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Abstract: In this paper, we present the results of nonlinearity detection in Hedge Fund price returns.
The main challenge is induced by the small length of the time series, since the return of this kind
of asset is updated once a month. As usual, the nonlinearity of the return time series is a key point
to accurately assess the risk of an asset, since the normality assumption is barely encountered in
financial data. The basic idea to overcome the hypothesis testing lack of robustness on small time
series is to merge several hypothesis tests to improve the final decision (i.e., the return time series
is linear or not). Several aspects on the index/decision fusion, such as the fusion topology, as well
as the shared information by several hypothesis tests, have to be carefully investigated to design a
robust decision process. This designed decision rule is applied to two databases of Hedge Fund price
return (TASS and SP). In particular, the linearity assumption is generally accepted for the factorial
model. However, funds having detected nonlinearity in their returns are generally correlated with
exchange rates. Since exchange rates nonlinearly evolve, the nonlinearity is explained by this risk
factor and not by a nonlinear dependence on the risk factors.

Keywords: nonlinearity detection; decision fusion; hedge funds; price return model

1. Introduction

Hedge Funds (HFs) have generated a lot of curiosity and have introduced a lot
of questions [1–10], first due to their performance (sometimes negative) with respect to
usual markets and second to their very particular and complex financial nature. Usual
classifications of HFs [11,12] are based either on a particular goal or mechanism, i.e., they
are directional, (Fixed Income, Hedge/Non Hedge Equity) or on the assets on which
they are applied, i.e., they are non-directional (Macro, Distressed Securities, Commodities
Trading Advisor). The manager behavior (trend follower or not) is another feature that has
some effects on the HF returns. Due to the out performance, we can question the validity
of the simple factorial model,

R(n)− r f (n) = αm +
K

∑
i=1

βiFi(n) + e(n) (1)

where R(n) is the HF price returns, r f (n) the risk free return and Fi(n) a market risk
factor. αm conveys the skill of the HF manager to generate profits, βi are the regression
(loading) coefficients on the risk factor and e(n) the idiosyncratic risk or the error term
or residuals. This model is widely accepted, in particular, for mutual funds and has been
straightforwardly extended to HFs with the idea that βi coefficient are close to 0 ([9];
although, in this paper, only 22% of the funds statistically verify this property, see also [8]).
However, mutual funds of assets are obviously linked to the market risk factors, while HF
may have fairly different mechanisms to generate profits as stated above. In particular, in
some of them, leverage mechanisms are used to outperform the other funds as previously
stated [5]. In this case, we can question whether the linear dependence on the risk factors
is still valid. In fact, the modeling of Equation (1), is the corner stone to analyze the fund
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performance (either mutual or hedge), for deriving the skill of the fund manager (i.e., αm)
or to estimate the exposure to a given risk factor. The risk factors are generally a priori
identified and depend on the authors and their number varying from 7 (the well admitted
proposal of [2]) to 31 (the return explanation by a given risk factor is generally not verified
through conditional independence testing [13] or Bayesian network [14] for instance). The
idea of this paper is to propose a method to directly classify HFs according to their price
return (i.e., their performance) model. When observing a time series (TS, in our case, the HF
price returns), a natural idea is to determine the equations governing this TS (quantitative
model). Amin and Kat [15], Leland [16], Kosowki et al. [4], Lo [10], and Agarwal [17] have
noticed that the HF price returns exhibit non-Gaussian skewness and kurtosis. Usually,
non-Gaussian statistics are thought to be generated by some nonlinearities [10].

• For instance, Leland [16] proposes a price return model based on the nonlinear payoff
model developed by Dybvig [18,19] but without statistical validation of this model.

• Patton proposed in [9] an extension of Equation (1) by adding powered risk factors.
• Patton and Ramadorai [8] and Lo [10] proposed a model with a loading factor having

different values depending on the risk factor (i.e., βi(Fi(n)).Fi(n) and, thus nonlinearly,
depends on Fi(n)), the simplest loading function being a threshold model. This
threshold model possibly conveys the less or more liquid periods [5].

• Similarly, Lo [10] proposed to add switching the random variable to the factorial
model of Equation (1), this switching variable explains the phase locking behavior
observed in crisis periods.

The idea of including nonlinear terms in Equation (1) is supported by the fact that
usual risk factors have a normal distribution [17]. Thus, if the risk factors are normal
(right side of Equation (1)) and the returns are non-normal (left side of Equation (1)), then
a straightforward explanation is some nonlinearities. The main goal of this paper is to
provide an algorithm to validate the linearity of the HF return model. The nonlinearity
detection problem in an observed TS has led to the definition of several Hypothesis Testing
(HT). In the signal processing community, tests based on the bispectrum have generated
some interest (see [20–23]), and a comparison of the non parametric tests is given in [24]).
In the econometric community, nonlinearity tests are generally based on linear/nonlinear
parametric models. For both approaches, the detection of nonlinearity in HF price returns
is a challenge since the return TS contain few samples, HF prices being generally updated
once a month. Thus, a ten year record provides only 120 samples. In fact, the bispectrum
(and its normalized version) is known to have a high variance and its estimate needs a fairly
large number of samples to provide robust results. On the other hand, parametric tests
are generally slightly more efficient for small TS length but they imply some underlying
hypothesis on the model driving the TS under the null hypothesis. For instance, the
models used in the parametric tests (AR-STAR) are infinite memory processes (i.e., the
AutoCorrelation Function, ACF, has an infinite support), while the TS of asset returns, and
in particular, HF returns, are finite memory. Moreover, the robustness of this last class of
tests decreases when the model parameter number increases (as seen again below). Thus, a
straightforward idea is to merge several HT to improve the detection. In order to expose
the process of TS nonlinearity detection, the fusion algorithm and its application to HFs,
we develop two points:

• The first is to expose the design of this HT fusion algorithm. Hypotheses have to be
carefully defined and the fusion process carefully designed to avoid false conclusions
on HT and fusion algorithm robustness, as previously stated. In particular, several
points are generally overlooked in operational decisions, such as the pdf under the
null hypothesis, key features in the decision process, or the information shared by
several HT.

