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Abstract
In this work, we introduce an ODE-based compartmental model of ovarian follicle

development all along lifespan. The model monitors the changes in the follicle numbers
in different maturation stages with aging. Ovarian follicles may either move forward to
the next compartment (unidirectional migration) or degenerate and disappear (death).
The migration from the first follicle compartment corresponds to the activation of qui-
escent follicles, which is responsible for the progressive exhaustion of the follicle reserve
(ovarian aging) until cessation of reproductive activity. The model consists of a data-
driven layer embedded into a more comprehensive, knowledge-driven layer encompassing
the earliest events in follicle development. The data-driven layer is designed according
to the most densely sampled experimental dataset available on follicle numbers in the
mouse. Its salient feature is the nonlinear formulation of the activation rate, whose for-
mulation includes a feedback term from growing follicles. The knowledge-based, coating
layer accounts for cutting-edge studies on the initiation of follicle development around
birth. Its salient feature is the co-existence of two follicle subpopulations of different
embryonic origins. We then setup a complete estimation strategy, including the study
of theoretical identifiability, the elaboration of a relevant optimization criterion combin-
ing different sources of data (the initial dataset on follicle numbers, together with data
in conditions of perturbed activation, and data discriminating the subpopulations) with
appropriate error models, and a model selection step. We finally illustrate the model po-
tential for experimental design (suggestion of targeted new data acquisition) and in silico
experiments.

Keys words. Reproductive biology - Compartmental model - Parameter estimation -
Model comparison - Model predictions

AMS subject classification. 92D25, 62P10, 62F25

1 Introduction
The ovary is a unique instance of dynamic, permanently remodeling organ in adulthood. Such
a remodeling results from the asynchronous development of ovarian follicles, which starts with
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activation from a quiescent pool and ends up either by ovulation or degeneration. Ovarian
follicles are somatic structures sheltering the oocyte (female germ cell) and secreting a variety
of hormones and growth factors; they underlie both the endocrine and exocrine (gamete re-
lease) facets of ovarian function. The physiological status of the ovaries is determined by the
distribution of follicles into different maturity stages and by the total number of follicles [8]. In
mammals, females are endowed with a pool of quiescent (primordial) follicles established early
in life, whose progressive exhaustion is the prominent marker of ovarian aging [10, 5].

Despite the critical importance of assessing accurately the number of follicles, very few
datasets are available to follow the follicle populations on a whole life scale. In vivo, only
the terminal stages can be monitored through ultrasonography imaging in large species [1, 2].
To detect all follicles, invasive approaches, relying on histology are needed. Ovaries are fixed,
serially sectioned and stained with proper dyes, and manually analyzed by light microscopy.
Such a counting is a tedious and time consuming procedure requiring cutting-edge expertise. As
a consequence, although the great majority of studies dedicated to female reproductive biology
provides one with partial information of follicle numbers, only a couple of them is suitable for
modeling follicle population dynamics and estimating the growth and death rates affecting the
follicles according to the development stage.

A series of studies from J.M. Faddy and co-authors have been dedicated to fitting compart-
mental linear models on datasets providing the number of follicles according to age, especially
in the mouse [14, 15, 16]. To cope with the changes in follicle populations, they needed to
introduce piecewise constant transition rates and choose empirically the switching time values.
At the time these studies were performed, age-varying rates were a natural choice since very
little was known on the control of follicle activation and early growth. Since then, biological
knowledge has been greatly improved, especially thanks to the use of mouse genetic models. It
is now clear that growing follicles affect the activation rate through secreting the anti-Müllerian
hormone (AMH) that acts locally on quiescent follicles [13, 12]. From the modeling viewpoint,
this means that interactions between follicles cannot be ignored and that a nonlinear framework
is more appropriate for models of follicle populations.

In addition to knock-out (KO) models, the use of transgenic mice to label and image specif-
ically somatic and/or germ cells, in a time-controlled manner, have shed new light onto the
formation of ovarian follicles. Besides revealing antero-posterior waves and a dorso-ventral gra-
dient during ovarian development [9, 35], these studies have confirmed pioneering observations
on the heterogeneity of the follicle pool in early life [19]. It appears that two distinct popu-
lations of follicles coexist early in life. One emanates from the inner part of the ovaries (the
medulla) before birth, while the other is formed during the first postnatal days in the outer
part (cortex). The latter will build up the ovarian reserve and sustain the reproductive function
during adulthood. The former, usually designated as the first wave of follicles, enters growth
almost directly, participates in the very first ovarian cycles and vanishes in a few weeks [27, 36].
From a modeling viewpoint, the shift in the onset of the first wave compared to the reserve,
coupled with the timescale difference in the activation rate is susceptible to affect significantly
the dynamics of the whole follicle population according to age in the first weeks.

In this work, we first design an ODE-based data-driven model, in which the number of
compartments is dictated by the developmental stages considered in the available datasets on
follicle numbers according to age. Following the framework introduced in [4] and analyzed
in the stochastic case in [3], we account for the interactions between follicle stages by means
of a nonlinear activation rate. We then complete this core model to investigate more deeply
the transient period when both the first wave and the reserve of follicles coexist. We add
one compartment upstream from the less mature stage to capture the influence of the rate of
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follicle formation and thereafter duplicate the number of compartments to follow separately
the dynamics of the follicle pool emanating from the first wave. We perform a theoretical
identifiability analysis, and then settle a parameter estimation strategy based on a cost function
merging the different sources of experimental data : total follicle numbers in each follicle stage,
information from AMH-KO mice in which the activation rate is unregulated, and information
on the relative proportion of the first wave follicles among the growing follicle pool. The results
highlight the interest of accounting for prefollicular steps in oocyte development to monitor
accurately the follicle dynamics on the long-term, and possibly forecast the status of the follicle
reserve with ovarian aging. They also give cues to investigate separately the growth and early
extinction of the first wave-derived follicle pool, which are still poorly understood despite their
considerable importance in programming adult reproductive life.

The paper is organized as follows. In the second section, we describe the different datasets
that will be used for the model design and parameter estimation. In the third section, we
introduce the core model and the two-pool model, and analyze the theoretical identifiability
of the model. The fourth section details the optimization strategy and statistical regression
procedure, including statistical comparisons of nested models. We finally exploit the estima-
tion results to suggest targeted additional information and illustrate predictions of in silico
experiments (fifth section), before ending by a general discussion section.

2 Experimental datasets on ovarian follicle populations

2.1 Longitudinal data on ovarian follicles numbers as a function of
age

In this study, we use the datasets on mouse ovarian follicles provided in [15, 16]. These datasets
distribute the total number of germ cells reported in the original study of [21] (see the bottom
right panel of Figure 1) into five different classes inspired from the classification introduced in
[26]. These classes are based on morphological criteria affecting the somatic cells surrounding
the oocyte, namely the cell shape, number of cell layers and possible presence of a cavity
(antrum) (see Table 1).

Class Description

I primordial follicles: single layer of squamous pregranulosa cells

II primary follicles: single layer of cuboidal granulosa cells and growing oocyte

III secondary follicles with two cell layers

IV secondary follicles with three cell layers

V+ all other growing follicles: four or more cell layers, with or without an antrum

Table 1: Classification used in the datasets available in [15, 16].

It is worth noting right now that the classification departs from the original proposition
in [26], since antral follicles are pooled with pre-antral ones in a single class V+, which will
impact the formulation of the model. Compared to the widely-used classification established in
the seminal work of Pedersen [32], an additional difference lies in the classification of the most
immature stages. Again, Class I merges two types of follicles, the quiescent (primordial) follicles
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and transitional follicles, which are undergoing activation. The separation between both classes
is subtle from a morphological viewpoint, yet possibly important for a study focused on follicle
activation, as the merging might overassess the number of fully quiescent follicles.

