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ON SYMMETRIES OF SINGULAR FOLIATIONS

RUBEN LOUIS

Abstract. This paper shows that a weak symmetry action of a Lie algebra g on a singular

foliation F induces a unique up to homotopy Lie ∞-morphism from g to the DGLA of vector

fields on a universal Lie∞-algebroid of F . We deduce from this general result several geometrical

consequences. For instance, we give an example of a Lie algebra action on a sub-affine variety

which cannot be extended on the ambient space. Last, we introduce the notion of tower of

bi-submersions over a singular foliations and lift symmetries to those.
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Introduction

Singular foliations arise frequently in differential or algebraic geometry. Here following [18,

1, 5, 8, 9] we define a singular foliation on a smooth, complex, algebraic, real analytic manifold

M with sheaf of functions O to be a subsheaf F : U −→ F(U) of the sheaf of vector fields

X, which is closed under the Lie bracket and locally finitely generated as an O-module. By

Hermann’s theorem [15], this is enough to induce a partition of the manifold M into embedded

submanifolds of possibly different dimensions, called leaves of the singular foliation. Singular
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2 RUBEN LOUIS

foliations appear for instance as orbits of Lie group actions with possibly different dimensions

or as symplectic leaves of a Poisson structure. When all the leaves have the same dimension, we

recover the usual “regular foliations”[10].

The purpose of this paper is to look at symmetries of singular foliations. Let (M,F) be

a foliated manifold. A global symmetry of a singular foliation F on M is a diffeomorphism

φ : M −→ M which preserves F , that is, φ∗(F) = F . The image of a leaf through a global

symmetry is again a leaf (not necessarily the same leaf). For G a Lie group, a strict symmetry

action of G on a foliated manifold (M,F) is a smooth action G×M −→ M that acts by global

symmetries [14]. Infinitesimally, it corresponds to a Lie algebra morphism g −→ X(M) between

the Lie algebra (g, [· , ·]g) of G and the Lie algebra of symmetries of F .

A strict symmetry action of G on M goes down to the leaf space M/F , even though the

latter space does not exist as a manifold. The opposite direction is more sophisticated since

a strict symmetry action of G on M/F does not induce a strict action over M in general.

However, it makes sense to consider linear maps ̺ : g −→ X(M) that satisfy [̺(x),F ] ⊂ F for

all x ∈ g, and which are Lie algebra morphisms up F , namely, ̺([x, y]g)− [̺(x), ̺(y)] ∈ F for all

x, y ∈ g. The latter actions are called “weak symmetry actions”. These actions induce a “strict

symmetry action”on the leaf space i.e. a Lie algebra morphism g −→ X(M/F), whenever M/F

is a manifold.

In view of [21, 18] it is shown that behind every singular foliation or more generally any Lie-

Rinehart algebras [19] there exists a Lie ∞-algebroid structure which is unique up to homotopy

called the universal Lie ∞-algebroid. Here is a natural question: what does a symmetry of a

singular foliation F induce on an universal Lie ∞-algebroid of F? Theorem 2.2 of this paper

gives an answer to that question. It states that any weak symmetry action of a Lie algebra on a

singular foliation F can be lifted to a Lie ∞-morphism valued in the DGLA of vector fields on

an universal Lie ∞-algebroid of F . Such Lie ∞-morphism will be called a lift of the symmetry

action. This goes in the same direction as [14] who already underlined Lie-2-group structures

associated to strict symmetry action of Lie groups. Furthermore, Theorem 2.2 says this lift is

unique modulo homotopy equivalence.

This result gives several geometric consequences. Here is an elementary question: can a Lie

algebra action g → X(W ) on an affine variety W ⊂ Cd be extended to a Lie algebra action

g → X(Cd) on Cd? Said differently: it is trivial that any vector field on W extends to Cd, but

can this extension be done in such a manner that it preserves the Lie bracket? Although no

“∞-oids”appears in the question, which seems to be a pure algebraic geometry question, we

claim that the answer goes through Lie ∞-algebroids and singular foliations. More precisely,

by Theorem 2.2, we know that it is possible to lift any symmetry action of singular foliation

into a Lie ∞-morphism. Is it possible to build such a Lie ∞-morphism where the arity −1 of

the second order Taylor coefficient is zero? There are cohomological obstructions. The idea is

then to say that any g-action on W induces a weak symmetry action on the singular foliation

IWX(Cd) of all vector fields vanishing on W (here IW is the ideal that defines W ). In some

specific cases, obstruction classes of extending this action to the ambient space appear on some

cohomology, although in general the obstruction is rather a Maurer-Cartan-like equations that

may or may not have solutions.

The outline of this paper is made as follows: In Section 1 and Appendix A we present some

definitions and facts on symmetry action of a Lie algebra on singular foliation and give some
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examples. Also, we review Lie ∞-algebroid structures and their morphisms in order to fix

notations. In Section 2 we state the main results of this paper and present their proofs. In

Section 3 we describe the relation between weak symmetry actions and Lie ∞-algebroids that

have some special properties. In Section 4 we define an obstruction class of extending a Lie

algebra action on an affine variety to ambient space. Finally, in Section 5 we look at symmetries

of bi-submersions. Afterwards, we introduce the notion of tower of bi-submersions over a singular

foliation and point out some observations related to their symmetries.
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1. Definitions and examples of weak and strict symmetry actions

Convention 1.1. Throughout this paper, M stands for a smooth or complex manifold, or an

affine variety over C. We will denote the sheaf of smooth or complex, or regular functions on M

by O and the sheaf of vector fields on M by X(M), and X[f ] stands for a vector field X ∈ X(M)

applied to f ∈ O. Also, K stands for R or C.

