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Intrinsic shape invariants
Jérôme Houdayer

Abstract—Shape invariants are widely used in shape analysis. Usually they are build from rotational invariants based on coordinates
systems. They are then transformed into translational invariants by fixing the center of gravity. Here, we propose a new approach by
intrinsically defining an infinite family of invariants which are rotational and translational invariant from the beginning. This construction
works in any dimension. Our invariants, which are true quadratic forms of the density form a basis of the quadratic invariants. Using
their nice formulation, we can compute them analytically for simple shapes. We can also compute them from the 2D and 3D Zernike
moments, and thus also express them as geometric moment invariants. From these invariants, we can define both a size dependent
and a size independent distance between shapes. And last but not least, they can be measured for microscopic objects like proteins
using small angle scattering experiments. We hope they can be usefull to reconstruct their original shape.

Index Terms—Shape analysis, Intrinsic invariants, Moment invariants, Shape distance.

F

1 INTRODUCTION

Shape invariants are quantities associated to shapes which
are invariant under specific transformations. They are an
important tool in a large variety of applications: object
representation, recognition and retrieval, computer vision,
medical imaging or molecular biology.

We will focus here on invariants by isometry, that is
translations, rotations and mirror symmetry. There are other
kinds of invariants, for examples those that change sign
under mirror symmetry (skew invariants), those that are
invariant by affine transformations, projections and so on.

The search for shape invariants by isometry began in
1962 with the work of Hu [1], where he introduced his
famous seven 2D invariants. Those are geometric moment
invariants (GMI) which means they are based on objects of
the form 〈xnym〉 in 2D where 〈u〉 =

∫
u ρ with ρ the density

of the shape. This theory reached its full maturity with [2],
[3]. The field diversified with the use of functional represen-
tation such as Zernike polynomials [4], [5] or Fourier-Mellin
representations [6]. In 3D, the progress were slower due to
the richer structure of the rotation group and lesser interest
(3D data is less common). It started with GMI [7], which was
later improved with [8], 3D Zernike were also used [9], [10]
as well as polar radius representations [11]. Tensor methods
were also introduced [12], [13]. A quite general solution was
then achieved in [14].

The field is still very much active, see [15] concerning
excessive enthousiasm. For a historical review see [16] and
for a detailled presentation [17].

All these works use the same technique to build invari-
ants: build a set of rotational invariants and make them
translation invariants by fixing the center of gravity at the
origin. Placing the shape in the coordinate system (position,
orientation, scale) has been studied on its own in [18]. All
those invariants thus share the same issues: the moments
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are difficult to interpret as they depend on a coordinate
system, because of that they are difficult to generalise in all
dimensions. More importantly the invariants produced do
not have a uniform dependence on the density (quadratic,
quartic, . . . ). Note that a lot of invariants are said to be
quadratic, but they are only before fixing the center of
gravity (we will come back to this later). Why do we care
for quadratic invariants ? Because of physics: if we build
an experiment to measure the shapes of microscopic objects,
the result will most probably be quadratic or at least with a
definite dependence in the density. This is the case for small
angle scattering (SAS) experiments (see for example [19])
which are the inspiration of this work.

Here we propose a new approach to shape invariants:
we define intrinsic invariants that do not depend on a
coordinate system. Because of this we can define them in
any dimension. They are rotation and translation invariant
from the beginning, so there is no fixing of the center of
gravity. There have been some use of intrinsic descriptors
for shapes, like shape distributions [20], [21] or integral
invariants [22], but as far as we know nothing approaching
true intrinsic invariants.

This paper is structured as follow. In Section 2, we define
our invariants Kn and different tools to work with them. In
Section 3, we show how to compute them from the density
using 2D and 3D Zernike moments, and show that the Kn

form a basis of quadratic invariants. In Section 4, we define
two distances between shapes. In Section 5, we show how
to compute our invariants for simple shapes. Finally, in
Section 6, we show examples at low order to demonstrate
the relations to GMI, in particular the Hu invariants. We
finish by a conclusion.

2 INTRINSIC QUADRATIC SHAPE INVARIANTS

The theory presented here was started in [23] (following the
breakthrough of [24]) in the context of small angle scattering
experiments. Here, we present a much more developped
theory. To do so, we have needed to change the notations,
so the connection between the present work and [23] may
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be hard to follow. To make this article self contained, all
relevent information from [23] is thus duplicated here with
the new notations. Note that no knowledge of physics is
required.

2.1 Notations
Before, we dive in our subject, we need to set some no-
tations. We use standard notations for the multinomial
coefficients

( n
n1,...,np

)
= n!/(n1! . . . np!) and the kronecker

symbol δnm (δnn = 1 and δnm = 0 if n 6= m).
We also use standard notations for the following func-

tions: Pn is the Legendre polynomial, Jν the Bessel function,
jν the spherical Bessel function and the usual Γ function
for which Γ(n + 1) = n!. We also use the double factorial
notation n!! = n(n − 2) . . . so that (2n)!! = 2nn! and
(2n + 1)!! = (2n + 1)!/(2nn!). Finally, we also use δ the
Dirac’s distribution.

The dimension of space is noted d and vectors are noted
in bold characters r. The corresponding length is noted in
usual characters r = |r|, and the direction of a vector is
noted r̂ so that r = r r̂.

2.2 Usefull formulae
Some computations in this article are quite technical, we
have gathered here a set of formulae we are going to use.
This section can be skipped on a first read: it is only usefull
as a reference. In this section all references to equation
numbers refer to [25]. Using, Eq. 3.621.5, we have∫ 1

0
x2n+d

√
1− x2

d−1
dx =

Γ
(
n+ d+1

2

)
Γ
(
d+1
2

)
2(n+ d)!

, (1)

and from Eq. 3.715.21, we have∫ π

0
eix cos θ(sin θ)ddθ = 2d/2

√
πΓ

(
d+ 1

2

)
Jd/2(x)

xd/2
. (2)

In particular∫
Sd−1

eiq·rdq̂ = (2π)d/2
Jd/2−1(qr)

(qr)d/2−1
. (3)

Bessel functions have some useful properties. From
Eqs. 8.472.3, 8.440, 8.442.1 and 8.442.2, we have

d

dz
(zνJν(z)) = zνJν−1(z). (4)

Jν(x) =
∞∑

n=F0

(−1)n

n!Γ(ν + n+ 1)

(x
2

)2n+ν
. (5)

J2
ν (x) =

∞∑
n=0

(−1)n

n!

(x
2

)2(ν+n)
Γ(2ν + 2n+ 1)

Γ2(ν + n+ 1)Γ(2ν + n+ 1)
, (6)

Jν(x)Jν(λx) = λν
∞∑
n=0

(−1)n

n!