Dataset A1 [16] provides the number of ovarian follicles from birth (namely from one day
after birth) until an age of 100 days, with an age-resolution of one day in a single mouse strain
(CBA/A).

Dataset A2 [15] provides the number of ovarian follicles on a whole life range (about 500
days) with an age-resolution of about 8 days in 4 mouse strains, including the CBA strain.
Thanks to the genetic proximity of the CBA strain with the CBA/A strain used in [16], we can
combine dataset A1 and dataset A2 in a single dataset (Dataset A) (see respectively the blue
and orange datapoints on Figure 1).

Figure 1: Follicle numbers as a function of age (Dataset A).
Dataset A combines Dataset A1 (blue points) extending from birth to 100 days with Dataset A2 (orange
points) covering the whole life. From left to right and top to bottom: follicle numbers in class I, II, III, IV
and V. The rightmost bottom panel shows the total number of follicles (purple points) in all 5 classes.

2.2 Additional specifications
Control of the activation rate As stated in the Introduction, the contribution of AMH-
mediated interactions between follicles on the activation rate can be assessed from AMH-KO
mice. The comparative study performed in [13] provides us with additional data point at ages
25 and 120 days, on the numbers of both quiescent (primordial) follicles and growing follicles
in either control mice or homozygous AMH-/- mice.

Although these data were acquired in strain C57BL/6 (the most frequently used strain
in current reproductive biology), the control datapoints fall within the variability range of
Dataset A. We can thus take advantage of this study (Dataset B) to compare the control
and perturbed situation which results in a accelerated depletion of the quiescent follicle pool
(compare the black bars to the blue ones on the left panel of Figure 2).

Two populations of follicles The contribution of the two distinct follicle populations co-
existing early in life has been quantified in [36], through the proportion of first-wave derived
follicles among all growing follicles (right panel of Figure 2). Note that there is no standard
deviation for the first and the last three points.
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Figure 2: Additional experimental data.
Left panel. Dataset B: Comparison of follicle numbers in wild type mice (black bars) and AMH-KO mice

(blue bars) at two different ages (left column: 25 day old mice, right column: 120 day old mice).
Right panel. Dataset C: Proportion (in percent) of growing follicles of the first wave among all growing

follicles. For both Datasets B and C, the vertical red bars represent the standard deviation.

No digital data were available ; we proceeded manually by clicking the datapoint coordinates
directly on the figures for Datasets A and B, and retrieved raw numbers from the tables in [36]
for Dataset C.

3 Compartmental model of ovarian follicle dynamics with
aging

3.1 Model design
The model consists of two layers.

The core layer is data-driven ; the number of compartments and their interpretation as folli-
cle maturation stages is directly dictated by the available datasets, and primarily by Dataset A.
The core model consists of 5 compartments, one dedicated to the quiescent follicles (compart-
ment I) and the 4 other ones (compartments II to V) to the successive growing stages as
described in Table 1. In each compartment, ovarian follicles are subject to two types of event
; they can either move forward to the next compartment (unidirectional migration, except in
the last compartment) or degenerate and disappear (death). The activation rate from the first
compartment is controlled by the compartments corresponding to the secondary follicle stage,
which contributes the most to AMH-secretion [28], namely compartments III and IV.

To capture more accurately the follicle dynamics during the first days of life, the core
model is embedded into a more detailed model (see Figure 3). First, to deal with the early
step of follicle formation, we add a compartment (compartment 0) corresponding to the pre-
follicular stage of oogenesis (where oocytes are gathered in syncytium structures, the germ
cell cysts). Germ cells may self-renew, undergo apoptosis, or move to compartment I. The
transition from the pre-follicular compartment to the next one corresponds to the formation
of ovarian follicles. Then, to account for the existence of two distinct populations of follicles,
the model is duplicated. We end up with two population models running almost in parallel,
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with population-specific rates of migration and birth. Coupling between the dynamics occurs
at the level of the activation rate of quiescent follicles from the reserve, since all AMH-secreting
follicles participate in the feedback exerted on this rate. Follicles from the first wave begin to
grow as soon as they are formed. Accordingly, the transition rate between compartments I and
II is not controlled in the model, and the whole dynamics of the first wave is linear.

0 I II III IV V
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Figure 3: Schematic view of the compartmental model (S).
The orange box represents the core 5-compartment model. The green box represents the pre-follicular stage.

The blue box represents the 6 compartments structuring the first wave dynamics.

Let, for 0 ≤ i ≤ 5, ȳi(t) and yi(t) be the number of follicles in compartment i at time t,
and emanating respectively from the first wave or the reserve. We formulate the model as the
following system of ordinary differential equations (using the same color code as in Figure 3):

(S) :



dȳ0
dt (t) =

[
r̄0 − (m̄0 + ḡ0)

]
ȳ0

dȳi

dt (t) = m̄i−1ȳi−1 − (m̄i + ḡi)ȳi, for 1 ≤ i ≤ 5
dy0
dt (t) =

[
r0 − (m0 + g0)

]
y0

dy1
dt (t) = m0y0 −

[
λ1(ȳ(t), y(t), t) + g1

]
y1

dy2
dt (t) = λ1(ȳ(t), y(t), t)y1 − (m2 + g2)y2

dyi

dt (t) = mi−1yi−1 − (mi + gi)yi, for 3 ≤ i ≤ 5

(1)

with m̄5 = m5 = 0 and λ1(ȳ, y, t) the controlled activation rate of quiescent follicles:

λ1(ȳ, y, t) =

control term︷ ︸︸ ︷m1 + f1

1 +
[
K1(ȳ3 + y3 + ȳ4 + y4)

]n
×

delay term︷ ︸︸ ︷
(t/τ)p

1 + (t/τ)p (2)

The activation rate of quiescent follicles combines a control term, representing the feedback
of the growing, AMH-secreting follicles, with a delay term, accounting for the shift observed in
early life in the onset of follicle formation and activation in the reserve follicle pool compared
to the first-wave pool. For p large enough (we set for instance p = 20), the delay function
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behaves as the unity step function: it is closed to zero for small t (t < τ) and closed to 1 when
t exceeds τ . All rates are strictly positive except the renewal and death rates (r̄0, r0, ḡi and
gi), which may be zero.
The initial conditions are the following:

ȳ0(t0) = ȳinit > 0,

y0(t0) = yinit > 0,

ȳi(t0) = yi(t0) = 0, for i ≥ 1.

To represent the dynamics of the follicle population right from the first day after birth
(earliest age in Dataset A), we have to choose an initial time during embryonic life. We set
t0 = E16.5, hence 3 days before birth (which occurs at embryonic age E19.5), just after the
peak reached by the germ cells [29] (from this time on the germ cell number decreases) and close
to the appearance of the very first follicles in the dorsal medulla area of the ovaries [9]. Since
time represents postnatal age in the model, note that t0 = −3d. During the period spanning
a few days before birth (E16.5-E19.5) until one week of (postnatal) age, the population of
germ cells is subject to a series of events happening sequentially on the individual level but
partly overlapping, due to between-cell desynchronization, on the population level: ending of
proliferative rounds, cell cycle exit, entry into meiosis more or less concomitant with embedding
within follicles, and associated with a high risk of cell death [30]. These events are represented in
a compact way in the germ cell dynamics y0(t) and ȳ0(t), which includes together self-renewal at
rate r0/r̄0, cell death at rate g0/ḡ0 and formation of follicles at rate m0/m̄0. Desynchronisation
exists both between the subpopulations (with a clear advance of the first wave) and within both
subpopulations (for instance the formation of the follicle reserve is spread over several days).

Note that the state variables of the complete model are augmented with respect to the core
layer, without significantly increasing the number of observable states. We can only observe the
sum of the follicle numbers (ytoti (t) = ȳi(t)+yi(t)) from both populations in compartments I to V
from Dataset A, and get information on the proportion of growing follicles emanating from the
first wave from Dataset C. No direct observation is usable for the pre-follicular compartments,
which will ground the identiability analysis performed next in Subsection 3.2.

