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Abstract

This paper studies the finite-time stabilization (FTS) of nonlinear systems with impulsive disturbance, where the
effect of saturation structure on the control input is fully considered. By establishing a potential relationship between
saturation structure and impulsive disturbance, some FTS criteria are presented via a class of saturated control input,
where estimations of domain of attraction and settling-time are derived. Compared with the control input without
saturation structure, the constraints on impulse time sequence are strengthened to guarantee that the saturated control
input has an effective stabilizing effect on the system. Based on such constraints, the system subjected to impulsive
disturbance can still achieve FTS. Then theoretical results are applied to finite-time synchronization for a class of
impulsive dynamical networks. Finally, two examples and their simulations are given to illustrate the effectiveness of
the proposed results.
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1. Introduction

Impulsive system consists of continuous dynamics and discrete dynamics, which exhibits the discontinuities or
jumps in the state trajectories of the system at some certain instants (usually called impulse instants), see [1–6]. In
past years, these results were extended to stochastic impulsive systems [7, 8], impulsive switching systems [9], and
impulsive systems with delays [10–12]. With the development of the theory of impulsive systems, the related result-
s are applied to various fields, such as secure communication in image encryption [13, 14], satellite rendezvous in
aerospace industry [15], and data sampling in high-speed trains [16], and so on. In accordance with the effect of im-
pulses on the system, the system involving impulses can be roughly divided into three classes: system with impulsive
control, system with impulsive disturbance, and the combination of both of them, usually called system with hybrid
impulses. In this paper, we study a class of nonlinear systems with impulsive disturbance.

Notice that there are many interesting results of nonlinear systems with impulsive disturbance, such as almost sure
stability [17], asymptotical stability [18], exponential stability [19, 20], and fixed-time stability [21, 22], and so on.
In particular, [23] and [24] studied general nonlinear systems with state-dependent impulses and state-independent
impulses, respectively. In [24], some FTS results were established by a class of constrained impulse time sequences
and the estimation of the settling-time was derived. Later, these results were not only extended to time-varying non-
linear impulsive systems by constructing a time-varying differential inequality of Lyapunov function, such as [25],
but also applied to finite-time synchronization of complex dynamical networks, such as [26] and [27]. However, it
is worth noting that the existing results in [24–27] are all based on the idealized environment that the control input
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in transmission is not limited by the physical constraints and always available. Indeed, in practical applications, the
actual control input is inevitably constrained by saturation structure, see [28–30]. Sometimes, saturation structure can
degrade the performances of a system and even lead to the system instability. Recently, in the framework of saturation
structure, there are a few results of nonlinear systems with impulsive disturbances, see input-to-state stability in [31]
and exponential stabilization in [32]. Except the above mentioned work, to our best knowledge, in the framework of
saturation structure, there is almost no FTS results for nonlinear systems with impulsive disturbances. In fact, com-
pared with the case without saturation structure, there exist some difficulties and challenges to achieve FTS. Firstly,
when the effect of saturation structure on systems is fully considered, the conventional controller is usually in form of
strictly state feedback, which can be easily handled by linear differential inclusion approach [29–31] and anti-windup
approach [32, 33]. Unfortunately, it is difficult to obtain the FTS in virtue of such controllers and moreover, naturally,
such two approaches above cannot be applied to the design of saturated control input in sense of finite time. Secondly,
when impulsive disturbance and saturation structure are both involved, due to the uncertainty of both impulse time
sequences and the amplitude of impulsive disturbance, the saturated control input may have no effective stabilizing
effect on the system, which causes that the performance of the system may degrade or become unstable. Hence, it
is hard to guarantee the validity of saturated control input for systems involving impulsive disturbances due to the
uncertainty and complexity of the relationship between saturation structure and impulsive disturbance. This is an
interesting but challenging work.

Motivated by the discussion above, this paper studies the FTS of nonlinear systems with impulsive disturbances,
where the potential effect of saturation structure is fully considered. By imposing constraints on impulse time se-
quence and then making full use of them to establish the potential relationship between saturation structure and
impulsive disturbance, some FTS criteria are presented via a class of saturated control input. Moreover, we apply
the theoretical results to finite-time synchronization of impulsive dynamical networks. The outline of this paper is as
follows. The preliminaries are given in Section 2. The theoretical results are presented in Section 3 and application
to finite-time synchronization of impulsive dynamical networks in Section 4. Two examples are given in Section 5.
Finally, the conclusion is presented in Section 6.
Notations: Let R denote the set of real numbers and Z denote the set of integers. R+ := {a ∈ R : a ≥ 0} and
Z+ := {a ∈ Z : a > 0}. Rn×m denotes the n × m-dimensional matrix space equipped with Frobenious Norm
| · |. When m = 1, the notation Rn is an abbreviation of Rn×1. Denote Ω = {1, 2, · · · ,n}, N = {1, 2, · · · ,N}, and
M = {1, 2, · · · ,M}. Let Em

