistry).
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DPO-semantics. More importantly, it was demonstrated in [67] that this modified DPO-semantics over (M,N)-1677

adhesive categories admits a concurrency theorem (and most of the other properties of adhesive HLR categories in a1678

suitably modified form), hence we believe it would be highly interesting to submit this notion of rewriting to our novel1679

analysis method, i.e., to determine if (or under which additional conditions) the modified DPO-rewriting semantics1680

yields a compositional rewriting double category.1681

Clearly, it would also be interesting to study some other graph transformation semantics, such as PBPO(+) [68, 69]1682

or AGREE [30], from the new viewpoint of our fibrational approach. It would also be fruitful to investigate how the1683

proofs of additional key theorems, such as local confluence, might carry over to this framework as this would increase1684

our confidence in its general applicability. In general, it will be highly desirable to develop a curated collection of1685

mathematical techniques (ideally formalized in proof assistants) that will permit to efficiently construct and analyze1686

categories used in rewriting theories with suitable adhesivity properties, including the aforementioned generalized1687

notion thereof, as well as quasi-topos structures, such that for practical applications of compositional categorical1688

rewriting theories the entry barrier posed by the considerably technically intricate theoretical framework may be1689

considerably lowered. As already presented in Sections 5.1 and 5.2, at present there already exists a certain amount of1690

mathematical methodology in this regard, most notably comma category constructions of categories with adhesivity1691

properties, and a variant thereof, so-called Artin gluing [7], for constructing quasi-topoi (cf. also [53] for recent1692

advances in constructing (M,N)-adhesive categories). On the other hand, as summarized in Table 3, we are left1693

to wonder whether it is indeed adhesivity properties that most generally characterize categories suitable for SqPO-1694

semantics, since this semantics does not require the fully-fledged variant of the relevant van Kampen square axioms1695

(i.e., only axioms (X-iii-a), but not axioms (X-iii-b)), while on the other hand in order to support compositional SqPO1696

semantics, it is required that the underlying category has pullbacks, and that it has FPCs along M-morphisms. It1697

would thus be highly desirable to find a more fine-grained and better adapted classification scheme for categories1698

supporting compositional rewriting semantics of various kinds, for which in the present paper we have provided a first1699

stepping stone.1700
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Appendix A. Collection of definitions and auxiliary properties1833

Appendix A.1. Universal properties1834

Lemma Appendix A.1. Let C be a category.

X X

B A B A A B

C D C D D C

E Y

(i) (ii) (iii)

e

e′

c

d

a

b PO

∃!ē

a

d

c

b

∃!x̄
x

x′

PB

a

d b

c

FPBC

x
a◦x

c′

y

∃!x′

Then the following properties hold:1835

1. Universal property of pushouts (POs): Given a commutative diagram as in (i), there exists a unique morphism
1836

D − ē→ E such that ē ◦ d = e and ē ◦ c = e′.1837

2. Universal property of pullbacks (PBs): Given a commutative diagram as in (ii), there exists a unique morphism
1838

X − x̄→ A such that a ◦ x̄ = x and b ◦ x̄ = x′.1839

3. Universal property of final pullback complements (FPCs): Given a commutative diagram as in (iii) where
1840

(a ◦ x.y) is a PB of (d, c′), there exists a unique morphism Y − x′ → C such that c ◦ x′ = c′, x′ ◦ y = b ◦ x, and1841

which satisfies that (x, y) is the PB of (b, x′).1842

Appendix A.2. Stability properties1843

Definition Appendix A.2. Let C be a category.1844

A′ B′

D′ C′

A B

D Cc

d

a

b(∗)
δ

χ
α

β

d′

c′

a′

b′⌟ ⌟ ⌟(†)

⌟ (A.1)

• A pushout (∗) in C is said to be stable under pullbacks iff for every commutative cube over the pushout (∗) such
1845

as in the diagram above where all vertical squares are pullbacks, the top square (†) is a pushout.1846

• A final pullback complement (FPC) (∗) in C is said to be stable under pullbacks iff for every commutative cube
1847

over the FPC (∗) such as in the diagram above where all vertical squares are pullbacks, the top square (†) is an1848

FPC.1849

Lemma Appendix A.3. Two important examples of categories for which suitable stability properties for pushouts1850

hold are given as follows:1851

1. In every adhesive category C, pushouts along monomorphisms (i.e., pushouts such as (∗) in (A.1) with a ∈1852

mono(C) or b ∈ mono(C)) are stable under pullbacks [4]. This property is indeed axiom (A-iii-a) of the van1853

Kampen property of adhesive categories [6].1854
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2. In a regular mono (rm)-quasi-adhesive category [6, Def. 1.1 and Cor. 4.7], all pushouts along regular monomor-
1855

phisms exist, these pushouts are also pullbacks, and in particular pushouts along regular monomorphisms are1856

stable under pullbacks. A useful characterization of rm-quasi-adhesive categories is the following: a small1857

category C which has pullbacks and which has pushouts along regular monomorphisms is rm-quasi-adhesive1858

iff it has a full embedding into a quasi-topos (preserving the aforementioned two properties).1859

Lemma Appendix A.4 ([28], Lem. 1). Let C be a category that has pullbacks. Then FPCs are stable under pull-
1860

backs.1861

Proposition Appendix A.5. In a quasi-topos C, unions of regular subobjects are effective [7, Prop. 10], i.e., the
1862

union of two subobjects is computed as the pushout of their intersection, and moreover the following property holds:1863

in a commutative diagram such as below, where (c, a) is the pullback of (h, p), (d, b) the pushout of (c, a), where all1864

morphisms (except possibly x) are monomorphisms, and where either p ∈ rm(C) or h ∈ rm(C), then the induced1865

morphism x : D→ E is a monomorphism [6, Prop. 2.4]:1866

A B

C D

E

a

c b

d

h
∃! x

p

PO

(A.2)

Appendix A.3. Single-square lemmata specific toM-adhesive categories1867

Lemma Appendix A.6. Let C be anM-adhesive category.1868

A B

C Dd

β

a

γ (∗) (A.3)

1. Pushouts alongM-morphisms are pullbacks: if (∗) is a pushout and γ ∈ M, then (∗) is also a pullback.
1869

2. Stability ofM-morphisms under pushout: if (∗) is a pushout and γ ∈ M, then β ∈ M.
1870

Appendix A.4. Double-square lemmata1871

Lemma Appendix A.7. Let C be a category. If in the following statements a class of monicsM is mentioned, these1872

statements require C to possess a stable system of monicsM.1873

A B C F F′

A′ B′ C′ G G′ F′

A′ H H′

a b

α

a′ b′

β χ(1) (2) φ

γ

φ′

γ′

h

g

f

(3)