3.2 Model analysis : theoretical identifiability
In this section, we first reparameterize the model, define the observable variables and introduce
the notions of local and global identifiability. Then, we study separately the identifiability
of the model parameters and initial conditions, after introducing a relevant reduced model.
Finally we conclude on the identifiability of the whole system.

3.2.1 Model reparameterization and reduced model

We first introduce the notations used for this study.

Let



D̄0 = ḡ0 + m̄0 − r̄0

D̄i = m̄i + ḡi, for 1 ≤ i ≤ 5

D0 = m0 + g0 − r0

D1 = g1

Di = gi +mi, for 2 ≤ i ≤ 5

and

 Ȳ0(t) = m̄0ȳ0(t)

Y0(t) = m0y0(t)
,
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then model (S) (eq. (1)) becomes:

(S1) :



dȲ0
dt (t) = −D̄0Ȳ0

dȳ1
dt (t) = Ȳ0 − D̄1ȳ1

dȳi

dt (t) = m̄i−1ȳi−1 − D̄iȳi, for 2 ≤ i ≤ 5
dY0
dt (t) = −D0Y0

dy1
dt (t) = Y0 −D1y1 − λ1(y, ȳ, t)y1

dy2
dt (t) = λ1(y, ȳ, t)y1 −D2y2

dyi

dt (t) = mi−1yi−1 −Diyi, for 3 ≤ i ≤ 5

,

with λ1(y, ȳ, t) =
[
m1 + f1

1 +
[
K1(ytot3 (t) + ytot4 (t))

]n ]( (t/τ)20

1 + (t/τ)20

)
.

The new parameter vector θI reads:

θI =
[(
D̄i

)
0≤i≤5

,
(
m̄j

)
1≤j≤4

,
(
Di

)
0≤i≤5

,
(
mj

)
1≤j≤4

, f1, K1, n, τ,

Ȳ0(t0),
(
ȳi(t0)

)
1≤i≤5

, Y0(t0),
(
yi(t0)

)
1≤i≤5

] (3)

With this new parameterization, m̄0 and m0 are embedded into the initial conditions (resp.
Ȳ0(t0), Y0(t0)).

Given the available datasets described in Section 2 and the different submodels involved in
this study, we define the following observable variables for any t ≥ t0,

Otot
i (t) = Ōi(t) +Oi(t) = ytoti (t), for 1 ≤ i ≤ 5, (Dataset A)

P0(t) = 100×

5∑
i=2

ȳi(t)

5∑
i=2

ytot
i (t).

(Dataset C)

Ōi(t) = ȳi(t), for 1 ≤ i ≤ 5,

Oi(t) = yi(t), for 1 ≤ i ≤ 5,

Note that we do not consider Dataset B for the theorical identifiability, since the AMH-KO
condition corresponds to a simpler model with uncontrolled activation rate λ1 (K1 = 0).
Also, the observables are supposed to be available at any time t ≥ t0, while the experimental
observations are only available at point time values, and on a finite time horizon.

Any parameter θIj is said to be

• globally identifiable, if every solution of (S1) consistent with the set of observables(
P0, (Otot

i )1≤i≤5
)
involves the same value θIj ,

• locally identifiable, if there is a finite number of θIj values among the solutions of (S1)
consistent with the set of observables

(
P0, (Otot

i )1≤i≤5
)
,

• not identifiable, if there is an infinite number of θIj values among the solutions of (S1)
consistent with the set of observables

(
P0, (Otot

i )1≤i≤5
)
.
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Reduced model In order to reduce the number of states and their related parameters, we
start with removing the last compartments, whose dynamics do not impact the model out-
puts in the previous compartments. We thus analyze subsystem (S2) with state variables:
(Ȳ0, ȳ1, ȳ2, ȳ3, ȳ4, Y0, y1, y2, y3, y4) with the corresponding subset of observables (Otot

i )1≤i≤4.

3.2.2 Identifiability of the model parameters of the reduced model

In a first step, we only analyze the identifiability of the kinetic parameters (initial conditions
are left out), using the Structural Identifiability Julia package1. This package cannot handle
non-autonomous systems, neither rate functions with a non-integer power. To overcome these
limitations, and get information on the delay τ and exponent n appearing in Equation (2), we
introduce:

• dw1(t)
dt = 1, or, equivalently, w1(t) = (t− t0) + w1(t0),

• dw2(t)
dt = n

w2

ytot3 + ytot4

(
ytot3 + ytot4

)′
,

or, equivalently, w2(t) =
[
K1(ytot3 (t) + ytot4 (t))

]n
+ C

with C = w2(t0)−
[
K1(ytot3 (t0) + ytot4 (t0))

]n
.

Note that K1 is embedded into the initial condition w2(t0).

Then, we have λ1(y, ȳ, t) = λ̃1(w1, w2) =
[
m1 + f1

1 + w2

]( (w1/τ)20

1 + (w1/τ)20

)
, and we can write

the autonomous system (S2′) equivalent to (S2), with state variables

(S2′) :


Ȳ0, (ȳi)1≤i≤4

Y0, (yi)1≤i≤4

w1, w2

(4)

Since w1 represents time and is defined up to a constant, the observable variables are
(Otot

j )1≤j≤4, and w1.
Due to the number of states, the identifiability analysis is hardly computationally tractable.

To save computational time, we use the following trick, which was suggested to us by Gleb
Pogudin2 (personnal communication).
The trick is based on augmenting the dimension of both the state space and observable space.
We introduce the integrals of the observable variables (Otot

j )1≤j≤4:

I ′j(t) = Otot
j (t), for 1 ≤ j ≤ 4

1https://github.com/SciML/StructuralIdentifiability.jl
2LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, France

gleb.pogudin@polytechnique.edu
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and let:

J1 = I2 + D1
D2
I1 + 1

D2
(y1 + y2 + Y0

D0
) + 1

D̄2
ȳ2 + D̄2D1+m̄1D2

D̄1D̄2D2
(ȳ1 + Ȳ0

D̄0
)

J2 = I3 + D1m2
D2D3

I1 + m2
D2D3

( Y0
D0

+ y1 + y2 + D2
m2
y3) + c1(ȳ1 + Ȳ0

D̄0
) + m̄2

D̄2D̄3
(ȳ2 + D̄2

m̄2
ȳ3)

J3 = I4 + m2m3
D2D3D4

[
D1I1 + Y0

D0
+ y1 + y2 + D2

m2
y3 + D2D3

m2m3
y4
]

+ c2(ȳ1 + Ȳ0
D̄0

)

+ m̄3
D̄3D̄4

( m̄2
D̄2
ȳ2 + ȳ3 + D̄3

m̄3
ȳ4)

(5)

with c1 = D1m2
D̄1D2D3

+ m̄1m̄2
D̄1D̄2D̄3

and c2 = D1m2m3
D̄1D2D3D4

+ m̄1m̄2m̄3
D̄1D̄2D̄3D̄4

.

We design linear combinations between the Ii’s and state variables (eq. (5)), in such a way
that J1, J2 and J3 are constant. As a result, we can express I2, I3 and I4 in terms of I1, J1, J2,
J3, and replace states I2, I3 and I4 by the new parameters J1, J2 and J3.

This first step leads to the following conclusions regarding the identifiability of the param-
eters of system (S2):

•
(
D̄i

)
0≤i≤4

,
(
m̄j

)
1≤j≤3

,
(
Di

)
0≤i≤4

,
(
mj

)
2≤j≤3

and
(
Ji
)

1≤i≤3
are globally identifiable,

• m1, f1, n and τ are locally identifiable.

