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EFFECTIVE OPERATORS
ON AN ATTRACTIVE MAGNETIC EDGE

SØREN FOURNAIS, BERNARD HELFFER, AYMAN KACHMAR,
AND NICOLAS RAYMOND

Abstract. The semiclassical Laplacian with discontinuous magnetic field is con-
sidered in two dimensions. The magnetic field is sign changing with exactly two
distinct values and is discontinuous along a smooth closed curve, thereby produc-
ing an attractive magnetic edge. Various accurate spectral asymptotics are es-
tablished by means of a dimensional reduction involving a microlocal phase space
localization allowing to deal with the discontinuity of the field.

1. Introduction

1.1. General framework. In this article, we consider the magnetic Laplacian on
the plane R2,

(1.1) Pah := (−ih∇+ A)2 =
2∑
j=1

(−ih∂xj + Aj)
2,

with magnetic potential A := (A1, A2) ∈ H1
loc(R2;R2), generating the piecewise

constant magnetic field

(1.2) B = 1Ω1 + a1Ω2 ,

where −1 6 a 6 a0 and a0 is a fixed negative constant. Here h > 0 is a small
parameter (the semiclassical parameter). Throughout this paper, we assume that

(1.3)

{
Ω1 ⊂ R2 is a connected and simply connected open set, Ω2 = R2 \ Ω1,

Γ := ∂Ω1 is a C∞ smooth closed curve.

}
and we refer to Γ as the magnetic edge (see Fig 1). We will denote the length of Γ
by |Γ| = 2L.

The operator Pah is self-adjoint in L2(R2) with domain

(1.4) Dom(Pah) = {u ∈ L2(R2) : (−ih∇+ A)ju ∈ L2(R2), j = 1, 2}.
Its essential spectrum is determined by the magnetic field at infinity (in our case it
is equal to a). More precisely, by Persson’s lemma, we have

inf spess(Pah) > |a|h .
The purpose of this paper is to study the spectrum of Pah in the energy window
Jh = [0, Eh] with E ∈ (0, |a|) a fixed constant (thus, we analyse the spectrum below
the essential spectrum) and in the semiclassical limit h→ 0. We denote by λn(Pah)
the n’th eigenvalue of Pah , and have

sp(Pah) ∩ [0, Eh] = {λn(Pah)}Nn=1,(1.5)

with N = N(h).
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Figure 1. The plane R2 = Ω1 ∪ Ω2 ∪ Γ with the edge Γ = ∂Ω1 dashed.

Let us stress that our spectral analysis will be uniform with respect to a ∈ [−1, a0]
and that the condition on the sign of a is crucial since we will see that it implies a
localization of the eigenfunctions associated with eigenvalues in Jh near the edge Γ.
That is why we will say that the edge is attractive.

1.2. Heuristics, earlier results, and motivation.

1.2.1. Analogy with an electric well and mini-wells. The problem investigated in this
paper shares common features with the semiclassical asymptotics of the Schrödinger
operator, −h2∆+V , with an electric potential V , in the full plane, see [17, 18, 25, 19].
In this context, the “well” is the set ΓV := {x ∈ R2 |V (x) = minR2 V }, which attracts
the bound states in the limit h → 0. The well is said to be non-degenerate if ΓV
is a regular manifold, in which case the bound states might be localized near some
points of ΓV , the mini-wells. This phenomenon of mini-wells is a manifestation of a
multi-scale localization of the bound states. Interestingly, this phenomenon occurs
also in the setting of the magnetic Laplacian, with a Neumann boundary condition,
or with a magnetic field having a step-discontinuity as in the present article. In
particular, if we consider the Neumann Laplacian with a constant magnetic field in
a bounded, smooth domain, the boundary of the domain acts as the “well” and the
set of points of the boundary with maximum curvature acts as the “mini-well” (see
[16, 9]).

1.2.2. Some known results. Recently in [1, 2], the operator Pah was considered in
L2(Ω) with Dirichlet boundary condition on ∂Ω, Ω1 ⊂ Ω and Γ a smooth curve
that meets ∂Ω transversely. The edge Γ acts as the “well” and the set of points of
Γ with maximum curvature acts as the “mini-well”. Moreover, when the curvature
has a unique non-degenerate maximum along the edge Γ, an accurate eigenvalue
asymptotics displaying the splitting of the individual eigenvalues of Pah has been
derived in [1, Thm. 1.2], when −1 < a < 0. This result is clearly reminiscent of [9].

1.2.3. Motivation. In the present article, we propose another perspective on the
problem. Our spectral analysis will be uniform in various ways. Firstly, it will allow
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to derive, given some E ∈ (0, |a|), an effective operator in the whole energy window
Jh = [0, Eh] with h ∈ (0, h0]. In particular, the same strategy will provide us
with Weyl estimates (estimating the number of eigenvalues in Jh) and the behavior
of the individual eigenvalues. Secondly, it will also be uniform with respect to
the parameter a ∈ [−1, a0]. This uniformity is the key to the understanding of
the transition between the regimes a ∈ (−1, 0) and a = −1. This is all the more
motivating since the mini-well phenomenon does not occur when a = −1. It is indeed
rather satisfactory to have a point of view encompassing quite different phenomena
and showing their unity.

1.3. The band functions. The statement of our main results involves a family
of 1D Schrödinger operators and their lowest eigenvalues, namely the operators
obtained when the magnetic step is along a straight line, in which case a dimensional
reduction is possible. This family has been the object of recent works (see [2, 20]).
Let us briefly recall some of its basic properties. Straightening the edge Γ locally, it
is natural to consider the following “tangent” operator on R2 with magnetic field

B = curlA = 1R+×R + a1R−×R ,

where a ∈ [−1, a0] is a fixed constant1. This operator is explicitely given by

(1.6) Ptgt
h = h2D2

t + (hDs − tba(t))2 , ba(t) = 1R+(t) + a1R−(t) .

By using a rescaling and a partial Fourier transformation along the straight edge
t = 0, we are led to consider the analytic family of Schrödinger operators

(1.7) ha[σ] = −∂2
t +

(
σ − ba(t)t

)2
,

with domain

B2(R) = {u ∈ L2(R) : u′′ ∈ L2(R) , t2u ∈ L2(R)} ,

where σ ∈ R is a parameter.
The operator ha[σ] is self-adjoint in L2(R) and has compact resolvent. We denote
by (µ

[n]
a (σ))n>1 the non-decreasing sequence of the eigenvalues (repeated according

to their multiplicity) of ha[σ]. For shortness, we let

µa(σ) = µ[1]
a (σ) = inf sp(ha[σ]) .(1.8)

By the Sturm-Liouville theory, we have the following proposition.

Proposition 1.1. All the eigenvalues of ha[σ] are simple. The eigenfunction asso-
ciated with µ[n]

a (σ) has exactly n− 1 simple zeroes on R.

The functions µ[n]
a (σ), are called the band functions. When a = 1, we are reduced

to the harmonic oscillator and µ[n]
a (σ) = 2n − 1. When −1 6 a < 1, the functions

µ
[n]
a (σ) are no more constant functions, see [20]. The lowest band function, µa(σ) is

studied in [2].

1Our investigation concerns the attractive magnetic edge, which is the case when a < 0. In the
opposite case, a ∈ (0, 1), the magnetic edge will no longer attract the bound states, since µa(σ)
(defined in (1.8)) becomes a monotone decreasing function with infσ∈R µa(σ) = a.
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Proposition 1.2 ([2, 20]). For all n > 1, the function µ[n]
a is analytic as a function

of σ. Moreover, the lowest band function satisfies

(1.9) lim
σ→−∞

µa(σ) = +∞, lim
σ→+∞

µa(σ) = |a| ,

and µa has a unique critical point, which is a non-degenerate minimum βa ∈ (0, |a|),
attained at σ(a) > 0.

In light of Proposition 1.2, we write, for E ∈ (0, |a|),
(1.10) µ−1

a ([βa, E]) =
[
σ−(a,E), σ+(a,E)

]
,

where −∞ < σ−(a,E) < σ(a) < σ+(a,E) < +∞.

1.4. Main results. Our analysis will reveal that the semiclassical spectral asymp-
totics of Pah in the interval [0, Eh] is governed by that of an effective operator acting
on the edge Γ. In particular, we obtain accurate asymptotics for the low-lying eigen-
values of Pah highlighting a significant difference between the cases where −1 < a < 0
and a = −1.

Theorem 1.3 (Case −1 < a < 0). Assume that k has a unique maximum, which is
non-degenerate:

kmax := max
Γ

k = k(smax) , k′′(smax) < 0 .