(x
2

)2(ν+n)
µνn(λ), (7)

with

µνn(λ) =
n∑
k=0

(
n

k

)
λ2k

Γ(ν + k + 1)Γ(ν + n− k + 1)
. (8)

Using Eq. 8.442.1 again, we have

Jn−k(x)Jn+k(x) =
∞∑
l=n

(−1)lΘnk
l

(x
2

)2l
, (9)

jn−k(x)jn+k(x) =
∞∑
l=n

(−1)lθnkl

(x
2

)2l
, (10)

with

Θnk
l =

(−1)n

(2l)!

(
2l

l − n

)(
2l

l − k

)
, (11)

θnkl =
(−1)n4l

(2(l + k) + 1)!!(2(l − k) + 1)!!

(
2l + 1

l − n

)
. (12)

Finally, there is a nice expansion for Jν(qx). From,
Eq. 8.532.1, we get for 0 ≤ x ≤ 2

Jν(qx)

(qx)ν
= 2νΓ(ν)

∞∑
k=0

(ν + k)
J2
ν+k(q)

q2ν
Cνk

(
1− x2

2

)
, (13)

where Cνk is the Gegenbauer polynomial. This formula has
the nice property of separating the variables q and x.

2.3 Quadratic invariants

We will consider shapes in d-dimensional Euclidean space
Rd. A shape will be described through its density ρ. We will
restrict ourselves to finite shapes, meaning that ρ(r) = 0 for
large enough r. We consider only the case ρ real, but it may
be negative.

We call M the total mass of the shape given by

M =

∫
Rd

ρ(r)dr. (14)

We suppose that M is finite but we make no other assump-
tion on M so it may be negative or even null.

We now consider the set I of the invariants Q by
isometry (i.e. rotations, translations and mirror symmetry)
which can be written

Q =

∫∫
Rd

ρ(r1)ρ(r2)gQ(r1, r2)dr1dr2, (15)

where gQ is a continuous function. Since Q is invariant by
translation, we can restrict gQ to depend only on r12 =
r2 − r1 and since it is invariant by rotation it may only
depend on r12 = |r12|. Hence we can write

Q =

∫ ∞
0

p(x)gQ(x)dx, (16)

where p is the pair distance distribution function (PDDF) of
ρ given by

p(x) =

∫∫
Rd

ρ(r1)ρ(r2)δ(x− r12)dr1dr2. (17)

Note that this definition does not encompass quadratic
invariants such as

∫
ρ2 which is related to p(d−1)(0) and

would require gQ to be a distribution.
We call the function gQ the generator of the quadratic

invariant Q. Our goal here is to build a basis to represent gQ
and thus a basis of I .
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2.4 Relation to geometric moment invariants

Before we start, we can remark that I contains all GMI
which are quadratic. Indeed geometric moments are of the
form

∫
ρP for some polynomial P , so that a quadratic GMI

Q takes the form

Q =
N∑
i=0

αi

∫
Rd

ρ(r1)P1,i(r1)dr1

∫
Rd

ρ(r2)P1,i(r2)dr2

=

∫∫
Rd

ρ(r1)ρ(r2)gQ(r1, r2)dr1dr2,

(18)

where N is some integer, αi are real numbers and the P∗,i
are polynomials and

gQ(r1, r2) =
N∑
i=0

αiP1,i(r1)P2,i(r2), (19)

which is continuous, so that Q ∈ I according to Eq. 15.
Note that the GMI of the litterature are usually not

quadratic even if they seem to be at first sight. For example,
consider the second Hu invariant [1] in 2D: as a rotational
invariant it is given by

I02I20 =
〈
x2
〉2

+ 4 〈xy〉2 − 2
〈
x2
〉 〈
y2
〉
, (20)

where 〈u〉 =
∫
ρ(x, y)udxdy. Note that to save space, we

have omitted obvious symmetric terms: here
〈
x2
〉2 implies

the term
〈
y2
〉2. This a nice quadratic form on ρ. Its transla-

tion invariant form is found by replacing x by x − 〈x〉 /M
and y by y − 〈y〉 /M . This gives (again omitting symmetric
terms)

I02I20 =
1

M2

(
〈x〉4 − 2M 〈x〉2

〈
x2
〉

+M2
〈
x2
〉2

+ 2 〈x〉2 〈y〉2 + 2M
〈
x2
〉
〈y〉2 − 8M 〈x〉 〈y〉 〈xy〉

+ 4M2 〈xy〉2 − 2M2
〈
x2
〉 〈
y2
〉 )
, (21)

which is not quadratic in ρ but quartic.

2.5 The Hn invariants

To build a basis of I , we introduce our first set of invariants
for n = 0, 1, 2, . . .

Hn =

∫∫
Rd

ρ(r1)ρ(r2)r2n12 dr1dr2. (22)

The Hn are obviously in I and their generators are the x2n,
namely we have

Hn =

∫ ∞
0

p(x)x2ndx. (23)

By construction, we have

H0 = M2, (24)

H1 = 2M2R2
g , (25)

where Rg is the radius of gyration of the shape. We will also
use another size descriptor in the following, namely Dmax

which is the diameter of the shape, i.e. the upper bound on
the distances inside the shape. Or said otherwise the support
of p is [0, Dmax].

A remark on the value of M . If M = 0, Rg is infinite
but H1 is finite and not null in general. Our theory has no
problem with the caseM = 0. Nevertheless, whenM 6= 0, it
may be practical to set it to one, this is equivalent to dividing
all Hn by M2 so that H0 = 1. Likewise for p:

∫
p = M2 but

if we normalise M to 1 then
∫
p = 1.

2.6 Questions of size

When we compare shapes, the relative size of the shapes
may be relevent or not. To accomodate both possibilities,
we will introduce rescaled version ρ̄ of ρ which depends on
a size parameter D > 0:

ρ̄(r, D) = Dd ρ(D r). (26)

We will note X̄(ρ) = X(ρ̄) for any functional of ρ. For exam-
ple, we have made sure that M̄ = M . To take advantage of
this definition, it is usefull to understand the size behavior
of the different quantities we have introduced

p̄(x,D) = Dp(Dx), (27)

H̄n(D) = Hn/D
2n, (28)

R̄g(D) = Rg/D, (29)
D̄max(D) = Dmax/D. (30)

It is important to understand that all functional equa-
tions in this article are still valid when we add bars to all
their functionals of ρ. For exmple H̄1 = 2M̄2R̄2

g .
We can finaly introduce a size invariant form ρ̃ of ρ by

setting D to its prefered value, namely D = Dmax

ρ̃(r) = ρ̄(r, Dmax). (31)

Again we note X̃(ρ) = X(ρ̃), in particular D̃max = 1. Again
all functional equations in this article are still valid when we
add tildes to all their functionals of ρ. For example, H̃1 =
2M̃2R̃2

g .