i ∈ R1×m denote an m-dimensional row vector that the i-th element is 1 and the others
are 0, i = 1, 2, · · · , p. In denotes the unit matrix with dimension n. ⊗ denotes the Kronecker product operator of two
matrices. For any ϵ > 0, Sϵ := {x ∈ Rn : |x| ≤ ϵ}. The minimum value of a and b is denoted by a ∧ b. For a locally
Lipschitz continuous function H : Rn → R+, D+H denotes the upper right-hand Dini derivative.

2. Preliminaries

Consider a class of nonlinear systems with impulsive disturbance
ẋ(t) = Cx(t) + A f (t, x(t)) + u(t), t , tk, t ≥ 0,

∆x(t) = Dx(t−), t = tk, k ∈ Z+,
x(0) = x0 ∈ S ⊆ Rn,

(1)

where C, A, D ∈ Rn×n, x = (x1, x2, · · · , xn)T ∈ Rn is the system state, and u = (u1, u2, · · · , un)T ∈ Rn is the control
input. ∆x(t) = x(t+) − x(t−) denotes the change of the system state when subjecting to impulsive disturbance, where
x(t+) and x(t−) are the right and left limits at instant t, respectively. S denotes the initial state domain containing
the origin. The nonlinear function f : R+ × Rn → Rn is bounded, i.e., there exists a constant ω > 0 such that
| f (t, x)| ≤ ω, for all t ≥ 0, x ∈ Rn. In this paper, we assume that x(t+) = x(t), i.e., the solutions of system (1) are
right continuous. The impulse time sequences {tk}k∈Z+ is strictly increasing on R+ and either finite or infinite and
unbounded, short for {tk}. We denote such kind of impulse time sequences as the set F0 for later use. In particular,
the subset of F0 containing N impulse instants is denoted by FN, where the impulse time sequence {tk}N satisfies
0 = t0 < t1 < t2 < · · · < tN < +∞ ( t1 is the first impulse instant). For any given impulse time sequence {tk}, let
x(t) = x(t, 0, x0, {tk}) denote the solution of system (1) through (0, x0) with the initial state x0 ∈ S. And assume that
the solution x(t) uniquely exists in forward time within relevant time intervals, see [34] for related information.
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Definition 1. [24] Consider system (1) without control input u. System (1) is said to be locally finite-time stable with
S over the class F0 if there exists a function T(x0, {tk}) : S ×F0 → R+ such that the solution of system (1) starting
from the initial state x0 ∈ S and subjecting to the impulses {tk} ∈ F0 is Lyapunov stable and finite-time convergent,
i.e.,

x0 ∈ S ⇒ x(t, 0, x0, {tk}) ≡ 0, ∀t ≥ T(x0, {tk}). (2)

Moreover, the settling-time of system (1) is defined as

Tinf(x0, {tk}) := inf
t≥T(x0)

{T(x0, {tk}) ≥ 0 : x(t, 0, x0, {tk}) = 0} .

Definition 2. System (1) is locally finite-time stabilized (locally FTS) with S over the class F0 if there exists an
admissible control input u such that system (1) is locally finite-time stable with S over the class F0.

In the sense of finite time, there are some interesting results of FTS criteria for nonlinear systems with impulsive
disturbance, such as [23] for state-dependent impulses and [24] for state-independent impulses. Subsequently, these
results were extended to time-varying nonlinear impulsive systems [25], impulsive memristor-based neural networks
[26], and delayed complex dynamical networks [27], and so on. It is worth noting that these existing results are all
based on the desired control input without saturation structure. In fact, due to the existence of the physical constraints,
the control input may be limited during the transmission of the actuator, which leads to a fact that the actual control
input is of saturation structure. To show the effect of saturation structure more clearly, consider the dynamic of the
following simple example ẋ(t) = 0.5x(t) + sin(x(t)) + u(t), t , k,

∆x(t) = 0.3x(t−), t = k,
(3)

where k ∈ Z+, t ≥ 0, and x ∈ R is the state of system (3). We consider the following control input

u(t) = −0.5x(t) − 3sgn(x(t)).