(4)

(†)

(∗) b′◦a′ γ′◦φ′

(A.4)

Given commutative diagrams as above, the following statements hold:1874

1. Pushout-pushout-(de-)composition: if (1) is a pushout, (1) + (2) is a pushout iff (2) is a pushout.
1875

2. Pullback-pullback-(de-)composition: if (2) is a pullback, (1) + (2) is a pullback iff (1) is a pullback.
1876
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3. Pushout-pullback-decomposition [28, Lem. 4]: if (1) + (2) is a stable pushout19 and (1), (2), (∗) are pullbacks,
1877

then (1) and (2) are both pushouts. (Note: If a′ and b′ are monomorphisms, the condition on (∗) is always1878

satisfied.) Alternatively [3, Thm. 4.26.2], if C is a vertical weak adhesive HLR category with respect to a stable1879

system of monicsM, then if a′ and b′ are inM, (1) + (2) is a pushout, and (2) is a pullback, then (1) and (2)1880

are both pushouts. If the category is in fact a weak adhesive HLR category (i.e., if it also has horizontal weak1881

VK squares), then the decomposition also holds if instead of a′ the morphism α is inM.1882

4. Pullback-pushout-decomposition [70, Lem. B.2]: if C is a vertical weak adhesive HLR category with respect to
1883

a stable system of monicsM, χ is inM, (1) + (2) is a pullback and (1) is stable pushout, then (1) and (2) are1884

both pullbacks.1885

5. Horizontal FPC-FPC-(de-)composition [23, Lem. 2 & 3], [71, Prop. 36]: if (2) is an FPC (i.e., (β, b′) is an
1886

FPC of (b, χ)), (1) + (2) is an FPC iff (1) is an FPC.1887

6. Vertical FPC-FPC-(de-)composition [71, Prop. 36]: if (3) is an FPC (i.e., (ϕ, g) is an FPC of ( f , ϕ′)),
1888

(a) if (4) is an FPC (i.e., (γ, h) is an FPC of (g, γ′)), then (3) + (4) is an FPC (i.e., (γ ◦ ϕ, h) is an FPC of1889

( f , γ′ ◦ ϕ′))1890

(b) if (3) + (4) is an FPC (i.e., (γ ◦ ϕ, h) is an FPC of ( f , γ′ ◦ ϕ′)) and if (4) is a pullback, then (4) is an FPC1891

(i.e., (ϕ, g) is an FPC of ( f , ϕ′)).1892

7. Vertical FPC-pullback decomposition [28, Lem. 3]: if (3)+(4) is an FPC (i.e., (γ◦ϕ, h) is an FPC of ( f , γ′◦ϕ′)),
1893

both (4) and (†) are pullbacks, and if the diagram commutes, then (3) is an FPC (i.e., (ϕ, g) is an FPC of ( f , ϕ′))1894

and (4) is an FPC (i.e., (γ, h) is an FPC of (g, γ′)). (Note: If γ′ and ϕ′ are monomorphisms, the condition on1895

(†) is always satisfied.)1896

Appendix B. Proofs not included in the main text1897

Appendix B.1. Proofs of Section 21898

Lemma 2.2 (Multi-sum extension). Let C be a category that has multi-sums and that has pullbacks. Then for every1899

commutative diagram such as in (B.1) below, where A → M ← B and C → N ← D are multi-sum elements, there1900

exists a universal arrow M → N that makes the diagram commute.1901

A B

M

X C D

N

Y

∃!
(B.1)

1902

Proof. Construct the diagram in (B.2) below as follows:1903

• Since C has pullbacks, take a pullback in order to obtain the span X ← P→ N. Then by the universal property1904

of pullbacks, there exist morphisms A→ P and B→ P.1905

19Here, “stable” refers to stability under pullbacks.
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• Since C has multi-sums, and since the cospan A→ P← B and the morphism P→ X provide a factorization of1906

the cospan A → X ← B, by the universal property of multi-sums there exists a unique morphism M → P that1907

makes the diagram commute.1908

• The morphism M → N claimed to exist is then obtained as the composition of the morphisms M → P and1909

P → N. Moreover, if X ← P′ → N is another pullback of X ← Y → N, by the universal property of pullbacks1910

there exists a unique isomorphism P → P′; therefore, the composites of M → P and P → N, and of M → P′1911

and P′ → N, respectively, yield the same morphism M → N, hence demonstrating unique existence, which1912

concludes the proof.1913

A B

M

P

X

C D

N

Y

∃!

PB (B.2)

�1914

Lemma 2.6. Let M : E → B be a strong multi-opfibration. Then the following lifting property of isomorphisms is1915

satisfied:1916

∀
e e′′

b b′ b′′

M

f g

M

α

M(α)

: ∀

e e′j e′′

b b′ b′′

M

ε j( f )

M

f
g=M(β j)

M

α

M(α)

β j

:

(g ∈ iso(B) ⇒ β j ∈ iso(E)) ∧ ( f ∈ iso(B) ⇒ ε j( f ) ∈ iso(E))

(B.3)

1917

Proof. Let us first consider the claim g ∈ iso(B) ⇒ β j ∈ iso(E):1918

• Since M is a functor, we have that M(e′′) = b′′ implies M(ide′′ ) = idb′′ .1919

• Since b′ − g → b′′ is by assumption an isomorphism in B, there exists a morphism b′′ − g−1 → b′ such that1920

idb′′ = g ◦ g−1.1921

• By the defining properties of multi-opfibrations, this in turn entails that there exist morphisms e′′−εk(g−1)→ e′k1922

and e′k−γk → e′′ in E such that γk◦εk(g−1) = ide′′ , M(εk(g−1)) = g−1 and M(γk) = g, as depicted in diagram (B.4)1923

below.1924
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e e′j e′′ e′k e′′

b b′ b′′ b′ b′′

M

ε j( f )

M

f
g=M(β j)

M

α

M(α)

β j

g−1
g=M(γk)

M

∃ εk(g−1) ∃! γk

M

εk(g−1)◦β j◦ε j( f )

f

∃!φ

(B.4)

• Since M is a functor, M(εk(g−1) ◦ β j ◦ ε j( f )) = f . Thus the diagram in (B.4) encodes two different liftings of1925

g ◦ f (one via β j ◦ ε j( f ), and the other one via γk ◦ (εk(g−1) ◦ β j ◦ ε j( f ))), hence by essential uniqueness of1926

strong multi-opfibrations, there exists an isomorphism e′j − ϕ→ e′k that makes the diagram commute, so that in1927

particular εk(g−1) ◦ β j is an isomorphism.1928

• By standard category theory, (i) a morphism is an isomorphism iff it is both a section and a retraction [45,1929