Definition 1.2. Let F ⊂ X(M) be a singular foliation over M .

• A diffeomorphism φ : M −→ M is said to be a symmetry of F , if φ∗(F) = F .

• A vector field X ∈ X(M) is said to be a infinitesimal symmetry of F , if [X,F ] ⊂ F . The

Lie algebra of infinitesimal symmetries of F is denoted by sym(F).

In particular, F ⊂ sym(F), since [F ,F ] ⊂ F .

Proposition 1.3. [1, 12] Let M be a smooth or complex manifold. The flow of an infinitesimal

symmetry of F , if it exists, is a symmetry of F .

As we will see later, one of the consequences of our future results is that any symmetry

X ∈ sym(F) of a singular foliation F admits a lift to a degree zero vector field on any universal

NQ-manifold over F that commutes with the homological vector field Q. This will allow us to

have an alternative proof and interpretation of Proposition 1.3 (see Section 2).

Let (g, [· , ·]g) be a Lie algebra over K = R or C, depending on the context. From now on and

in the sequel g is concentrated in degree −1.

Definition 1.4. A weak symmetry action of the Lie algebra g on a singular foliation F on M

is an K-linear map ̺ : g −→ X(M) that satisfies:

• ∀x ∈ g, [̺(x),F ] ⊆ F ,

• ∀x, y ∈ g, ̺([x, y]g)− [̺(x), ̺(y)] ∈ F .

When x 7−→ ̺(x) is a Lie algebra morphism we speak of strict symmetry action of g on F .

There is an equivalence relation on the set of weak symmetry actions which is defined as follows:

two weak symmetry actions, ̺, ̺′ : g −→ X(M) are said to be equivalent if there exists a linear

map ϕ : g −→ F such that ̺− ̺′ = ϕ.
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Remark 1.5. It is important to notice that when F is a regular foliation and M/F is a

manifold, any weak symmetry action of a Lie algebra g on F induces a strict action of g over

M/F . Definition 1.4 is a way of extending this idea to all singular foliations.

Here is a list of some examples.

Example 1.6. Let π : M −→ N be a submerssion. Since any vector field on N comes from a

π-projectable vector field on M , therefore any Lie algebra morphism g −→ X(N) can be lifted

to a weak symmetry action g −→ X(M) on the regular foliation Γ(ker dπ), and any two such

lifts are equivalent.

Furthermore, any weak action of a Lie algebra g on a singular foliation F on N can be lifted

up to a class of weak symmetry actions on the pull-back foliation π−1(F), (see Definition 1.9 in

[1]).

Example 1.7. Let F be a singular foliation on M . For any point m ∈ M , the set F(m) =

{X ∈ F | X(m) = 0} is a Lie subalgebra of F . Put Im = {f ∈ C∞(M) | f(m) = 0}. The quo-

tient space gm =
F(m)

ImF
is a Lie algebra, since ImF ⊆ F(m) is a Lie ideal. The Lie algebra

gm is called the isotropy Lie algebra of F at m (see [4]). Let us denote by [· , ·]gm , its Lie bracket.

(1) Consider ̺ : gm → F(m) ⊂ X(M) a section of the projection map

ImF �

� // F(m) // // gm

̺
qq

(1)

Then [̺(x),ImF ] ⊂ ImF and ̺([x, y]gm)− [̺(x), ̺(y)] ∈ ImF . Hence, the map ̺ : gm →

X(M) is a weak symmetry action of the singular foliation ImF . A different section ̺′

of the projection map yields an equivalent weak symmetry action of gm on ImF . An

obstruction class for having a strict symmetry action equivalent to ̺ will be given later

in Section 4.

(2) In particular, for k ≥ 1, let us denote by gkm the isotropy Lie algebra of the singular

foliation Ik
mF at m. Any section ̺k : g

k
m −→ X(M) of the projection map

Ik+1
m F �

� // IkF // // gkm

̺krr
(2)

is a weak symmetry action of the Lie algebra gkm on the singular foliation Ik+1
m F .

Example 1.8. The following example is taken from [20], and follows the same patterns as in

Examples 1.6 and 1.7. Let (M,F) be a singular foliation on a manifold M and L ⊂ M a leaf. Let

[L,M ] be a neighbourhood of L in M equipped with some projection π : M −→ L. According

to [20], upon replacing [L,M ] be a smaller neighborhood of L if necessary, there exists an

Ehresmann connection (that is a vector sub-bundle H ⊂ T [L,M ] with H ⊕ ker(dπ) = T [L,M ])

which satisfies that Γ(H) ⊂ F . Such an Ehresmann connection is called an Ehresmann F-

connection and induces a C∞(L)-linear section ̺H : X(L) −→ Fproj of the surjection Fproj −→

X(L), where Fproj stands for vector fields of F π-projectable on elements of X(L).

The section ̺H is a weak symmetry action of X(L) on the tranverse foliation T := Γ(ker dπ)∩ F .

When the Ehresmann connection H is flat, ̺H is bracket-preserving, and defines a strict sym-

metry of X(L) on the transverse foliation T .
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Example 1.9. Consider for a fixed k, the singular foliation Fk := Ik
0X(R

d) generated by all

vector fields vanishing to order k at the origin. The action of the Lie algebra gl(R) on Rd which

is given by,

gl(R) −→ X(Rd), (aij)1≤i,j≤d 7−→
∑

1≤i,j≤d

aijxi
∂

∂xj

is a strict symmetry of Fk.