When there is no saturation structure in system (3), it follows from the FTS results of impulsive systems in [24] that
system (3) with control input u is FTS, see Figure 1, where the initial state x0 = 8. While saturation structure is
involved in system (3), the control input u is updated to

u(t) = sgn(u(t))(u(t) ∧ 5) =


5, u(t) ∈ (5,+∞),

u(t), u(t) ∈ [−5, 5],

−5, u(t) ∈ (−∞,−5).
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Figure 1. The trajectory of system (3) with u(t).
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Figure 2. The trajectory of system (3) with u(t).
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Under the same initial state x0 = 8, one may observe that due to the effect of saturation structure, system (3) becomes
unstable, not to mentioned FTS, see Figure 2. Inspired by the above insight, it is natural to ask, if in the framework of
saturation structure, it is possible to establish some FTS criteria for nonlinear systems with impulsive disturbance.

Note that in finite-time sense, in view of a fact that when saturation input and finite-time control are both involved
in the impulsive system, it may increase the complexity of the control input. Here we consider a special case of
system (1) with the unit control input matrix. Motivated by the discussions above, our aim is that in the framework
of saturation structure, we explore a potential relationship between saturation structure and impulsive disturbance to
guarantee the FTS. To this end, system (1) can be rewritten as

ẋ(t) = Cx(t) + A f (t, x(t)) + satρ(u(t)), t , tk, t ≥ 0,

x(t) = (I +D)x(t−), t = tk, k ∈ Z+,
x(0) = x0 ∈ S ⊆ Rn,

(4)

where ρ > 0 is a prior given saturation level. The saturation function satρ : Rn → Rn is defined as satρ(u) =
(satρ(u1), satρ(u2), · · · , satρ(un))T, where satρ(ui) := sgn(ui)(ui ∧ ρ), for all i ∈ Ω. In the sense of finite time, the
initial state domain S is called the domain of attraction of system (1), i.e.,

S :=
{
x0 ∈ Rn : x(t, 0, x0, {tk}) satisfies (2) in Definition 1

}
.

Lemma 1. For any vector v = (v1, v2, · · · , vl)T ∈ Rl, define S(v) =
(
sgn(v1), sgn(v2), · · · , sgn(vl)

)T. Then it holds
that vTv ≤ (vTS(v))2.

3. Theoretical results

In this section, the FTS criterion is proposed by designing a class of saturated control input. For a prior given
saturation level ρ and a constant α ∈ (0, ρ), we consider the control input u(t) of system (4) given by

u(t) = −Cx(t) − α·S(x(t)). (5)

Theorem 1. For a prior given saturation level ρ > 0, assume that there exist some positive constants αi, i = 1, 2, 3,
and β ∈ [1,∞), such that AAT ≤ α1In, (I +D)T(I +D) ≤ β2In, and

α :=
1
2

(α1

α2
+ α2ω

2 + α3

)
< ρ. (6)

Then system (4) via saturated control input (5) is locally FTS with Sϵ over the class F⋆, where Sϵ is contained
in the domain of attraction satisfying

ϵ =
ρ − α

maxi∈Ω |EiC|
, (7)

and F⋆ denotes a class of impulse time sequences {tk} ∈ F0 satisfying

N := min
{
k ∈ Z+ : tk ≥ βk−1 · 2|x0|

α3

}
< ∞, (8a)

tk > β
k−1 · 2|x0|

α3
− 2
α3
· ϵ
β
, ∀k ≤ N − 1. (8b)

In addition, the settling-time of system (4) though (0, x0) can be bounded by

Tinf(x0, {tk}) ≤ βN−1 · 2|x0|
α3
. (9)
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PROOF. For any given {tk} ∈ F⋆ and x0 ∈ Sϵ, let x(t) = x(t, 0, x0, {tk}) be the solution of system (4) though
initial state (0, x0). Firstly, we show that under the impulse time sequence {tk} ∈ F⋆, Sϵ is an invariant set, i.e.,
x(t) ≤ ϵ, ∀t ≥ 0. Suppose that the statement is not true, then there exist some instants t ≥ 0 such x(t) < Sϵ. Let
t⋆ := inf{t ≥ 0 : x(t) < Sϵ}. It is obvious that the definition of t⋆ is nonempty. Then we show that t⋆ is not within the
continuous intervals. Without loss of generality, assume that 0 < t1 < t2 < · · · < tl ≤ t⋆ < tl+1 · · · < tN < · · · < +∞.
Denote L = {1, 2, · · · , l} for later use. It follows from {tk} ∈ F⋆ that impulse instants satisfy (8a) and (8b), that is,