For all a ∈ (−1, 0), there exists C(a) > 0 such that, for all n > 1,

λn(Pah) = βah− C(a)kmaxh
3
2 + (n− 1

2
)h

7
4

√
−C(a)µ′′a(σ(a))k′′(smax) + on(h

7
4 ) .

Remark 1.4.
i) Theorem 1.3 recovers the asymptotics obtained in [1]. The constant is given by
C(a) = −M3(a) > 0, with M3(a) defined in (2.2) and calculated in (2.5).

ii) The asymptotics in Theorem 1.3 is consistent with the phenomenon observed in
surface superconductivity (see [9] and references therein) and the semiclassical
analysis for the Schrödinger operator with a degenerate well in [18]. In this
comparison, the well corresponds here to Γ and the mini-wells correspond to
the points of maximal curvature.

iii) Actually, the proof of Theorem 1.3 provides us with a uniform description of
the spectrum in [0, Eh] and could also help determining the behavior of the
eigenvalues close to Eh when E is non-critical for µa, i.e., when E 6= βa. In
the context of the Robin Laplacian, such considerations are the object of the
ongoing work [8]. Note also that there are some results high up in the spectrum
in the recent work [15], where Dirichlet conditions are considered.

iv) It might happen that k does not have a unique minimum and even that Γ has
some symmetry properties. In this case, tunneling occurs and the eigenvalue
splitting is exponentially small (see [11]). The proof is similar to the case of the
Laplacian with a constant magnetic field and Neumann boundary condition in
a symmetric domain [7].

When a = −1, we will prove that C(a) = 0 and thus the second and third terms
in the asymptotics formally vanish. We still get accurate estimates for the low-lying
eigenvalues of Pah when a = −1, which involves an operator on the edge Γ ' [−L,L),
whose half-length is denoted by L.
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Theorem 1.5 (Case a = −1). There exists C0 < 0 such that, for every n ∈ N, we
have as h→ 0,

λn(P{a=−1}
h ) = β−1h+ h2γn(h) + on(h2) ,

where γn(h) is the non-decreasing sequence of the eigenvalues of the differential op-
erator

µ′′−1(σ(−1))

2
(Ds + αh)

2 + C0k(s)2 , with Ds = −i∂s ,

acting on [−L,L) with periodic boundary conditions, and

(1.11) αh :=
|Ω1|
2Lh

− σ(−1)√
h

.

Here |Ω1| is the area of Ω1.

The quantity αh in (1.11) involves the circulation of the magnetic potential along
Γ. In fact, by Stokes’ Theorem, the circulation satisfies

1

|Γ|

∫
Γ

A · τ ds(x) =
1

|Γ|

∫
Ω1

curlA dx =
|Ω1|
2L

.

At the first glance, Theorems 1.3 and 1.5 seem independent. However, they both
result from the analysis of the effective operator of Pah (see Theorem 1.6 below),
which provides us with an accurate spectral description for −1 6 a < 0.

This effective operator can be described as an ~-pseudodifferential operator on
R with a 2L-periodic symbol with respect to the space variable, and acting on 2L-
periodic functions. Here and along the whole paper the parameter

(1.12) ~ := h1/2

is called the effective semiclassical parameter. Let us describe the shape of our
effective operator. For a given symbol p~(s, σ) ∈ SR2(1) 2, we consider the Weyl
quantization, i.e., the operator defined by

(1.13) (Opw~ (p~)u)(s) =
1

2π~

∫
R2

ei(s−s̃)·σ/~p~

(
s+ s̃

2
, σ

)
u(s̃)ds̃dσ .

For an introduction to pseudo-differential operators, the reader is referred for in-
stance to [26], where rigorous definitions are given and several fundamental proper-
ties are established. These operators being well defined on S(R), they can be ex-
tended by duality as operators on S ′(R). We now underline that, if p~(s+ 2L, σ) =
p~(s, σ), then Opw~ (p~) transforms all the 2L-periodic distributions into 2L-periodic
distributions. In fact, Opw~ (p~) also preserves the space of 2L-periodic functions that
are in L2

loc, denoted by L2
2L(R) (see Section 4.1).

Such an induced operator will give us our effective operator and we will call
it a pseudodifferential operator on the edge, s representing the coordinate on Γ
(parametrised by arc-length).

The main result in this article is the following.

Theorem 1.6 (Spectral reduction to the edge).
There exists a self-adjoint ~-pseudodifferential operator (with symbol peff

~ ∈ SR2(1))
on the edge, whose principal symbol coincides with µa below E, such that the spectrum
of Opw~ (peff

~ ) is discrete in [0, E] for ~ in some interval (0, ~0].
2that is a smooth bounded function on R2 such that its derivatives at any order are also bounded,
uniformly in ~ ∈ (0, 1].
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Moreover, for all n ∈ N such that λn(Pah) ∈ Jh = [0, Eh], we have as h→ 0,

λn(Pah) = hλn(Opw~ (peff
~ )) + o(h2) ,

uniformly with respect to a ∈ [−1, a0], where −1 < a0 < 0. Here λn(Opw~ (peff
~ ))

denotes the n-th eigenvalue of Opw~ (peff
~ ).

The discreteness of the spectrum of such an ~-pseudodifferential operator, for ~
small enough, is rather classical. Indeed, fixing E+ ∈ (E, |a|), we shall see that the
principal symbol of peff

~ coincides with µa below E+ and thus, since µa has a unique
minimum, we can consider a smooth function of σ with compact support, denoted
by χ, such that peff

~ (s, σ)+χ(σ) > E+. Since Opw~ χ is a compact operator on L2
2L(R),

we get that the essential spectra of Opw~ (peff
~ ) + Opw~ χ and Opw~ (peff

~ ) coincide. By
using the Gårding inequality, this essential spectrum is contained in (E,+∞).

The power of Theorem 1.6 is that it yields the two different asymptotics in The-
orems 1.3 and 1.5. The analysis in [1] only works for −1 < a < 0, in which case
the eigenfunctions are localized near the edge point(s) of maximal curvature, while
in the perfectly symmetric situation when a = −1, the localization near the edge is
displayed via an effective operator essentially independent of h (and thus the cor-
responding eigenfunctions are not particularly localized near specific points on the
edge, even in the limit h→ 0).

Of course, the present statement of Theorem 1.6 is not very informative if we do
not describe the effective operator (see (7.1) for the expression of peff

~ , involving the
curvature k along the edge Γ, viewed as a function of the arc-length s). However, it
already gives an idea of the dimensional reduction approach using the tools developed
in [22] and inspired by [14, 23].

Besides the accurate asymptotics of the low-lying eigenvalues obtained in Theo-
rems 1.3 and 1.5, another interesting result that follows from Theorem 1.6 is a Weyl
estimate.

Theorem 1.7 (Asymptotic number of edge states). We have

N(Pah , Eh) ∼
~→0

L(σ+(a,E)− σ−(a,E))

π
√
h

.

The above Weyl estimate is similar to the one for the Neumann Laplacian with
a magnetic field obtained by purely variational methods not involving pseudodiffer-
ential techniques in [13, 12, 21].

Remark 1.8. i) Our work does not cover the case when Γ has corners, in which
case a strategy of dimensional reduction might be inefficient (as in the case for
the Neumann magnetic Laplacian on corner domains, see [4, 6]).

ii) Another interesting question is to analyze the behavior of the spectrum near
the Landau level |a|h, where we loose the uniformity in our estimates and we
can expect that another regime occurs.

1.5. Organization. In Section 2, we discuss and recall some elementary properties
of the model in R2 with a flat edge. Section 3 is devoted to the description of
the Frenet coordinates along the edge Γ and the reduction of our problem to the
study of an operator in a neighborhood of Γ. In Section 4, we express the operator
obtained in Section 3 as an ~-pseudodifferential operator with operator symbol and
expand this operator in powers of ~. In Section 5, we use a Grushin problem to
construct a parametrix (that is an approximate inverse) for the operator introduced
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in Section 3. In Section 7, we deduce accurate eigenvalue estimates from the Grushin
reduction, finish the proof of Theorem 1.6, and show how it yields the other theorems
announced in the introduction.

2. The flat edge model

This section is devoted to the study of the flat edge model (1.6) and more precisely
to the properties of the fibered family (1.7). We recall that our analysis holds for
[−1, a0], with −1 < a0 < 0.

2.1. More on the band functions. We will use the following lemma.

Lemma 2.1. For all σ ∈ R, we have

µ[2]
a (σ) > |a| .