• The second aim of the paper is the application of the decision rule to detect nonlin-
earity in HF price returns. We first inspect whether there is a relationship with the a
priori classification and the nonlinearity detection in two databases. These databases,
respectively, provided by TASS and Standard and Poors (S&P), contain several styles
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of HFs and we seek to inspect whether some styles exhibit nonlinear feature, unlike
the others.

All the fusion methods need a “learning” base on which some parameters of the fusion
process have to be estimated (see [25]). A “validation” base is used to verify the efficiency
of these estimated parameters over data not involved in their estimates. An underlying
assumption made thorough this paper is that HF returns are stationary up to the third
order (since all the HT need this assumption). Obviously, this assumption is questionable,
but due to the dependence of each HT on a management style, as well as the low rate of
price updating, it seems realistic (we discuss this point again in Section 4.2). To expose our
results, the paper is organized as follows. In Section 2, we present the hypothesis definition,
the robustness criterion and the 12 statistical indices used in the fusion process step, while
the topology and fusion approaches are presented in Section 3. In Section 4, this decision
rule is applied to detect nonlinearities in simulated TS and HF returns.

2. Nonlinearity Detection Hypothesis Testing

As many financial TS, HF price returns exhibit non-symmetrical statistics [15,26], a
fairly common confusion is to relate the non-symmetry of the statistics to nonlinearity (see
the tutorial [27] for the generation of a non-symmetrical distribution induced by the phase
coupling due to nonlinear systems). We must point out that the linearity does not imply
the gaussianity. When the input noise of the linear system is non-symmetrical, the output
TS is also non-symmetrical, although linear. On the other hand, some nonlinear systems
can exhibit statistics close to the normal ones (for instance, if we sum a large number of
nonlinear terms, then the central limit theorem ensures that we have asymptotical normal
statistics). The statistical “linear” modeling of a TS means that the estimated statistics of
this TS can be modeled as those of the output of a linear system, the input data of which are
not available (these conditions are usually assumed for predicting and modeling systems).
Thus, the null and the alternative hypothesis can be written as:

• H0 : The signal can be modeled as the output of a linear system driven by an iid
(independent and identically distributed) non-symmetric random excitation.

• H1 : The signal cannot be modeled as the output of a linear system driven by an
iid non symmetric random excitation and we decide that the system is nonlinear
(driven by a normal excitation). In this case, the input is assumed to be Gaussian, since
considering other input statistics only involves an additional nonlinear transform.

For instance, H0 has been identified as a possible factorial model in [8], when non-
normal residuals are observed. On the other side, H1 is suggested for the same factorial
model in [17] when transforming normal statistics of the risk factors into non-normal
statistics of the HF returns. In what follows, with a slight abuse of language, we use the
term “linear” and “nonlinear” TS for the sake of simplicity. Moreover, the HT have been
designed (or redesigned) in order to be right sided. In other words, a positive index q is
derived from the observed TS. If q is below a threshold T, H0 is accepted and then the
decision, denoted u, is equal to 0 (or 1 otherwise). Similarly, the decision can also be made
from the probability:

pq =
∫ q

0
fq(z|H0)dz (2)

where fq(z|H0) (resp fq(z|H1) is the index pdf under hypothesis H0 (resp H1) if

pq <
∫ T

0
fq(z|H0)dz, then u = 0. Thus, three quantities can be merged from several

HT as detailed in Section 2.2.

1. The estimated index denoted qj of the jth HT.
2. The probability pj, derived from the estimated index value qj and the pdf of the

estimated probability underH0 (see Equation (2)), denoted f j(pj|H0).
3. The decision uj, provided by pj after fixing the threshold on the probability (i.e., fixing

the p-value), this threshold/p-value being possibly different for each HT.
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The first approach is the more straightforward, but induces merged quantities with
very different ranges of values. The last two have the advantage of merging similar
quantities (i.e., a probability in the range [0, 1] or binary quantities, the decision uj), but they
require perfectly knowing the statistical index underH0 to derive these two quantities. A
final decision based on each HT decision adds a hyperparameter, the threshold T/p-value,
which can be HT dependent. In our case, the fusion algorithm depends on these two last
quantities, leading to two fusion topologies, as seen in Section 3.1. In the next subsection,
we inspect the robustness underH0.

2.1. Robustness

• The HT robustness involves correctly defining a performance metric for the HT (such
a comparison has already been completed, see [24,28,29], but with non rigorous defi-
nition of the two hypotheses, as seen below). As usual, two types of error are possible,

the TIEP (Type I Error Probability), denoted α =
∫ +∞

T
fq(z|H0)dz that is the probabil-

ity of rejecting the null hypothesis although right; and the Type II Error Probability
(TIIEP, i.e., the error of accepting the null hypothesis although false, denoted β(α)).
The usual HT decision making involves fixing α, thus deriving threshold T using the
index pdf function under H0 and then comparing the index to this value, leading
to the acceptance or rejection of H0. Admitting that the two errors have the same
importance in the decision process, the mean Bayesian risk of the HT (see [25] chapter
one) is equal to:

R̄ =
1
2

∫ 1

0
(α + β(α))dα. (3)

This criterion is the parameter to minimize as the metric of performance in what
follows.