3.2.3 Identifiability of the initial conditions of the reduced model

In a second step, we analyze the identifiability of the initial conditions of system (S2), using
the SIAN Julia package3 (also implemented in Maple4) [20]. Using the results of the previous
subsection, the globally identifiable parameters are added to the observables, and we obtain
that:

•
(
ȳi(t0)

)
1≤i≤4

,
(
yi(t0)

)
1≤i≤4

, Ȳ0(t0), Y0(t0) and w1(t0) are globally identifiable,

• w2(t0) is locally identifiable.

3.2.4 Identifiability of the initial system

Given that the parameters ruling the dynamics of the follicles emanating from both the first
wave and the reserve are identifiable, we can finally use separately the Ōi(t) and Oi(t) observ-
ables (instead of the aggregate observations Otot

i ), (for 1 ≤ i ≤ 4), together with P0(t), to study
the identifiability of system (S1), and conclude that:

• m4, m5, D4 and D5 are globally identifiable,

• the initial conditions (ȳ5(t0) and y5(t0)) are globally identifiable.

Going back to the initial parameters of system (S) (eq. (1)), we can sort the model param-
eters as follows:

• globally identifiable parameters: (ḡi)1≤i≤5, (m̄j)1≤j≤4, (gi)1≤i≤5 and (mj)2≤j≤4,

3https://github.com/alexeyovchinnikov/SIAN-Julia
4https://maple.cloud/app/6509768948056064/Structural+Identifiability+Toolbox
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• locally identifiable parameters: m1, f1, K1 and n,

• non identifiable parameters: ḡ0, m̄0, r̄0, g0, m0, r0, ȳinit and yinit.

One can note that the parameters related to the germ cell compartments are not identifiable,
which is rather intuitive since there are no information on the germ cell compartments in the
observable datasets. Also, we cannot distinguish the death rate from the renewal rate in
compartment 0. Nevertheless, including the germ cell dynamics into the model improves the
monitoring of follicle dynamics in early life, as detailed in Section 4. In addition, we can take
advantage of the identifiability of the compound parameters to get insight into the germ cell
dynamics: the timescale parameters (D̄0 = ḡ0 + m̄0− r̄0 and D0 = m0 + g0− r0) and the initial
rate of quiescent follicle formation (Ȳ0(t0) = m̄0ȳ0(t0) and Y0(t0) = m0y0(t0)) can be identified,
as will be developed in Subsection 5.1.

4 Parameter estimation strategy
In this section, we design an optimization strategy suited for handling simultaneously the
different datasets. We first adimension most of the parameters, and then define relevant model
errors for each data type. We optimize the composite cost function and check the practical
identifiability of the estimated parameters. Finally, we perform a statistical model selection
and compare the full original model with simpler models to avoid data overfitting.

4.1 Parameter renormalization and search intervals
To deal with as many dimensionless parameters as possible, and define intrinsic bounds on the
parameter values, we reparametrize the model as follows:

• l̄0 = ḡ0+m̄0−r̄0
g0+m0−r0

• l̄1 = m̄1+ḡ1
l1

• l̄i = m̄i+ḡi

mi+gi
for 2 ≤ i ≤ 5,

• ρ̄i = m̄i

m̄i+ḡi
for 1 ≤ i ≤ 4,

• f̃1 = f1
m1+f1

• l0 = g0+m0−r0
l1

• li = mi+gi

l1
for 2 ≤ i ≤ 5,

• ρ1 = m1+f1
m1+f1+g1

,

• ρi = mi

mi+gi
for 2 ≤ i ≤ 4,

Parameter l1 := m1 +f1 +g1, the decay rate of the quiescent follicles in the reserve, is chosen
as the reference timescale for all compartments. We only consider ratios of parameters, among
which some range naturally between 0 and 1 (see Table 2). The remaining parameters entering
the activation rate, τ , n, and K1 are kept unchanged.

In addition, we will estimate reparameterized initial conditions

• N̂tot = Ȳ0(t0) + Y0(t0)
l1

= m̄0ȳ0(t0) +m0y0(t0)
l1

, the rescaled total number of germ cells at
initial time,
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• r̂init = Ȳ0(t0)
Ȳ0(t0) + Y0(t0)

= m̄0ȳ0(t0)
m̄0ȳ0(t0) +m0y0(t0) , the rescaled initial proportion of germ cells

committed to the first wave.
The new parameter vector θ reads:

θ =
[(
l̄i
)

0≤i≤5
,
(
ρ̄j
)

1≤j≤4
,
(
li
)

0≤i≤5
,
(
ρj
)

1≤j≤4
, f̃1, K1, τ, n, N̂tot, r̂init

]
(6)

Bounds

(l̄i)0≤i≤5 [1, 103]

l0 [1, 103]

l1 [10−4, 1]

(li)2≤i≤5 [10−2, 103]

N̂tot [103, 107]

K1 [10−5, 1]

(ρ̄i, ρi)1≤i≤4 [0, 1]

r̂init [0 , 1]

f̃1 [0, 1]

n [0, 10]

τ [4, 30]

Table 2: Estimation bounds and use of log10 scale for the model parameters
Parameters above the double horizontal bar are searched in log10 scale, those below in linear scale. The values

fixed from biological specifications are highlighted in red, the intrinsic bounds in green.

Table 2 gathers the bounds and scale (log or linear scale) used for parameter search. The
bounds have been defined according to the following biological specifications:

1. The first wave follicles are only involved in the first ovarian cycles, contrary to follicles
emanating from the reserve, which cover the whole reproductive life. The dynamics of
the first wave is faster, so that for any 0 ≤ i ≤ 5, l̄i (the normalized exit rate from
compartment i for the first wave) is lower bounded by 1.

2. For the reserve decay rate, l1, we choose a search interval [10−4, 100] two logs above
and under the order of magnitude of the half-life of the reserve (on the order of 102, as
estimated visually from Figure 1). Also, the half-life of the growing follicles emanating
from the reserve is expected to be comparable with or little faster than that of quiescent
follicles, so that we choose li, 2 ≤ i ≤ 5 ranging from 10−2 to 103.

3. The activation rate λ1 is controlled by the most AMH-secreting follicles in compart-
ments III and IV. We thus have to fix the (abscissa of) the inflection point of λ1 (1/K1,
see Equation (2)) in a range where the value of ytot3 + ytot4 will be operative on the ac-
tivation rate, namely K1 ∼ 10−2. The Hill exponent, n, controls the steepness of the
activation rate, and is searched in the interval [0, 10]. There is a 23 day-long delay needed
to observe the first growing follicles emanating from the reserve after birth (Dataset C,
see right panel of Figure 2). We thus constrain the delay, τ , to be no longer than 30 days.
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4. The germ cells are committed either to enter the follicle stages or to undergo massive
apoptosis [34] in early life. Naked germ cells are thus depleted very quickly, so that l0
(the normalized decay rate of germ cell destined to the reserve of quiescent follicles) is
lower bounded by 1.

5. To fix the search interval for N̂tot, we use the biologically available information related, on
one hand, to the total germ cell number at initial time, Ntot = y0(t0) + ȳ0(t0), and, on the
other hand, to the duration needed to build up the pool of quiescent (reserve) follicles,
which can be approximated by 1/m0:

• At initial time t0, 3 days before birth (which corresponds to embryonic day 16.5),
the number of germ cells peaks around 15000 cells [18].
• The building up of the follicle reserve occurs during the first week of life in the mouse

[27, 9]. This duration can be assessed accurately by following the ingression, from
the ovarian epithelium, of somatic germ cells that will assemble with the germ cells
to form the follicles. The ingression process is completed at 7 days of age.

Consistently, we expect m0 to be on the order of 10−1 and Ntot on the order of 104. Based
on these considerations, and given the uncertainty affecting the assessment of m̄0, we kept
a rather wide search interval for N̂tot, from 103 to 107.

4.2 Error models for the three datasets
We now introduce the regression (error) model for each dataset, and define the composite cost
function to be optimized.