Proof. Let us consider the L2-normalized eigenfunction u := u
[2]
a,σ associated with

µ
[2]
a (σ). We have

−u′′(t) + (σ − tba(t))2u(t) = µ[2]
a (σ)u(t) .

By the Sturm-Liouville theory, u has exactly one simple zero t0. Assume first that
t0 > 0. Then, for all t > 0,

−u′′(t+ t0) + (σ − (t+ t0))2u(t+ t0) = µ[2]
a (σ)u(t+ t0) .

The (non-zero) function v = u(·+ t0) is an eigenfunction of the Dirichlet realization
on R+ of −∂2

t + (σ − t0 − t)2. Since v does not vanish on R+, we have µ[2]
a (σ) =

µDir
1 (σ − t0) > 1 > |a|. Now, assume that t0 < 0. Then, for all t 6 0,

−u′′(t+ t0) + (σ − a(t+ t0))2u(t+ t0) = µ[2]
a (σ)u(t+ t0) .

In the same way, we infer that µ[2]
a (σ) > |a|. �

For later use, we can consider a smooth bounded increasing function χ1 on R such
that χ1(σ) = σ on a neighborhood of the interval [σ−(a,E+), σ+(a,E+)

]
, see (1.10).

In particular µa ◦ χ1 has still a unique minimum at σa, which is not degenerate
and not attained at infinity (since lim inf |σ|→+∞ µa(χ1(σ)) > µa(σa)). The functions
◦
µ

[n]

a = µ
[n]
a ◦ χ1 will serve as bounded versions of µ[n]

a . We denote by ◦uσ the positive
and normalized ground state of

(2.1) ◦
n0(σ) := ha[χ1(σ)] ,

where ha is defined in (1.7).
We can express the projection on span(

◦
uσ) as Π∗(σ)Π(σ) where

Π(σ) = 〈·, ◦uσ〉 and Π∗(σ) = · ◦uσ ,

where we underline that Π∗(σ) ∈ L(C, L2(R)). Thanks to Lemma 2.1 (and the
spectral theorem), for all z ∈ [0, E+], we can consider the regularized resolvent3

◦
R0,z(σ) = (

◦
n0(σ)− z)−1

(
Id− Π∗(σ)Π(σ)

)
.

3Since [0, |a|) ∩ sp(◦n0(σ)) = {µ[1]
a (σ)}, ◦n0(σ)− z can be inverted on the orthogonal complement of

◦
uσ, for 0 6 z < E+ < |a|.
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Example 2.2. As mentioned in the introduction, we will work with pseudodiffer-
ential operators in the s-variable (parallel to the boundary). A key example is given
by Π above. We view (s, σ) 7→ Π(σ) ∈ L (L2(R),C) as an operator-valued sym-
bol. Thereby we get, using the Weyl quantization of (1.13) in the introduction, for
ϕ = ϕ(s, t),

(Opw~ (Π)ϕ)(s) =
1

2π~

∫
R2

ei(s−s̃)·σ/~(Π(σ)ϕ)(s̃)ds̃dσ

=
1

2π~

∫
R2

ei(s−s̃)·σ/~
∫
R
ϕ(s̃, t)

◦
uσ(t)dtds̃dσ.

Similarly, (s, σ) 7→ Π(σ)∗ ∈ L (C, L2(R)) is an operator-valued symbol and for
ψ = ψ(s), we have

(Opw~ (Π∗)ψ)(s, t) =
1

2π~

∫
R2

ei(s−s̃)·σ/~ψ(s̃)
◦
uσ(t)ds̃dσ.

Proposition 2.3. For all z ∈ [0, E+] (or more generally Rez 6 E+), the matrix
operator

P0,z(σ) =

( ◦
n0(σ)− z Π∗(σ)

Π(σ) 0

)
: B2(R)× C→ L2(R)× C ,

is bijective for all σ ∈ R and

P0,z(σ)−1 =

( ◦
R0,z(σ) Π∗

Π z − ◦µ
[1]

a (σ)

)
=: Q0,z(σ) .

Moreover, the operator symbols (s, σ) 7→ P0,z(σ) and (s, σ) 7→ Q0,z(σ) belong to
S
(
R2,L (B2(R)×C, L2(R)×C)

)
and S

(
R2,L (L2(R)×C, B2(R)×C)

)
, respectively.

We recall that S(R2, F ) is the set of smooth functions on R2, valued in F with
bounded derivatives (at any order).

Proof. By straightforward computations, we can verify the identities

Q0,z(σ)P0,z(σ) = IdB2(R)×C and P0,z(σ)Q0,z(σ) = IdL2(R)×C .

�

2.2. Some useful formulas. Let us recall some formulas and results from [2].
Let φa be the positive and L2-normalized ground state of the operator ◦n0(σ(a)).
introduced in (2.1). It is proven in [2, Thm. 1.1] that φ′a(0) < 0 for all a ∈ (−1, a0).

Some useful identities involve the moments

(2.2) Mn(a) =

∫
R

1

ba(τ)

(
ba(τ)τ − σ(a)

)n|φa(τ)|2 dτ ,

for n ∈ N. It has been proven in [2] that

M1(a) = 0 ,(2.3)

M2(a) = −1

2
βa

∫
R

1

ba(τ)
|φa(τ)|2 dτ +

1

4

(1

a
− 1
)
σ(a)φa(0)φ′a(0) ,(2.4)

M3(a) =
1

3

(1

a
− 1
)
σ(a)φa(0)φ′a(0) .(2.5)
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The case a = −1 is special because

M2(−1) = M3(−1) = 0 ,

while, for −1 < a < 0, M3(a) < 0.
Finally, we will also need the following two identities [1, Rem. 2.3],∫

R
τ(σ(a)− ba(τ)τ)2|φa(τ)|2 dτ = M3(a) + σ(a)M2(a) ,∫

R
ba(τ)τ 2(σ(a)− ba(τ)τ)|φa(τ)|2 dτ = −M3(a)− 2σ(a)M2(a) .

(2.6)

2.3. The symmetric case a = −1 and the de Gennes model. Let us recall the
definition and properties of the deGennes model occurring in the analysis of surface
superconductivity within the Ginzburg-Landau model [10, Sec. 3.2] (and references
therein). We start with the family of harmonic oscillators

h[σ] = −∂2
t + (σ − bt)2

on the half-axis R+ with Neumann condition at 0. Let us denote the positive nor-
malized ground state of h[σ] by fσ and the ground state energy by µ(σ). Then,
minimizing with respect to σ ∈ R we get

Θ0 = inf
σ∈R

µ(σ) = µ(ξ0) where ξ0 =
√

Θ0 .

Let f0 := fξ0 . Then, for a = −1, we get by a symmetry argument

φa(t) = f0(|t|) and σ(−1) = ξ0.

Moments.
Let us introduce the following moments

Mk =

∫
R+

(ξ0 − t)k|f0(t)|2dt .

Then, by [9], we have

M0 = 1, M1 = 0, M2 =
Θ0

2
, M3 = −|f0(0)|2

6
,

and
M4 =

3

8

(
1 + Θ2

0 − ξ0f0(0)2
)

=
3

8
(1 + Θ2

0 + 6ξ0M3) .

3. Decay of bound states and spectral reduction

In this section, we consider the eigenfunctions of the operator Pah = Ph with
eigenvalues in the energy window

(3.1) J+
h = [0, E+h] where E < E+ < |a| .

We prove that the eigenfunctions associated with eigenvalues in J+
h are exponen-

tially localized near Γ, see Corollary 3.3. To describe the effect of the edge on the
localization, it is natural to use the classical tubular coordinates near Γ, whose defi-
nition will be recalled in Subsection 3.1. In order to prove Corollary 3.3, we will have
to combine Agmon estimates and a rough estimate on the number of eigenvalues in
J+
h (polynomially in h−1)), which will be discussed in Subsection 3.2.
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3.1. Tubular coordinates. For all ε > 0, consider the ε-neighborhood of Γ

(3.2) Γ(ε) = {x ∈ R2 : dist(x,Γ) < ε} .

Consider a parameterization M(s) of the edge Γ by the arc-length coordinate s ∈
[−L,L), where L = |Γ|/2. Consider the unit normal n(s) to Γ pointing inward to
Ω1, and the unit oriented tangent t(s) = ṅ(s) so that (t(s),n(s)) is a direct frame,
i.e. det(t(s),n(s)) = 1. We can now introduce the curvature k(s) at the point
M(s), defined by n̈(s) = k(s)n(s).