Example 1.10. Let ϕ := (ϕ1, . . . , ϕr) be a r-tuple of homogeneous polynomial functions in d

variables over K. Consider the singular foliation Fϕ ( see [19] Section 3.2.1) which is generated

by all polynomial vector fields X ∈ X(Kd) that satisfy X[ϕi] = 0 for all i ∈ {1, . . . , r}. The

action K → X(Kd), λ 7→ λ
−→
E , is a strict symmetry of Fϕ. Here

−→
E stands for the Euler vector

field.

Example 1.11. LetW be an affine variety realized as a subvariety of Cd and IW ⊂ C[x1, . . . , xd]

its corresponding ideal. Let us denote by X(W ) := Der(C[x1, . . . , xd]/IW ) the Lie algebra of

vector field of W . Let FW := IWX(Cd) the singular foliation made of vector fields vanishing on

W . Since every vector field on W can be extended to a vector field on Cd tangent to W . Any

Lie algebra morphism ̺ : g −→ X(W ) extends to a linear map ˜̺: g −→ X(Cd) that makes this

diagram commutes

X(Cd)

����
g

˜̺
==④④④④④④④④④

̺
// X(W )

This extension ˜̺ is a weak symmetry action of g on FW over the ambient space Cd. Two

different extensions yield equivalent symmetry actions.

2. A Lie ∞-morphism lifting a weak symmetry of a foliation

We refer to Appendix A for the notion of (universal) Lie ∞-algebroid of a singular foliation.

We denote them by (E,Q) and their functions by E . Also, see Appendix B for the notion of Lie

∞-morphism of differential graded Lie algebras and notations.

Definition 2.1. Let F be a singular foliation over M and (E,Q) a Lie ∞-algebroid over F .

Consider a weak symmetry action ̺ : g −→ X(M) of g on F .

• We say that a Lie ∞-morphism of differential graded Lie algebras

Φ: (g, [· , ·]g) → (X•(E)[1], [· , ·] , adQ)

lifts the weak symmetry action ̺ to (E,Q) if for all x ∈ g, f ∈ O, Φ0(x)(f) = ̺(x)[f ].

• When Φ exists we say then Φ is a lift of ̺ on (E,Q).

We now state the main theorem of this paper.

Theorem 2.2. Let F a be singular foliation over a smooth manifold (or an affine variety) M

and g a Lie algebra. Let ̺ : g −→ X(M) be a weak symmetry action of g on F . The following

assertions hold:

(1) for any universal Lie ∞-algebroid (E,Q) of the singular foliation F , there exists a Lie

∞-morphism Φ: (g, [· , ·]g) −→ (X•(E)[1], [· , ·] , adQ) that lifts ̺ to (E,Q),

(2) any two such Lie ∞-morphism are homotopy equivalent over the identity of M ,
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(3) any two such lifts of any two equivalent weak symmetry actions of g on F are homotopy

equivalent.

Remark 2.3. Item (1) in Theorem 2.2 means that

(1) there exists a linear map Φ0 : g −→ X0(E) such that

Φ0(x)[f ] = ̺(x)[f ], and [Q,Φ0(x)] = 0, ∀x ∈ g, f ∈ O. (3)

This morphism is not a graded Lie algebra morphism, but there exist a linear map

Φ1 : ∧2 g −→ X−1(E) such that for all x, y, z ∈ g,

Φ0([x, y]g)− [Φ0(x),Φ0(y)] = [Q,Φ1(x, y)].

Also,

Φ1 ([x, y]g, z)− [Φ0(x),Φ1(y, z)]+ 	 (x, y, z) = [Q,Φ2(x, y, z)]

for some linear map ∧3g −→ X−2(E). These sets of compatibility conditions continue

to higher multilinear maps.

(2) For every element x ∈ g and i ≥ 1, there is a degree zero map ∇x ∈ Der(E) (i.e.

∇x(fe) = f∇x(e) + ̺(x)[f ]e, for f ∈ O, e ∈ Γ(E)) depending linearly on x, such that

〈Φ0(x)
(0)(α), e〉 = ̺(x)[〈α, e〉] − 〈α,∇x(e)〉, for all α ∈ Γ(E∗), e ∈ Γ(E)). (4)

Therefore, by using Equation (3),(4) and the dual correspondence between Lie ∞-

algebroids and NQ-manifolds [25, 24, 22], we obtain theses compatibility conditions:

ℓ1 ◦ ∇x = ∇x ◦ ℓ1 and ρ ◦ ∇x = ad̺(x) ◦ ρ.

Where Φ0(x)
(0) stands for the arity zero of Φ0(x), and ℓ1 stands for the corresponding

unary bracket of (E,Q). Also, for X ∈ X(M), adX := [X, · ].

In general, the map g −→ Der(E), x 7→ ∇x is not a Lie algebra morphism even when

the action ̺ is strict. In fact, there exists a bilinear map γ : ∧2 g −→ End(E)[1] of

degree 0 that satisfies

∇[x,y]g − [∇x,∇y] = γ(x, y) ◦ ℓ1 − ℓ1 ◦ γ(x, y) + ℓ2(η(x, y), · ),

here ℓ2 is the corresponding 2-ary bracket of (E,Q), and η : ∧2 g −→ Γ(E−1) is such

that ̺([x, y]g)− [̺(x), ̺(y)] = ρ(η(x, y)).

Corollary 2.4. Any symmetry X ∈ X(M) of the singular foliation F can be lifted to a degree

zero vector field Z ∈ X0(E) that commutes with Q, i.e. such that [Z,Q] = 0.