For any dataset, the regression model can be written as:

Si(tj) = fi
(
ȳ(tj), y(tj), θ

)
+N

(
0, σi(tj)2

)
(7)

where,

• tj is the observation time (age),

• Si is an output variable to be compared to an experimental observation,

• fi is a transformation applied to some/all observations and the corresponding output
variables,

• σi(t)2 is the (empirical or estimated) variance,

• θ is the parameter vector defined by Equation (6).

4.2.1 Dataset A: whole life data on follicle numbers

We can observe on Figure 1 that, in each compartment i (1 ≤ i ≤ 5), the variance of Dataset A
changes with time. There is a trend toward a larger dispersion for larger population values,
which leads us to choose a statistical model with multiplicative noise. In addition, follicle
numbers between compartments vary by several orders of magnitude, so that a natural trans-
formation is logarithmic scaling. In the log-scale, the temporal trend in the dispersion seems
to disappear.
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To check statistically the time-independence of the variance, we apply the Breusch-Pagan
test to each compartment (function het_breuschpagan from the Python package statsmodels).
The null hypothesis corresponds to the homoscedastic case. First, we interpolate the discrete,
log-transformed data with a spline function. Then we compute the residuals as the difference
between the (log-transformed) data and the spline value at all observation times. The resulting
p-values of the χ2 test (3.95× 10−6; 0.28; 0.14; 8.93× 10−4; 2.79× 10−5) allow us to reject the
alternative hypothesis for compartments 1 and 2, so that the homoscedasticity hypothesis is
valid. For compartments 3, 4, and 5, this hypothesis appears to be not statistically valid. Since
Dataset A is mostly composed of datapoints before 200 days, and the control term in the activa-
tion rate is mainly active in this time interval (thereafter the number of follicles, including the
AMH secreting follicles become really low), we also performed a Breusch-Pagan restricted on the
interval [t0, 200] for each compartment. All resulting p-values (0.47, 0.058, 0.083, 0.4, 0.058)
are compatible with the homoscedasticity hypothesis.

Figure 4: Logarithmic transformation of follicle numbers in each class as a function of age and
spline-based interpolation.

Blue dots : Data points of Dataset A. Orange solid lines: spline-based estimation of the data mean.
The green dashed lines represent the estimated standard deviation. The spline function is of degree 4 and is

determined with the function UnivariateSpline from the Python package scipy.

We will thus stick to the following time-independent model:

SAi (tj) = log
(
ytoti (tj)

)
+N

(
0, σ2

i

)
(8)

where σi is a constant parameter to be estimated.
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4.2.2 Error model for point data comparing controlled and uncontrolled follicle
activation (Dataset B)

Let (z̄i, zi)0≤i≤5 be the same model outputs as (ȳi, yi)0≤i≤5 in the case when the control term is
inactive in the formulation of the activation rate (K1 = 0 in Equation (2)).

As a consequence, at the observation times, tj ∈ {25, 120}, we deal simultaneously with
data in the control and uncontrolled (K1 = 0) situation:

Otot
1 (tj) = ytot1 (tj), Qtot

1 (tj) = ztot1 (tj),

OG(tj) =
5∑
i=2

ytoti (tj), QG(tj) =
5∑
i=2

ztoti (tj).

On the other hand, we only have the empirical mean and variance available, as the individual
data points are not provided in [13]. In consistency with the regression model Equation (8),
we also choose a multiplicative, lognormal model, yet with known variance, that is, for tj ∈
{25, 120}: 

SB1 (tj) = log (ytot1 (tj)) +N
(

0, v1(tj)
)

SB2 (tj) = log
( 5∑
i=2

ytoti (tj)
)

+N
(

0, v2(tj)
)

SB3 (tj) = log (ztot1 (tj)) +N
(

0, v3(tj)
)

SB4 (tj) = log
( 5∑
i=2

ztoti (tj)
)

+N
(

0, v4(tj)
)

where the variances vi(t) are the empirical variances.

4.2.3 Error model for early life data on the contribution of the first-wave follicle
pool (Dataset C)

Dataset C provides the proportion of first wave follicles among the whole growing follicles, at
7 different time points:

P0(tj) = 100×

5∑
i=2

ȳi(tj)
5∑
i=2

ytoti (tj)
, with tj ∈ {13, 23, 35, 45, 60, 90, 105}.

As for dataset B, we only have the empirical mean and variance of the data. In the absence
of further information on the proportion P0, we choose the simplest regression model, that is
an additive Gaussian model:

SC1 (tj) = P0(tj) +N
(

0, v5(tj)
)

where the variance v5 is the empirical variance except for the first and the last time points,
where there is a single value (P0 equals 0% or 100%), and for which we set v5 to an arbitrarily
low value, v5 = 0.01.
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4.2.4 Cost function

For the general regression model (eq. (7)), with a set of observable data O, the log-likelihood
function is:

l(S,O, θ) := − logL(O, θ) =
∑
tj

1
2

(
S(tj)−O(tj)

σi

)2

+ log(
√

2πσi)


Dividing the residuals by the variance in the log-likelihood function makes it independent of
the order of magnitude of the data in the O dataset. As a result, the values of the log-likelihood
functions are similar between the datasets, and we combine them into the single composite cost
function

J(θ) = JA(θ) + JB(θ) + JC(θ)
with

JA(θ) =
5∑
i=1

l(SAi , Otot
i , θ)

JB(θ) = l(SB1 , Otot
1 , θ) + l(SB2 , OG, θ) + l(SB3 , Qtot

1 , θ) + l(SB4 , QG, θ)
JC(θ) = l(SC1 , P0, θ)

4.3 Parameter estimation results
4.3.1 Best fit parameter values

We have used the Data2Dynamics Matlab package [33] to minimize the cost function J(θ) and
estimate the optimal parameter vector θ̂ (Table 3).

Figure 5: Fitted follicle numbers in each compartment.
The orange lines represent the total number of follicles in compartments I to V (from left to right and top to
bottom), ytot

i , computed with the best fit parameters. The grey areas delimit the 95 % confidence interval
computed from the model error Equation (8). The green lines represent the follicle numbers in the

uncontrolled (AMH-KO-like) situation (K1 = 0).
Rightmost bottom panel: Activation rate as function of age (red line) and number of AMH secreting follicles

ytot
3 + ytot

4 (blue line).

The best fit is illustrated on Figure 5 for Dataset A and Figure 6 for Datasets B and C. There
is a general good agreement between the experimental data and estimated values, especially in
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a context of heterogenous data. The estimated total follicle number in each compartment is
consistent with Dataset A, and most of the data-points belong to the 95% confidence interval
as defined by σi in Equation (8). For Dataset B, the estimated values fall within or close to
the 95 % confidence interval of the experimental data (red bars), except for the number of
growing follicles at age 25. The estimated values capture well the most salient feature of this
Dataset, i.e. the more pronounced depletion in the reserve of primordial follicles at 120 days in
the AMH-KO situation compared to the wild-type. For Dataset C, the global pattern of the
proportion of first wave follicles is well captured, even if the estimated curve is outside the 95
% confidence interval between 40 and 90 days.

The changes in the activation rate with age are illustrated on the rightmost bottom panel
of Figure 5 (red curve). The first part (horizontal segment) corresponds to the delay τ . At
activation onset, the number of AMH secreting follicles (blue curve) is low and their feedback
is not operative, so that activation occurs at maximal rate (vertical segment ending up at
7.17 10−3d−1). At the peak follicle number (around day 100), activation is significantly slowed
down (minimum at 3.54 10−3d−1), and the activation rate decreases (resp. increases) from
one side of the peak to the other. Finally, the follicle number falls below a threshold and the
activation rate goes back to the maximum value (7.56 10−3d−1). On the whole lifespan, the time
average of the activation rate is 6.57 10−3d−1. Comparing with the AMH-KO-like situation, the
feedback on the activation rate results in a gain of 200 quiescent follicles around the peak of
AMH secreting follicle number.