• In order to rigorously estimate the HT robustness and derive the parameters needed
for the HT fusion algorithm, TS under the two hypotheses have to be simulated.
However, the (linear/nonlinear) TS sets have to be carefully designed. The nonlinear
TS set can be derived from nonlinear models. In this paper and in [30], we consider
three kinds of second-order nonlinear system:

X(n) =
q

∑
i=0

bi.e(n− i) +
r

∑
k=0

r

∑
l=0

dkl .e(n− k).e(n− l) (4a)

p

∑
j=0

aj.X(n− j) =
q

∑
i=0

bi.e(n− i) +
r1

∑
k=1

r2

∑
l=0

ckl .X(n− k).e(n− l) (4b)

p

∑
j=0

aj.X(n− j) +
r

∑
k=0

r

∑
l=0

ckl .X(n− k).X(n− l) = e(n) (4c)

As usual, in TS modeling, the excitation e(n) is assumed to be iid white normal noise,
while X(n) is assumed to convey the statistical properties of the observed TS. Volterra
models (4a) are easily derived by nonlinear expansion for differentiable nonlinear
transfer function and the ACF finite length model, unlike the other two (when the
summation upper bounds are finite). There are necessary conditions for the stability
of QARMA ((4c), Quadratic Autoregressive Moving Average Model, see [31–33]) or
bilinear ((4b), see [34–36] for instance), extensively used in econometric TS modeling.
A first inspection of the polynomial models of Equation (4) shows that these models
contain two kernels, a first linear kernel and a quadratic one. Thus, for nonlinear
systems, the excitation variance induces different weights of each (linear/quadratic)
kernel and thus fairly different outputs. For instance, a weak variance induces a
strong weight of the linear kernel output and thus an almost linear TS, making
the nonlinearity detection fairly difficult. For this reason, the metric performance
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(Equation (3)) also depends on the NonLinear Energy Ratio (NLER, that is the energy
from the quadratic kernel over the total energy). In what follows, we have considered
NLER values of 0.25, 0.5 and 0.75 (i.e., weakly, fairly, strongly nonlinear systems).

• The system simulating the linear system (hypotheses H0) also has to be carefully
designed. In fact, for each generated output of nonlinear systems, the corresponding
output linear system requires:

1. Having the same second order moment, i.e., the same ACF and then the same
Power Spectrum Density (PSD). In fact, the second order moment has an effect
on the variance of the estimated indices. Thus, after estimating the theoretical
ACF/PDF by choosing one of the three models, initializing the model parameters
and the excitation variance (see above), we derive the theoretical ACF of the
output; this ACF is used to calculate the transfer function of the linear system.
This requirement of having the same ACF under the two hypotheses is preserved
by the surrogate data method (that can be seen as a Bootstrap method for nonlin-
earity detection, see [37–40]), used for deriving a linear TS, and then the index
pdf underH0, from an observed and possibly nonlinear TS.

2. Being non Gaussian. In the previously mentioned papers on the HT robustness,
the excitation is Gaussian under H0. Indeed, comparing a linear Gaussian TS
and a skewed nonlinear TS induces a normality HT, which is much easier than
a nonlinearity HT. The surrogate data method loosens this requirement (since
the equivalent linear TS is normal) inducing an overperformance of the HT. The
excitation, in the H0 case, has to have a zero mean and a skewness, providing
the same value of skewness for the linear/nonlinear TS.

Thus, the linear and nonlinear TS (i.e., the two hypotheses TS set) have the same ACF
at all lags and the same third-order moment at lag (0,0), as seen below.

• A last point is that the statistical index pdf derived on hypothesis H0 is derived
under the asymptotical assumption using the central limit theorem for instance. As
observed in [30], for the HT presented below, we observe a strong departure between
the statistical index pdf (under H0) and the theoretical pdf, turning the decision,
linear/nonlinear, non-robust. In order to make a robust decision, the pdf under H0
has to derived for the learning base, as described in Section 4.1.

2.2. Tested Nonlinearity Hypothesis Tests

The twelve indices we tested (summed up in Table 1) were divided into two main
classes, the parametric tests and the non-parametric ones. The non-parametric HT class
can also be divided into the time domain test and Fourier domain test, as seen in the
next section.

Table 1. Indices and references.

Index Number Type Reference

q1 Non parametric Bicepstrum [23,24]

q2 Non parametric Bispectrum [24]

q3 Non parametric Best predictor [41]

q4 Non parametric Dimensional redundancy [40]

q5 Parametric F test [29]

q6 Parametric C test [29]

q7 Parametric Third order procedure [42]

q8 Parametric Augmented First order procedure [42]

q9 Parametric BDS [43]

q10 Parametric Log Determinant [44]

q11 Parametric Best predictor on residuals [41]

q12 Parametric MA model [45]
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2.2.1. Non-Parametric Fourier Domain Tests

Non-parametric tests of the Fourier domain are mainly based on the third-order
moment MX

3 (n1, n2) and the bispectrum B(ω1, ω2) defined as:

MX
3 (n1, n2) = E{X(i).X(i + n1).X(i + n2)}

B(ω1, ω2) =
+∞

∑
n1=−∞

+∞

∑
n2=−∞

MX
3 (n1, n2)e−j(ω1.n1+ω2.n2) = E{X̃(ω1).X̃(ω2).X̃∗(ω1 + ω2)}

and X̃(ω) =
+∞

∑
n=−∞

X(n)e−j.ω.n

(5)

(ω1, ω2) is called a bifrequency, the skewness being derived from the third-order moment
at lag (0, 0). Under hypothesisH0, the bispectrum verifies:

B(ω1, ω2) = γ3.H(ω1).H(ω2).H∗(ω1 + ω2) (6)

Several tests have been proposed to test whether the modeling of the estimated
bispectrum as the triple product of a linear transfer function is valid or not. Subba et al. [22]
and Hinich [20] proposed two tests for nonlinearity detection based on the bicoherence
(normalized bispectrum). However, these tests have been shown to not be very robust due
to the bicoherence estimate variance. The problem of bispectrum estimates (and the phase
unrolling for the biceptrum for the indices presented below) have been tackled in [24,46].
Nonredundant bispectrum support is depicted by the triangle in Figure 1, the symmetry
relationships being given the aforementioned papers. Two indices are based upon the
bispectrum:

• The first selected index was proposed by Erdem and Tekalp in [23] and uses the
bicepstrum (defined as the inverse Fourier transform of the bispectrum logarithm),
which has the property of being null outside the lines n1 = n2, n2 = 0, n1 = 0 (see
Equation (6)). In [24], Le Caillec and Garello derive an HT based on the test of the
nullity of the bicepstrum components outside these three lines. This index is denoted
q1 in the latter part of the same paper.