βk−1 · 2|x0|
α3
− 2
α3
· ϵ
β
< tk < β

k−1 · 2|x0|
α3
, ∀k ∈ L. (10)

Consider an auxiliary function H(t) = xT(t)x(t), one can obtain that |x(t⋆)| = ϵ, D+H(t⋆) ≥ 0, and |x(t)| ≤ ϵ,
∀t ∈ [0, t⋆]. It follows from the definition of ϵ that

|ui(t)| = |En
i Cx(t) + α · S(xi(t))| ≤ max

i∈Ω
|En

i C| · ϵ + α = ρ, ∀t ∈ [0, t⋆],

which implies that satρ(ui(t)) = ui(t), ∀t ∈ [0, t⋆], and satρ(u(t)) = u(t), ∀t ∈ [0, t⋆]. Moreover, the derivative of
H(t) along system (4) satisfies

D+H(t) = 2xT(t)ẋ(t) = 2xT(t)(Cx(t) + A f (t, x(t)) + satρ(u(t)), ∀t ∈ [tk−1, tk), k ∈ L.

When |x(t)| , 0, according to AAT ≤ α1In and Lemma 1, one derives that

2xT(t)A f (t, x(t)) ≤ 1
α2

xT(t)AATx(t)
1

xT(t)S(x(t))
+ α2 f T(t, x(t)) f (t, x(t))xT(t)S(x(t))

≤ α1

α2
xT(t)x(t)

1
xT(t)S(x(t))

+ α2ω
2xT(t)S(x(t))

≤ α1

α2
xT(t)S(x(t)) + α2ω

2xT(t)S(x(t)). (11)

When |x(t)| = 0, it can be deduced that

0 = 2xT(t)A f (t, x(t)) =
α1

α2
xT(t)S(x(t)) + α2ω

2xT(t)S(x(t)),

which indicates that in the both above two cases, (11) always holds. In view of Lemma 1 and (5), it yields that

D+H(t) = 2xT(t)Cx(t) + 2xT(t)A f (t, x(t)) + 2xT(t)u(t)

≤ α1

α2
xT(t)S(x(t)) + α2ω

2xT(t)S(x(t)) − 2α·xT(t)S(x(t))

≤ −α3xT(t)S(x(t))

≤ −α3H
1
2 (t), ∀t ∈ [tk−1, tk), k ∈ L. (12)

One can observe that H(t) is decreasing within every continuous interval. Hence, t⋆ is not within the continuous
intervals. Then t⋆ is an impulse instant, i.e., t⋆ = tl. Considering (I +D)T(I +D) ≤ β2In, it leads to

H(tk) = x(tk)Tx(tk) ≤ x(t−k )T(I +D)T(I +D)x(t−k ) ≤ β2H(t−k ), ∀k ∈ L. (13)

Based on inequality (12) and t1 < 2|x0|/α3, one can obtain that

H
1
2 (t) ≤ H

1
2 (0) − 1

2
α3t, ∀t ∈ [0, t1).
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It follows from (13) and (10) that

H
1
2 (t1) = βH

1
2 (t−1 ) ≤ β

(
H

1
2 (0) − 1

2
α3t1

)
< β

(
H

1
2 (0) − 1

2
α3

(
2|x0|
α3
− 2
α3
· ϵ
β

))
= ϵ.

Similarly, one can derive that

H
1
2 (t) ≤ H

1
2 (t1) − 1

2
α3(t − t1) ≤ βH 1

2 (0) − 1
2
α3βt1 −

1
2
α3(t − t1) ≤ βH 1

2 (0) − 1
2
α3t, ∀t ∈ [t1, t2),

and

H
1
2 (t2) = βH

1
2 (t−2 ) ≤ β

(
βH

1
2 (0) − 1

2
α3t2

)
< β

(
βH

1
2 (0) − 1

2
α3

(
β · 2|x0|
α3
− 2
α3
· ϵ
β

))
= ϵ.

By mathematical induction, it can be finally deduced that

H
1
2 (tk) = βH

1
2 (t−k ) ≤ β

(
βk−1H

1
2 (0) − 1

2
α3tk

)
< β

(
βk−1H

1
2 (0) − 1

2
α3

(
βk−1 2|x0|

α3
− 2
α3
· ϵ
β

))
= ϵ, ∀k ∈ L.

It implies that |x(tk)| < ϵ, ∀k ∈ L. When t⋆ = tl, it holds that |x(t⋆)| = |x(tl)| < ϵ, which contradicts with |x(t⋆)| = ϵ.
Hence, it always holds that x(t) ∈ Sϵ, ∀t ≥ 0.