Figure 6: Fitting results compared with Datasets B and C.
Left panel: The black (resp. blue) bars represent the experimental values of Dataset B (the same as in

Figure 2) in the wild-type (resp. AMH-KO) situation, with the standard deviation in red. The orange and
green bars correspond to the best fit values, respectively in the controlled and uncontrolled situation. Right

panel : The orange line represents the estimated proportion of first-wave follicles amongst all growing follicles,
superimposed on the experimental data of Dataset C (blue points: experimental data, red bars: standard

deviation).
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1st wave l̄0 l̄1 l̄2 l̄3 l̄4 l̄5

3.54 6.91 4.79 2.87 1.61 1.42

∈ [2.35, 5.83] ∈ [5.39, 8.75] ∈ [3.55, 6.38] ∈ [2, 4.12] ∈ [1, 4.24] ∈ [1, 4.44]

Reserve l0 l1 l2 l3 l4 l5

1.95 0.0197 1.42 2.76 14.3 10.1

∈ [1, 3.07] ∈ [0.0176, 0.0242] ∈ [1.08, 1.97] ∈ [2.03, 3.92] ∈ [7.50, 21.5] ∈ [3.25, 14.4]

1st wave ρ̄1 ρ̄2 ρ̄3 ρ̄4 test

0.0359 0.983 0.771 0.985

∈ [0.0234, 0.0574] ∈ [0.644, 1] ∈ [0.468, 1] ∈ [0.388, 1]

Reserve ρ1 ρ2 ρ3 ρ4

0.384 1 1 1

∈ [0.267, 0.539] ∈ [0.823, 1] ∈ [0.490, 1] ∈ [0.290, 1]

Estimated σ1 = 0.315 σ2 = 0.348 σ3 = 0.314 σ4 = 0.480 σ5 = 0.325

variances ∈ [0.280, 0.357] ∈ [0.310, 0.394] ∈ [0.280, 0.356] ∈ [0.425, 0.549] ∈ [0.289, 0.370]

Activation f̃1 = 0.539 K1 = 0.00689 n = 10 τ = 22.3

function ∈ [0.307, 1] ∈ [0.00255, 0.0118] ∈ [0.713, 10] ∈ [20.89, 23.99]

Initial N̂tot = 115 878 r̂init = 0.894

conditions ∈ [84 333, 159 588] ∈ [0.808, 0.938]

Table 3: Best fit parameter values θ̂ (all parameters are expressed in linear scale) together with
their confidence intervals (CI).

The confidence intervals reaching the bounds are highlighted in red.

4.3.2 Practical identifiability of the parameters

We have assessed the practical identifiability of the parameters from the likelihood profile
approach [33]. Most of the parameters (20 parameters over 31) have a parabolic (or quasi-
parabolic) likelihood profile and are identifiable, with a clear minimum value (see the four top
panels in Figure 7). For (ρ̄i)2≤i≤4, (ρi)2≤i≤4, l̄4, l̄5, l0, f̃1 and n, the likelihood profile hits one
of the bounds of the search interval with no statistically well-defined minimum (see the four
bottom panels in Figure 7).

We can make the following observations on the best fit parameter values together with their
confidence intervals:

• The normalized decay rates (li, 2 ≤ i ≤ 5) of the growing follicles are clearly higher than
one, which highlights a timescale difference between the dynamics of the growing follicles
compared with quiescent follicles.

• The bounds of the estimated exit rate of quiescent follicles (l1, 0.0176 lower bound and
0.0242 upper bound of CI) amounts to a half-life of 29-39 days (ln 2/l1), and involves a
significantly higher death rate than activation rate (ρ1 < 0.5 with high confidence).
Given the identifiability of l1, ρ1, K1 and the estimated lower bound on f̃1, we can assess
in a statistically significant way the changes in the activation rate λ1 with aging (see
bottom right panel of Figure 5).
Both K1 and f̃1 display a likelihood profile with at least two local minima, which is consis-
tent with their sorting as locally identifiable parameters from the theoretical identifiability
analysis (see Subsection 3.2). The constraint on the upper bound of the Hill exponent,
n, is saturated, suggesting that an ever steeper, hence heaviside-like, activation function
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is expected. This would suggest that there are mostly two operating modes according to
the AMH-secreting follicle number: a maximal activation rate under a threshold num-
ber (which can be estimated by the abscissa of the inflexion point, (1/K̂1 = 145) and a
minimal rate above this threshold.

• The best fit values of ρ2, ρ3, ρ4 are equal to 1 (and close to 1 for ρ̄2, ρ̄3, ρ̄4), i.e. the
death rates of the growing follicles in compartments II, III and IV are negligible. This
observation is consistent with the estimation of death rates performed in [15] in a piecewise
linear framework, where the switching time was set to day 20, a value close to the best
fit value of the delay (τ̂ = 22.3). Setting the corresponding death rates to zero (g2 =
g3 = g4 = 0), we can compute a predicted average duration of follicle growth of about
58 days ((1/1.42+1/2.76+1/14.3)/0.0197), which is consistent with the minimal duration
(40 days) observed in [36].

• Compared to the first-wave follicles, the dynamics of the growing follicles emanating from
the reserve is slower, as illustrated by the best fit values of (l̄i, 2 ≤ i ≤ 5) (greater than
one), even if the confidence intervals of (l̄4) and (l̄5) include one. This timescale difference
is consistent with the comparative assessment of the minimal transit times available in
[36]. In a similar way, it is expected that l̄1 be far much greater than l1, since the first
wave follicles do not undergo a quiescent state, and that l̄0 be greater than l0, since first
wave follicles are formed approximately one week before the reserve follicles.

Figure 7: Representative likelihood estimation profiles parameters.
Top panels : Instances of identifiable parameters: (quasi) parabolic likelihood profiles.

Bottom panels : Instances of not practically identifiable parameters: hitting bound profiles.
The dashed red lines delimit the 95 % confidence interval.

4.4 Statistical model selection
In this subsection, we perform a serie of statistical comparisons between nested models, from
simplified versions of the full model (system Equation (1)). The objective is to quantify the
trade-off between the goodness of the fit and simplicity of the model (number of parameters),
and to check whether describing the dynamics of germ cells is statistically relevant.
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More specifically, we define the two following sub-models. Let:

• M1 be the nested model with τ = 0 (no delay in the activation term (see eq. (2)),

• M2 be the nested model with m0 = r0 = g0 = 0, m̄0 = r̄0 = ḡ0 = 0, (no germ cell
compartment, and initial conditions given by y1(t0) = yinit and ȳ1(t0) = ȳinit).

To compareM1 andM2 with the full model, we compute

• the Akaike information criterion (AIC): = 2k−2 logL(θ) with k the number of estimated
parameters,

• the Bayesian information criterion (BIC): = k lnN−2 logL(θ) with N = 707 the number
of observations.

The model selection is quantified by the AIC difference ∆AIC
i = AICi − min

i
AICi, and

the BIC difference ∆BIC
i = BICi − min

i
BICi, with the corresponding weights : wAIC/BICi =

exp
(
−0.5∆AIC/BIC

i

)
3∑

i=1
exp
(
−0.5∆AIC/BIC

i

) , as well as by the p-values associated with the likelihood-ratio tests (Ta-

ble 4).

Model
−2 lnL AIC BIC Likelihood-ratio

(parameters number) test

Full model (S) 794.15 856.15 997.54

( 31 parameters) wAIC ' 1 wBIC ' 1

M1 1086.26 1146.26 1283.09 292.11

( 30 parameters) ∆AIC = 290.11 ∆BIC = 285.55 p1 ' 0

wAIC ' 0 wBIC ' 0

M2 879.56 937.56 1069.8 85.40

( 29 parameters ) ∆AIC = 81.41 ∆BIC = 72.26 p2 ' 10−16

wAIC ' 0 wBIC ' 0

Table 4: Model selection criteria used for the comparison of the full model withM1 andM2.
Differences ∆i and weights wi associated with the AIC and BIC criterion and p-value associated with the
likelihood ratio test.