Proof. To construct Z, it suffices to apply Theorem 2.2 for g = R and take Z to be the image

of 1 through Φ0 : R −→ X0(E). �

Remark 2.5. In particular Corollary 2.4 has the following consequences:

(1) for any admissible t, the flow ΦZ
t : E −→ E of Z induces an isomorphism of vector bundles

E−1 −→ E−1. Since [Q,Z] = 0, the following diagram commutes,
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Γ(E−1)

ρ

��

(ΦZ
t )(0)

// Γ(E−1)

ρ

��
X(M)

(ϕX
t )∗

// X(M)

where φX
t is the flow of X at t.

(2) Consequently, for any open set U ⊂ M which is stable under ϕX
t , there exists an invertible

matrix Mt
X with coefficients in O(U) that satisfies

(
φX
t

)
∗




X1

...

Xn


 = Mt

X




X1

...

Xn


 ,

for some generators X1, . . . ,Xn of F over U . As announced earlier, we recover Proposi-

tion 1.3, that is,
(
φX
t

)
∗
(F) = F .

Let (E,Q) and (E′, Q′) be two universal Lie ∞-algebroids of F . A direct consequence of Ri-

cardo Campos’s Theorem 4.1 in [7] is that the differential graded Lie algebras (X•(E)[1], [· , ·] , adQ)

and
(
X•(E)[1], [· , ·] , adQ′

)
are homotopy equivalent over the identity of M . This leads to the

following statement.

Corollary 2.6. Let ̺ : g −→ X(M) be a weak symmetry action of a Lie algebra g on F . Then,

there exist Lie ∞-morphisms, Φ: g −→ (X•(E)[1], [· , ·] , adQ) and Ψ: g −→
(
X•(E

′)[1], [· , ·] , adQ′

)

that lift ̺, and Φ,Ψ make the following diagram commute up to homotopy

g

Φ

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

Ψ

((PP
PP

PP
PP

PP
PP

PP

(X•(E)[1], [· , ·] , adQ) oo ∼ //
(
X•(E

′)[1], [· , ·] , adQ′

)
.

(5)

Proof. The composition of Φ with the horizontal map in the diagram (5) is a lift of the action

̺. It is necessarily homotopy equivalent to Ψ by item (2) in Theorem 2.2. �

2.1. Cohomology of longitudinal graded vector fields. In this Section we study the co-

homology of longitudinal vector fields, which will help in proving the main results stated in the

beginning of Section 2.

Let F be a singular foliation over M .

Definition 2.7. Let E be a splitted graded manifold over M with sheaf of function E . A

vector field L ∈ X(E) is said to be a longitudinal vector field for F if there exists vector fields

X1, . . . ,Xk ∈ F and functions Θ1, . . . ,Θk ∈ E such that

L(f) =

k∑

i=1

Xi[f ]Θi, ∀f ∈ O. (6)

Example 2.8. Here are some examples.

(1) Vertical vector fields are longitudinal.

(2) For any Q-manifold (E,Q) over a manifold M . The homological vector field Q ∈ X(E)

is a longitudinal vector field for F := ρ(Γ(E−1)).
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(3) For (E,Q) a Q-manifold and F := ρ(Γ(E−1)) its basic singular foliation. For any

extension of a symmetry X ∈ sym(F) of F to a degree zero vector field X̂ ∈ X(E), the

degree +1 vector field [Q, X̂ ] is longitudinal for F .

Let us show this last point using local coordinates (x1, . . . , xn) on M and a local triv-

ialisation ξ1, ξ2, . . . of graded sections in Γ(E∗). The vector fields Q and X̂ take the

form:

Q =
∑

j

∑

k, |ξk|=1

Qj
k(x)ξ

k ∂

∂xj
+
∑

j

∑

k,ι1,...,ιk

1

k!
Qj

ι1,...,ιk
(x)ξ1 ⊙ · · · ⊙ ξk

∂

∂ξj

X̂ = X +
∑

j

∑

k,ι1,...,ιk

1

k!
Xj

ι1,...,ιk
(x)ξ1 ⊙ · · · ⊙ ξk

∂

∂ξj

(7)

where X =
n∑

i=1

Xi(x)
∂

∂xi
. By using Equation (7) we note that all the terms of [Q, X̂ ]

are vertical except maybe for the ones where the vector field X appears. For k ≥ 1, the

vector field [Qj
ι1,...,ιkξ

1 ⊙ · · · ⊙ ξk ∂
∂ξj

,X] is vertical; and for every fix k, one has




n∑

j=1

Qj
kξ

k ∂

∂xj
,X


 = ξk




n∑

j=1

Qj
k

∂

∂xj
,X


 .

Thus,




n∑

j=1

Qj
k

∂

∂xj
,X


 ∈ F , since X is a symmetry for F and

n∑

j=1

Qj
k

∂

∂xj
∈ F .

Remark 2.9. Longitudinal vector fields are stable under the graded Lie bracket.

Remark 2.10. Let us study vector fields on E.

(1) Sections of E are identified with derivations under the isomorphism mapping e ∈ Γ(E) 7−→

ιe ∈ X(E). This allows us to identify a vertical vector field with (maybe infinite) sums

of tensor products of the form Θ⊗ e with Θ ∈ E , e ∈ Γ(E).

(2) Any connection on Γ(E∗) induces vector field of degree zero ∇̃X ∈ X(E) by setting for

f ∈ O, ∇̃X(f) := X[f ]. Once a connection is chosen, we have for all k ∈ Z

Xk(E) ≃
⊕

j≥1

Ek+j ⊗O Γ(E−j)⊕ Ek ⊗O X(M) ≃ ⊕j≥1Γ(S(E
∗)k+j ⊗ E−j)⊕ Γ(S(E∗)k ⊗ TM).

Thus, one can realize a vector field P ∈ Xk(E) as a sequence P = (p0, p1, . . .), where

p0 ∈ Γ(S(E∗)k ⊗TM) and pi ∈ Γ(S(E∗)k+i⊗E−i) for i ≥ 1 are called components of P .