Prop. 7.36], (ii) if the composite y ◦ x of two morphisms y and x is an isomorphism, x is a section and y1930

is a retraction [45, Prop. 7.21 & 7.27], and (iii) the composite of two isomorphisms is an isomorphism [45,1931

Prop. 3.14].1932

– Since εk(g−1) ◦ β j is an isomorphism, εk(g−1) is a retraction (and β j a section).1933

– Since γk ◦ εk(g−1) is an identity morphism and thus an isomorphism, εk(g−1) is a section (and γk a retrac-1934

tion).1935

Since εk(g−1) is thus both a section and a retraction, it is an isomorphism, hence β j = (εk(g−1))−1 ◦ ϕ is the1936

composite of two isomorphisms and therefore an isomorphism, which proves the claim.1937

The proof of the claim f ∈ iso(B) ⇒ ε j( f ) ∈ iso(E) is completely analogous, with the salient steps summarized1938

in diagram (B.5) below:1939

e e′ℓ e e′j e′′

b b′ b b′ b′′

M

ε j( f )

M

f
g=M(β j)

M

α

M(α)

β j

f −1

∃! γℓ

M

∃ εℓ( f )

M

f

α◦γℓ

g

∃!ψ

(B.5)

• f being an isomorphism entails that f −1 ◦ f = idb, hence since M is a functor and M(e) = b, M(ide) = idb =1940

f −1 ◦ f .1941

• By the universal property of multi-opfibrations, there exists an E-morphism e−ε`( f )→ e′` such that there exists1942

a unique E-morphism e′` − γ` → e satisfying M(ε`( f )) = f , M(γ`) = f −1, and γ` ◦ ε`( f ) = ide.1943

• By the essential uniqueness property of strong multi-opfibrations, there exists a unique isomorphism e′`−ψ→ e′j1944

that makes the diagram commute, and so that in particular ε j( f ) ◦ γ` = ψ.1945

• Since ε j( f ) ◦ γ` = ψ is an isomorphism, γk is a section; since γ` ◦ ε`( f ) = ide is an identity morphism and thus1946

an isomorphism, γ` is a retraction; since thus γ` is both a retraction and a section, it is an isomorphism.1947

• Finally, since ε j( f ) = ψ ◦ γ−1
` , ε j( f ) is an isomorphism, which concludes the proof.1948

�1949
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Lemma 2.7 (Pullback-lifting lemma for strong multi-opfibrations). Let E be a category that has pullbacks, and let1950

M : E→ B be a strong multi-opfibration. Then the following property holds:1951

∀

e e′′′

b′′1

b b′ b′′′

b′′2

M

f

g2 h2

g1
h1

M

α

PB

:

e′′j,k

e e′j e′′′

e′′j,ℓ b′′1

b b′ b′′′

b′′2

M

f

g2 h2

g1

h1

M

α

PB

∃ ε j( f )

M

∃ ε j,k(g1)
∃! γ j,k

M

M

∃ ε j,ℓ(g2) ∃! δ j,ℓ

∃! β j
PB

(B.6)

More explicitly, for every diagram such as on the left of (B.6), whose bottom part contains a pullback square in B, the1952

following properties hold true:1953

(i) There exists an E-morphism e − ε j( f ) → e′j such that there exists a unique E-morphism e′j − β j → e′′′ with1954

M(ε j( f )) = f and M(β j) = h1 ◦ g1 = h2 ◦ g2, and such that the diagram commutes.1955

(ii) There then exist E-morphisms e′j − ε j,k(g1) → e′′j,k and e′j − ε j,`(g2) → e′′j,` such that there exist unique E-1956

morphisms e′′j,k − γ j,k → e′′′ and e′′j,` − δ j,` → e′′′ such that M(ε j,k(g1)) = g1, ε j,`(g2)) = g2, M(γ j,k) = h1 and1957

M(δ j,`) = h2, and such that the diagram commutes.1958

(iii) Moreover, the square in E into e′′′ is a pullback.1959

Proof. Claims (i) and (ii) follow directly from repeated applications of the universal property of multi-opfibrations. It1960

thus remains to prove claim (iii), i.e., that the square in E on the top right of the diagram in (B.6) is indeed a pullback.1961

To this end, we construct the auxiliary diagram below by taking a pullback:1962

e′′j,k

e e′j ep e′′′

e′′j,ℓ

b′′1

b b′ bp b′′′

b′′2

M

f

g2 h2

g1
h1

M

PB

∃ ε j( f )

M

∃ ε j,k(g1) ∃! γ j,k

M

M

∃ ε j,ℓ(g2) ∃! δ j,ℓ

β j

∃! π

π′1

π′2

M

p=M(π)
p′1

p′2

PB

∃! q

(B.7)

• By the universal property of pullbacks, there exists an E-morphism e′j − π→ ep (where ep denotes the pullback1963

object) that makes the diagram commute.1964

• Since M is a functor, we also obtain B-morphisms b′−p→ bp (where bp = M(ep)), p′1 = M(π′1) and p′2 = M(π′2)1965

that make the diagram commute.1966

• By the universal property of pullbacks, there exists a unique morphism bp − q → b′ that makes the diagram1967

commute; since (p ◦ q) ◦ p = p ◦ (q ◦ p) = p and p is unique, (p ◦ q) = idb′ and q ◦ p = idb, i.e., p is both a1968

section and a retraction, hence an isomorphism (and thus also q = p−1).1969
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• Finally, by applying Lemma 2.6 for f = M(π) and g = idbp , we may demonstrate that π is an isomorphism,1970

hence indeed the claim that the square in E marked in blue is a pullback.1971

�1972

Lemma 2.9. Let R : E→ B be a residual multi-opfibration. Then residues have the following universal property:1973

∀

e e′j

b b′ b′j

R

f f⋆ j

R

ρ j

R(ρ j( f ))

: ∃

ē

e e′j

b̄

b b′ b′j

R

χ

f

R

ρ j

R(ρ j( f ))

τ

R

h

f⋆ j

R(τ)
R(χ)

⇒ τ ∈ iso(E) ∧ R(τ) ∈ iso(B) (B.8)

In particular, this property entails that if a residue f?k factorizes a residue f? j as f? j = R(βk) ◦ f?k for some βk ∈ E,1974

then the residues f? j and f?k (both of the same morphism f ∈ B) are related by an isomorphism R(βk) ∈ iso(B), as are1975

their liftings ρ j( f ) = βk ◦ ρk( f ) via βk ∈ iso(E).1976

Proof. It suffices to restate the second diagram in (B.8) in the following equivalent form:1977

ē

e e′j e′j

b̄

b b′ b′j b′j

R

χ

f

R

R(ρ j( f ))