2.7 The SAS profile

Since the PDDF p(x) is in general very difficult to compute,
our previous definitions do not allow us to compute our
invariants in practical cases. We will thus use the following:
we define the d-dimensional SAS profile by

I(q) =
1

Ad

∫
Sd−1

dq̂ |F(ρ)(q)|2 , (32)

where Sd−1 is the unit sphere of dimension d−1 (imbedded
in Rd), Ad = 2πd/2/Γ(d/2) is the measure of its surface (i.e.
A2 = 2π and A3 = 4π), q = qq̂ and F(ρ)(q) is the Fourier
transform of ρ given by

F(ρ)(q) =

∫
Rd

ρ(r)eiq·rdr. (33)

In 3D, I(q) is essentially the output profile of the small angle
scattering (SAS) experiments, hence the name.

As before, we define a Ī(ρ) = I(ρ̄). The scaling law for
I is then

Ī(q,D) = I(q/D). (34)

In particular Ī(0) = I(0) = M2.
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If we develop the norm in I(q), we get

I(q) =
1

Ad

∫∫
Rd

dr1dr2ρ(r1)ρ(r2)

∫
Sd−1

eiq·r12dq̂

=

∫ ∞
0

p(x)gI(qx)dx,
(35)

where we have defined (see Eq. 3)

gI(z) = 2d/2−1Γ(d/2)
Jd/2−1(z)

zd/2−1
, (36)

where Jn is the Bessel function. Thus I(q) ∈ I and gI(qx)
is the generator of I(q).

Finally, we can relate I(q) to the Hn by developing gI
(using Eq. 5), and obtain

I(q) = Γ

(
d

2

) ∞∑
n=0

(−1)n

n!Γ(n+ d/2)

(q
2

)2n
Hn. (37)

2.8 The Kn invariants

We will now build a generating set Kn for I . We will
decompose gQ on a polynomial family. In order to do this,
we will restrict ourselves to shapes with Dmax ≤ 1, so that
gQ is defined on [0, 1]. Since gQ(x) is continuous on [0, 1],
then gQ(

√
x− 1/2) is continuous on [−1, 1], we can thus

decompose it with the Legendre polynomials Pn

gQ

(√
x− 1

2

)
=
∞∑
n=0

αnPn(x), (38)

with uniform convergence. Hence

gQ(x) =
∞∑
n=0

αnUn(x), (39)

where

Un = Pn(1− 2x2), (40)

αn =

∫ 1

0
gQ(x)Tn(x)dx, (41)

Tn(x) = 2x(2n+ 1)Pn(1− 2x2), (42)

and ∫ 1

0
Un(x)Tm(x)dx = δnm. (43)

Note that U0 = 1 and thus K0 = M2. From this, we have
for Q ∈ I and Dmax ≤ 1

Q =
∞∑
n=0

αnKn, (44)

with

Kn =

∫ 1

0
p(x)Un(x)dx. (45)

Hence the Kn form a generating set of I restricted to
Dmax ≤ 1. We will see later on, that they are independent
and thus form a basis of I .

From this, we also get for 0 ≤ x ≤ 1

p(x) =
∞∑
n=0

KnTn(x), (46)

I(q) =
∞∑
n=0

KnSn(q), (47)

Sn(q) =

∫ 1

0
Tn(x)gI(qx)dx, (48)

gI(qx) =
∞∑
n=0

Sn(q)Un(x). (49)

Finally, we can relate the Kn to the Hn by writing

Un(x) =
n∑
k=0

unkx
2k, (50)

which gives

Kn =
n∑
k=0

unkHk. (51)

Using standard representation of Pn, we get

unk = (−1)k
(
n

k

)(
n+ k

k

)
. (52)

We can also reverse this relation with

Hn =
n∑
k=0

vnkKk, (53)

vnk = (−1)k
n!2(2k + 1)

(n− k)!(n+ k + 1)!
. (54)

We will see later on (after Eq. 59) where this last equation
comes from.

For larger shapes (i.e. with Dmax > 1), we choose a D ≥
Dmax and we can use the barred versions of the equations
of this section (since D̄max = Dmax/D ≤ 1).

2.9 The Kd
n invariants: a variation on the Kn

This section is only relevent for the SAS experiments (and
demonstration of Eq. 54). It can be skipped on the first read.

The choice of the Un is not unique and different choices
lead to different definitions of the Kn. We will now make
a choice dependent on the dimension and will note all the
corresponding quantities with a d exponent.

To proceed, we rewrite gI using Eq. 13. Starting from this
equation at ν = d/2, we differentiate it relatively to x using
Eq. 4, and deduce for 0 ≤ x ≤ 1

gI(qx) =
∞∑
n=0

Sdn(q)Udn(x), (55)

with

Sdn(q) = 2dΓ2

(
1 +

d

2

) J2
n+d/2(q)

q
, (56)

Udn(x) =
2n+ d

d2
1

xd−1
d

dx

(
xdCd/2n

(
1− 2x2

))
, (57)

where Cλn is the Gegenbauer polynomial. This is identical
to Eq. 49, we thus define Kd

n using Eq. 45 with Udn , and we
recover Eqs. 46 to 49. We can define αdn using Eq. 41, but it
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is difficult to say if Eq. 39 converges in this case, we thus
cannot tell whether the Kd

n form a generating set of I . We
believe this to be the case if we restrict ourselves to shapes
with an intrinsic dimension larger than d.

To work with the Kd
n, we need to know more of the Udn .

From [25] (Eq. 8.932.1), we find that

udnk =
Γ
(
d+1
2

)
dd!

(−1)k
(
n

k

)
(2n+ d)(2k + d)(n+ d+ k − 1)!

n!Γ
(
k + d+1

2

) . (58)

Note that these numbers are always rational. We can by the
way check that Ud0 = ud00 = 1 as it should.

To compute the vdnk, we develop Eq. 47 with Eq. 6, we
can thus express the Hn from the Kd

n, that is Eq. 53 with

vdnk = (−1)k
d d!!n!

(2n+d
n−k

)
2n(2n+ d)(2n+ d)!!

. (59)

That is the point where we can prove Eq. 54. Indeed Eq. 52
is very similar to Eq. 58 at d = 1, we can then deduce Eq. 54
from Eq. 59 at d = 1.

The case d = 3 is of particular interest for the SAS
experiments as Eq. 47 with Kd

n and Sdn is used to fit the
experimental data [23].