Let us represent the torus (R/2LZ) by the interval [−L,L) and pick ε0 > 0 so
that

Φ : R/(2LZ)× (−ε0, ε0) 3 (s, t) 7→M(s) + tn(s) ∈ Γ(ε0)

is a diffeomorphism, with Jacobian

(3.3) m(s, t) = 1− tk(s) .

The Hilbert space L2(Γ(ε0)) is transformed into the weighted space

L2
(
(R/2LZ)× (−ε0, ε0);m dsdt

)
and the operator Ph is (locally near the edge) transformed into the following operator
(see [10, App. F])):

P̃h := −h2m−1∂tm∂t

+m−1

(
−ih∂s + γ0 − ba(t)t+

k

2
ba(t)t

2

)
m−1

(
−ih∂s + γ0 − ba(t)t+

k

2
ba(t)t

2

)
where ba is defined in (1.7) and

(3.4) γ0 =
|Ω1|
2L

.

3.2. Number of eigenvalues. We give a preliminary, rough bound on the number
of eigenvalues in J+

h . As we will see, this first estimate will be enough to deduce a
stronger one at the end of our analysis.

Proposition 3.1. Let N(Ph, E+h) = Tr
(
1Jh(Ph)

)
. There exist C, h0 > 0 such that,

for all h ∈ (0, h0),
N(Ph, E+h) 6 Ch−2 .

Proof. Let us introduce a fixed partition of the unity

χ2
out + χ2

e + χ2
in = 1 ,

such that supp(χout) ⊂ R2 \ Ω1 = Ω2, supp(χin) ⊂ Ω1, and supp(χe) ⊂ Γ(ε0). The
quadratic form associated with Ph is given by

Qh(ψ) =

∫
R2

|(−ih∇+ A)ψ|2dx ,

for all ψ ∈ L2(R2) such that (−ih∇+ A)ψ ∈ L2(R2).
The usual localization formula (see, for instance, [24, Section 4.1.1]) gives the

existence of a constant C > 0 such that

Qh(ψ) > Qh(χoutψ) +Qh(χeψ) +Qh(χinψ)− Ch2‖ψ‖2 .
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By noticing that ψ 7→ (χoutψ, χeψ, χinψ) is injective, and thanks to the min-max
theorem, we find that

N(Ph, E+h) 6 N(Pout
h , E+h+ Ch2) +N(Pe

h, E
+h+ Ch2) +N(P in

h , E
+h+ Ch2) ,

where the operators Pout
h , Pe

h and P in
h are the Dirichlet realizations of (−ih∇+ A)2

on Ω2, Γ(ε0) and Ω1, respectively. We recall that E+ < |a| 6 |a0| < 1 and notice
that Pout

h > |a|h and P in
h > h. When h is small enough, E+h + Ch2 < |a|h < h, so

we must have N(Pout
h , E+h+ Ch2) = N(P in

h , E
+h+ Ch2) = 0. Thus,

N(Ph, E+h) 6 N(Pe
h, E

+h+ Ch2) .

Therefore, we are reduced to estimate the number of eigenvalues of the operator
with compact resolvent Pe

h below E+h + Ch2. For that purpose, we can use the
tubular coordinates and notice that, for all ψ ∈ H1

0 (Γ(ε0)),

Qh(ψ) =

∫
(R/2LZ)×(−ε0,ε0)

(
|h∂tψ|2 +m−2|(hDs + γ0 − ba(t)t+

k

2
t2)ψ|2

)
mdsdt .

This gives the following rough estimate, for some c0, C0 > 0,

Qh(ψ)

‖ψ‖2
> c0

∫
(R/2LZ)×(−ε0,ε0)

|h∂tψ|2 + |h∂sψ|2dsdt∫
(R/2LZ)×(−ε0,ε0)

|ψ|2dsdt
− C0 .

Thanks to the min-max theorem, this implies the upper bound

N(Pe
h, E

+h+ Ch2) 6 N(−h2∆Dir, c−1
0 (E+h+ Ch2 + C0)) ,

where −∆Dir is the Dirichlet Laplacian on the cylinder (R/2LZ) × (−ε0, ε0). The
spectrum of this operator can be computed explicitely thanks to Fourier series, and
we get the rough estimate

N(−h2∆Dir, c−1
0 (E+h+ Ch2 + C0)) 6 C̃h−2 .

�

Since E+ < |a|, the eigenfunctions of Ph associated with eigenvalues in the allowed
energy window J+

h are localized near the edge, see [2].

Proposition 3.2. There exist constants α, h0, C0 > 0 such that, if h ∈ (0, h0] and
uh is an eigenfunction of Ph associated with an eigenvalue in J+

h , then the following
holds,

(3.5)
∫
R2

(
|uh|2 + h−1|(−ih∇+ A)uh|2

)
exp

(2α dist(x,Γ)

h1/2

)
dx 6 C0‖uh‖2

L2(R2) .

Combining Propositions 3.1 and 3.2, we get the following estimate.

Corollary 3.3. Let η ∈
(
0, 1

2

)
. There exists h0 > 0 such that for all h ∈ (0, h0) and

uh ∈ Ran1Jh(Ph), we have outside Γ(h
1
2
−η)

(3.6)
∫
R2\Γ(h

1
2−η)

(
|uh|2 + |(−ih∇+ A)uh|2

)
dx 6 e−h

−η‖uh‖2
L2(R2) .

Corollary 3.3 suggests to use the rescaling t = ~t̃. We also consider a smooth
cutoff function

(3.7) cµ(t̃) = c(µt̃) , µ = hη = ~2η ,
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where c ∈ C∞0 (R) is even and satisfies c = 1 on [−1, 1] and c = 0 on R \ (−2, 2).
This cutoff function is convenient to define the new operator on the Hilbert space
L2
(
(R/2LZ)× R;m~ds̃dt̃

)
, by

Ñ~ = −m−1
~ ∂t̃m~∂t̃

+m−1
~

(
~Ds̃ + ~−1γ0 − bat̃+ ~cµ

k

2
bat̃

2

)
m−1

~

(
~Ds̃ + ~−1γ0 − bat̃+ ~cµ

k

2
bat̃

2

)
acting on the domain

Dom(Ñ~) = {u ∈ L2
(
(R/2LZ)× R

)
: ∂2

t̃ u ∈ L
2
(
(R/2LZ)× R

)
,

(~Ds̃ + ~−1γ0 − bat̃)2u ∈ L2
(
(R/2LZ)× R

)
}.

As in Proposition 3.2, we can prove that the eigenfunctions of Ñh associated with
eigenvalues in Jh are localized near t̃ = 0.

Proposition 3.4. The spectra of Ph and Ñh in J+
h coincide modulo O(h∞).

Therefore, we are reduced to the spectral analysis of Ñh. For shortness, we drop
the tildes. Up to a change of gauge, we are reduced to the operator

N~,θ =−m−1
~ ∂tm~∂t

+m−1
~

(
~Ds + θ − bat+ ~cµ

k

2
bat

2

)
m−1

~

(
~Ds + θ − bat+ ~cµ

k

2
bat

2

)
,

with
m~(s̃, t̃) := 1− ~cµ(s̃, t̃)t̃k(s̃) ,

and domain

Dom(N~,θ) = {u ∈ L2
(
(R/2LZ)× R) : ∂2

t u ∈ L2((R/2LZ)× R
)
,

(~Ds + θ − bat)2u ∈ L2(((R/2LZ))× R)} .
Here

(3.8a) θ = θ(~) = ~−1γ0 −
mπ

L
~

where m ∈ Z is chosen so that

(3.8b) θ(~) ∈ [0, ~πL−1) .

Before going ahead, we have to deal with the inconvenience of working in a
Hilbert space with a weighted measure, which also depends on ~. Thus, let us
use the canonical conjugation and work in the fixed Hilbert space with flat measure
L2((R/2LZ)× R, dsdt):

(3.9) N~,θ = m
1/2
~ N~,θm

−1/2
~ = −m−1/2

~ ∂tm~∂tm
−1/2
~ +

(
m
−1/2
~ T~m−1/2

~
)2

where

(3.10) T~,θ = ~Ds + θ − bat+ ~cµ
k

2
bat

2 .

Note that

(3.11) −m−1/2
~ ∂tm~∂tm

−1/2
~ = −∂2

t −
(∂tm~)

2

4m2
~

+
∂2
tm~

2m~
,
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so that

(3.12) N~,θ = −∂2
t −

(∂tm~)
2

4m2
~

+
∂2
tm~

2m~
+
(
m
−1/2
~ T~,θm−1/2

~
)2
.