• In the same paper, they propose another based on two relationships involving, respec-
tively, the bispectrum phase (at different bifrequencies) and the bispectrum magnitude
logarithm (also at different bifrequencies).

ψ(ω1, ω2)− ψ(ω1 − ∆ω, ω2 + ∆ω) + ψ(∆ω, ω1 − ∆ω)− ψ(ω1 − ∆ω, ω2 + ∆ω) = 0

log(|B(ω1, ω2)|)− log(|B(ω1, ω2 + ∆ω)|) + log(|B(ω1 + ∆ω, ω2 − ∆ω)|)
−log(|B(ω1 + 2∆ω, ω2)|)+log(|B(ω1+2∆ω, ω2−∆ω)|)−log(|B(ω1+∆ω, ω2−∆ω)|)=0

(7)

where ψ(ω1, ω2) is the bispectrum phase and ∆ω an arbitrary lag. These properties
being verified for a linear TS, we then form two sets of variables from the relationship
of Equation (7). The test estimates the two variables (for all the possible bifrequencies)
linking the bispectrum phase and the log-magnitude in Equation (7). After normaliza-
tion (in order to have a unit variance for both variables [24]), index q2 is given by the
interquartile of the concatenated variables.
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Figure 1. Bispectrum support and symmetry.

2.2.2. Non-Parametric Time Domain Tests

In this class, we have also selected two indices:

• The idea developed by Hjellvik and Tjøstheim in [41] compares the best nonlinear pre-
dictor at lag k, i.e., the conditional mathematical expectation denoted
ν(x) = E{X(n)|X(n − k) = x} with the best linear predictor, i.e., the value of
the TS at lag k multiplied by the correlation coefficient X(n) = ρkX(n − k) with
ρk = MX

2 (k)/MX
2 (0), with MX

2 (n) = E{X(i).X(i + n)}. This test estimates the condi-
tional mean as well as the pdf of X(n) with a Kernel Density Estimate (KDE, i.e., a
Regressogram/Nadaraya-Watson estimate). The final index q3 is given by the mean
square error between the best predictor (calculated with the estimated pdf). In the
same article, the authors propose a similar test based on a parametric model as seen in
Section 2.3.

• The last non parametric index, q4, was exposed in [40] by Paluš. It is given by the
difference between the nr dimensional redundancy and the linear redundancy. The nr
dimensional redundancy is defined as the entropy of the TS samples (multiplied by nr)
minus the joined entropy of nr adjacent TS samples. The linear redundancy is defined
as half the difference of the sum of logarithms of the diagonal entries of the covariance
matrix minus the sum of logarithms of the eigenvalues of the same covariance matrix.
UnderH0, these two quantities are equal (for practical decision we use the absolute
value of the difference in order to have a right sided HT, as previously stated). The
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limiting parameter of this approach is the “embedding dimension” nr. In Section 4,
we set nr = 5 as in [40].

2.3. Tests Based on Parametric Linear and Nonlinear Models

As stated in the introduction, the purpose of the parametric tests is first to identify a
linear system and to test whether the residuals (denoted ê(n) that is the difference between
the predicted values by the estimated AR model and the real values X(n) or in others
words an estimate of model excitation, see Equation (4)) contain nonlinear terms (with the
underlying assumption that the identified linear model captures only the linear part, this
being not so obvious, see [24,47] for a discussion). As usual, the aim of the tests is to verify
that the residuals are white. For these tests, the AR model identification is assumed to be
performed with a least squares solution (i.e., by solving the Yule–Walker equations). In
many articles, the order of the AR model is assumed to be known. In practical situations of
Sections 4.1 and 4.2, the Bayesian Information Criterion (BIC) is applied to determine the
order of the AR model (see [48] for the BIC and [49] for an exhaustive review of the order
selection criteria). Several tests over the residual whiteness are proposed.

• Tsay index: In [29], Tsay improves a test proposed by Keenan [50] derived from the
one-degree test (of additivity) by Tukey [51]. In this paper, we consider only the Tsay
indices (F and C tests) since they provide slightly better results than Keenan’s indices.
After the model identification and the residual estimation, we regress the TS squared
samples over the TS samples at previous lags and we estimate the new residuals ζ(n)
(obviously this step involves Higher Order Statistics, HOS, as explicitly mentioned in
Keenan [50] and Section 2.2.1). The last step involves finding a correlation between
the residuals of the TS fitting and the residuals of the squared TS fitting. If the TS is
linear, then the two kinds of residuals are uncorrelated. This property is verified by
using the F-distribution test. We denote q5 this index in the rest of the paper. Due to
bad results of a Volterra model, Tsay proposes a second test based on the correlation
of the squared residuals with the TS samples. This test is the C test and is denoted q6
in the latter part of this paper.