Next, we show that for any x0 ∈ Sϵ, system (4) via saturated control input (5) is locally FTS over the class F⋆

and the estimation of settling-time can be bounded by (9). Based on the discussion above, one can conclude that

H
1
2 (t) ≤ βk−1H

1
2 (0) − 1

2
α3t, ∀t ∈ [tk−1, tk), k ∈ N ,

that is,

|x(t)| ≤ βk−1|x0| −
1
2
α3t, ∀t ∈ [tk−1, tk), k ∈ N .

Moreover, note that {tk} ∈ F⋆, then it holds that

tk < β
k−1 · 2|x0|

α3
, ∀k ≤ N − 1,

which indicates that the settling-time of system (4) cannot be estimated on the interval [0, tN−1). In view of the
definition of tN, we have 

|x(t)| ≤ |x0| − 1
2α3t, t ∈ [0, t1),

|x(t)| ≤ β|x0| − 1
2α3t, t ∈ [t1, t2),

...

|x(t)| ≤ βN−2|x0| − 1
2α3t, t ∈ [tN−2, tN−1),

|x(t)| ≤ βN−1|x0| − 1
2α3t, t ∈ [tN−1, βN−1 · 2|x0|/α3),

|x(t)| ≡ 0, t ∈ [βN−1 · 2|x0|/α3,+∞),

which indicates that system (4) via saturated control input (5) is locally FTS with Sϵ over the class F⋆ and the
settling-time can be bounded by (9). The proof of Theorem 1 is completed. �
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Figure 3. FTS of system via saturated control input.
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Figure 4. The illustration of impulse time sequence {tk}.

Remark 1. In the framework of saturation structure, Theorem 1 presents the FTS criterion, where the effect of impul-
sive disturbance is fully considered. The idea behind Theorem 1 can be simply described in Figure 3, where the red
curve represents the trajectory of system (4) with impulsive disturbance via saturated control input. In essence, the
key point of Theorem 1 is to ensure that the domain of attraction Sϵ is an invariant set. In other words, even if system
(4) is subjected to the dual influence of saturation structure and impulsive disturbance, with the help of an effective
control input, not only system (4) cannot exceed the domain of attraction Sϵ, but also the FTS can be guaranteed. In
order to achieve such two objectives, firstly, a relationship between the domain of attraction, system structure, and
the controller parameter is established (i.e., (7)), which ensures that saturated control input (5) is valid to stabilize
system (4). Then some constraints on impulse time sequence {tk} are proposed (i.e., (8a) and (8b)), where (8a) plays
an important role in estimating the settling-time and (8b) can guarantee that the amplitude of impulsive disturbance
is not so large that system (4) would exceed the domain of attraction Sϵ. Compared with the case without saturation
structure, as pointed in [24], impulse time sequence {tk} only needs to satisfy (8a), under which FTS for system (4)
with impulsive disturbance can be guaranteed. Such two kinds of impulse time sequences are intuitively illustrated in
Figure 4, where the yellow region (i.e., lk < tk < rk, ∀k ≤ N − 1, and tN ≥ rN) represents the impulse time sequence
satisfying (8a) and (8b) in Theorem 1 and the green region (i.e., tk < rk, ∀k ≤ N − 1, and tN ≥ rN) represents the
impulse time sequence satisfying (8a) in [24]. The time sequences {lk} and {rk} mentioned above are defined as

lk = βk−1 · 2|x0|
α3
− 2
α3
· ϵ
β

and rk = β
k−1 · 2|x0|

α3
, ∀k ∈ Z+.

Based on the analysis above, it is worth mentioning that in the framework of saturation structure, (8b) is crucial and
indispensable to achieve FTS. This assertion will be illustrated in Section 5. In particular, when only involving N
impulse instants in system (4), the following corollary can be directly obtained.

Corollary 1. Under conditions in Theorem 1, system (4) via saturated control input (5) is locally FTS with Sϵ over
the class FN, where Sϵ is contained in the domain of attraction satisfying (7) and FN denotes a class of impulse time
sequences {tk}N satisfying

βk−1 · 2|x0|
α3
− 2
α3
· ϵ
β
<tk < β

k−1 · 2|x0|
α3
, ∀k ∈ N .

Moreover, the settling-time of system (4) though (0, x0) can be bounded by (9).