R

h R(τ)

R

f⋆ j

τ

ρ j

R(χ)

(B.9)

The claim then follows by essential uniqueness of residual multi-opfibrations. �1978

Appendix B.2. Proofs of Section 41979

Lemma 4.3. The categories Th(C,M) and Tv(C,M) for T ∈ {PB,PO,FPC} as introduced in Definition 4.2 are1980

well-defined, i.e., their composition operations are well-typed, associative and unital.1981

Proof. Well-definedness of the horizontal and vertical composition operations is a standard result for pullback and1982

pushout squares, while for final pullback complements (FPCs) this is a slight generalization of Lemma Appendix1983

A.7(5. & 6.):1984

• horizontal FPC composition: in sub-diagram (a) of (B.10) below, given two horizontally composed FPC1985

squares, an outer square which is a pullback, and morphisms X → A and X → C such that the diagram1986

commutes, we have to prove that there exists a unique morphism Y → A′ such that the diagram commutes and1987

such that the square over Y → A′ is a pullback.1988

1. Since the square XCC′Y is a pullback and the triangle XBC commutes, by the universal property of FPCs1989

there exists a unique morphism Y − b → B′ that makes the diagram commute, and such that the square1990

XBB′Y is a pullback.1991

2. Since the square XBB′Y is a pullback and the triangle XAB commutes, by the universal property of FPCs1992

there exists a unique morphism Y − a → A′ that makes the diagram commute, and such that the square1993

XAA′Y is a pullback.1994
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• vertical FPC composition: in sub-diagram (b) of (B.10) below, given two vertically composed FPC squares, an1995

outer square which is a pullback, and morphisms X → A and X → B such that the diagram commutes, we have1996

to prove that there exists a unique morphism Y → A′′ such that the diagram commutes and such that the square1997

over Y → A′′ is a pullback.1998

1. Take a pullback of Y − b → B′′ � B′, obtaining the span Y � P → B′ (where Y � P is in M by1999

stability ofM-morphisms under pullback). Since the square XBB′Y commutes, by the universal property2000

of pullbacks, there exists a unique morphism X − x→ P that makes the diagram commute.2001

2. By pullback-pullback decomposition, the square XBB′P over P → B′ is a pullback. Since moreover the2002

triangle XAB commutes, by the universal property of FPCs, there exists a unique morphism P − p → A′2003

that makes the diagram commute, and such that the square XAA′P over P − p→ A′ is a pullback.2004

3. Invoking the universal property of FPCs yet again, since the triangle PB′A′ commutes and the square2005

PB′B′′Y is a pullback, there exists a unique morphism Y → A′′ that makes the diagram commute, and2006

such that the square PA′A′′Y over this morphism is a pullback. By pullback-pullback decomposition (or,2007

equivalently, by vertical pasting of pullback squares), the square XAA′′Y is a pullback, which concludes2008

the proof.2009

X X

A B

(a) A B C (b) P

A′ B′ C′ A′ B′

Y A′′ B′′

Y

∃! b
∃! a

∃! x

∃! p

∃!

FPC

FPC FPC

FPC

(B.10)

Associativity of the horizontal and vertical pasting operations is manifest from the definition. Thus it remains to verify2010

that these compositions are unital. To this end, note first that the units of the horizontal and vertical compositions are2011

squares of the form idm and id f , respectively, as below:2012

A A A B

(idm) := id f :=

B B A B

mm

f

f

(B.11)

The only non-trivial part to prove is that squares of shapes idm and id f are simultaneously pullbacks, pushouts and2013

FPCs. The first two properties are a standard exercise to prove, yet the proof of the FPC property deserves a brief2014

clarification:2015

X X

A A A B

B B A B

Y Y

m m

y
y

(i) (ii) ϕ

x

f

f

x◦ϕ−1

(B.12)

As depicted in (B.12)(i), horizontal unitality trivially follows from pullback-pullback decomposition. However, in2016

order to prove that vertical unitality holds, in a situation as depicted in (B.12)(ii), the additional observation necessary2017
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is that isomorphisms are stable under pullbacks, from which then together with pullback-pullback decomposition the2018

claim follows. �2019

Theorem 4.4. Let C be a category with a stable system of monicsM, and with the following additional properties:2020

1. C has pullbacks.2021

2. C has pushouts and final pullback complements (FPCs) alongM-morphisms.2022

3. Pushouts alongM-morphisms are stable under pullbacks.2023

4. Pushouts alongM-morphisms are pullbacks.2024

Then the domain functor dom : PBh(C,M) → C from the category of pullback squares along M-morphisms and2025

under horizontal composition to the underlying category C satisfies the following properties:2026

(i) dom : PBh(C,M) → C is a Grothendieck fibration dom : PBh(C,M) → C is a Grothendieck fibration, with2027

the Cartesian liftings given by FPCs.2028

(ii) dom : PBh(C,M) → C is a Grothendieck opfibration dom : PBh(C,M) → C is a Grothendieck opfibration,2029

with the op-Cartesian liftings given by pushouts.2030

(iii) dom : PBh(C,M) → C satisfies a Beck-Chevalley condition (BCC): adopting the notation m − ( f , f ′) → n for2031

morphisms in PBh(C,M) (cf. Figure 3), consider a commutative square in PBh(C,M) that is mapped by dom2032

into a pullback square in C:2033

m n A B

o p C D

( f , f ′)

(h.h′)

(i,i′)

(g,g′) dom h

i

f

gPB (B.13)

Then the following two equivalent conditions hold:2034

• (BCC-1): ( f , f ′) is op-Cartesian if (i, i′) is op-Cartesian and (g, g′) and (h, h′) are Cartesian.2035

• (BCC-2): (g, g′) is Cartesian if (h, h′) is Cartesian and ( f , f ′) and (i, i′) are op-Cartesian.2036

Proof. Ad (iii) — Beck-Chevalley condition (BCC):2037

• (BCC-1): the premise of this condition is explicitly depicted in (B.14), i.e., the top and back squares are pull-2038

backs, the left and right squares are FPCs, and the front square is a pushout. In order to demonstrate that this2039

entails that the back square is a pushout, we take a pullback of the cospan C′ − i′ → D′ ← g′ − B′, obtaining a2040

span C′ ← P→ D′.2041

– By the universal property of pullbacks, there exist unique morphisms A → P and A′ → P as indicated2042

with dashed arrows.2043

– By pullback-pullback decomposition, the squares over C′ ← P and over P→ B′ are both pullbacks.2044

– Since by assumption pushouts are stable under pullbacks, the square over P→ B′ is a pushout.2045

– Since according to Lemma Appendix A.4 in a category such as C which by assumption has pullbacks,2046

FPCs are stable under pullbacks, the square over C′ ← P is an FPC.2047

– By the universal property of FPCs, the arrow A′ → P is an isomorphism, hence the back square is a2048

pushout, which proves (BCC-1).2049
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A B

C D

A′ B′

C′ D′

f

h

i

g

o p

m n

i′

h′

f ′

g′

?