In the diagram (9), P = (p0, p1, . . .) is represented as an element of the anti-diagonal and

pi is on column i. We say that P is of depth n ∈ N if pi = 0 for all i < n. In particular,

vector fields of depth greater or equal to 1 are vertical. Under the decomposition (2),

the differential map adQ takes the form

D = Dh +
∑

s≥0

Dvs (8)

withD2 = 0. HereDh = id⊗d or id⊗ρ, andDvs : Γ(S(E∗)k⊗E−i) → Γ(S(E∗)k+s+1⊗

E−i−s) for i ≥ 1, s ≥ 0. We denote the latter complex by (L,D). They can be rep-

resented as anti-diagonal lines in the following commutative diagram whose lines are

complexes of O-modules
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...
...

...

· · · // Γ(S(E∗)k+2 ⊗E−2)

OO

id⊗d // Γ(S(E∗)k+2 ⊗ E−1)

OO

id⊗ρ
// Γ(S(E∗)k+2 ⊗ TM)

OO

· · · // Γ(S(E∗)k+1 ⊗E−2)

__❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
. . . Q⊗id+ ···

OO

id⊗d // Γ(S(E∗)k+1 ⊗ E−1)

]]❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
❁
. . . Q⊗id+ ···

OO

id⊗ρ
// Γ(S(E∗)k+1 ⊗ TM)

ff▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
. . . Q⊗id+ ···

OO

· · · // Γ(S(E∗)k ⊗ E−2)

__❄
❄
❄
❄❄
❄
❄
❄
❄
❄❄
❄
❄
❄
❄❄
❄
❄
❄
❄
. . . Q⊗id+ ···

OO

id⊗d // Γ(S(E∗)k ⊗ E−1)

ee

ff◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
. . . Q⊗id+ ···

OO

id⊗ρ
// Γ(S(E∗)k ⊗ TM)

dd

ff◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
. . . Q⊗id+ ···

OO

...

OO

...

OO

...

OO

column 2 column 1 column 0
(9)

Under this correspondence we understand longitudinal vector fields as the following.

Lemma 2.11. A graded vector field P = (p0, p1, . . . , ) ∈ L is longitudinal if p0 ∈ E ⊗O F .

The following theorem is crucial for the rest of this paper.

Theorem 2.12. Let (E,Q) be a universal Q-manifold of F .

(1) Longitudinal vector fields form an acyclic complex.

More precisely, any longitudinal vector field on E which is a adQ-cocycle is the image

through adQ of some vertical vector field on E.

(2) More generally, if a vector field on E of depth n is a adQ-cocycle, then it is the image

through adQ of some vector field on E of depth n+ 1.

Proof. Since (E,Q) is an universal Q-manifold of F , lines in (9) are exact. It is now a diagram

chasing phenomena. Let P = (p0, p1, . . . , ) ∈ L be a longitudinal element which is a D-cocycle.

By longitudinality there exists an element b1 ∈ Γ(S(E∗)⊗E−1) such that (id⊗ ρ)(b1) = p0. Set

P1 = (0, b1, 0, . . .), that is we extend b1 by zero on Γ(S(E∗) ⊗ E≤−2) and Γ(S(E∗) ⊗ TM). It

is clear that P −D(P1) = (0, p′1, p
′
2, . . .) is also a D-cocycle. In particular we have Dh(p′1) = 0

by exactness there exists b2 ∈ Γ(S(E∗) ⊗ E−2) such that Dh(b2) = p′1. As before put P2 =

(0, 0, b2, 0, . . .). Similarly, P −D(P1)−D(P2) = (0, 0, p′′2 , p
′′
3, . . .) is a D-cocycle. By recursion we

end up to construct P1, P2, . . . that satisfy P −D(P1)−D(P2) + · · · = 0, that is, there exists an

element B = (0, b1, b2, . . .) ∈ L such that D(B) = P . This proves item 1.

To prove item 2 it suffices to cross out in the diagram (9) the columns number 0, . . . , n − 1,

which does not break exactness. The proof now follows as for item 1. �

In particular we deduce from Theorem 2.12 the following exact subcomplex.

Corollary 2.13. Let (E,Q) be a universal Q-manifold of F . The subcomplex VQ of (X(E), adQ)

made of vertical vector fields P ∈ X(E) that satisfy P ◦Q(f) = 0 for all f ∈ O is exact.
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Proof. Let P ∈ X(E) be a vertical vector field which is a adQ-cocycle (note that we have

automatically P ◦Q(f) = 0 for all f ∈ O). By Theorem 2.12 there exists a vertical vector field

P̃ ∈ X(E) such that [Q, P̃ ] = P . Moreover, P̃ ∈ VQ, since for all f ∈ O,

0 = [Q, P̃ ](f) = (−1)|P̃ |P̃ ◦Q(f).

�

2.2. Proof of the main results. This section is devoted to the proof of the main results stated

in Section 2.

Let F be a singular foliation, and (E,Q) a universal Lie ∞-algebroid of F . We start with the

following lemma.

Lemma 2.14. For every weak symmetry Lie algebra action of g on F there exists a linear map,

Φ0 : g → X0(E), such that [Q,Φ0(x)] = 0 and Φ0(x)[f ] = ̺(x)[f ] for all x ∈ g, f ∈ O.

Proof. For x ∈ g, let ̺̂(x) ∈ X0(E) be any arbitrary extension of ̺(x) ∈ sym(F) to a degree zero

vector field on E. Since ̺(x) is a symmetry of F , the degree +1 vector field [̺̂(x), Q] is also a

longitudinal vector field on E, see Example 2.8 item 3. In addition, [ ̺̂(x), Q] is a adQ-cocycle.