We restate the Proposition 3.4 in terms of the new notation.

Proposition 3.5. The spectra of Ph and N~,θ in J+
h coincide modulo O(h∞).

4. A pseudodifferential operator with operator valued symbol

4.1. Preliminaries. Let us briefly prove that an operator given by (1.13) with a
2L periodic symbol, p~(s+2L, σ) = p~(s, σ), preserves 2L-periodic distributions and
also locally square integrable 2L-periodic functions. More generally, it also preserves
the set of functions

(4.1) F~,θ := {u ∈ L2
loc(R) : u(s+ 2L) = e2iθL/~u(s)} ,

equipped with the L2-norm on a period [−L,L). The operator Opw~ (p~) acts contin-
uously on F~,θ. In fact, this is even true in the vector valued case where we replace
u ∈ L2

loc(R) by u ∈ L2
loc(R;F ) for some Hilbert space F in the definition of F~,θ.

Let us explain this for θ = 0.
From the composition theorem for pseudodifferential operators (see [26, Theorem

4.18]), we see that 〈x〉−1Opw~ (p~)〈x〉 is a pseudodifferential operator with symbol in
S(1) (and thus it is bounded on L2(R) thanks to the Calderón-Vaillancourt theorem,
see [26, Theorem 4.23]). This shows that Opw~ (p~) is bounded from L2(R, 〈x〉−2dx)
to L2(R, 〈x〉−2dx). Notice that there exist C1(L) > 0, C2(L) > 0 and C3(L) > 0
such that for all u ∈ L2

2L(R),

‖u‖2
L2(R,〈x〉−2dx) 6 C1(L)

∑
`∈Z

〈`〉−2‖u‖2
L2(2`L−L,2`L+L) 6 C2(L)‖u‖2

L2
2L(R)

6 C3(L)‖u‖2
L2(R,〈x〉−2dx) .

Now the operator N~,θ introduced in (3.12) (with T~,θ introduced in (3.10)) can be
seen as the action of an ~-pseudodifferential operator N~ with operator symbol n~
on F~,θ(~) where θ(~) is defined in (3.8b). We have

(4.2) N~ = −∂2
t −

(∂tm~)
2

4m2
~

+
∂2
tm~

2m~
+
(
m
−1/2
~ T~m−1/2

~
)2
,

with
T~ = ~Ds − bat+ ~cµ

k

2
bat

2 .

We recall the classical notation for the Weyl quantization

(4.3) N~ = Opw~ (n~)u(s) =
1

(2π~)

∫
R2

ei(s−s̃)·σ/~n~

(
s+ s̃

2
, σ

)
u(s̃)ds̃dσ .

Note that, by using the Floquet-Bloch transform, N~ is unitarily equivalent to the
direct integral of the N~,θ.

Let us explain why the operator N~ can be written under the form (4.3). Note
already that, at a formal level, we expect that

n~ ' n0 = −∂2
t + (σ − bat)2 .

This formal principal symbol suggests to consider the set of operator-valued symbols
(where lies n0). We denote by S

(
R2,L (B2(R)×C, L2(R)×C)

)
the class of symbols
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Ψ on R2 with value in L (B2(R)× C, L2(R)× C), such that, for all j, k ∈ N, there
exists Cj,k > 0

‖∂js∂kσΨ(s, σ)‖L (B2(R)×C),L2(R)×C)) 6 Cj,k ,

where in the definition on the norms above the norm on B2(R) is (s, σ)-dependent
and given by

B2(R) 3 ψ 7→ ‖ψ‖2
B2(R),(s,σ) = ‖∂2

t ψ‖2 + ‖〈t2〉ψ‖2 + 〈σ〉4‖ψ‖2 .

Here we used the notation

(4.4) 〈u〉 = (1 + |u|2)1/2 .

Our symbols can be ~-dependent and in this case we impose above the unifor-
mity of the constants with respect to ~. The representation of N~ as a pseudo-
differential operator follows from the results of composition for operator symbols
(see [22, Theorem 2.1.12]) and by noticing that the symbol of (3.10) (obtained
by replacing ~Ds by σ) belongs to S

(
R2,L (B1(R) × C, L2(R) × C)

)
and also to

S
(
R2,L (B2(R)× C, B1(R)× C)

)
(with suitable (s, σ)-dependent norms on Bk(R)

extending the definition given above of the norm on B2). Indeed, the function
t 7→ ~bacµt2 is bounded, uniformly in ~, since µ = ~2η (for η fixed small enough).

Remark 4.1. We recall that the operator and its Weyl symbol are related by the
following exact formula (see for instance [26, Theorems 4.19 & 4.13] whose proof can
be adapted to operator-valued symbols):

n~(s, σ) = e−i
~
2
DsDσ

[
e−isσ/~N~(e

i·σ/~)
]

(s, σ) ,

where e−i
~
2
DsDσ is defined as a Fourier multiplier thanks to the Fourier transform

with respect to (s, σ).

4.2. Expansion of N~. Let us now describe an expansion of n~ in powers of ~. We
would like to write

(4.5) n~ ' n0 + ~n1 + ~2n2 + . . .

With this writing, we mean an expansion of the associated operator N~ of the
following form

(4.6) N~ = n0 + ~n1 + ~2n2 + ~3R(3)
~ + ~w~ ,

where, for some N ∈ N, C, ~0 > 0, we have, for all ~ ∈ (0, ~0),
(i) w~ is a smooth function supported in {(s, t) : C−1~−2η 6 〈t〉 6 C~−2η} and

such that w~ = O(〈t〉) ,
(ii) R(3)

~ is a pseudodifferential operator whose symbol belongs to a bounded set
in S(R2,L (B2(R)× C, L2(R, 〈t〉−Ndt)× C)).

Note that (4.5) does not mean an expansion in the symbol class S(R2,L (B2(R)×
C, L2(R) × C)), where lies n~. We start by expanding the differential operator N~
(see (3.12)) with respect to ~, with µ (involved in the cutoff functions cµ) considered
as a parameter4.

In the following proposition, we describe the (symmetric) differential operators
nj.

4Note that ~cµ(t)t converges to 0 uniformly as ~ tends to 0 since µ = ~2η and η < 1/2.
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Proposition 4.2. The decomposition (4.6) holds with

(4.7)

n0 = −∂2
t + p2

0 ,

n1 = p0p1 + p1p0 ,

n2 = p0p2 + p2
1 + p2p0 − c2

µ

k2

4
,

where

(4.8)

p0 = ~Ds − bat ,

p1 = cµt
(k

2
p0 +

1

2
p0k +

k

2
bat
)
,

p2 = c2
µt

2
(k2

2
p0 +

1

2
p0k

2 +
k2

2
bat
)
.

Proof. Let us provide a Taylor expansion of (3.12). (3.10) can be rewritten in the
form

T~ = p0 + ~cµ
k

2
bat

2 .

Straightforward computations yield,

m
−1/2
~ T~m−1/2

~ = m−1
~ p0 +m

−1/2
~

(
~Dsm

−1/2
~

)
+ ~cµ

k

2
bat

2m−1
~

= m−1
~ p0 + ~2m−2

~ cµt(Dsk) + ~m−1
~ cµ

k

2
bat

2 .

Now we expand m−1
~ in powers of ~ and get

m−1
~ = 1 + ~cµtk + ~2c2

µt
2k2 + ~3 (cµtk)3

1− ~cµtk
,

so that

~2m−2
~ = ~2 + ~3 2cµtk

1− ~cµtk
+ ~4

c2
µt

2k2

(1− ~cµtk)2
,

~m−1
~ = ~ + ~2cµtk + ~3

c2
µt

2k2

1− ~cµtk
.

We have the following expansion

m
−1/2
~ T~m−1/2

~ =

= p0 + ~kcµt
(
p0 +

1

2
bat
)

+ ~2

(
k2c2

µt
2
(
p0 +

1

2
bat
)

+
1

2
cµt(Dsk)

)
+

~3cµtk

1− ~cµtk

(
(cµtk)2p0 +

(
2 +

~cµtk
1− ~cµtk

)
cµt(Dsk) +

2c2
µt

3k2

2

)
.

The previous expression can be rearranged as follows

m
−1/2
~ T~m−1/2

~ = p0 + ~p1 + ~2p2 + ~3R~ .

and

(4.9)
R~ = −~c2

µt
2(Dsk)k

+
cµtk

1− ~cµtk

(
(cµtk)2p0 +

(
2 +

~cµtk
1− ~cµtk

)
cµt(Dsk) +

2c2
µt

3k2

2

)
.