FPC

FPC

PO

PB

take PB−−−−−→

A B

C D

A′ B′

P

C′ D′

f

h

i

g

o p

m n

i′

h′

f ′

g′

?

FPC

FPCPO

PB

PB

(B.14)

• (BCC-2): the premise of this condition is explicitly depicted in (B.15), i.e., the top and right squares are pull-2050

backs, the left square is an FPC, and the front and back squares are pushouts. In order to demonstrate that this2051

entails that the right square is an FPC, we take the final pullback complement of the sequence of morphisms2052

B − g → D � D′ (which is admissible since by assumption C has FPCs along M-morphisms), obtaining a2053

sequence of morphisms B→ F → D′.2054

– Since the front and left squares are morphisms in PBh(C,M) and thus pullbacks, by pullback-pullback2055

composition so is the vertical diagonal square ADD′A′ that arises as the composite of the front and left2056

squares. Thus by the universal property of FPCs, there exists a unique morphism A′ → F as indicated2057

with a dashed arrow. Since the back square is a pushout, by the universal property of pushouts there exists2058

a unique morphism B′ → F, again indicated with a dashed arrow.2059

– Noting that the resulting configuration corresponds precisely to the precondition of (BCC-1), we find that2060

the square ABFA′ over A′ → F is a pushout. Thus by the universal property of pushouts, B′ → F is an2061

isomorphism, and thus the right square is an FPC, which proves (BCC-2).2062

A B

C D

A′ B′

C′ D′

f

h

i

g

o p

m n

i′

h′

f ′

g′

PO

FPC

?

PO

PB

take FPC−−−−−−→

A B

C D

A′ B′

F

C′ D′

f

h

i

g

o p

m n

i′

h′

f ′

g′

PO

FPC

?

PO

PB

(B.15)

�2063

Theorem 4.8. Let C be a category with a stable system of monicsM and that has FPCs alongM-morphisms. Then2064

the target functor T : FPCv(C,M)→ C|M is a Grothendieck opfibration.2065

Proof. Let us first provide the claim in more explicit form, i.e., by instantiating the defining properties of a Grothendieck2066

76



opfibration (cf. equation (5)) to the case at hand, where we use the shorthand notation T for the target functor:2067

f f f ′

∀ : ∃ :

B B′ B B′

f f ′ f ′′ f f ′ f ′′

∀ :

B B′ B′′ B B′ B′′

T T

β

(α,β)

T

T

β β′

(α,β)

T T

(α′′,β′′)

β′′=β′◦β

T

(α,β)

T

β
β′=T (α′,β′)

T

(α′′,β′′)

β′′

∃! (α′,β′)

β

(B.16)

Recalling the definition of the category FPCh(C,M) (Definition 4.2), we may further expand the claim into the2068

following equivalent form:2069

A B A B

∀ : ∃ :

B′ A′ B′

A B A B

∀ A′ B′ : A′ B′

A′′ B′′ A′′ B′′

f

β

f

βα

f ′

f

β

β′

α′′

f ′′

β′′

α

f ′

f

α β

f ′

∃! α′ β′

f ′′

α′′
β′′FPC FPC

FPC FPC

FPC

FPC

(B.17)

The first part of the claim, i.e., the existence of suitable liftings follows since C by assumption has FPCs alongM-2070

morphisms. In order to prove the claim that these liftings have the op-Cartesianity property, we take a pullback to2071

arrive at the diagram below:2072

A B A B

A B A B

A′ B′
take PB−−−−−→ A′ B′

P

A′′ B′′ A′′ B′′

f

β

β′

f ′′

α

f ′

f

α β

f ′

∃! α′ β′

f ′′

γ′

g′

PB

∃! ηβ′′
α′′

FPC

f

β′′
α′′

∃! γ

f

FPC

FPC FPC

(B.18)

• By pullback-pullback decomposition, the square over g′ is a pullback.2073

• By stability ofM-morphisms under pullback, P − γ′ → A′′ is anM-morphism. Since A − α′′ → A′′ is inM2074

and α′′ = γ′ ◦ γ, by decomposition property ofM-morphisms, we find that γ ∈ M.2075
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• Invoking vertical FPC-pullback decomposition, the square under P and the square over g′ are FPCs.2076

• By the universal property of FPCs, there exists thus a morphism A′ − η → P, which by the universal property2077

of FPCs is an isomorphism.2078

Up until this point, we have proved that there exists a morphism α′ = γ′ ◦ η, and that the square under α′ is an FPC.2079

It remains to prove uniqueness of α′. To this end, upon closer inspection of the second diagram in (B.18), since β′ is2080

inM and thus in particular a monomorphism, the right vertical square is a pullback, and thus by pullback-pullback2081

composition, the composite of the right and back vertical squares is a pullback. Therefore, we may identify α′ as the2082

morphism that according to the universal property of FPCs is guaranteed to exist (mediating before the aforementioned2083

pullback square and the FPC in the front vertical square), and that is moreover unique as per the universal property. �2084

Lemma 4.11. Let C be a category with a stable system of monics M. If pushouts along M-morphisms are stable2085

underM-pullbacks, and if pushouts alongM-morphisms are pullbacks, then C has multi-initial pushout complements2086

(mIPCs) alongM-morphisms.2087

Proof. By definition, for every composable sequence of morphisms A − f → B�β → B′ (i.e., with β ∈ M), the2088

multi-initial pushout complement P( f , β) consists of all composable sequences of morphisms A�α → A′ − f ′ → B′2089

such that the resulting commutative square is a pushout:2090

P( f , β) := {(A�α→ A′, A′ − f ′ → B′) ∈ mor(C) ×mor(C) | α ∈ M ∧ ( f ′, β) = PO(α, f )} . (B.19)

Since this class may in general be empty, it is non-trivial to prove the universal property of mIPCs. To this end, let us2091

construct the diagrams below:2092

A B A B

B′
take PB−−−−−→ A′ B′

A B A B

A′′ B′′ A′′ B′′

f

α′′

f ′′

β′′

f

β

β′

PO

f

β∃! α

f ′

α′

α′′

f
β′

β′′

f ′′

PO

PB

(B.20)