In this case, we can write S3
n(q) = 9j2n+1(q)/q2 where jn

is the spherical Bessel function and T 3
n has been computed

in [23], here is the result in our notations

T 3
n(x) =

72

2n+ 3
x2

− 36
n+1∑
k=0

(−1)kx2k+3

(k + 1)(2k + 1)

(
n+ 1

k

)(
n+ k + 1

k

)
. (60)

To go from Kd
n to Kn, we use Eqs. 53 and 51 and obtain

Kn =
n∑
l=0

AdnlK
d
l , (61)

with

Adnl =
n∑
k=l

unkv
d
kl. (62)

It happens that, for d = 3, the A3
nl can be written in closed

form. Indeed for n ≥ l we have

A3
nl =

9ζnl
(2n− 1)(2n+ 1)(2n+ 3)(2l + 3)

, (63)

with ζnn = 2n − 1, ζn,n−1 = 2(2n − 1), ζn,n−2 = 2n − 5
and ζnl = −8 otherwise. We do not have a demonstration
for this in general, but we have checked it up to n = 100. In
any cases, the Anl are bounded so that this transformation
is a smooth one and does not lead to a loss of precision.

3 COMPUTATION OF THE INVARIANTS

We will now see how we can evaluate the Hn and the Kn

from the density ρ. To do this, we will compute I(q) from the
Zernike moments of the density. The d-dimensional Zernike
polynomials form a polynomial orthogonal basis of the unit
d-dimensional ball, so we will fit our shape into the unit ball
by using ρ̄(r, D). The following computation is probably
feasible in any dimension, but we will focus on 2D and 3D.

3.1 In two dimensions
In 2D, one can compute the Hn from the 2D Zernike
moments. This is important as it allows us to numerically
compute our invariants in many situations in 2D.

The 2D complex Zernike polynomials form an orthogo-
nal basis on the unit disk D. They are given by

Zmn (r) = Rmn (r) eimθ, (64)

Rmn (r) =

n−|m|
2∑

k=0

(−1)k(n− k)!

k!
(
n+m

2 − k
)
!
(
n−m

2 − k
)
!
rn−2k. (65)

here n and m are integers, n ≥ 0, n ≥ m ≥ −n and
n − m even. Here the chosen normalisation is ||Zmn ||2 =√
π/(n+ 1).
We first rescale our shape so that it fits inside the unit

disk. Namely we choose D such that ρ̄(r, D) has its support
inside the unit disk. We can then write

ρ̄(r, D) =
∞∑
n=0

n∑
m=−n

cmn Z
m
n (r), (66)

where the cmn are the 2D Zernike moments of ρ̄(r, D) given
by

cmn =
n+ 1

π

∫
D
ρ̄(r, D)Zm∗n (r)dr. (67)

Now, we can use the 2D plane wave expansion

eiq·r =
∞∑

l=−∞
ilJl(qr)e

il(θq−θr), (68)

where Jn is the Bessel function and this well known relation
on Rmn∫ 1

0
rRmn (r)Jm(qr)dr = (−1)(n−m)/2 Jn+1(q)

q
, (69)

to get the Fourier transform of Zmn

Ẑmn (q) = 2πim(−1)(n−m)/2eimθq
Jn+1(q)

q
, (70)

still with n−m even.
Plugging this in the barred version of Eq. 32, one gets

Ī(q,D) =
4π2

q2

∞∑
n=0

n∑
k=0

Jn+k+1(q)Jn−k+1(q)F 2
nk, (71)

with

F 2
nk = (−1)kεk

n−k∑
m=k−n

cmn+kc
−m
n−k, (72)

where n− k −m even and ε0 = 1 and εk = 2 for k ≥ 1.
Finally, using Eq. 9 and identifying with Eq. 37 gives

H̄l(D) = −π2l!2
l∑

n=0

n∑
k=0

Θn+1,k
l+1 F 2

nk, (73)

with Θnk
l given by Eq. 11. From this, we can deduce

K̄m(D) = π2
m∑
n=0

n∑
k=0

F 2
nkΩnkm , (74)

with

Ωnkm = −
m∑
l=n

l!2umlΘ
n+1,k
l+1 . (75)
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Important practical note: To obtain accurate Kn, one
should not compute them from the Hn. Eq. 74 must be
used instead. For this, it is important to compute the Ωnkm
exactly (they are rationals) and convert them to floating
point numbers afterwards.

3.2 In three dimensions

In 3D the computation is analoguous using the 3D Zernike
moments. It has first be done in [23], for completeness
we sketch the computation here. The 3D complex Zernike
polynomials form an orthogonal basis on the 3D unit ball B.
They are given by

Zmnl(r) = Rnl(r)Y
m
l (r̂), (76)

Rnl(r) = rl
k∑
ν=0

(−1)k+ν
(2k
k

)(k
ν

)(2(k+l+ν)+1
2k

)
4k
(k+l+ν

k

) r2ν , (77)

where n, l and m are integers n ≥ l ≥ 0, −l ≤ m ≤ l, n− l
even and k = (n− l)/2. Y ml are the usual complex spherical
harmonics which form an orthonormal polynomial basis on
the unit sphere. Here the chosen normalisation is ||Zmnl ||2 =
1/
√

2n+ 3.
We choose D such that ρ̄(r, D) fits inside the unit ball

and we can write

ρ̄(r, D) =
∞∑
n=0

n∑
l=0

l∑
m=−l

cmnlZ
m
nl(r), (78)

where the cmnl are the 3D Zernike moments of ρ̄(r, D) given
by

cmnl = (2n+ 3)

∫
B
ρ̄(r, D)Zm∗nl (r)dr. (79)

Using the 3D plane wave expansion

eit·x = 4π
∞∑
l=0

iljl(tx)
l∑

m=−l
Y ml (̂t)Y m∗l (x̂),

where jn is the spherical Bessel function, and∫ 1

0
x2Rnl(x)jl(tx)dx = (−1)(n−l)/2

jn+1(t)

t
, (80)

one easily finds that the Fourier transform of Zmnl is

Ẑmnl(q) = 4πil(−1)(n−l)/2Y ml (q̂)
jn+1(q)

q
. (81)

Plugging this in the barred version of Eq. 32, one gets

Ī(q,D) =
4π

q2

∞∑
n=0

n∑
k=0

jn+k+1(q)jn−k+1(q)F 3
nk, (82)

with

F 3
nk = (−1)kεk

n−k∑
l=0

l∑
m=−l

(−1)mcmn+k,lc
−m
n−k,l, (83)

with n+ k − l even and ε0 = 1 and εk = 2 for k ≥ 1.
Finally, using Eq. 10 and identifying with Eq. 37 gives

H̄l(D) = −π(2l + 1)!

4l

l∑
n=0

n∑
k=0

θn+1,k
l+1 F 3

nk, (84)

where θn,kl is given by 12. From this, we can deduce

K̄m(D) = π
m∑
n=0

n∑
k=0

F 2
nkω

nk
m , (85)

with

ωnkm = −
m∑
l=n

(2l + 1)!

4l
umlθ

n+1,k
l+1 . (86)

The remark after Eq. 75 also applies in 3D.

3.3 The Kn form a basis of I
We will now show that the Hn are independent in 3D, but
this easily generalises to any dimension.

It is easy to see from Eq. 84 that Hk only depends on the
Zernike coefficients cmnl with 2n ≤ k.