16 S. FOURNAIS, B. HELFFER, A. KACHMAR, AND N. RAYMOND

Recalling (3.11), we can also expand the operator in the transversal variable and get

(4.10a) −m−1/2
~ ∂tm~∂tm

−1/2
~ = −∂2

t − ~2c2
µ

k2

4
+ ~3v~ + ~w~ ,

where the functions v~ and w~ satisfy, uniformly with respect to s, and ~,
(4.10b) v~(s, t) = O

(
〈t〉4
)
and w~(s, t) = O

(
|c′′µt|+ |〈t〉c′µ|

)
,

which gives in particular (i).
We get the expansion of the operator in (4.6) and the remainder term is expressed

via R~ in (4.9) as follows

R(3)
~ = p1p2 + p2p1 + p0R~ + R~p0

+ ~
(
p1R~ + R~p1 + p2

2

)
+ ~2

(
p2R~ + R~p2

)
+ O

(
~3〈t〉4

)
.

We see that the remainder R(3)
~ satisfies (ii). �

We can now establish an expansion of the form (4.5) by considering the Weyl
symbols of the pj in (4.8) (and the composition of pseudodifferential operators). We
get the decomposition

(4.11a) n~ = n0 + ~n1 + ~2n2 + ~3r3,~ + w~ ,

where
n0(s, σ) = −∂2

t + (σ − bat)2 ,

n1(s, σ) = cµk(s)
(
2t(σ − bat)2 + bat

2(σ − bat)
)
,

n2(s, σ) = c2
µk(s)2

(
3t2(σ − bat)2 + 2bat

3(σ − bat) +
1

4
b2
at

4
)
− c2

µ

k(s)2

4
,

(4.11b)

(4.11c) r~,3 ∈ S(R2,L (B2(R)× C, L2(R, 〈t〉−Ndt)× C))

and w~ is introduced in (4.10b).

5. The Grushin reduction

Instead of the operator N~, we consider its truncated version defined by

(5.1) Nc
~ = Opw~ (nc~) , nc~,0(s, σ) = n~(s, χ1(σ)) ,

where χ1 is defined in Section 2.1.
Consider the operator symbol, for all z ∈ [0, E] and E < E+ < |a|.

(5.2) P~,z(s, σ) =

(
nc~ − z Π∗σ

Πσ 0

)
= P0,z + ~P1 + ~2P2 + . . . ,

where, Πσ = 〈·, ◦uσ〉 and for all j > 1,

(5.3) Pj =

(
ncj 0
0 0

)
, ncj(s, σ) = nj

(
s, χ1(σ)

)
.

The operator P0,z is introduced in Proposition 2.3. Recall that it is bijective (since
z ∈ [0, E]) and

(5.4) P−1
0,z = Q0,z =

(
q0,z q+

0,z

q−0,z q±0,z

)
is explicitly given in Proposition 2.3.
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Proposition 5.1. Consider

Q1,z = −Q0,zP1Q0,z =

(
q1,z q+

1,z

q−1,z q±1,z

)
and

Q2,z = −Q1P1Q0 −Q0P2Q0 =

(
q2,z q+

2,z

q−2,z q±2,z

)
.

We let

Q~(z) = Q0,z + ~Q1,z + ~2Q2,z =

(
q~,z q+

~,z
q−~,z q±~,z

)
.

Then,

Opw~ (Q~(z)) Opw~ (P~(z)) = Id + ~3E~,l ,

Opw~ (P~(z)) Opw~ (Q~(z)) = Id + ~3E~,r ,

where E~,l/r is a pseudodifferential operator, whose operator-valued symbol belongs to
the class S

(
R2,L

(
L2(R)×C, L2(R, 〈t〉−Ndt)×C

))
, uniformly in ~, for some N ∈ N

independent of ~,

The coefficients appearing in Proposition 5.1 can be computed explicitly. Of
particular importance to us is

(5.5) q±~,z(s, σ) = z − ◦µa(σ) + ~q±1 (s, σ) + ~2q±2,z(s, σ) ,

where

q±1 (s, σ) = −〈n1(s, χ1(σ))
◦
uσ,

◦
uσ〉 ,(5.6)

q±2,z(s, σ) = 〈q0,zn1(s, χ1(σ))
◦
uσ, n1(s, χ1(σ))

◦
uσ〉 − 〈n2(s, χ1(σ))

◦
uσ,

◦
uσ〉 .(5.7)

Here ◦uσ is the positive ground state of the operator in (2.1) and n0, n1, n2 are intro-
duced in (4.11b).

Proposition 5.2. Writing

Opw~
(
Q~(z)

)
=

(
Q~ Q+

~
Q−~ Q±~

)
, P~ = Opw~ (Π) ,

we have

(5.8) Q~(N
c
~ − z) +Q+

~ P~ = Id + ~3R+
~ , Q−~ (Nc

~ − z) +Q±~ P~ = ~3R±~ ,

(5.9) Q−~ = P~ + ~E −~ , Q+
~ = P∗~ + ~E +

~ ,

where R+
~ ,R

±
~ are pseudodifferential operators whose symbols belong to the class

S
(
R2,L

(
L2(R) × C, L2(R, 〈t〉−Ndt) × C

))
, and where E −~ ,E

+
~ are pseudodifferen-

tial operators whose symbols belong to the class S
(
R2,L

(
L2(R) × C, L2(R) × C

))
,

uniformly in ~.
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6. Spectral applications

6.1. Localization of the eigenfunctions of N~,θ. In order to perform the spectral
analysis ofN~,θ, we need to prove that its eigenfunctions (associated with eigenvalues
in [0, E+]) are ~-microlocalized, with respect to σ + θ in

{ς ∈ R : µa(ς) 6 E+ + ε} , with ε > 0 such that E+ + ε < a .

This can be formulated in terms of the semiclassical wavefront/frequency set (see
[26, Sec. 8.4.2, p.188]), however we write a stronger estimate in Proposition 6.1
below which holds uniformly with respect to θ ∈ R. This is a consequence of the
behavior of the principal operator symbol n0,θ = −∂2

t +(σ+θ+bat)
2 (which appears

after the Bloch-Floquet transform), which is bounded from below by µa(σ + θ).
The following estimate holds (see [7, Section 5] where similar considerations are

described in detail).

Proposition 6.1. Consider a smooth function χ that equals 1 away from {µa 6
E+ + ε} and 0 on {µa 6 E+ + ε

2
}. Then, for any θ ∈ R and any normalized

eigenfunction ψ of the operator N~,θ associated with an eigenvalue in [0, E+], we
have

(6.1) Opw~ (χ(·+ θ))ψ = O(~∞) ,

uniformly with respect to θ ∈ R, where O(~∞) holds in the sense of the norm
u 7→ ‖〈t〉2u‖H2((R/2LZ)×R+). In addition, (6.1) also holds for all normalized ψ ∈
Ran1[0,E+](N~,θ).

Let us consider the operator Nc
~,θ (with periodic boundary conditions) defined as

the operator induced by Nc
~ on F~,θ (defined in (4.1)). By using Proposition 6.1 and

the min-max theorem, we get the following.

Proposition 6.2. The spectra of N~,θ and Nc
~,θ in [0, E+] coincide (with multiplicity)

modulo O(~∞), uniformly with respect to θ ∈ R. More precisely, for all N > 1, there
exist ~0, C > 0 such that, for all θ ∈ R and all ~ ∈ (0, ~0) and all k > 1 such that
λk(N~,θ) 6 E+, we have

|λk(N~,θ)− λk(Nc
~,θ)| 6 ChN .

6.2. Weyl estimate. A remarkable consequence of Proposition 5.1 and its corollary
is the following Weyl estimate, which improves Proposition 3.1.

Proposition 6.3. Let θ = θ(~) be as defined in (3.8a). For E ∈ (0, |a|), we have
as ~→ 0,

N(N~,θ, E) ∼
~→0

N(Nc
~,θ, E) ∼

~→0

L(σ+(a,E)− σ−(a,E))

π~
,

where σ±(a,E) is defined in (1.10). In particular,

N(Ph, Eh) ∼
~→0

L(σ+(a,E)− σ−(a,E))

π
√
h

.