Remark 2. Notice that when involving saturation structure, there are only a few results for nonlinear systems with
impulsive disturbance, see [32] and [31]. One may observe from these existing results in [32] and [31] that only expo-
nential stabilization and input-to-state stability can be achieved. Moreover, to our best knowledge, in the framework
of saturation structure, there is almost no results of FTS criteria for nonlinear systems with impulsive disturbance. In
the present paper, by strengthening constraints on impulse time sequence and then making full use of them to establish
the potential relationship between saturation structure and impulsive disturbance, Theorem 1 and its corollary present
the FTS criteria, where the estimations of the domain of attraction and the settling-time are derived.
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4. Application to finite-time synchronization of impulsive dynamical networks

Consider a class of impulsive dynamical networks consisting of M(≥ 2) nodes via saturated control inputẋi(t) = g(xi(t)) + σ
∑M

j=1 li jΓx j(t) + satρ(ui(t)), t , tk,

∆xi(t) = Dixi(t−), t = tk, k ∈ Z+,
(14)

where i ∈ M, Di ∈ Rn×n, xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn is the state vector of the i-th dynamical node,
and g(xi(t)) = (g1(xi1(t)), g2(xi2(t)), · · · , gn(xin(t)))T ∈ Rn is the activation function satisfying |g(ς)| ≤ ω, ∀ς ∈ Rn,
where ω > 0 is a known constant. σ > 0 is the coupling strengthen, Γ = diag{γ1, γ2, · · · , γn} > 0 is the inner
coupling matrix, and L = (li j)M×M is the outer coupling matrix, which is defined as: if there is an edge from node i
to node j ( j , i), then li j > 0, otherwise, li j = 0, the diagonal elements are defined as lii = −

∑M
j=1, j,i li j, ∀i ∈ M.

ui = (ui1,ui2, · · · ,uin)T ∈ Rn is the control input without saturation limitation. In terms of kronecker product,
impulsive dynamical network (14) can be rewritten asẋ(t) = G(x(t)) + σ(L ⊗ Γ)x(t) + satρ(u(t)), t , tk,

x(t) = Dx(t−), t = tk, k ∈ Z+,
(15)

where C = IM ⊗ C, A = IM ⊗ A, D = diag{In +D1, In +D2, · · · , In +DM}, and

x(t) =


x1(t)

x2(t)
...

xM(t)


, G(x(t)) =


g(x1(t))

g(x2(t))
...

g(xM(t))


, satρ(u(t)) =


satρ(u1(t))

satρ(u2(t))
...

satρ(uM(t))


.

In the following, in the framework of saturation, we consider the leader-follower synchronization in a finite time,
where impulsive dynamical network (15) is regarded as the follower and the leader y(t) ∈ Rn is of the form

ẏ(t) = g(y(t)). (16)

Define the synchronization error between impulsive dynamical network (15) and system (16) as

e(t) = (eT
1 (t), eT

2 (t), · · · , eT
M(t))T ∈ RMn,

where ei(t) = xi(t) − y(t) ∈ Rn is the synchronization error of i-th node. Then the error system is given by

ė(t) = Ge(e(t)) + σ(L ⊗ Γ)e(t) + satρ(u(t)), (17)

where Ge(e(t)) = ((g(x1(t)) − g(y(t)))T, (g(x2(t)) − g(y(t)))T, · · · , (g(xM(t)) − g(y(t)))T)T.

Definition 3. Impulsive dynamical network (15) via an admissible control input u and system (16) can achieve locally
finite-time synchronization withS over the class F0 if the error system (17) via an admissible control input u is locally
FTS with S over the class F0.

For a prior given saturation level ρ and a constant α ∈ (0, ρ), we consider the control input u(t) of error system
(17) as follows

u(t) = −σ(L ⊗ Γ)e(t) − αS(e(t)). (18)
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Theorem 2. For a prior given saturation level ρ > 0, suppose that there exist some positive constants α1, α2, and

β ∈ [1,∞), such that D
T
D ≤ β2IMn and

α :=
1
2

( 1
α1
+ 4α1ω

2M + α2

)
< ρ.

Then impulsive dynamical network (15) via saturated control input (18) and system (16) can achieve locally
finite-time synchronization with Sϵ over the class F⋆, where Sϵ is contained in the domain of attraction satisfying

ϵ =
ρ − α

σmax j∈Ω γ j ·maxi∈M |Li|
,

and F⋆ denotes a class of impulse time sequences {tk} ∈ F0 satisfying

N := min
{
k ∈ Z+ : tk ≥ βk−1 · 2|e0|

α2

}
< ∞,

tk > β
k−1 · 2|e0|

α2
− 2
α2
· ϵ
β
, ∀k ≤ N − 1.