From [6], if the “best” model corresponds to ∆ = 0, one can apply the following rules

• ∆ ≤ 2 ⇒ the tested model is as probable as the “best” model;

• 2 < ∆ ≤ 7 ⇒ the tested model could be an alternative to the “best” model;

• 7 < ∆ ≤ 10 ⇒ the tested model is less probable that the “best” model;

• 10 < ∆ ⇒ the tested model can be discarded.
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Whatever the criterion, the model comparison selects the full model (S) as the best model.
It thus appears that the delay τ is useful for capturing the follicle dynamics early after birth.
Indeed, when fitting modelM1 to the different datasets (data not shown), the proportion of first
wave follicles decrease far too rapidly and the model fails to capture the information provided
by Dataset C. In addition, the follicle dynamics in compartments 2 and 3 is poorly described
along the first 50 days, and there is a spurios initial peak in the curve fitting compartment 3.
In the same spirit, including the dynamics of germ cells help to better explain the early follicle
dynamics, which compensates for adding 2 parameters.

5 Biological interpretation and model predictions

5.1 Insight into the germ cell dynamics
The results of subsection 4.4 have grounded the interest to include prefollicular steps into the
modeling of follicle population dynamics. A practical limit to benefit from this comprehensive
modeling framework is that, for sake of parameter identifiability, we had to deal with coum-
pound (rescaled) parameters (N̂tot and r̂init), and could not get separate information on the
initial conditions, on one side, and kinetic parameters, on the other side, for the germ cell
compartments.

The model and estimation results can nevertheless be used to predict the partition of the
initial (total) germ cell number into medulla-located germ cells, which are committed to the
first-wave, and cortex-located germ cells, which are committed to the reserve.

First, from the results of the identifiability analyses (Subsection 3.2 and Subsection 4.3),
we can predict the cumulative number of follicles entering the first wave (m̂0ŷ0/l̂0) compatible
with Dataset A, which is on the order of 15000, and the cumulative number of follicles entering
the reserve (m0y0/l0), on the order of 6300.

Then, using additional information constraining two over the four parameters m0, m̄0, y0
and ȳ0, we can predict the value of the initial partition of germ cells, rinit = ȳ0(t0)

y0(t0)+ȳ0(t0) .
More specifically, from the biological specifications enunciated in Item 5 from Subsection 4.1,

we choose, as an illustration, m0 = 1/10 and Ntot = 15000, and obtain a value of rinit = 0.84.
This would mean that there is an imbalance between the two follicle populations, characterized
by an excess of germ cells potentially committed to the first wave, which is related to the
imbalance in the predicted germ cell inflow into each follicle subpopulation.

Note however that this prediction is very dependent on the values selected for the a priori
information. While the assessment of the duration needed to build the quiescent pool is rather
accurate and consistent between different literature sources, the assessment of the cell number
at age embryonic 16.5 – based on the rare studies providing information on the maximal num-
ber of germ cells reached during oogenesis and on the developmental time when this maximum
is reached [25, 29] – is much more imprecise. The peak value (at which point cell proliferation
remains concomitant with cell death) is subject to a high variability resulting from between
strain and inter-individual differences, and to both a low time resolution which blurs the peak
location, and possible inaccuracy in the assessment of embryonic age.

Whatever it be, the predicted value of rinit could be validated by future experiments, once
they be technically feasible, given that the contrasted spatial distribution of the follicle pools in
the developing ovary [9, 35] should make it possible to implement lineage tracing experiments
following the germ cells until they die or get embedded into a follicle.
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A more straightforward way to get this result would be to monitor the total number of germ
cells more densely around birth. We now illustrate as a proof-of-concept the first step towards
an experimental design procedure assisted by the model. From the best-fit parameter set listed
in Table 3, and using the additional a priori information on Ntot and m0, we generate a couple
of synthetic data on the germ cell numbers and merge them to the genuine experimental data.
We then run a new estimation round detailed in the next subsection.

5.2 Towards experimental design : an instance of targeted data ac-
quisition counseling

Figure 8: Synthetic data generated with the best fit parameters (Table 3).
Left panel : Simulated values of ytot

0 (tj) noised with a log-normal distribution. Right panel : Simulated values
of p1(tj) noised with a normal distribution. The red dashed lines represent the simulated (non noised) values.

The grey areas represent the 95 % confidence interval due to the noise.

The following synthetic data (see Figure 8) were simulated on a fixed time grid, to build
the additional Dataset D:

• O7(tk) = log ytot0 (tk) +N
(
0, 0.12

)
, (tk = t0 + k)1≤k≤10,

• O8(tl) = p1(tl) +N (0, 0.052), with p1 = ȳ0
y0+ȳ0

, (tl = t0 + 3l − 2)1≤l≤10.

For the sake of simplicity, we take integer values for the tks and tls, while the tj values in
Dataset A are real. Note that ytot0 (t0) = Ntot and p1(t0) = rinit.

To perform the new estimation, we update the estimation vector as

θ =
[(
l̄i
)

0≤i≤5
,
(
ρ̄j
)

1≤j≤4
,
(
li
)

0≤i≤5
,
(
ρj
)

1≤j≤4
, f̃1, K1, τ, n,Ntot, rinit, ρ̄0, ρ0

]

in which Ntot and rinit replace the former parameters N̂tot and r̂init, and ρ̄0, ρ0 are additional
dimensionless parameters:

• ρ̄0 = m̄0
ḡ0+m̄0−r̄0

,

• ρ0 = m0
g0+m0−r0

.
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Figure 9: Estimation performed with the original or augmented datasets.
Top panels : Fitting follicle numbers after estimation on the initial datasets (Datasets A, B and C, orange
lines) and with the augmented datasets (Datasets A, B C, and D, dotted black lines). The blue points

correspond to the experimental Dataset A, the purple points to the additional Dataset D. Bottom panel:
Change in ratio p1 along the first 30 days ; orange lines: initial datasets, black dotted lines: augmented

datasets.

ρ̄0 and ρ0 are searched in [0, 100], rinit in [0, 1], and Ntot between 103.8 and 104.5 in log10 scale.
As illustrated on Figure 9, the fitting results obtained after either estimation from the initial

datasets or the augmented datasets (adding Dataset D) are very similar. In addition, introduc-
ing the synthetic data enables a significant gain in parameter identifiability. In particular, all
4 parameters related to the germ cells, Ntot, rinit, ρ0 and ρ̄0 are well estimated : the reference
values fall within the estimated confidence intervals (see for example the two rightmost bot-
tom panels of Figure 10). The likelihood profile of the other parameters is almost unchanged
(compare panels of Figure 7 with those of Figure 10).
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Figure 10: Likelihood profiles of some parameters for the estimation with synthetic data.
The dashed orange lines point to the reference values. The dashed red lines delimit the 95 % confidence

interval.

5.3 In silico experiments
To illustrate the model potential for testing functional hypotheses and perform in silico ex-
periments, we mimic an experimental study which has investigated the effect of long term
administration of AMH in mice [23, 22]. The translational application for medicine would be
both related to the preservation of the follicle reserve in a physiological or iatrogenic situation
(cancer chemotherapy), reversible contraception or potentiation of ovarian stimulation proto-
cols. The experiment is based on the several-week long administration of high doses of AMH,
followed by the monitoring of quiescent follicles and growing follicles up to fifty days after
stopping AMH treatment. The corresponding numerical experiment is illustrated on Figure 11,
where the period of AMH administration is materialized by the grey area. The simulation
captures well the three main steps of the experiment:

1. During exposure to high levels of AMH, the activation rate is blocked, the growing com-
partments are not fueled anymore by the reserve and they progressively get empty. The
emptying duration gives kinetic information on the duration of follicle growth [23]. In
parallel, the reserve is preserved from the activation-induced depletion, so that the follicle
numbers in the reserve at the end of treatment is higher in treated mice than in control
mice.