By item 1 of Theorem 2.12, there exists a vertical vector field Y (x) ∈ X0(E) of degree zero such

that

[Q,Y (x) + ̺̂(x))] = 0. (10)

Let us set for x ∈ g, Φ0(x) := Y (x) + ̺̂(x). By construction we have, [Q,Φ0(x)] = 0 and

Φ0(x)[f ] = ̺(x)[f ] for all x ∈ g, f ∈ O. �

We will need the following lemma.

Lemma 2.15. Assume (E,Q) is a universal Lie ∞-algebroid over M . Let Φ̄ : (S•
Kg, Qg) −→

(S•
KX(E)[1], Q̄) be a coalgebra morphism which is a Lie ∞-morphism up to arity n ≥ 0, i.e.(

Φ̄ ◦Qg − Q̄ ◦ Φ̄
)(i)

= 0 for all integer i ∈ {0, . . . , n}. Then, Φ̄ can be lengthened to an ∞-

morphism up to arity n+ 1.

Proof. For convenience, we omit the variables. The identity,

Q̄ ◦
(
Φ̄ ◦Qg − Q̄ ◦ Φ̄

)
+
(
Φ̄ ◦Qg − Q̄ ◦ Φ̄

)
◦Qg = 0

taken in arity n+ 1 yields,

0 =
(
Q̄ ◦ (Φ̄ ◦Qg − Q̄ ◦ Φ̄)

)(n+1)
= [Q, (Φ̄ ◦Qg − Q̄ ◦ Φ̄)(n+1)],

since Q
(0)
g = 0 and

(
Φ̄ ◦Qg − Q̄ ◦ Φ̄

)(i)
= 0 for i ∈ {0, . . . , n}. It is clear that for all n ≥ 0 the

map
(
Φ̄ ◦Qg − Q̄ ◦ Φ̄

)(n+1)
: Sn+2

K
g −→ X−n(E)[1] take value in vertical vector fields on E. By

virtue of Lemma 2.13 there exists a vector field ζ ∈ X−n−1(E)[1] of degree −n− 1 such that

[Q, Φ̄(n+1) + ζ] = Φ̄(n) ◦Q
(1)
g − Q̄(1) ◦ Φ̄(n). (11)

By redefining the arity n + 1 of Φ̄ as Φ̄(n+1) := Φ̄(n+1) + ζ. One obtains a Lie ∞-morphism up

to arity n+ 1. The proof continues by recursion. �

Proof of Theorem 2.2. Let us show Item 1. Note that Lemma 2.14 gives the existence of a

linear map Φ0 : g −→ (X0(E)[1], [· , ·] , adQ) such that, [Q,Φ0(x)] = 0 for all x ∈ g. For x, y ∈ g,

consider

Λ(x, y) = Φ0([x, y]g)− [Φ0(x),Φ0(y)]. (12)
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Since ̺([x, y]g)− [̺(x), ̺(y)] ∈ F for all x, y ∈ g, and since ρ : Γ(E−1) −→ F surjective, we have

̺([x, y]g)− [̺(x), ̺(y)] = ρ (η(x, y)) for some element η(x, y) ∈ Γ(E−1) depending linearly on x

and y. Now we consider the vertical vector field of degree −1, ιη(x,y) ∈ X−1(U
F ) which is defined

on Γ(E∗) as:

ιη(x,y)(α) := 〈α, η(x, y)〉 for all α ∈ Γ(E∗),

and extended it by derivation on the whole space. For every f ∈ O,

(
Λ(x, y)− [Q, ιη(x,y)]

)
(f) = (̺([x, y]g)− [̺(x), ̺(y)] − ρ(η(x, y)) [f ] (by definition of Φ0)

= 0 (by definition of η)

It is clear that Λ(x, y) + [Q, ιη(x,y)] is a adQ-cocycle, hence by Corollary 2.13 it is of the form

[Q,Υ(x, y)] for some vertical vector field Υ(x, y) ∈ X−1(E) of degree −1. For all x, y ∈ g, we

define the Taylor coefficient Φ1 : ∧
2 g −→ X(E) as Φ1(x, y) := Υ(x, y)+ ιη(x,y). By construction,

we have the following relation,

Φ0([x, y]g)− [Φ0(x),Φ0(y)] = [Q,Φ1(x, y)], ∀x, y ∈ g. (13)

Consider for x, y, z ∈ g,

ϑ(x, y, z) = Φ1 ([x, y]g, z)− [Φ0(x),Φ1(y, z)]+ 	 (x, y, z). (14)

Here 	 (x, y, z) stands for circular permutation of x, y and z. For degree reason ϑ(x, y, z) is

O-linear. Moreover, ϑ(x, y, z) is a adQ-cocycle:

[Q,Φ1([[x, y]g, z]g)] + 	 (x, y, z) = − [Φ0 ([x, y]g) ,Φ0(z)] + 	 (x, y, z)

= [[Φ0(z), Q],Φ1(x, y)]− [[Φ1(x, y),Φ0(z)], Q]+ 	 (x, y, z)

= [Q, [Φ0(x),Φ1(y, z)]]+ 	 (x, y, z).

Where we have used the fact that [Q,Φ0(x)] = 0 for all x ∈ g, and the Jacobi identity for the

Lie brackets [· , ·]g and [· , ·]. By Corollary 2.13, there exists a derivation of degree −2 denoted

by Φ2(x, y, z) ∈ X−2(E)[1] that satisfies,

ϑ(x, y, z) = [Q,Φ2(x, y, z)]. (15)

So far, in the construction of the Lie ∞-morphism, we have shown the existence of a Lie ∞-

morphism Φ̄: S•
Kg −→ S•

K (X(E)[1]) up to arity 2 that is (Φ̄ ◦Qg)
(i) = (Q̄ ◦ Φ̄)(i) with i = 0, 1, 2.