Here, the left diagram encodes the premise of the universal property of mIPCs. The existence part of the universal2093

property may be demonstrated as follows:2094

• Taking a pullback as indicated to obtain the right diagram (which is admissible since by assumption C has2095

pullbacks alongM-morphisms), we obtain morphisms f ′, α and α′.2096

• By stability ofM-morphisms under pullback, α′ is inM. Since α′′ = α′ ◦ α is inM as well, by the decompo-2097

sition property ofM-morphisms, we find that α ∈ M.2098

• Since α and β are inM, the right and left vertical squares are pullbacks. The back vertical square is a pullback,2099

since all squares of this form are such.2100

• By assumption, pushouts alongM-morphisms are stable underM-pullbacks, hence the top square is a pushout.2101

Thus by pushout-pushout decomposition, so is the front square.2102

We have thus exhibited an element of P( f , β).2103
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It remains to prove the essential uniqueness property of mIPCs. Suppose we were given another pair of vertically
composable pushouts as follows:

A B

C′ B′

A′′ B′′

f

βγ

γ′

g′

f ′′

β′

α′′ β′′

PO

PO

By assumption, pushouts alongM-morphisms are pullbacks, hence the pushout square C′B′B′′A′′ is also a pullback,2104

which by the universal property of pullbacks entails the existence of a unique isomorphism C′ → A′. �2105

Theorem 4.19. Let C be a category with a stable system of monicsM, that is (E,M)-structured, that has pushouts2106

and FPCs along M-morphisms, such that M-morphisms are stable under pushout, and such that pushouts along2107

M-morphisms are stable underM-pullbacks. Then the category FPCv(C,M) is (auto-augmented, inert)-structured.2108

Here, the class of auto-augmented FPCs is defined as2109

A B

A′ B′

f

βα

f ′

FPC ∈ mor(FPCv(C,M))|auto−augmented :⇔ ∃

A B

P

A′ B′

f

βα

f ′

p

η

e

PO

(B.21)

In words: an FPC square along an M-morphism (seen as a morphism in FPCv(C,M) is auto-augmented iff when2110

taking a pushout of the span within the FPC, the mediating morphism into the cospan object of the FPC is a morphism2111

in E.20 Moreover, the class of inert FPCs is defined as2112

mor(FPCv(C,M))|inert :=


A B

A′ B′

α

f

β

f ′

FPC

∣∣∣∣∣∣∣∣∣∣∣∣α ∈ E ∩M = iso(C)

 (B.22)

2113

Proof. In order to demonstrate that the two classes of morphisms are both closed under composition with isomor-2114

phisms, note first that this is true by definition for the inert FPCs. For the auto-augmented FPCs, it is useful to observe2115

the following auxiliary fact about isomorphisms in FPCv(C,M):2116

∀

A B

A′ B′

f

βα

f ′

FPC ∈ iso(FPCv(C,M)) :

A B

P

A′ B′

f

βα

f ′

p

η

q

PO

⇒ η, q ∈ M ∩ E = iso(C) (B.23)

In words: for every isomorphism in FPCv(C,M), which is an FPC square where the vertical morphisms are in2117

M∩E = iso(C), if we take a pushout A′ → P← η − B of its span A′ ← α − A→ B, which by the universal property2118

of pushouts yields a mediating morphism P−q→ B′, then η is inM∩E = iso(C) since isomorphisms are stable under2119

20Note that since we admit arbitrary morphisms of C for the horizontal morphisms, the mediating morphism would in general be a morphism
with a non-trivial E-M-factorization, hence for this morphism to be an E-morphism is indeed a non-trivial requirement.
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pushout, hence q = β ◦ η−1 is the composite of two isomorphisms, and thus itself an isomorphism. Consequently, we2120

find that isomorphisms in FPCv(C,M) are also pushout squares, and they are moreover both auto-augmented FPCs2121

and inert FPCs. To conclude that the class of auto-augmented FPCs is closed under composition with isomorphisms,2122

it suffices then to consider the following diagrams:2123

(i)

A B

P

A′ B′

Q

C D

f

βα

f ′

p

η

e

PO

γ

c

δ

q

γ′

d

PO

(ii)

X Y

A B

P

A′ B′

f

βα

f ′

p

η

e

PO

x

χ γFPC

(B.24)

Diagram (i) above demonstrates that post-composing an isomorphism with an auto-augmented FPC, and taking the2124

indicated pushouts, the morphism γ′ in (B.24)(i) is an isomorphism by stability of isomorphisms under pushout, hence2125

in particular also an E-morphism; thus the morphism d which satisfies d◦γ′ = δ◦e is an E-morphism, which proves that2126

the composite square is indeed an auto-augmented FPC. For diagram (B.24)(ii), which illustrates the pre-composition2127

of an auto-augmented FPC with an isomorphism, since isomorphisms in FPCv(C,M) are as demonstrated above also2128

pushout squares, we find that the vertical composition of the pushout squares in (B.24)(ii) yields a pushout square with2129

mediating morphism e that is an E-morphism, which demonstrates that the pre-composition of an auto-augmented FPC2130

with an isomorphism yields an auto-augmented FPC.2131

The next part of the proof amounts to showing that FPCv(C,M) has (auto-augmented, inert)-factorizations of2132

morphisms. To this end, for every morphism in FPCv(C,M), i.e., for an FPC square as in diagram B.25 below, we2133

exhibit a factorization into an auto-augmented FPC and an inert FPC as follows:2134

• Take a pushout, thus obtaining a mediating morphism P − p→ B′.2135

• Applying the E-M-factorization to p yields an E-morphism P − e→ E and anM-morphism E − m→ B′.2136

– Since every square of the form as the square under A′ − e ◦ g → E is a pullback, by pullback-pullback2137

decomposition also the square over e ◦ g is a pullback. Thus by vertical FPC-pullback decomposition,2138

both the squares over and under e ◦ g are FPC squares.2139

– By the decomposition property ofM-morphisms, since β = m ◦ (e ◦ π) and m are inM, (e ◦ π) is inM.2140

We thus confirm that the top subdiagram over e ◦ g manifestly has the structure of an auto-augmented FPC,2141

while the bottom subdiagram over e ◦ g encodes an inert FPC.2142

A B

A′ B′

f

α β

f ′

FPC
take PO−−−−−→

A B

A′ P

A′ B′

f

α π

g

f ′

p

β

PO

(epi,M)-fact.−−−−−−−−−→

A B

A′ P

E

A′ B′

f

α π

g

f ′

p

βe

m

e◦g

e◦π

PO

(B.25)
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It thus remains to prove that FPCv(C,M) has a unique (auto-augmented,inert) diagonalization property. More explic-2143

itly, considering a diagram as in the left of (B.26) below, where the top square is an auto-augmented FPC, while the2144

bottom square is an inert FPC:2145

A B

P P B′

A′ B′

C D D D′

C′ D′

α

f

β

f ′

α′ β′

g

γ δ

γ′ δ′

e

PO

FPC

FPC

γ−1◦γ′

∃! p

∃! b′

e

p δ′

δ

∃! b′

(B.26)