Proof. The first asymptotics, N(N~,θ, E) ∼
~→0

N(Nc
~,θ, E), follows from Proposi-

tion 6.2. Let us focus on establishing the second one.
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Note that Q± = Op(q±h (z)) with q±h (z) given in (5.5). Let us now test (5.8) (with
z = 0) and (5.9) with functions of F~,θ of the form u = eiθs/~ψ, with ψ in the domain
of the operator Nc

~,θ (with periodic conditions). We get

(6.2) Q−~,θN
c
~,θψ +Q±~,θP~,θψ = ~3R±~,θψ .

where the index θ refers to the conjugation by eiθs/~ (or the translation by θ of the
symbol in σ). Then, we take the inner product with P~,θψ. To deal with the term
involving Q−~,θ, we use the first equality in (5.9), and this gives

(6.3) 〈Opw~
( ◦
µa(·+ θ)

)
P~,θψ,P~,θψ〉 6 Re〈Nc

~,θψ,P
∗
~,θP~,θψ〉+ C~‖Nc

~,θψ‖‖ψ‖
+ (C~3‖〈t〉Nψ‖+ C~‖ψ‖)‖P~,θψ‖ .

We apply this inequality to ψ being a linear combination of eigenfunctions of Nc
~,θ

associated with eigenvalues less than E and thus, thanks to the Agmon estimates
(with respect to t), we can write, for some C0 > 0, η ∈ (0, 1) and for ~ small enough,

〈Opw~
( ◦
µa(·+ θ)

)
P~,θψ,P~,θψ〉 6 ‖Nc

~,θψ‖(‖P∗~,θP~,θψ‖+ C~‖ψ‖) + C~‖ψ‖‖P~,θψ‖ .
By definition of P~,θ, we see that the principal symbol of P∗~,θP~,θ is a projection so
that

〈Opw~
( ◦
µa(·+ θ)

)
P~,θψ,P~,θψ〉 6 (1 + C̃~)‖Nc

~,θψ‖‖ψ‖+ C~‖ψ‖‖P~,θψ‖ .
Applying this inequality to functions in the space spanned by the k first eigenfunc-
tions5 of Nc

~ (provided that λk(Nc
~,θ) 6 E), we get

〈Opw~
( ◦
µa(·+ θ)

)
P~,θψ,P~,θψ〉 6 (1 + C̃~)λk(N

c
~,θ)‖ψ‖2 + C~‖ψ‖‖P~,θψ‖ ,

and also
(6.4) 〈Opw~

( ◦
µa(·+ θ)

)
P~,θψ,P~,θψ〉 6 (λk(N

c
~,θ) + C~)‖ψ‖2 .

We have now to check that, when ψ runs over our k-dimensional space, P~,θψ runs
over a k-dimensional space. Using the first equality in (5.8) with the j-th eigenfunc-
tion ψ = ψj and z = λj(N

c
~), and by using the Agmon estimates, we see that, there

exists C > 0 such that for all j, `,∣∣〈P∗~,θP~,θψj, ψ`〉 − δj`
∣∣ 6 C~ .

Then, writing ψ =
∑k

j=1 αjψj, we have
(6.5)

‖P~,θψ‖2 = Re
k∑

j,`=1

αjα`〈P~,θψj,P~,θψ`〉 > (1− C~)
k∑
j=1

|αj|2 = (1− C~)‖ψ‖2 .

Recalling (6.4) and using the min-max theorem, this shows that there exist C, ~0 > 0
such that for all ~ ∈ (0, ~0),

λk

(
Opw~

( ◦
µa(·+ θ)

))
6 λk(N

c
~,θ) + C~ ,

provided that λk(Nc
~,θ) 6 E. By using Proposition 5.1 and similar arguments, we

get the reversed inequality. Let us only sketch the proof. Thanks to Proposition 5.1,
we get, for all f ∈ L2

loc(R) that is 2L-periodic,

Re〈(Nc
~,θ − z)(Q+

~,θf), Q+
~,θf〉 6 −Re〈P∗~,θQ±~,θ(z)f,Q+

~,θf〉+ C~3‖f‖‖Q+
~,θf‖ .

5associated with eigenvalues repeated according to the multiplicity
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By taking z = 0 and by using the Calderón-Vaillancourt theorem to deal with the
right-hand-side, we get

〈Nc
~,θ(Q

+
~,θf), Q+

~,θf〉 6 Re〈Opw~
◦
µa(·+ θ)f,P~,θQ

+
~,θf〉+ C~‖f‖2 .

Then, we have

〈Nc
~,θ(Q

+
~,θf), Q+

~,θf〉 6 Re〈Opw~
◦
µa(·+ θ)f, f〉+ C̃~‖f‖2 .

We can check that ‖Q+
~,θf‖ > c‖f‖ for some c > 0. From the min-max theorem, we

infer that
λk(N

c
~,θ) 6 λk

(
Opw~

( ◦
µa(·+ θ)

))
+ C~ .

There exist C, ~0 > 0 such that for all k > 1 and all ~ ∈ (0, ~0),∣∣∣λk (Opw~
( ◦
µa(·+ θ)

))
− λk(Nc

~,θ)
∣∣∣ 6 C~ ,

as soon as λk(Nc
~,θ) 6 E.

It remains to apply the usual Weyl estimate available for a ~-pseudodifferential
operator whose principal symbol is ◦µa(σ+ θ) and remember that θ → 0 when ~→ 0
and that the symbol is 2L-periodic with respect to s. �

7. Estimate of the bottom of the spectrum

Let us now focus on the bottom of the spectrum. Here, we follow the analysis
in [3, Section 8.3], where quite similar considerations were used in the context of
the magnetic Dirac operator. In this section, we only highlight the most important
steps. We will sometimes write σa = σ(a) to lighten the notation in this section.

We consider Proposition 5.1 with z ∈ [0, βa + C~]. In view of (5.5), this suggests
to consider the operator whose Weyl symbol is

(7.1) peff
~ (s, σ) =

◦
µa(σ)− ~q̂±1 (s, σ)− ~2q̂±2,βa(s, σ) .

We let
peff
~,θ(s, σ) = peff

~ (s, σ + θ) .

Proposition 7.1. We have, for all n > 1,

λn(Nc
~,θ) = λn

(
Opw~ (peff

~,θ)
)

+ o(~2) ,

uniformly with respect to θ ∈ R.

Proof. Let us only sketch the proof. We recall that we have (5.8) and (5.9). Thus,
for all ψ in the space spanned by the n first eigenfunctions associated with the first
n eigenvalues of Nc

~,θ (which all approach βa, as we can check thanks to similar
manipulations as in the proof of Proposition 6.3),

‖Q±~,θ(z)P~,θψ‖ 6 C‖(Nc
~,θ − z)ψ‖+ C~3‖ψ‖ ,

where we used the Agmon estimates to deal with the term of order ~3. Applying
this to z such that z = βa + o(1), we see that

‖
(
Opw~ (peff

~,θ)− z
)
P~,θψ‖ 6 C‖(Nc

~,θ − z)ψ‖+ o(~2)‖ψ‖ .
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With (6.5) and the Spectral Theorem6, this shows that the n first eigenvalues (re-
peated with multiplicity) of Nc

~,θ lie at a distance o(~2) to the spectrum of Opw~ (peff
~,θ).

In particular, this gives the lower bound

λn(Nc
~,θ) > λn

(
Opw~ (peff

~,θ)
)

+ o(~2) .

The upper bound follows from similar arguments. �

Then, we can check that the eigenfunctions of Opw~ (peff
~,θ) are microlocalized with

respect to σ + θ near σ(a) at the scale ~
γ
2 (for all γ ∈ (0, 1)) by using that the

principal symbol has a unique minimum, which is non-degenerate. This leads us to
write the Taylor expansion

peff
~ (s, σ) =

µ′′a(σa)

2
(σ − σa)2 − ~q̂±1 (s, σa)− ~(σ − σa)∂σ q̂±1 (s, σa)− ~2q±2,βa(s, σa)

+ O(~(σ − σa)2 + ~2(σ − σa) + (σ − σa)3) .

Rearranging the first terms, we get

(7.2) peff
~ (s, σ) = b~(s, σ) + O(~(σ − σa)2 + ~2(σ − σa) + (σ − σa)3) ,

where

(7.3) b~(s, σ) =
µ′′a(σa)

2

(
σ − σa − ~

∂σ q̂
±
1 (s, σa)

µ′′a(σa)

)2

− ~q±1 (s, σa)

+ ~2

(
q±2,βa(s, σa) +

(∂σq
±
1 (s, σa)

2

2µ′′a(σa)

)
.

We let
b~,θ(s, σ) = b~(s, σ + θ) .