• Luukkonen et al. index. The test proposed by Luukkonen et al. is based on whether
the TS can be modeled by a Smooth Transition AutoRegressive (STAR) model. By
expanding the STAR model up to the third order, this model can be rewritten as a
Nonlinear AutoRegressif model containing nonlinear terms X(n− j), X(n− i)X(n− j),
X(n− i)X2(n− j) and X(n− i)X3(n− j). The HT of nonlinearity is based on the test
of the nullity of the nonlinear kernel coefficients. As for the Tsay index, the first step
involves calculating the residual after regression of X(n) over an AR model and we
denote S0, the sum of the squared residuals. Finally, the residuals are regressed (using
a mean least squares criterion) on X(n− j), X(n− i)X(n− j), X(n− i)X2(n− j) and
X(n− i)X3(n− j), (then HOS are also involved in this step). The squared sum of these
new residuals is denoted S1 leading to the nonlinearity index q7 = N(S0 − S1)/S0, N
being the TS length. This procedure being fairly complicated due the large number
of parameters to be estimated, the authors propose a simpler test based on a reduced
QARMA model (4b). In this test, the index is then given by q8 = N(S0 − S2)/S0
where S2 is the sum of the squared residuals of the nonlinear regression of X(n) over
X(n − i)X(n − j) and X3(n − j) (see [42]). Other nonlinear models are difficult to
identify, in particular Volterra model, except in simplified cases such a Wiener and
Hammerstein second-order models [52–54].

• BDS test: The idea developed by Brock et al. in [43], always verifies that the resid-
uals are white, is close to Order Statistics (see [55]). They define the sequence
um(n) =

(
ê(n), · · · , ê(n + m)

)
. The distance between two sequences is defined as

||um(i)− um(j)|| = max
0≤n<m

(|ê(i + n)− ê(j + n)|). The index is based on the number

of sequences whose distance is below a given threshold ε. Index q9 is defined as the
difference between the number of sequences of length m (with a distance below the
threshold) with the number of sequences of length 1 powered at m (with a distance
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also below the threshold). This difference is normalized in order that the index has
standard normal statistics. When the model is well fitted, the noise is iid and the index
is close to 0. In this index, two parameters have to be fixed. The first is the sequence
length m (if we choose m too small, then q9 will be always close to 0 whatever the
model is) and the second is the value of ε (in fact, if ε is too small, then the number
of close sequences will not be large enough for a robust estimate of q9). In Section 4,
we test the values m = 4, m = 8 and ε = std/2, ε = std, ε = 2std, with std being the
standard deviation of the residuals.

• Peña and Rodriguez test. Peña and Rodriguez in [44] propose a test based on the
logarithm of the determinant of the correlation matrix of the squared residuals. In
other words, we have

q10 = − N
m + 1

log |Rm|, (8)

where Rm is the normalized correlation matrix of the squared residuals (the normal-

izing coefficient is
N + 2
N − k

and the size of this square matrix of dimension m, k being

the lag of the correlation coefficient). The idea behind this test is to verify that the
correlation matrix is diagonal (i.e., the residuals are white and then the model is well
fitted). In this test, the parameter m has to be chosen. As proposed by the authors, m
is determined by the greatest correlation length in the residual. This estimation of the
correlation is performed as the MA order estimation described below.

• Hjellvik and Tjøstheim test on residuals . Always with the idea of comparing the best
predictor and the linear predictor (see Section 2.2.2), Hjellvik and Tjøstheim compare
the two predictors for the residuals (always under an AR model fitting). The idea
behind this calculation is to find nonlinear terms in the residuals, as stated in the
introduction to this section. In this case, the index q11 is also defined as the mean
square error between the two predictors.

• The main drawback of the previously presented approaches is to be based on an AR
model and then they assumed that the process is infinite memory. In [45], we propose
a HT based on an MA model (i.e., with finite ACF), that is of particular interest in
our case since HF returns are assumed to verify this property of finite memory. The
order of the MA process is to detect a lag above which the autocorrelation function is
null. Such an order estimate can be performed either by a Ljung-Box test or with a
T2 Hotteling by estimating the correlation sequence over subsignals (in the results of
Section 4, we use four sub signals). We estimate the MA parameters by a Giannakis’
formula since we have bi/b0 = MX

3 (i, q)/MX
3 (0, q) (see [56,57]). Unlike the AR model,

MA are not necessarily invertible (the transfer function can vanish). Since the residual
are not available as for the previous indices, we propose to verify that the estimated
coefficients agree with the estimated ACF as:

q12 =
qM

∑
n=0

(
M̂X

2 (n)− σ̂2
qM−k

∑
i=0

b̂i b̂i+n
)2 (9)

where qM is the estimated MA order, M̂X
2 (n) is the estimated second-order moment,

b̂i is the MA coefficient estimated by a Giannakis’ formula and σ̂2 is estimated to
minimize q12. When the TS is the output of a linear MA model, then q12 is theoretically
null, but non-null underH1, (see [45], for practical implementation).

As seen, all these HT are different, but they can share either an underlying model-
ing (e.g., AR) or statistical quantities (e.g., bispectrum) and the question of their redun-
dancy/complementarity can be raised. We detail the fusion process in the next section,
with firstly a discussion on the information redundancy between the HT.
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3. HT Fusion Algorithms

Before presenting the tested approaches of fusion in the last section, we first focus on
the topology of these fusion methods since according to the topology the shared information
has to be included in the decision process.

3.1. Topology and Mutual Information

Basically, we distinguish three kinds of topology for the fusion algorithm:

1. The first is to consider jointly the results of the HT (i.e., the probability pj) and make
a decision from all these values. Thus, we have to classify the TS (linear/nonlinear)
with an array of probabilities. This topology is named centralized topology.

2. In the second, each HT makes a decision, and the final decision is performed from
these individual decisions. The classification is performed from an array of the
decision. This framework is a parallel distributed decision.

3. Finally, the last topology is called a serial (or sequential) distributed decision. Each
detector can make a decision depending on the robustness of the decision, for instance.
This approach can be interesting when all the HT do not have the same reliability
using first the more robust and then the others if needed.