2. When AMH is removed, there are no more follicles in the AMH-secreting classes, hence
no feedback on the activation rate, which is no more controlled. The activation rate is
maximal, as well as the rate of reserve depletion. This rapid depletion compensates for
the previous preservation of the reserve, so that the follicle numbers in the reserve become
comparable or even smaller than in the control case. This step is analogous to the first
wave in the neonatal period, yet in an adult background.

3. As new follicles enter the AMH-secreting classes, they exert a feedback on the activation
rate, which slows down, getting back to a physiological situation.

The scenarios represented by the blue and green lines on Figure 11 differ by the preservation
ratio at the end of treatment (relative number of quiescent follicles in treated versus control
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Figure 11: In silico experiment of long-term AMH administration inspired from [23, 22].
Upper panels: changes in the follicle (or germ cell numbers) in the reference situation (orange curves) or after

an episode of administration of high dose AMH between days 80 and 120 (grey rectangles). Green lines:
scenario with a high preservation rate of the reserve (1855 at day 120 to be compared to 1408) ; blue lines:
scenario with a moderate preservation rate of the reserve (1500 at day 120). Lower panel: zoom on the
dynamics of quiescent follicles. Note that the blue curve intersects the orange curve around day 140.

mice). In the first case (green scenario), the ratio is set exactly as on Figure 1B in [22], while it
is a little lower in the second case (blue scenario). In the latter case, the number of quiescent
follicles in the treated case (blue line) goes below the control number (orange line), while in
the former the curves get closer without intersecting.

Note that both situations are realistic since (i) the experimental data are not truly kinetic ;
the comparison between follicle numbers at day 0 or day 30 is not performed on the same mice
as follicle counting is an invasive procedure, and, in addition, only 3 replicates are available in
each condition (ii) the long-term exposure to high AMH levels might have disturbed the AMH
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signaling system and perturbed both sensitivity to AMH (via alteration in AMH receptor
expression) and ability to secrete AMH.

6 Discussion
Given the major ethical and technical difficulties to number germ cells in women (except in
large follicles, where the cavity can be visualized through ultrasonography [1, 2]), quantitative
data on whole germ cell dynamics are extremely scarce. One therefore requires animal models
to further develop fundamental knowledge in female reproductive biology, notably regarding
the aging of the ovarian function. Exhaustive germ cell /ovarian follicle counting remains an
invasive and extremely tedious task, which explains that densely sampled age-dependent germ
cell counts are not available even in animal models, with the notable exception of the mouse.
Indeed, long term and regular counting of ovarian follicles has been performed in this species
[21, 15, 16]. Moreover, in the mouse, genetic manipulations have proven very useful to gain
functional knowledge on the dynamics and control of follicle development. With the advent of
new imaging techniques, especially those involving transparization techniques, even more data
should become available, possibly in the mouse [17], but also in other vertebrate species such
as fishes [24].

In this work, we have taken advantage of the existing data providing us with the follicle
numbers according to different maturities on a whole life horizon. We could in particular merge
different datasets harvested in the same mouse strain along different studies, which considerably
enriched the data available in (very) young mice. Note that there are great differences between
mouse strains [7] both in the size of the follicle reserve and in follicle dynamics, which hampers
merging data from mice with different genetic backgrounds.

Despite their interest, these datasets have some limitations, which we had to cope with for
our modeling and data-fitting purposes. Some are extrinsic, as the loss of the “true dynamics”,
since the measurements are invasive, and measures at different ages correspond to different
animals. Others are more intrinsic and correspond to the choices performed by the experi-
mentalists and data-scientists who first handled the raw data. At a given time (hence age)
the ovaries contain follicles in different maturation stages. This implies that some of the data
are paired; different datapoints should be associated with a same individual. Unfortunately,
information on the pairing is lost in the current data. In addition, the authors have customized
the usual follicle classification to sort their data. From the original classes V and VI of [26],
they introduced a new class V pooling antral follicles with non antral follicles. The authors’
motivation was to avoid possible variations induced by the ovarian cycles. There are indeed
cyclic changes in the number of large antral follicles [31], yet they do not affect the smallest
ones, which are far more numerous. In contrast, in mouse the dynamics of antral follicles is
very contrasted with respect to the other stages; they are in the so-called terminal phase of
follicle development, whose control differs radically from the previous, so-called basal phase
of development. Indeed, antral follicles becomes totally dependent on the supply of pituitary
reproductive hormones, and they interact with each other through complex endocrine feedback
loops within the gonadotropic axis. Not being able of handling separately antral follicles is
penalizing, as most functional studies, including those used for our additional specifications
[13, 36], separate them from the other follicles.

Given the nature of the data, our model focuses on activation and basal development, and
we have paid a special attention to account for up-to-date knowledge of activation control. A
proper use of the follicle reserve is indeed primordial for preserving fertility a sufficient long
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time, and it is now well-known that AMH secreted from growing follicles has a prominent role in
avoiding precocious depletion of the reserve. This has not only been established through studies
on the AMH-KO in mice, but also on cultures of ovarian cortex supplemented or not with AMH
[12], and in cutting edge studies with transient overexpression of AMH [23]. AMH effects are
not restricted to the activation step. AMH also modulates the growth speed in growing follicles
and moderates the differentiation rate in mature follicles. Due to the scarcity of data, we did
not introduce controlled growth rates between the growing compartments. Another way of
refining the model would be to weight the contributions of the different classes in the feedback
terms entering the activation rate, but, again, the sparse data available are not compatible
with adding other parameters. Note also that if the number of follicle cells is higher in class IV
follicles than in class III, the per cell contribution is lower [28, 11], which roughly compensates
for the resulting AMH output, and substantiates the absence of weights in our formulation.

We have extended the initial modeling framework introduced by JM Faddy and co-authors
to better characterize follicle development very early in life, from the postnatal period to several
weeks after birth. The extended model takes into account the existence of two different pop-
ulations of follicles at birth, and also includes an additional pre-follicular compartment, which
allows us to account in a compact way for events occurring before birth [18]. J.M. Faddy and
co-authors had to cope in a phenomenological way with the strong differences affecting follicle
development in very young mice compared to elder ones, since they chose to fit piecewise linear
models and introduced a switching time (at day 20 for the datasets selected for our study) to
fit separately the initial part of the data. The choice of the switching time was empirical; it
was chosen as the nadir of a spline-based regression curve applied to class II follicles [14].

Altogether, our knowledge-augmented approach for data-fitting fits successfully the exper-
imental data from all three input datasets, while accounting for the most recent biological
knowledge. Making use of the AMH-KO data [13] guarantees us to select parameter regimes
in which the control of the activation rate is active (see the graph of λ1(t) as a function of
time or class III and IV follicle numbers, see Figure 5). In addition, accounting for a controlled
activation rate allows us to mimic the effects of AMH deprivation, in a permanent way (such
as the AMH-KO, see the green curves on Figure 5) or transitory way (induction of a first-wave
like dynamics in adulthood after a prolonged exposure to high AMH levels, see Figure 11).

We have also revealed that accounting for the dynamics of germ cells in pre-follicular stages
help to monitor finely the follicle dynamics, especially in the earliest stages, occurring around
birth in the mouse (and during embryonic life in larger mammal species including humans), and
to describe separately follicles emanating either from the first wave or the reserve. Even if the
objective of the current work was not to model the formation of follicles, we have shown that
model-assisted acquisition of well targeted data would be sufficient to quantify the transition
from the pre-follicular to the follicular stages. The oogenesis process leading to a follicle-
embedded oocyte from the very primordial germ cells would also benefit from a population
dynamics approach and will be the matter of further modeling work.
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