If we suppose that the Hn are algebraically dependent,
this means that there exists a non trivial algebraic relation
X(H0, . . . ,Hk) = 0 for some k which stands for any value
of the cmnl. But we can change the value of Hk without
changing the H0, . . . Hk−1 by changing the value of the
cm2k−1,l and cm2k,l so that X cannot depend on Hk and by
recursion on any Hn, which is a contradiction. Hence the
Hn are algebraically independent.

Since the Kn are related to the Hn through a reversible
linear transformation they also are independent. We can
thus deduce that the Kn form a basis of I (when restricted
to Dmax ≤ 1).

We can also deduce that the Kn (resp. Hn) form a basis
for finite order quadratic GMI (those involving the cmn or cmnl
up to a maximum n value).

4 DISTANCES BETWEEN SHAPES

We will now show how to compute a distance between two
shapes, using our invariant basis Kn. We would like to have
two kinds of distances: a size dependent one and a size
independent one.

4.1 Norms on the PDDF

To build a distance, we will start by building a norm on the
PDDF. To do this, we remark that from Eqs. 46 and 42 for
Dmax ≤ 1

p(x) = 2x
∞∑
n=0

(2n+ 1)KnUn(x). (87)

Squaring this and integrating, we hence get for Dmax ≤ 1
(using Eq. 43)∫ 1

0

p2(x)

2x
dx =

∞∑
n=0

(2n+ 1)K2
n. (88)

So we define a norm for p (for any Dmax) which we call the
U -norm by

‖p‖2U =

∫ ∞
0

p2(x)

2x
dx. (89)

Hence ‖p̄‖U = D‖p‖U . Thus, for D ≥ Dmax

‖p‖2U =
1

D2
‖p̄‖2U =

1

D2

∞∑
n=0

(2n+ 1)K̄2
n(D), (90)
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independently of D. It is important to remark that the conver-
gence of this sum is better when D is smaller. Indeed from
Eqs. 51 and 28, we see that K̄2

n(D)/D2 goes to zero at large
D as 1/D2. So the larger the D, the smaller the K̄2

n(D)/D2

and the more terms we need for the same precision.
We can interpret the U -norm in the following way: let

p2 be the distribution of the squares of the distances in
the object. A simple change of variables gives p2(x) =
p(
√
x)/(2

√
x) and a simple computation shows that the U -

norm on p is the usual norm on p2.

4.2 Distances

From the U -norm, we can derive a distance between PDDFs
and hence a distance between shapes. The distance between
two PDDFs p and q is given by

d2(p, q) = ‖p− q‖2U

=
1

D2

∞∑
n=0

(2n+ 1)
(
K̄n(p,D)− K̄n(q,D)

)2
,

(91)

independently of D, as long as D ≥ Dmax(p) and D ≥
Dmax(q). Deriving from a norm, this is a true distance in
the mathematical sense.

To lighten notations, we introduce

∆(D, ρ, σρ, µ, σµ) =

1

D2

∞∑
n=0

(2n+ 1)
(
K̄n(ρ, σρD)− K̄n(µ, σµD)

)2
, (92)

independently of D as long as D ≥ Dmax(ρ)/σρ and D ≥
Dmax(µ)/σµ.

Given two shapes with densities ρ and µ, we can define
two interesting distances. To do this we will suppose that
their densities are normalized, that is M(ρ) = M(µ) = 1
(i.e. the Kn are normalised so that K0 = 1).

We can first define a size dependent distance dD given
by

d2D(ρ, µ) = ‖pρ − pµ‖2U = ∆(D, ρ, 1, µ, 1). (93)

We also want a size independent distance. To do this,
we use resized versions of ρ and µ namely ρ̄(α) and µ̄(β).
Hence

d2D(ρ̄(α), µ̄(β)) = ∆(D, ρ̄(α), 1, µ̄(β), 1)

= ∆(D, ρ, α, µ, β).
(94)

To choose α and β, we can remark that the first term in ∆ (at
n = 0) is always null since K0 = 1. We can choose α and β
to also cancel the second term (at n = 1). This corresponds
to K̄1(ρ, αD) = K̄1(µ, βD), which can be obtained with
α = Rg(ρ) and β = Rg(µ). We can thus define a size
independent distance dI by

d2I (ρ, µ) = d2D(ρ̄(Rg(ρ)), µ̄(Rg(µ)))

= ∆(D, ρ,Rg(ρ), µ,Rg(µ)).
(95)

We want to stress that in all cases, a zero distance does
not mean identical shapes but only identical PDDF. The K̄n

simply do not hold enough information for a true distance
between shapes, they only contain the same information as
p.

4.3 Distances in practice

To use these distances in practice, one needs to have for
each shape, a D ≥ Dmax (the smaller the better) and the
corresponding K̄n. We will suppose that the shapes are
normalised, that is K̄0 = 1. We know that H̄1 = 2M2R2

g/D
2

and that H̄1 = 1
2 (1 − K̄1). Thus we can get the radius of

gyration

Rg =
D

λ
, (96)

with

λ =
2√

1− K̄1

(97)

To use the distances, we will have to limit us to a finite
number of terms. As they are all positive, the more we can
take, the more precise the result.

If we have two shapes ρ and µ such that Dρ ≤ Dµ then

d2D(ρ, µ) = ∆(Dµ, ρ, 1, µ, 1). (98)

And if we suppose that λρ ≤ λµ then

d2I (ρ, µ) = ∆

(
λµ, ρ,

Dρ

λρ
, µ,

Dµ

λµ

)
. (99)

4.4 Navigating through the K̄n

You will need to change the value of D in K̄n(D) to
accomodate the D ≥ Dmax constraints required to compute
distances. To do this, we have from Eqs. 53, 51 and 28

K̄n(αD) =
n∑
l=0

Snl

(
1

α2

)
K̄l(D), (100)

where Snl is a polynomial of degree n given by

Snl(x) =
n∑
k=l

unkvkl x
k. (101)

we can compute from the definitions

unkvkl = (−1)k+l
2l + 1

n+ k + 1

(
n+ k + 1

n− k, k − l, k + l + 1

)
.

(102)
There is a difficulty here: These coefficients diverge quite

fast as n increases. Nevertheless the polynomials Snl are
essentially bounded on [0, 1], so that the transformation of
Eq. 100 is smooth for α > 1. To use it, we need to be able
to compute the Snl precisely, to do this, we can for example
compute the roots of Snl using multiple precision (all those
roots happen to be reals in [0, 1]) and use them to evaluate
the Snl.

It is important to note that Eq. 100 cannot be used for
α < 1 as the Snl diverge very fast for x > 1. We thus need
to take the original D as small as possible so we only need
α > 1.
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5 COMPUTATION OF THE H̃n FOR SIMPLE SHAPES

In this section, we show how the Hn can be computed for
simple geometric shapes. The point of this computation is to
provide reference points. Coupled with distance evaluation,
it can be used to find the nearest simple shape from a given
shape.