Note that Opw~ b~,θ is a differential operator of order 2 and that it shares common
features with that of [3, (8.10)]. The difference is the presence of the a priori non-
zero term ~ q̂±1 (s, σa). In Lemmas 7.2 and 7.3, we describe the terms appearing in
(7.3).

Lemma 7.2. When a > −1,

q±1 (s, σa) = C(a)k(s) + O(~∞) ,

with C(a) = −M3(a) > 0, with M3(a) defined in (2.2) and calculated in (2.5). When
a = −1, we have q±1 (s, σa) = O(~∞).

Proof. By (5.6) and the definition of n1 in (4.11),

q±1 (s, σa) = −k(s)

∫
R
cµ
(
2t(σa − bat)2 + bat

2(σa − bat)
)
|φa(t)|2dt ,

where φa =
◦
uσa and where cµ was defined in (3.7). Since φa decays exponentially at

±∞, we get

q±1 (s, σa) = −k(s)

∫
R

(
2t(σa − bat)2 + bat

2(σa − bat)
)
|φa(t)|2dt+ O(~∞)

= −k(s)M3(a) + O(~∞) ,

where we used (2.6). By (2.5), M3(−1) = 0 and M3(a) < 0 for −1 < a < 0. �
6Use z = λj((N

c
~,θ) and take ψ in the corresponding eigenspace.
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Lemma 7.3. When a = −1, we have

q±2,βa(s, σ(a)) = C0k(s)2 + O(~∞), and ∂σq
±
1 (s, σ(a)) = 0 ,

with C0 < 0 a universal constant.

The proof below establishes that C0 = −1
4

+G, where G is given by (7.5).

Proof. Let us recall (5.6) and (4.11). For a = −1 , the function τ 7→ ◦
uσ(τ) is even

and the functions

τ 7→ n1(s, σ) = k(s)cµ(τ)
(

2τ(σ − baτ)2 + baτ
2(σ − baτ)

)
,

τ 7→ ∂σn1(s, σ) = k(s)cµ(τ)
(

4τ(σ − bτ ) + baτ
2
)

are odd. So we get ∂σq±1 (s, σ(a))|a=−1 = 0.
By the same considerations, using (5.7) and (4.11b), we have

q±2,βa(s, σ(a))|a=−1 = −k(s)2

4
+ k(s)2G+ O(~∞) ,

where (recall the function f0 defined in Section 2.3)

(7.4) G = 2〈v, w〉 − 2

∫ +∞

0

(
3t2(ξ0 − t)2 + 2t3(ξ0 − t) +

1

4
t4
)
|f0(t)|2dt .

Here w =
(
2t(ξ0 − t)2 + t2(ξ0 − t)

)
f0(t) and v is the unique solution of{

−v′′ + (ξ0 − t)2v −Θ0v = w on R+ ,

v(0) = 0 .

We will prove by a somewhat lengthy but elementary calculation that

G = −7M4 +
3

2
ξ0M3 +

3

2
Θ2

0 = −21

8
− 9

8
Θ2

0 −
57

4
ξ0M3 .(7.5)

Numerically (see [5]), ξ0 ≈
√

0.59 and M3 = −C1/2 with 0.858 6 3C1 6 0.888.
Consequently G < 0. So to finish the proof of Lemma 7.3 it only remains to prove
(7.5).

For all k > 1, we set
Pk = (ξ0 − t)k

and we observe that
3t2(ξ0 − t)2 = 3P4 − 6ξ0P3 + 3Θ0P2 ,

2t3(ξ0 − t) = −2P4 + 6ξ0P3 − 6Θ0P2 + 2ξ0Θ0P1 ,

1

4
t4 =

1

4
P4 − ξ0P3 +

3

2
Θ0P2 − ξ0Θ0P1 + Θ2

0 .

Consequently,

2

∫ +∞

0

(
3t2(ξ0 − t)2 + 2t3(ξ0 − t) +

1

4
t4
)
|f0(t)|2dt

=
5

2
M4 − 2ξ0M3 − 3Θ0M2 + 2ξ0Θ0M1 + 2Θ2

0

=
5

2
M4 − 2ξ0M3 +

Θ2
0

2
.
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Let us now compute

(7.6) 〈v, w〉 = 〈Pv, f0〉
where

P (t) = 2t(ξ0 − t)2 + t2(ξ0 − t) = −(ξ0 − t)3 + Θ0(ξ0 − t) = −P3(t) + Θ0P1(t) .

Let p, q be two polynomial functions such that

v0 := pf0 + qf ′0

satisfies {
−v′′0 + (ξ0 − t)2v0 −Θ0v0 = Pf0 on R+ ,

v0(0) = 0 ,

thereby yielding the condition p(0) = 0 and(
− p′′ + 2P1q + (Θ0 − P2)q′

)
f0 + (−2p′ − q′′)f ′0 = Pf0 on R+ .

We look for p and q satisfying the condition −2p′ − q′′ = 0 and q in the form
q = aP2 + bP1 + c, where a, b and c are to be determined.
We find after straightforward computations:

−p′′ + 2P1q+(Θ0 − P2)q′ = −P3 + Θ0P1

⇐⇒ 4aP3 + 3bP2 + 2(c− aΘ0)P1 − bΘ0 = −P3 + Θ0P1

⇐⇒ a = −1

4
, b = 0, c =

Θ0

4
,

and therefore

p(t) =
t

4
,

q(t) = −1

4
(ξ0 − t)2 +

Θ0

4
,

v = v0 = pf0 + qf ′0 =
1

4

(
(ξ0 − P1)f0 + (−P2 + Θ0)f ′0

)
.

We can now compute (7.6). Noticing that

Pp =
1

4
(P4 − ξ0P3 −Θ0P2 + ξ0Θ0P1), P q =

1

4
(P5 −Θ0P3 −Θ0P2 + Θ2

0) ,

we have

〈Pv, f0〉 =
1

4
(M4 − ξ0M3 −Θ0M2)− 1

4
〈(P5 −Θ0P3 −Θ0P2 + Θ2

0)f ′0, f0〉 .

After an integration by parts, we have
2〈(P5 −Θ0P3 −Θ0P2 + Θ2

0)f ′0, f0〉
= −2〈f0, (P5 −Θ0P3 −Θ0P2 + Θ2

0)′f0, f0〉 − |f0(0)|2(P5 −Θ0P3 −Θ0P2 + Θ2
0)(0)〉

= −2〈f0, (−5P4 + 3Θ0P2 + 2Θ0P1)f0, f0〉+ 0

= 10M4 − 6Θ0M2 .

Therefore,

〈Pv, f0〉 =
(
− 5

2
+

1

4

)
M4 −

ξ0

4
M3 +

5

4
Θ0M2 .

Inserting this into (7.6), we infer from (7.4) that (7.5) is true. This finishes the
proof. �
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The study of the differential operator Opw~ (b~,θ) is rather easy and the behavior
of the spectrum depends on a.

When a > −1, thanks to our assumption on the maximum of the curvature, we are
reduced to use the harmonic approximation at (smax, σ(a)) and we get the following.

Proposition 7.4 (Case a > −1). When a > −1 and k has a unique maximum
which is non-degenerate, we have

λn
(
Opw~ (b~,θ)

)
= −C(a)kmax~ + (n− 1/2)~

3
2

√
−C(a)µ′′a(σ(a))k′′(smax) + o(~

3
2 ) ,

uniformly with respect to θ ∈ R.

In the case a = −1, there is essentially nothing to do.

Proposition 7.5 (Case a = −1). When a = −1, we have

λn
(
Opw~ (b~,θ)

)
= ~2λn (B~,θ) + O(~∞) ,

where

B~,θ =
µ′′a(σ(a))

2

(
Ds + ~−1θ − ~−1σ(a)

)2
+ C0k(s)2 .

Taking θ = θ(~) (see (3.8a)) and arguing as in [3, Section 8.3] to deal with the
remainders in (7.2), we deduce Theorems 1.3 and 1.5 from Propositions 6.2 and
7.1. Since there has been a number of changes of notation along the way, let us
guide the reader to this conclusion. Recall that ~ = h1/2. To prove Theorem 1.3,
by Proposition 3.5 it suffices to prove the eigenvalue asymptotics for λn(N~,θ). By
Proposition 6.2 it suffices to consider the operator Nc

~,θ (defined just before the
proposition), and by Proposition 7.1 to consider Opw~ (peff

~,θ), which by (7.2) and the
localization estimates reduces to the statement of Proposition 7.4. The proof of
Theorem 1.5 follows the same lines, only applying Proposition 7.5 in the last step
instead of Proposition 7.4.
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