The proof continues by recursion or by applying directly Lemma 2.15. This proves the part 1.

of the theorem. �

Before proving item 3 of Theorem 2.2 we will need the following lemma. For convenience, we

sometimes omit the variables in g.

Lemma 2.16. For any two Lie ∞-morphisms Γ,Ω: (S•
Kg, Qg) −→ (S•

K(X(E)[1]), Q̄) which co-

incide up to arity n ≥ 1, i.e. Γ(i) = Ω(i), for 0 ≤ i ≤ n, their difference in arity n + 1,

namely,

Γ(n+1) − Ω(n+1) : Sn+2
K

g −→ X−n−1(E)[1]

is a adQ-coboundary.
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Proof. Indeed, a direct computation yields

Q̄ ◦ (Γ− Ω) = (Γ− Ω) ◦Qg =⇒ Q̄(0) ◦ (Γ− Ω)(n+1) − ((Γ− Ω) ◦Qg)
(n+1)

︸ ︷︷ ︸
=0

= 0

=⇒ [Q,Γ(n+1) − Ω(n+1)] = 0

=⇒ Γ(n+1) −Ω(n+1) = [Q,H(n+1)] (by item 1 of Theorem 2.12)

for some linear map H(n+1) : Sn+2
K

g −→ X−n−2(E)[1]. �

Let us show item 2 of Theorem 2.2. Let Φ,Ψ: g −→ X(E)[1] be two different lifts of the

action g −→ X(M). We denote by Φ̄, Ψ̄ : S•
Kg −→ S•

K(X(E)[1]) the unique comorphisms given

respectively by the Taylor’s coefficients




Φ̄(r) : Sr+1
K

g
Φr−→ X−r(E)[1]

Ψ̄(r) : Sr+1
K

g
Ψr−−→ X−r(E)[1]

, for 0 ≤ r ≤ dim g. (16)

For any x ∈ g, the degree zero vector field Φ0(x) − Ψ0(x) ∈ X0(E) is vertical. Moreover we

have, [Q,Φ0(x) − Ψ0(x)] = 0. By Corollary 2.13 there exists a vector field H0 ∈ X−1(E) of

degree −1, such that Ψ0(x)− Φ0(x) = [Q,H0(x)]

g

Ψ0−Φ0

��

H0

xx♣ ♣
♣
♣
♣
♣

X−1(E)[1]
adQ // X0(E)[1]

(17)

Consider the following differential equation




dΞt

dt = Q̄ ◦Ht +Ht ◦Qg, t ∈ [0, 1]

Ξ0 = Φ̄
(18)

where (Ξt)t∈[0,1] is as in Definition B.7, and for t ∈ [0, 1], Ht is the unique Ξt-coderivation where

the only non-zero arity is H(0) = H0. Equation (18) gives a homotopy between Φ̄ and Ξ1. When

we consider the arity zero component in Equation (18), one obtains

dΞ
(0)
t

dt
= Q̄(0) ◦H

(0)
t +H

(0)
t ◦Q

(0)
g

= [Q,H0]

= Ψ0 − Φ0 = Ψ̄(0) − Φ̄(0).

Therefore, Ξ
(0)
t = Φ̄(0) + t(Ψ̄(0) − Φ̄(0)), and Φ̄ ∼ Ξ1 with Ψ̄(0) = Ξ

(0)
1 . Using Lemma 2.16, the

image of any element through the map Ψ̄(1) − Ξ
(1)
1 : S2

Kg −→ X−1(E)[1] is a adQ-coboundary.

Thus, Ψ̄(1) − Ξ
(1)
1 can be written as

Ψ̄(1) − Ξ
(1)
1 = [Q,H(1)], with H(1) : S2

Kg −→ X−2(E)[1]. (19)

Let us go one step further by considering the differential equation on [0, 1] given by




dΘt

dt = Q̄ ◦Ht +Ht ◦Qg

Ξ0 = Ξ̄1

(20)
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Here Ht is the extention of H(1) as the unique Θt-coderivation where all its arities vanish except

the arity 1 which is given byH(1). In arity zero, (Θ
(0)
t )t∈[0,1] is constant and has value Θ

(0)
1 = Ψ̄(0).

In arity one we have,

dΘ
(1)
t

dt
= Q̄(0) ◦H

(1)
t

= [Q,H(1)] = Ψ̄(1) − Ξ
(1)
1 .

Hence, Θ
(1)
t = Φ̄(1)+ t(Ψ̄(1)−Ξ

(1)
1 ) with Ψ̄(i) = Θ

(i)
1 for i = 0, 1. We then continue this procedure

by gluing all these homotopies until we reach the dimension of the Lie algebra g. We will obtain

at last a Lie ∞-morphism Ω such that Φ̄ ∼ Ω and Ω(i) = Ψ̄(i) for i = 1, . . . ,dim g. That means

Ω = Ψ̄, therefore Φ̄ ∼ Ψ. This proves item 2. of Theorem 2.2.

Let us prove item 3 of Theorem 2.2. Given two equivalent weak symmetry actions ̺, ̺′ of g

on a singular foliation F , i.e. ̺, ̺′ differ by a linear map g −→ X(M) of the form x 7→ ρ(β(x))

for some linear map β : g −→ Γ(E−1). Let Φ,Φ
′ : g −→ (X•(E)[1], [· , ·] , adQ) be a lift into a Lie

∞-morphism of the action ̺ and ̺′ respectively. One has for all x ∈ g and f ∈ O,

(
Φ0(x)−Ψ0(x)− [Q, ιϕ(x)]

)
(f) = ρ(ϕ(x))[f ] − 〈Q(f), ϕ(x)〉

= 0.