The aim here is to compute Dmax and the H̃n, since all
other quantities are easily derived from there.

Important remark: when computing H̃n for specific
shapes, we will set M = 1. Constant factors are then
irrelevent, so we will compute up to a constant factor. At
the end we normalise the H̃n using the fact that H̃0 = 1.

5.1 Using the PDDF (segment)

The natural approach to compute Hn is to use the PDDF
and Eq. 23. As an example, we will consider the case of a
segment (which we call L) of constant density (normalisa-
tion is irrelevent as we will set H̃0 = 1 at the end) and of
length l. By definition, we have for 0 ≤ x ≤ l

pL(x) ∝
∫ l

0

∫ l

0
δ(x− |x2 − x1|)dx1dx2 ∝ l − x. (103)

Now using Eq. 23, we obtain

Hn(L) ∝
∫ l

0
(l − x)x2ndx ∝ l2n+2

(n+ 1)(2n+ 1)
. (104)

It is now an easy task to compute Dmax and the H̃n

D2
max(L) = l2, H̃n(L) =

1

(n+ 1)(2n+ 1)
. (105)

Computing Eq. 103 was already painful for such a simple
shape. Indeed, computing the PDDF rapidly becomes a
daunting task even for simple shapes like a disk or a cube.
And we then still need to integrate Eq. 23.

This method of computation is not up to the task, and we
will not go further this way. Another path must be found.

5.2 Using the autocorrelation function (ball)

The difficulty with the previous method is that it forces the
use of spherical coordinates which are rarely adapted to the
shape of interest. Here is a trick to prevent this. Remember
that we note x = |x|. Starting from Eq. 17, we can write

p(x) =

∫∫
Rd

ρ(r1)ρ(r2)δ(x− |r2 − r1|)dr1dr2

=

∫∫
Rd

ρ(r1)ρ(y + r1)δ(x− y)dr1dy

=

∫
Rd

γ(y)δ(x− y)dy,

(106)

where we have introduced γ the autocorrelation function

γ(x) =

∫
Rd

ρ(y)ρ(y − x)dy. (107)

Now we can rewrite Eq. 23

Hn =

∫ ∞
0

dr r2n
∫
Rd

γ(x)δ(r − x)dx

=

∫
Rd

γ(x)x2ndx
(108)

Hence to compute Hn, we first need to compute γ using
Eq. 107. For shapes with constant density (density 1 inside
and density 0 outside) this is simply the volume of the
intersection of the shape with a translated copy of itself.
Note that constant factors are also irrelevant in γ and will
also be dropped. We continue the computation with Eq. 108
using any suitable coordinate system.

We will now treat the example of the d-dimensional
ball (noted Bd). In this case, γ depends only on the radial
coordinate r. γ(r) is the volume of the intersection of two
unit d-dimensional balls whose centres are at a distance
r. It is simpler to compute its derivative. Indeed, it is the
inner volume of the d − 2 dimensional sphere which is the
intersection of the surface of the balls. The radius of this
intersection is easily found to be

√
4− r2/2 and we get

γ′(r) ∝
√

4− r2
d−1

, (109)

for 0 ≤ r ≤ 2. Now we have (using Eq. 1)

Hn(Bd) ∝
∫ ∞
0

r2n+d−1γ(r)dr

∝ 1

2n+ d

∫ ∞
0

r2n+dγ′(r)dr

∝ 4n

2n+ d

∫ 1

0
r2n+d

√
1− r2

d−1
dr

∝ 4n

(2n+ d)(n+ d)!
Γ

(
n+

d+ 1

2

)
.

(110)

We thus get

D2
max(Bd) = 4r2, H̃n(Bd) =

dd!Γ
(
n+ d+1

2

)
(2n+ d)(n+ d)!Γ

(
d+1
2

) .
(111)

In particular, we recover the segment for d = 1. Moreover,
for the disk d = 2 and the usual ball d = 3, we have

H̃n(B2) =
(2n+ 1)!!

2n−1(n+ 1)(n+ 2)!
, (112)

H̃n(B3) =
18

(n+ 2)(n+ 3)(2n+ 3)
. (113)

5.3 Linear transformations (ellipsoidal shapes)

It is often practical to use a linear transformation to compute
γ more easily. If t is an invertible linear transformation then
we have

γρ(x) =

∫
Rd

ρ(y)ρ(y − x)dy

∝
∫
Rd

ρ(ty′)ρ(ty′ − tt−1x)dy′

∝ γρ◦t(t−1x).

(114)

And we can compute Hn with

Hn ∝
∫
Rd

γρ◦t(x)(tx)2ndx. (115)

We do not need to compute t−1. In general, there are no
simple expression for transforming Dmax.

In particular, the following case is particularly useful for
ellipsoidal shapes: if t(x1, . . . , xd) = (a1x1, . . . , adxd) with
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ai > 0 and ρ ◦ t depends only on the radial coordinate r
then

Hn(ρ) ∝
∫
Rd

γρ◦t(r)(a
2
1x

2
1 + · · ·+a2dx

2
d)
ndx1 . . . dxd. (116)

To compute this, we proceed as follow, we define

Z =

∫
Rd

x2n1
1 x2n2

2 · · ·x2nd

d e−x
2

dx, (117)

where x = (x1, . . . , xd) and x = |x|. We compute Z once
in Cartesian coordinates and once in spherical coordinates.
Comparing the two gives∫

Sd−1

x2n1
1 · · ·x2nd

d dx̂ =

2Γ
(
n1 + 1

2

)
. . .Γ

(
nd + 1

2

)
Γ
(
n1 + · · ·+ nd + d

2

) . (118)

Now, for any function f , we have

∫
Rd

x2n1
1 . . . x2nd

d f(x)dx =
2Γ
(
n1 + 1

2

)
. . .Γ

(
nd + 1

2

)
Γ
(
n1 + · · ·+ nd + d

2

)
Ad∫

Rd

x2(n1+···+nd)f(x)dx. (119)

In particular for ai > 0∫
Rd

(a21x
2
1 + · · ·+ a2dx

2
d)
nf(x)dx =

(max ai)
2nEn(a1, . . . , ad)

∫
Rd

x2nf(x)dx, (120)

with

En(a1, . . . , ad) =
Γ
(
d
2

)
2nΓ

(
n+ d

2

) 1

(max ai)2n∑
∑
ni=n

(
n

n1 · · ·nd

)
a2n1
1 . . . a2nd

d (2n1− 1)!! . . . (2nd− 1)!!.