The topology is a key feature, in particular, for the redundancy borne by each index.
In particular, the first two topologies pose the problem of the information shared by several
entries. It is obvious that some HT share close information, all making a false decision on
a TS; for instance, the final decision of the fusion would also be false if the information
redundancy is not detected and processed. A fairly admitted quantity to estimate the
shared information, under the two hypotheses, is the Mutual Information (MI) as:

I(H0) =
∫ 1

0

∫ 1

0
ln
(

fi,j(pi, pj|H0)
)

fi,j(pi, pj|H0)dpidpj

−
∫ 1

0
ln
(

fi(pi|H0)
)

fi(pi|H0)dpi −
∫ 1

0
ln
(

f j(pj|H0)
)

f j(pj|H0)dpj

(10)

where fi,j(pi, pj|H0) is the joint probability of pi and pj estimates and fi(pi|H0) is the
marginal pdf (same for H1), see Section 2. In Section 4, we estimated the MI for the
two hypotheses, all the lengths and all the systems according to the Ahmad entropy
estimate ([13,58]).

3.2. Fusion Methods

In [30], we tested fusion rules. In what follows, we consider having selected some
indices to perform the fusion(see Table 2). Obliviously, the selection is based on the HT
robustness according to the estimated values of the criterion of Equation (3) over the
learning base.

1. Neural Network on probability and Entropy/Log-Probability (NN and NNL). The
first two methods are based on Neural Networks (NNs). Details of the architecture
are given in [30]. We use the learning base to train the NN and estimate the results on
the validation base. The first NN has for input the probability pj for all the indices
of Section 2, assuming that the NN discard the non-pertinent input (i.e., non robust
HT, but also shared information in order to robustify the final decision), the output
being 0 or 1 according to the hypothesis. For the same kind of NN, the same process
is developed over the Log-Probability and then the NN input is the entropy. The
idea being to ease the elimination of the shared information but possibly losing the
robustness information borne by the probabilities.
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2. Maximum Likehood (ML). Obviously, since we have a labeled (linear/nonlinear)
database, we can estimate the joint multivariate density pdf of all the probabilities
and make the decision:

u = 0 if
f (pi · · · pj|H0)

f (pi · · · pj|H1)
≥ λ, u = 1 either (11)

In this case, the f (pi · · · pj|H0) (resp. f (pi · · · pj|H1)) is the joint probability density
of the pj, under H0 (resp. H1). The threshold λ is fixed according to value α. This
joint probability could be estimated either on all the HT or by only considering the
more robust ones, as previously stated.

3. Optimized Decision (OD). This approach [59] first concatenates the decision of each
HT into an array ~U, the final decision being made as:

u = 0 if
P(~U|H0)

P(~U|H1)
> 1, u = 1 either (12)

P(~U|H0) (resp. P(~U|H1)) is the probability of ~U underH0 (resp. H1). Thus, ~U has 2n

possible values, n being the number of selected HT. One advantage of the approach is
that it is set to different TIEP α for each decision, but it needs an operational research
of all the p-values to take into account, the possible correlation between the decisions,
this optimization being performed over a predefined bounded grid.

4. Decision with Security Offset (DSO). This approach needs first to rank the HT accord-
ing to the performance over the learning based. The idea is to make this ranking using
first the most robust HT, except when its decision is not sure, i.e., when the pdf at the
estimated value is close to:

f j(pj|H0)

f j(pj|H1)
> tj

max then u = 0,

tj
max >

f j(pj|H0)

f j(pj|H1)
> tj

min then no decision,

f j(pj|H0)

f j(pj|H1)
< tj

min then u = 1

(13)

When there is not a decision, the second-most robust test is tested. The process is
repeated, in case of failure, until the less robust HT. If none of the HT can provide a
“robust” decision, in the meaning of Equation (13), then the final decision is given by
the more robust (i.e., first) HT. tj

min and tj
max are estimated over the learning basis, by

an exhaustive search, in order to minimize R̄.
5. Maximum of Entropy (ME). One of the few papers [25,60], taking into account the MI

between the indices in the final decision. This decision is given by:

u = 0 if
f (pi, · · · , pj|H0)

f (pi, · · · , pj|H1)
≥ λ =

C0,1 − C1,1

C1,0 − C0,0
, u = 1 either (14)

where Ci,j = − log(P(Hj|u = i)) and i, j = 0, 1, and thus, Ci,j is the entropy (i.e., the
uncertainty) of the hypothesis Hj conditionally to the final decision u = i. Unlike
the ML, the thresholds are given by the data according to their MI. However, the
main difficulty is to estimate the coefficient Ci,j since a recursive optimization process
between the acceptation region and the estimate of this coefficient has to be performed
([30], Section 3 of [60], Chapter 7 [25]).
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6. Geometric Mean (GM). An ad-hoc approach is obviously to estimate a fused probabil-
ity as the weighted geometric mean of the probability of each HT:

p = pγi
i · · · p

γj
j with γi ≥ 0 and

n

∑
i=1

γi = 1 (15)

In [30], it is shown that entropy of the weighted geometric mean is a linear combi-
nation of the entropy of each HT weighted by γi. These weights γi are obviously
derived from the learning base by an optimization process, the decision being made
on the value of p. As seen in the results of [30], the more robust is an HT, the higher is
its weight; in some cases, a single HT can concentrate all the mass.

Table 2. Tested methods of HT fusion.

Method Type Merged Quantity Ref.

Neural networks on probability (NN) Centralized Probability [61]

Neural networks on log-probability (NNL) Centralized Entropy [61]

Maximum likehood (ML) Centralized Probability [25]

Optimal decision (OD) Parallel distributed Decision [59]

Decision with security offset (DSO) Serial distributed Probability [25]

Maximum of entropy (ME) Parallel distributed Decision [25,60]

Geometric mean (GM) Centralized Probability

4. Results

Before presenting the main findings of this paper, the nonlinearity detection in HF
returns, we briefly expose the results of [30].