• Since by definition of inert FPCs γ is an isomorphism, we obtain a morphism γ−1 ◦ γ′, which is moreover inM2146

(since also γ′ is inM by definition of morphisms in FPCv(C,M)).2147

• The existence of the morphism γ−1 ◦ γ′ in turn reveals that there exists a cospan A′
g◦γ−1◦γ′−−−−−−→ D

β′←− B, which by2148

the universal property of pushouts entails the existence of a morphism P − p→ D.2149

• Extracting the subdiagram as in the right of (B.26) above, we find that by the unique (E,M)-diagonalization2150

property there exists a unique morphism B′ − b′ → D such that δ ◦ b′ = δ′; the latter then entails by the2151

decomposition property ofM-morphisms that b′ is inM.2152

• Since the front and bottom squares are FPCs and thus in particular pullbacks, and since the diagram commutes,2153

by pullback-pullback decomposition the diagonal square containing the morphisms γ−1 ◦γ′ and b′ is a pullback.2154

• Applying the two variants of vertical FPC-FPC decomposition, we may then conclude that the diagonal square2155

containing the morphisms γ−1 ◦ γ′ and b′ is the unique FPC square that simultaneously decomposes both the2156

back and the front FPCs, thus concluding the proof.2157

�2158

Theorem 4.20. Let C be a category with a stable system of monicsM, that is (E,M)-structured, that has pullbacks,2159

pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts2160

alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)→ C|M is a residual multi-opfibration.2161

Proof. Let us first utilize the assumptions on the underlying category C in order to provide the following construction2162

on FPC squares that are morphisms in FPCv(C,M) as described in (B.27) below:2163

• Taking a pushout of the span A′ ← α − A − f → B, we obtain a cospan A′ − p→ P← β − B where β ∈ M by2164

stability ofM-morphisms under pushout, as well as a unique mediating morphism P − β′ → B′′.2165

• Applying E-M-factorization to β′, we obtain an E-morphism P − e → E and an M-morphism E − m → B′′2166

such that β′ = m ◦ e.2167

• Taking a pullback of the cospan A′′ − f ′′ → B′′ ← m − E, we obtain a span A′′ ← ι′ − I − i → E, where by2168

stability ofM-morphisms under pullback we find that ι′ ∈ M, and a unique mediating morphism A′ − ι → I,2169

which by the decomposition property ofM-morphisms is also inM.2170
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• Finally, applying pullback-pullback decomposition followed by vertical FPC-FPC decomposition, we may con-2171

clude that the bottom square is an FPC, and so is the vertical composite of the top and middle square. Moreover,2172

the middle square is a FPC-pushout-augmentation for the top (pushout) square.2173

A B

A′

A′′ B′′

f

α

α′

f ′′

β′′α′′ FPC
take PO−−−−−→

A B

A′ P

A′′ B′′

f

α

α′

f ′′

β′′α′′ p

β

∃! β′

PO

E-M-fact.−−−−−−−→
& take PB

A B

A′ P

I E

A′′ B′′

f

α

α′

f ′′

β′′α′′

p

β

β′

e

mι′

i

∃! ι

PO

PB

(B.27)

It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially2174

unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique2175

only up to isomorphisms.21 More explicitly, we have the following chain of arguments demonstrating the existence of2176

unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:2177

• If as in (B.28) below A′ − q → Q ← γ − B is another pushout of A′ ← α − A − f → B, yielding also a unique2178

mediating morphism Q − γ′ → B′′, by the universal property of pushouts there exists a unique isomorphism2179

P − π→ Q such that γ ◦ f = π ◦ β ◦ f = q ◦ α = π ◦ p ◦ α.2180

• If Q − ẽ→ Ẽ − m̃→ B′′ is an E-M-factorization of Q − γ′ → B′′, since Q − e ◦ π−1 → E −m→ B′′ is another2181

E-M-factorization of Q − γ′ → B′′, and since E-M-factorizations are essentially unique, there exists a unique2182

isomorphism E − ε→ Ẽ such that ε ◦ e = ẽ ◦ π and m̃ ◦ ε = m.2183

• Finally, if A′′ ← ι̃′ − Ĩ − ĩ→ Ẽ is a pullback of A′′ − f ′′ → B′′ ← m̃ − Ẽ, with A′ − ι̃→ Ĩ the unique mediating2184

morphism, by the universal property of pullbacks, there exists a unique isomorphism I − ϕ → Ĩ that makes the2185

diagram commute.2186

A B

A′ P

Q

I E

Ĩ Ẽ

A′′ B′′

f

α

α′

f ′′

β′′α′′
p

β

β′

e

mι

i

ι

γ

q

ẽ

ι̃

ι̃′

ĩ

m̃

∃! π

∃! ε∃!φ

PO

PB

PB

(B.28)

In summary, we have proved that for a given span of the form A′ ← α−A− f → B with α inM, the class of FPAs for2187

any pushout over (α, f ) provides an explicit construction of residual multi-op-Cartesian liftings (with residues realized2188

21Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the effective “degrees of freedom” of the construction.
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via FPAs; compare (9)), while the above-mentioned arguments demonstrate that this construction indeed yields the2189

requisite vertical decomposition property of FPC squares up to residues (thus realizing the universal property of2190

residual multi-opfibrations) in an essentially unique form. �2191

Appendix B.3. Proofs of Section 52192

Lemma 5.21 ([3]; [8], Fact A.3.7). Let C be a finitary vertical weak adhesive HLR category with respect to a stable2193

system of monicsM, and denote by E the class of extremal morphisms with respect toM.2194

(i) Existence: If C has binary coproducts, then every cospan of M-morphisms A�a → Z ← b�B factors es-2195

sentially uniquely through a cospan ofM-morphisms A�yA → Y ← yB�B and anM-morphism Y�m → Z,2196

where m is obtained via the E-M-factorization A+B−e� Y�m→ Z of the induced morphism A+B−[a, b]→2197

Z, and where yA = e ◦ inA and yB = e ◦ inB.2198

(ii) Construction: if C in addition has anM-initial object ∅, then
∑
M(A, B) consists of cospans ofM-morphisms2199

obtained as pushouts A�pA → P ← pB�B of M-spans A ← xA�X�xB → B (i.e., “M-partial overlaps”)2200

extended by E-morphisms P − q� Q such that qA = q ◦ pA and qB = q ◦ pB are inM.2201

(iii) Refinements: if C in addition has pullbacks, and if pushouts along M-morphisms in C are stable under pull-2202

backs, then the extension morphisms P − q� Q are morphisms in E ∩mono(C) (so-called “refinements”).2203