(121)

We can now compute Hn:

Hn(ρ) ∝ (max
i
ai)

2nEn(a1, . . . , ad) Hn(ρ ◦ t). (122)

In this case Dmax(ρ) = (maxi ai)Dmax(ρ ◦ t).
So, for any shape X with spherical symmetry (namely X

depending only on r), we can use this technique to elongate
the shape by a factor ai > 0 depending on the axis, to make
it ellipsoidal, we call this new shape tX. We then get

D2
max(tX) = (max a2i )D

2
max(X), (123)

H̃n(tX) = En(a1, . . . , ad)H̃n(X), (124)

For example, the full 3D ellipsoid tB3 is given by

D2
max(tB3) = 4 max(a2, b2, c2), (125)

H̃n(tB3) =
18En(a, b, c)

(n+ 2)(n+ 3)(2n+ 3)
. (126)

5.4 Orthogonal factorisation (cuboid, cylinder)

We now consider the case where the density of the object can
be factorised between p orthogonal subsets of coordinates.
For example, this is the case for right cylinders or right
cuboids. We suppose that we divide our d dimensional
Cartesian coordinates in p orthogonal sets x = (x1, . . . ,xp)
and that the density function can be factorised ρ(x) =
ρ1(x1) . . . ρp(xp). In this case, it is easy to see that

γρ(x) = γρ1(x1) . . . γρp(xp) (127)

and we have

Hn(ρ) =

∫
γρ(x)x2ndx

=

∫
γρ1(x1) . . . γρp(xp)(x

2
1 + · · ·+ x2p)

ndx1 . . . dxp

=
∑

∑
i ni=n

(
n

n1 · · ·np

)
Hn1

(ρ1) · · ·Hnp
(ρp),

(128)

and

D2
max(ρ) = D2

max(ρ1) + · · ·+D2
max(ρp). (129)

Orthogonal factorisation is useful to get the cuboid tCd
of size (a1, . . . , ad) which factorises into segments:

D2
max(tCd) =

∑
i

a2i , H̃n(tCd) = Cn(a1, . . . , ad),

(130)
where

Cn(a1, . . . , ad) =
1

(a21 + · · ·+ a2d)
n

∑
∑

i ni=n

(
n

n1 · · ·nd

)
a2n1
1 . . . a2nd

d

(n1 + 1)(2n1 + 1) . . . (nd + 1)(2nd + 1)
. (131)

In particular, for the d-cube Cd, we have

D2
max(Cd) = da2, H̃n(Cd) = Cn(1, . . . , 1). (132)

From this, one can easily get the results for the square
C2, the rectangle tC2, the usual cube C3 and the usual
rectangular cuboid (or rectangular parallelepiped) tC3.

This technique is also usefull for the right cylinders X×L
where X is the base shape of the cylinder. In this case

D2
max(X× L) = D2

max(X) + l2, (133)

H̃n(X× L) =

(
1

1 + ε2

)2n

n∑
k=0

(
n

k

)
ε2k

(n− k + 1)(2(n− k) + 1)
H̃k(X),

(134)

with ε = Dmax(X)/l. Using this general formula, one can
explicitly get a variety of cylinders. For example, the full
right circular cylinder B2 × L of radius r and length l is
given, with σ = r/l (and thus ε = 2σ), by

D2
max(B2 × L) = 4r2 + l2, (135)
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H̃n(B2 × L) =

(
1

1 + 4σ2

)n n∑
k=0

(
n

k

)
2k+1(2k + 1)!!σ2k

(n− k + 1)(2(n− k) + 1)(k + 1)(k + 2)!
. (136)

5.5 Using the SAS profile (sphere, spherical shell)

To finish our computations of simple shapes, we look at
another way to compute the Hn. We can compute the SAS
profile using Eq. 32 and use Eq. 37 to compute the Hn.
For example, we can get the sphere Sd (imbedded in Rd+1),
using Eq. 3, we easily find that

ISd(q) =

∣∣∣∣∫
Sd

eiq·rdr̂

∣∣∣∣2 = (2π)d+1
J2
(d−1)/2(q)

qd−1
. (137)

We develop using Eq. 6 and compare to Eq. 37 (at d+ 1), we
thus get

Hn(Sd) ∝
4nΓ

(
n+ d

2

)
(n+ d− 1)!

. (138)

Hence

D2
max(Sd) = 4r2, H̃n(Sd) =

d!Γ
(
n+ d

2

)
2(n+ d− 1)!Γ

(
1 + d

2

) .
(139)

In particular, for the circle S1 and the usual sphere S2, we
have

H̃n(S1) =
1

4n

(
2n

n

)
, H̃n(S2) =

1

n+ 1
, (140)

We can get a second elementary shape with this ap-
proach: the spherical shell Ad (’A’ stands for annulus). It
is a unit ball with a centred spherical hole of radius λ.
Computing IAd proceeds as follow (using Eqs. 3 and 4)

IAd(q) =

∣∣∣∣∫ 1

λ
rd−1dr

∫
Sd−1

eiq·rdr̂

∣∣∣∣2
=

(2π)d

qd

(
J2
d/2(q) + λdJ2

d/2(λq)

− 2λd/2Jd/2(q)Jd/2(λq)
)
,

(141)

Using Eqs. 6 and 7, we obtain

Hn(Ad) ∝ Hn(Bd)σdn(λ), (142)

σdn(λ) = 1 + λ2(n+d) (143)

− 2λd
(n+ d)!Γ2

(
n+ d

2 + 1
)

(2n+ d)!
µd/2n (λ), (144)

with µνn given by Eq. 8. Finally, this gives

D2
max(Ad) = 4r2, H̃n(Ad) =

σdn(λ)

(1− λd)2
H̃n(Bd). (145)

The special value λ = 0 gives the ball back and the limit
λ→ 1 gives the sphere Sd−1. σdn can be written (see Eq. 143)

σdn(λ) = 1 + λ2(n+d)

− 2λd
(
n+ d

2

)
!2

(2n+ d)!

n∑
k=0

(
n

k

)(
n+ d

k + d
2

)
λ2k. (146)

In odd dimension, the fractional factorials α! are to be
understood as Γ(α + 1) (and likewise for binomials). In
dimension d = 3, an alternative derivation (brute force
computation of γ, not shown) gives this somewhat simpler
formula

σ3
n(λ) = 1 + λ2n+6 − 2(λ2n+6

+ − λ2n+6
− )

+ 2
n+ 3

n+ 1
λ2+λ

2
−(λ2n+2

+ − λ2n+2
− ), (147)

where λ± = (1± λ)/2.

5.6 Other simple shapes (torus, cone, truncated cone)
There are probably other shapes that can be computed with
the techniques presented here.

Another approach is also possible for shapes known an-
alytically. One could try, using automatic algebra system to
analytically compute the Zernike moments and deduce Hn

from there. This will typically give an analytical formula for
each Hn up to some maximum n, but not the n dependence
itself.

This is particularly well adapted to shapes with cylindri-
cal symmetry, such as the torus, the cone or the truncated
cone, since the Zernike polynomials have good rotational
properties.