4.1. Nonlinearity Detection in Small Simulated TS

As stated in the introduction, the first step is to generate the two bases for choosing the
fusion algorithm. For this, for each basis, we generate 10 systems of each quadratic model
of Equation (4), with randomly chosen parameters, under the stability constraint for the
bilinear and QARMA models. The normal excitation variance is calculated for NLER equal
to 0.25, 0.5, 0.75. For all 90 cases (30 nonlinear models and 3 NLER values), we generate
one thousand trials of nonlinear TS and the corresponding linear TS (but also surrogate
data as seen in [30]), over which the 12 indices have been estimated (in fact, using different
hyperparameter values of some HT, q5 or q9 for instance, we have estimated 23 indices).
This process has been repeated for the TS of length N = 128, 256, 512, 1024, 2048 and 4096
(under assessing the effect of the TS length on the HT performance), leading to more than
50 million index estimates. We have reproduced R̄ for each index in Table 3 and for the
fusion methods in Table 4.

• As stated in the Introduction, robustness for a small TS length (N = 128, see first line
of Table 3) is generally weak. Two HT give fairly good results q9 and q12. Indices q1,
q5, q6 and q10 are less robust but not totally inefficient, unlike the remaining HT. As
expected, the performance in the HT depends on the nonlinear system. For instance
q9, q10 and q12 lead to fairly good decisions on QARMA models. q1 outperforms
the others for bilinear/Volterra models. Moreover, the NLER, as previously stated,
interferes in the performance. Weakly nonlinear TS led to poor results, in particular,
for all TS lengths. Other details, in particular, on the optimal hyperparameters are
given in [30].

• Amazingly, the MI under the two hypotheses (see Tables 4 and 5 of [30]), does not
make clusters appear inside the 12 HT, all the pairs of HT having the same MI level,
even for the closest ones (e.g., q5 and q6). The only conclusions that we can draw from
the MI estimates are: first, the MI increases with the TS length, the HT giving the same
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decision as they become more robust; second, the MI is slightly higher underH1, the
HT giving a similar decision for nonlinear TS unlike theH0 case.

• Obviously, for the selection of our fusion method, we mainly consider the results on
the validation basis. In particular, even for NNs, we obtain the best results over the
learning basis, while the DSO method gives the best results on the validation basis.
The performance remains close for all TS lengths, except for the ML method that
improves by passing from N = 128 to N = 4096. As seen, the input data is a key
feature for neural networks, since the NN with entropy as input underperform the
NN with probability as input; the reason being that the entropy is not discriminant, as
seen in the previous point. As seen, the performance improvement is slight, passing
from R̄ from 0.21 for q9 alone to 0.18 for the DSO and as seen in [30] for N = 128, the
decision is performed by the most robust HT, i.e., q9 at the outset or at the outcome of
the DSO process.

According the these results, considering the case N = 128 and the ranked indices q9,
q12, q1, q10, q6 and q5, we perform the DSO method on the HF returns according to the
parameters computed over the simulated TS. Obviously, we object that the possible nonlin-
earity of HF price returns is not necessarily a second-order model, as in Equation (4). How-
ever, since there no available nonlinear system models for HF returns, we can only consider
these simple models. Moreover, these models are known to be able to mimic/approximate
a lot of nonlinear systems [33,62].

Table 3. Mean R̄ (multiplied by 103) for all models and all NLERs.

N q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

128 357 466 426 458 409 405 483 473 207 361 429 270

256 330 470 405 478 359 364 480 473 181 343 424 224

512 292 465 384 491 306 317 472 461 168 337 419 193

1024 260 465 353 474 251 275 471 456 161 323 410 218

2048 228 470 327 459 202 238 477 454 160 302 400 216

4096 205 472 298 443 156 205 479 452 153 263 391 192

Table 4. R̄ (multiplied by 103) for all models and all NLERs for the different fusion methods, learning
base (left) and test base (right).

N NN NN NNL NNL ML ML OD OD DSO DSO ME ME GM GM

128 90 196 381 406 203 337 218 274 187 180 410 500 193 251

256 96 194 338 410 206 337 222 312 160 147 415 500 169 273

512 110 204 338 397 198 306 224 310 165 147 422 500 159 269

1024 111 210 339 390 176 288 217 291 192 156 359 500 147 247

2048 119 225 338 381 147 251 182 278 165 147 317 500 131 250

4096 125 227 338 366 102 185 134 249 158 158 205 427 120 219

4.2. Hedge Fund Nonlinearity

The decision rule on the nonlinearity has then been applied over two databases
provided by TASS and S&P, the first one containing HF recorded from 1992 to 2003 (i.e.,
132 samples), the second one 120 samples from 1996 to 2006. As stated in the introduction,
the low number of samples makes the statistical decisions fairly difficult [5,9,63]. However,
the statistical properties of HF returns are known to vary over time [8,9,63]. Then, largest
return time series can violate the stationarity assumption needed for our tests (see Section 2).
Only fully recorded TS have been considered in the results presented below. This induces
a survivor bias, theoretically not relevant in our case, since we are not interested in the
relative performance, but we discuss this point again below. Another bias can be relevant
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in the nonlinearity detection case. Since the HF prices are declarative, managers may
smooth their returns [5] to reduce high returns for augmenting these returns when low
or negative. This smoothing has been observed through serial correlation of the returns.
Such “saturation” effects can induce nonlinearities. Results on the two HF bases are given
in Table 5. Two main conclusions can be drawn from this table.

Table 5. Classification of Hedge funds according to the decision rule of nonlinearity for the TASS
base (second and third column) and the S&P base (fourth and fifth column).