Proof. Even though most of this proof is in principle “folklore” in the graph rewriting literature [3, 8], we provide full2204

details here, since we wish to demonstrate the claims in the generality stated, plus the presented statement regarding2205

refinements is a slight generalization of the corresponding statement in [1]. As depicted in the diagram below left, the2206

existence ofM-multi-sums is guaranteed via E-M-factorization of the induced morphism A + B − [a, b]→ Z, where2207

yA = e ◦ inA and yB = e ◦ inB are inM by the decomposition property ofM-morphisms:2208

X

∅

A B A B

A + B A + B

Y Y P

Q

Z Z

(i) (ii)

inA inB

a b

e

m

yA yB

[a,b]
a

yA

m

e

b

pA
pB

inA inB

yB

ιA ιB

xA
xB

ιX

eP

q

mQ

qB

qA

∃! z

(B.29)

In order to prove that the construction provided for the case that C has an M-initial object ∅ (i.e., in addition to2209

being a vertical weak adhesive HLR category) is sound and characterizes theM-multi-sums in C uniquely, consider2210

diagram (b) in (B.29).2211

• We first demonstrate that for every pushout A�pA → P ← pB�B of anM-span A ← xA�X�xB → B, the2212

induced morphism A + B− [pA, pB]→ P is an E-morphism. To this end, construct the commutative cube below,2213
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where the top square is a pushout (cf. e.g. [8, Fact 2.6]), the bottom square is a pushout:2214

∅ B

A A + B

X′ B′

A′ E

X B

A P

ιA

ιB

inB

∃!a′

x′A

∃!ιX′

x′B

α

eA

eB

∃!χ

xA

mP

pA

β

pB

eP

xB

inA

idA

idB

[pA,pB]

PO

PO

PB

PB

PB

∃!b′

(B.30)

– Construct an E-M-factorization A+B−eP � E�mP → P of the induced morphism A+B−[pA, pB]→ P.2215

– Since C has pullbacks alongM-morphisms, we can take pullbacks in order to obtain the bottom front and2216

right vertical squares in (B.30), which by the universal property of pullbacks induces unique morphisms2217

A− a′ → A′ and B− b′ → B′, and by stability ofM-morphisms under pullback, all morphisms of the two2218

pullback squares are inM.2219

– Since C has an E-M-factorization, isomorphisms such as in particular identity morphisms are both inM2220

and in E; since idA = α ◦ a′, idB = β ◦ b′, by extremality α and β beingM-morphisms implies that they2221

are isomorphisms, and hence so are a′ and b′.2222

– Take another pullback to obtain the middle horizontal square in (B.30), which induces the unique M-2223

morphism ∅�ιX′ → X (since ∅ is anM-initial object). Since according to Corollary 5.4 pushouts along2224

M-morphisms are pullbacks, we also obtain a unique morphism X′ − x→ X via the universal property of2225

pullbacks.2226

– By pullback-pullback decomposition, the bottom back and bottom left vertical squares are pullbacks. By2227

stability of isomorphisms under pullback, X′ − x→ X is an isomorphism.2228

– Since the bottom square is a vertical weak VK square, and since all four vertical squares in the bottom2229

half of the diagram are pullbacks alongM-morphisms, the middle horizontal square is a pushout. Thus2230

by the universal property of pushouts, mP is an isomorphism, which proves that A + B − [pA, pB] → P is2231

an E-morphism.2232

• It remains to demonstrate that any factorization of a cospan ofM-morphisms A�a → Z ← b�B obtained via2233

E-M-factorization of the induced morphism A + B − [a, b] → Z may be equivalently obtained via extending a2234

pushout A�pA → P ← pB�B of someM-span A ← xA�X�xB → B with an E-morphism P − e � Q. To2235

this end, consider yet again diagram (b) in (B.29):2236

– Take a pullback of A�a → Z ← b�B to obtain a span A ← xA�X�xB → B, which by stability of2237

M-morphisms under pullback is a span ofM-morphisms.2238

– Take a pushout A�pA → P ← pB�B of A ← xA�X�xB → B, which by the universal property of2239

pushouts yields a unique morphism P − z → Z. Moreover, since C is a vertical weak adhesive HLR2240

category, both pA and pB areM-morphisms.2241

– Take an E-M-factorization P − q� Q�mQ → Z.2242

* Let qA = q ◦ pA and qB = q ◦ pB; since bothM and E are closed under composition, qA and qB are in2243

M, while q ◦ eP is in E.2244

* By essential uniqueness of E-M-factorizations, there exists a unique isomorphism Y → Q.2245
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This concludes the proof of the soundness and completeness of our construction forM-multi-sums.2246

Finally, let us consider the claim regarding refinements, whereby if C in addition to being a vertical weak adhesive2247

HLR category also has pullbacks, and moreover satisfies the property that pushouts along M-morphisms are stable2248

under pullbacks, then the morphism P − q → Q of the above construction of M-multi-sums is both in E and a2249

monomorphism. To this end, first consider diagram (i) in equation (B.31) below:2250

• By pullback-pullback decomposition, the left and back vertical squares in the bottom of diagram (i) are pull-2251

backs, thus by stability of isomorphisms under pullback, Q′ is isomorphic to X, hence also the upper left and2252

back vertical squares are pullbacks.2253

• By pullback-pushout decomposition, the upper front and right vertical squares are pullbacks.2254

To finish the proof, construct diagram (ii) in (B.31) via taking a pullback (i.e., the square under R):2255

• As the span 〈idA, pA〉 is a pullback of the cospan 〉qA, q〈, by pullback-pullback decomposition 〈idA, rA〉 is a2256

pullback of 〉a, pR〈. Analogously, as 〈idB, pB〉 is a pullback of the cospan 〉qB, q〈, by pullback-pullback decom-2257

position 〈idB, rB〉 is a pullback of 〉b, pR〈.2258

• Since the inner bottom horizontal square (i.e., the square marked PO into P) is a pushout of M-morphisms,2259

and the vertical squares over its boundary are all pullbacks, by the assumed stability under pullbacks the inner2260

horizontal middle square is a pushout.2261

• By the universal property of pullbacks, we find that R− pR → P is an isomorphism (and thus also P− rP → R).2262

We have thus proved that the span 〈idP, idP〉 is a pullback of the cospan 〉q, q〈, which entails that q is a monomorphism.2263

X B

A P

Q′ B

A Q

X B

A Z

(i)

xA

xB

pA

pB

∃!x′Q

q′A

q′B
q

qA

qB

PO

PB

mQ

∃!q′X

xA

a

xB

bPB

X B

A P

X B P

A R

X B P

A P

Q

(ii)

xA
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