6 EXAMPLES

In this section, we will give the first Hn as GMI in 2D
and 3D. We do not show the Kn because their expressions
are much longer, but they can easily be retrieved from
Eqs. 51 and 52. As before, we note the geometric moments
〈u〉 =

∫
ρu, and to save (much) space, we do note write ob-

vious symmetric terms. For example, in H4 in 3D, the term〈
x3y2

〉 〈
xz2

〉
represents 6 terms obtained by permutating

the coordinates x, y and z.
Contrary to usual GMI formulae, the one showed here

are already translation invariant. They do not need to be
centralised for that.

6.1 Examples in two dimensions
Here are the first few Hn in 2D. To obtain their expression,
we use Eq. 73 and then use the Cartesian expression of the
2D Zernike polynomials to derive the geometric moment
expression.

H0 = M2,

H1 = 2M
〈
x2
〉
− 2 〈x〉2 ,

H2 = 2M
〈
x4
〉

+ 4M
〈
x2y2

〉
− 8

〈
x3
〉
〈x〉

− 8
〈
x2y

〉
〈y〉+ 6

〈
x2
〉2

+ 4
〈
x2
〉 〈
y2
〉

+ 8 〈xy〉2 ,
H3 = 2M

〈
x6
〉

+ 6M
〈
x4y2

〉
− 12

〈
x5
〉
〈x〉

− 12
〈
x4y

〉
〈y〉 − 24

〈
x3y2

〉
〈x〉+ 30

〈
x4
〉 〈
x2
〉

+ 6
〈
x4
〉 〈
y2
〉

+ 48
〈
x3y

〉
〈xy〉+ 36

〈
x2y2

〉 〈
x2
〉

− 20
〈
x3
〉2 − 24

〈
x3
〉 〈
xy2

〉
− 36

〈
x2y

〉2
,

H4 = 2M
〈
x8
〉

+ 8M
〈
x6y2

〉
+ 12M

〈
x4y4

〉
− 16

〈
x7
〉
〈x〉 − 16

〈
x6y

〉
〈y〉 − 48

〈
x5y2

〉
〈x〉

− 48
〈
x4y3

〉
〈y〉+ 56

〈
x6
〉 〈
x2
〉

+ 8
〈
x6
〉 〈
y2
〉
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+ 96
〈
x5y

〉
〈xy〉+ 120

〈
x4y2

〉 〈
x2
〉

+ 72
〈
x4y2

〉 〈
y2
〉

+ 192
〈
x3y3

〉
〈xy〉

− 112
〈
x5
〉 〈
x3
〉
− 48

〈
x5
〉 〈
xy2

〉
− 240

〈
x4y

〉 〈
x2y

〉
− 48

〈
x4y

〉 〈
y3
〉

− 160
〈
x3y2

〉 〈
x3
〉
− 288

〈
x3y2

〉 〈
xy2

〉
+ 70

〈
x4
〉2

+ 120
〈
x4
〉 〈
x2y2

〉
+ 12

〈
x4
〉 〈
y4
〉

+ 160
〈
x3y

〉2
+ 192

〈
x3y

〉 〈
xy3

〉
+ 216

〈
x2y2

〉2
.

6.2 Examples in three dimensions
To get the expressions of the Hn in 3D, we use Eq. 84, and
use the Cartesian expression of the 3D Zernike polynomials.
For H0, H1 and H2 the expressions are the same in two
and three dimensions. Note that they do not mean the same
thing:

〈
x2
〉

represents two terms in 2D and three in 3D. For
higher order, the expression of Hn in 3D ”contains” the one
in 2D.

H3 = ”2D” + 12M
〈
x2y2z2

〉
− 24

〈
x2y2z

〉
〈z〉

+ 12
〈
x2y2

〉 〈
z2
〉

+ 48
〈
x2yz

〉
〈yz〉

− 24
〈
x2y

〉 〈
yz2
〉
− 48 〈xyz〉2 ,

H4 = ”2D” + 24M
〈
x4y2z2

〉
− 48

〈
x4y2z

〉
〈z〉

− 96
〈
x3y2z2

〉
〈x〉+ 24

〈
x4y2

〉 〈
z2
〉

+ 96
〈
x4yz

〉
〈yz〉+ 192

〈
x3y2z

〉
〈xz〉

+ 144
〈
x2y2z2

〉 〈
x2
〉
− 48

〈
x4y

〉 〈
yz2
〉

− 96
〈
x3y2

〉 〈
xz2

〉
− 384

〈
x3yz

〉
〈xyz〉

− 288
〈
x2y2z

〉 〈
x2z

〉
− 96

〈
x2y2z

〉 〈
z3
〉

+ 24
〈
x4
〉 〈
y2z2

〉
+ 192

〈
x3y

〉 〈
xyz2

〉
+ 288

〈
x2yz

〉2
+ 144

〈
x2y2

〉 〈
x2z2

〉
.

6.3 Relations to the Hu invariants
Using the geometric moments expressions of our invariants
in 2D, we identify their relations to the first Hu invari-
ants [1]:

H1 = 2MI11,

H2 = 4I211 + 2MI22 + 2I20I02,

H3 = 18I11I22 + 2MI33 − 2I30I03

− 18I21I21 + 6(I31I02 + I13I20).

Of course Hu invariants are not quadratic (except I11), so we
can reproduce only selected combinations of them, namely
one per order, which is Hn.

7 CONCLUSION

In this article, we propose a new approach to shape invari-
ants. Instead of focusing on rotational invariants and then
making them also translation invariant by fixing the centre
of mass, we use intrinsic functional of the density which are
rotation and translation invariant from the beginning.

We have build a set of invariants, the Kn which are
independent of coordinate systems and even independent
of the dimension of the space. They are quadratic forms of
the density and form a basis of the vector space I which in

particular contains all quadratic geometric moment invari-
ants (in any dimension).

Due to their intrinsic definition, we could achieve a lot
of analytical results. In particular, we can compute them
analytically (through the Hn) for simple shapes, we can
relate them to the 2D and 3D Zernike moments, so that
we can compute them in many situations. We can also
express them as geometric moment invariants. Finally, they
are related to small angle scattering experiments so that they
can be measured experimentally for microscopic objects like
proteins.

These invariants allow the definition of two distances
between shapes. A size dependent one and a size inde-
pendent one. Equiped with these distances, one can easily
compare shapes independently of position and orientation
(and optionally size), which is usefull in many applications.

We hope in a near future, to extend this theory to
quartic invariants and beyond, providing a complete set of
invariants in all dimensions which can be explicitly com-
puted from Zernike moments thus generating all geometric
moment invariants.

Finally, in the context of SAS in particular, it would be
interesting to be able to reconstruct the shape from the
invariants. Clearly some information is missing, but we
hope that it is sufficient to get usefull results.
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