In addition, the settling-time can be bounded by

Tinf(e0, {tk}) ≤ βN−1 · 2|e0|
α2
.

PROOF. Different from Theorem 1, it follows from (18) that control input ui j(t) is expressed by

ui j(t) = −σ(EM
i L ⊗ En

j Γ))e(t) − α·S(ei j(t)), ∀i ∈ M, j ∈ Ω,

which indicated that it holds that for all t ∈ [0, t⋆],

|ui j(t)| ≤ |σ(EM
i L ⊗ En

j Γ))e(t) + α·S(ei j(t))|

≤ |σ(EM
i L ⊗ En

j Γ))| · |e(t)| + α

≤ (σmax
j∈Ω
γ j ·max

i∈M
|Li|) · ϵ + α

≤ ρ.

Choose H(t) = eT(t)e(t), then the derivative of H(t) along system (17) satisfies

D+H|(t) = 2eT(t)ė(t)

= 2eT(t)
(
Ge(e(t)) + c(L ⊗ Γ)e(t) + satρ(u(t))

)
= 2eT(t)Ge(e(t)) − 2α·eT(t)S(e(t)).

When |e(t)| , 0, it can be deduced that

2eT(t)Ge(e(t)) ≤ 1
α1

eT(t)e(t)
1

eT(t)S(e(t))
+ α1GT

e (e(t))Ge(e(t))eT(t)S(e(t))

≤ 1
α1

eT(t)S(e(t)) + 4α1ω
2MeT(t)S(e(t)).

When |e(t)| = 0, one can obtain that

0 = 2eT(t)Ge(e(t)) =
1
α1

eT(t)S(e(t)) + 4α1ω
2MeT(t)S(e(t)).

9



According to the definition of α in Theorem 2, it yields that

D+H(t) ≤ −α2eT(t)S(e(t)) ≤ −α2H
1
2 (t).

The rest of the proof is similar to Theorem 1, and omitted here. The proof of Theorem 2 is completed. �

5. Examples

In this section, two examples are given to illustrate our presented results.

Example 1. In the framework of saturation structure, consider system (3) again. In section 2, it has been shown that
for a prior given saturation level ρ = 5, when the initial state x0 = 8, system (3) with impulse time sequence {k} is
not FTS. In fact, when the effect of saturation structure is fully considered, one may observe from simulations that
the actual control input is saturated state all the time, see Figure 5. On the contrary, when there is no limitation of
saturation structure on control input, system (3) can achieve FTS and the corresponding control input is shown in
Figure 6. Rather, we guess that such two insights arise from the fact that the initial state is not in the domain of
attraction, i.e., x0 < S. In the following, we firstly verify the conjecture and then study when ρ = 5, what constraints
on impulse time sequence {tk} are required to guarantee FTS and obtain the estimation of settling-time. To this end,
we consider the following systemẋ(t) = 0.5x(t) + sin(x(t)) + sat5(u(t)), t , tk, t ≥ 0,

x(t) = 1.3x(t−), t = tk, k ∈ Z+.
(19)

In view of (19), we know that C = 0.5, A = 1, D = 0.3, and f (x) = sin(x), which indicates that we can choose
α1 = α2 = 1, α3 = 4, ω = 1, and β = 1.3 satisfying conditions in Theorem 1. It yields that α = 3, ϵ = 4, and the
control input u can be designed by

u(t) = −0.5x(t) − 3sgn(x(t)). (20)

Then system (19) via saturated control input (20) is locally FTS with S4 over the class F⋆, where S4 is contained
in the domain of attraction and F⋆ denotes a class of impulse time sequences {tk} ∈ F0 satisfying

N := min
{
k ∈ Z+ : tk ≥ 1.3k−3.6419 · |x0|

}
< ∞, (21a)

tk > 1.3k−3.6419 · |x0| − 1.5385, ∀k ≤ N − 1. (21b)

0 1 2 3 4 5 6
-5.5

-5

-4.5

Figure 5. Saturated control input sat(u(t)) with x0 = 8.

0 1 2 3 4 5 6
-60

-40

-20

0

Figure 6. Control input u(t) with x0 = 8.
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In addition, the settling-time of system (4) though (0, x0) can be bounded by

Tinf(x0, {tk}) ≤ 1.3N−3.6419 · |x0|.