HF Style Linear Nonlinear Linear Nonlinear

Fund of Funds 25 27 75 35

Event-Driven 10 4 19 6

Emerging Market 7 1 10 3

Convertible Arbitrage 2 7 16 2

Equity Non-Hedge 5 14 15 12

Fixed Income 3 0 11 5

Managed Future 18 18 31 29

Equity Hedge 17 30 47 34

Merger Arbitrage 7 5 3 7

Foreign Exchange 4 5 8 1

Sector 8 7 8 5

Equity Market Neutral 4 11 11 3

Distressed Securities 5 1 11 6

Macro 4 6 13 7

Relative Value Arbitrage 1 2 7 8

• The first one is that the number of TS classified as nonlinear is much greater in the
TASS base than in the S&P base. For instance, 53.9% are classified as nonlinear for the
first HF base, but only 36.3% for the second one.

• According to Table 5, we can observe four situations:

1. The HFs mostly classified as linear in the two bases. For instance, Event-driven,
Emerging Market, Fixed Income and Distressed Securities.

2. The HFs mostly classified as nonlinear in the two bases (for the reason exposed
in the previous point, an equivalent number of linear/nonlinear HFs in the S& P
base leads to a conclusion of nonlinearity detection). These nonlinear styles are
Equity Hedge, Equity Non Hedge and Managed Future.

3. The Hedge funds equivalently classified as nonlinear or linear in both bases.
Four styles are in this category, Funds of Funds, Sector, Macro and Relative
Values Arbitrage. As observed in [17], Macro has near normal statistics but are
sometimes classified as nonlinear.

4. The last family is that classified as nonlinear in a base and linear in the other
one. These styles are Convertible arbitrage, Merger Arbitrage and Equity Market
Neutral. For this last family no conclusion can be drawn.

For the first family of HFs, the factorial linear model is valid. Moreover, the evolution
of the pertinent risk factors is also governed by a linear equation. For the second family,
the linearity of the model is rejected. Two reasons can explain the nonlinearity in the HF
price return. The first one is that the price return does not depend linearly on the risk
factors. The second reason is that the risk factors are nonlinear TS. A first indication is
given by observing that these three HF styles are negatively and strongly correlated with
the exchange rate (see [64] chapter 11) with a coefficient correlation respectively equal to
−0.14, −0.17, −0.15, but the exchange rates are known to nonlinearly evolve [65]. Thus,
the nonlinearity detected for the family of funds is due to the risk factor and not to a
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nonlinearity in the factorial model. This point is confirmed by observing that the linear
HFs do not depend on the exchange rate (correlation coefficients equal to −0.03, 0.03, 0.06).
The exception is the Fixed Income style with a positive correlation coefficient of 0.15. In
fact, Exchange rate has been pointed out as a leverage factor in some HFs (but not in all the
cases, as detailed on the Quantum Georges Soros’ fund in [63]). Amazingly, the emerging
market HFs are not classified as nonlinear, although the exchange rate is also assumed to
be a key factor in these funds [63]. As also noted in this paper, this exposure depends on
the level really invested in local currencies. The linearity of the emerging market HF price
return is observed despite the turbulent times related to the multiple currency and financial
crises (Mexican crisis of December 1994; Asian crisis since July 1997; Brazilian devaluation
of January 1999; Turkish liquidity crises of 2000–2001. . . ). The linearity is also declared for
Exchange Rate HFs. A possible reason is that in these funds the nonlinearities between all
the exchange rates can cancel each other out.

The third family can be explained by observing that the funds are very diversified
and thus there can be a specific risk factor (on a specific sector of the HF for instance) that
explains why some HF are classified as nonlinear and the others as linear. A final and global
conclusion of this study is that the linear factorial model is generally validated. When
nonlinearities are observed, they can be explained by the nonlinear evolution of a special
risk factor (the exchange rate). This is in accordance with Patton’s observation [9] that the
heavy tails of the market returns are uncorrelated with the heavy tail of HF returns leading
to a conclusion that these heavy tails are due to a skewed idiosyncratic risk (downside risk
aversion), and not to a common factor risk. As stated in this section, the survivor bias may
also have a part explanation of the overall acceptance of a linear factorial model. We can
assume that the HFs, for which the factorial model is nonlinear, have disappeared due to a
higher risk exposure and only those with a linear factorial model have survived.

As stated in the introduction, except the βi parameter the αm parameter may vary [8]
over time, and seems to be less informative in the HF case than the information ratio
[4,17,66]. In particular, the estimated values of αm in Equation (1), after a regression of
the HF returns over of the previously identified risk factors, can be impacted by residual
nonlinearities (not removed by the linear regression see [32]). In fact, the question of
determining the real value of αm is a key point of HF management, obviously for the overall
HF performance and the manager’s skill evaluation, but, above all, for the level of fees
claimed by the managers [67].

A last point for which the impact of nonlinearities has to be taken into account is the
design of fund of HFs, as initially proposed by Brandt et al. [6,7] for mutual funds and
extended to HFs by Joenväärä et al. [1]. In fact, this design/management is based over the
regression/clustering of fund characteristics, the factorial model of Equation (1) being one
of these characteristics. Thus, including nonlinear terms in the HF characteristics could
improve the fund of HFs performance.

Finally, from an algorithmic point of view, due to the weak improvement of HT fusion
for small time series, another method to perform the difficult task of nonlinearity detection
in small time series could be the use of Long Short Time Memory neural networks. The
basis to train the neural network could be the same as for estimating the fusion process
parameters. A question is to possibly redesign the activation function to detect nonlinearity
(i.e., phase coupling) instead of using well established functions as the Relu activation.

5. Conclusions

In this paper, we have presented several results. The first one is the robustness of HT
for nonlinearity detection in small TS. The second result is a decision rule derived from the
results of the robustness estimation step. The last point is the application of the decision
rule to the HF price return. From the results of this last section, we have deduced that
when nonlinearities are detected, they are due to the nonlinear evolution of a risk factor,
the exchange rate, and not the nonlinearity in the factorial model, thus validating results
previously derived under the linear factorial model.
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