It is easy to see that 8 = x0 < S4, which confirms our conjecture. In simulations, we choose the initial state x∗0 = 4 and
consider {tk} = {0.5, 1.2, 1.85, 4.4, · · · } ∈ F⋆ with N = 4 satisfying both (21a) and (21b). Figure 7 blue curve shows
the trajectory of system (19) with {tk}, which indicates that system (19) via saturated control input (20) is locally FTS
with {tk} and the settling-time can be bounded by Tinf(4, {tk}) ≤ 4.394. Under same conditions, if constraint (21b) is
ignored, such as {tk}⋆ = {0.05, 0.11, 0.16, 4.4, · · · } only satisfying (21a) with N = 4 but not satisfying (21b), then one
can observe that due to the effect of impulsive disturbance, the trajectory of system (19) would exceed the domain of
attraction S4 at impulse instant t1 = 0.05 and after that (see red curve in Figure 7) and moreover, the control input
exceeds the saturation level, i.e., u ≤ −5 (see Figure 8). It leads to the fact that system (19) via saturated control input
(20) with {tk}⋆ is not FTS, which shows the necessity of constraint (21b).

0 1 2 3 4 5

0

5

10

15

20

0 5 10
4

10

Figure 7. System (19) with different impulse time sequences.

0 2 4 6 8 10

-7

-6

-5

-4

0 0.05 0.1 0.15 0.2
-7

-5

Figure 8. (Saturated) Control input with {tk}⋆.

Example 2. Let us consider the finite-time synchronization of impulsive dynamical networks (14) in the framework
of saturation structure, where impulsive dynamical networks (14) consists of three identical nodes (i.e., M = 3) and
the corresponding parameters are given by σ = 0.2, ρ = 10.5, D1 = 0.3I3, D2 = 0.2I3, D3 = 0.15I3,

L =


−1 1 0

0 −1 1

1 1 −2

 , Γ =

0.375 0 0

0 0.125 0

0 0 0.25

 ,
and gi(s) = tanh(s), ∀s ∈ R, i = 1, 2, 3. It is easy to check that ω =

√
3 such that the activation function g satisfies

bounded. Then choose β = 1.3, α1 = 1/6, and α2 = 8 such that conditions in Theorem 2 hold, which yields that
α = 0.5(1/α1 + 4α1ω2M + α2) = 10 < 10.5 = ρ and

ϵ =
ρ − α

σmax j∈Ω γ j ·maxi∈M |Li|
= 2.7212.

According to Theorem 2, one can obtain that impulsive dynamical networks (14) via saturated control input (18) and
system (16) can achieve locally finite-time synchronization with S2.7212 over the class F⋆, where S2.7212 is contained
in the domain of attraction and F⋆ denotes a class of impulse time sequences {tk} ∈ F0 satisfying

N := min
{
k ∈ Z+ : tk ≥ 1.3k−6.2839 · |e0|

}
< ∞, (22a)

tk > 1.3k−6.2839 · |e0| − 0.5234, ∀k ≤ N − 1. (22b)
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Moreover, the settling-time can be bounded by Tinf(e0, {tk}) ≤ 1.3N−6.2839 · |e0|. In simulations, let N = 3 and {tk} =
{0.01, 0.04, 0.73, · · · } ∈ F⋆ satisfying (22a) and (22b). Choose e0 = (eT

01, e
T
02, e

T
03)T with e01 = (−0.4, 0.2,−0.6)T,

e02 = (0.5,−1, 0.2)T, and e03 = (−0.2, 1, 0.3)T, where e0i is the initial state of i-th node of error system (17), i = 1, 2, 3.
It is obvious that |e0| = 1.7263 < 2.7212, i.e., e0 ∈ S2.7212. When there is no control input, impulsive dynamical
networks (14) cannot achieve finite-time synchronization, see Figure 9. While involving saturated control input (18),
the trajectories of three nodes of impulsive dynamical networks (14) are shown in Figure 10. One may observe from
Figure 10 that impulsive disturbance occurs twice at instants t1 = 0.01 and t2 = 0.04, and moreover, impulsive
dynamical networks (14) can achieve finite-time synchronization.

Figure 9. The trajectories of three nodes without control. Figure 10. The trajectories of three nodes with control (18).

6. Conclusion

In this paper, in the framework of saturation structure, we presented some FTS criteria of nonlinear systems with
impulsive disturbance. In order to achieve FTS, some constraints on impulse time sequence are proposed, based on
which a potential relationship between saturation structure and impulsive disturbance is established. Moreover, the
corresponding estimations of the domain of attraction and the settling-time are derived. In terms of the basic idea of
dealing with the dual influence of saturation structure and impulsive disturbance, the future work focuses on finding
another way to further expand the estimation of the domain of attraction and relax the constraints on the impulse time
sequence to further improve our presented results.
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