Since [Q,Φ0(x) − Ψ0(x) − [Q, ιϕ(x)]] = 0, by Corollary 2.13 there exists a vertical derivation

Ĥ(x) ∈ X−1(E) of degree −1 depending linearly on x ∈ g such that

Φ0(x)−Ψ0(x) = [Q, Ĥ(x) + ιϕ(x)].

Let H(x) := Ĥ(x)+ ιϕ(x), for x ∈ g. The proof continues the same as for item 2 of Theorem 2.2

2.3. Particular examples. We recall that for a regular foliation F on a manifold M , the

Lie algebroid TF ⊂ TM , whose sections form F , is a universal Lie ∞-algebroid of F . Its

corresponding Q-manifold is given by the leafwise De Rham differential on Γ(∧•T ∗F ).

Example 2.17. Let F be a regular foliation on a manifoldM . Any weak symmetry action g −→

X(M), x 7−→ ̺(x), of F , can be lifted up to Lie ∞-morphism Φ: g −→ (X•(E)[1], [· , ·] , adQ)

that satisfies [ddR,Φ] = 0, given explicitly as follows:

x ∈ g 7−→ Φ0(x) = L̺(x) ∈ X0(∧
•T ∗F ) (21)

x ∧ y ∈ ∧2g 7−→ Φ1(x, y) = ιχ(x,y) ∈ X−1(∧
•T ∗F ) (22)

and
(
Φi : ∧i+1 g −→ X−i(∧

•T ∗F )
)
≡ 0, for all i ≥ 2, where χ(x, y) := ̺([x, y]g)− [̺(x), ̺(y)] for

x, y ∈ g. Also, LX stands for the Lie derivative on multi-forms w.r.t X ∈ X(M), and ιX is the

internal product.

Example 2.18. Let F be a singular foliation on a manifold M together with a strict symmetry

action ̺ : g −→ X(M) such that g ⊂ F . Hence, C∞(M)g is a singular foliation which is

the image of the transformation Lie algebroid g × M . The universality theorem (see [18, 19])

provides the existence of a Lie ∞-morphism ν : g −→ UF . Let us call its Taylor coefficients

νn : ∧n+1 g −→ E−n−1, n ≥ 0. We may take for example the 0-th and 1-th Taylor coefficients
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of a Lie ∞-morphism that lifts ̺ as:

Φ0(x) := [Q, ιν0(x)] ∈ X0(U
F ), for x ∈ g.

Φ1(x, y) := [Q, ιν1(x,y)]
(−1) −

∑

k≥0

[[Q, ιν0(x)], ιν0(y)]
(k) ∈ X−1(U

F ), for x, y ∈ g.

Note that in this case the action ̺ is equivalent to zero, therefore by item 3 of Theorem 2.2 the

Lie ∞-morphism Φ is homotopic to zero.

3. Lifts of strict symmetry actions and Lie ∞-algebroids

In this Section, we consider the finite dimensional Lie algebra g as the trivial vector bundle

over M with fiber g.

The following theorem says that any lift of strict symmetry action of g on a singular foliation

F induces a Lie ∞-algebroids with some special properties and vice versa.

Proposition 3.1. Let (E,Q) be a Lie ∞-algebroid over a singular foliation F . Any Lie ∞-

morphism Φ: (g, [· , ·]g) −→ (X•(E)[1], [· , ·] , adQ) induces a Lie ∞-algebroid (E ⊕ g, Q′) with

Q′ := dCE +Q+
∑

k≥1,i1,...,ik=1,...,dim(g)

1

k!
ξi1 ⊙ · · · ⊙ ξikΦk−1(ξi1 , . . . , ξik), (23)

where dCE is the Chevalley-Eilenberg complex of g, ξ1, . . . , ξdim(g) ∈ g∗ is the dual basis of

some basis ξ1, . . . , ξdim(g) ∈ g and for all k ≥ 0, Φk : S
k+1g −→ X−k(E)[1] is the k-th Taylor

coefficients of Φ.

In the dual point of view, (23) corresponds to a Lie ∞-algebroid over the complex

· · ·
ℓ1−→ E−3

ℓ1−→ E−2
ℓ1−→ g⊕ E−1

ρ′

−→ TM (24)

whose brackets satisfy

(1) the anchor map ρ′ sends an element x⊕ e ∈ g⊕ E−1 to ̺(x) + ρ(e) ∈ ̺(g) + TF ,

(2) the binary bracket satisfies

ℓ2 (Γ(E−1),Γ(E−1)) ⊂ Γ(E−1) and ℓ2(Γ(E−1), x) ⊂ Γ(E−1), ∀x ∈ g

(3) the g-component of the binary bracket on constant sections of g×M is the Lie bracket

of g.

Conversely, if there exists a Lie ∞-algebroid (E′, Q′) whose underlying complex of vector bun-

dles is of the form (24) and that satisfies item (1), (2) and (3), then there is Lie ∞-morphism

Φ: (g, [· , ·]g) −→ (X•(E)[1], [· , ·] , adQ) which is defined on a given basis ξ1, . . . , ξd of g by:

Φk−1(ξi1 , . . . , ξik) = pr ◦ [· · · [[Q, ιξi1 ], ιξi2 ], . . . , ιξik ] ⊂ X(E)[1], k ∈ N, (25)

where pr stands for the projection map X(E′)[1] −→ X(E)[1].

Remark 3.2. Note that every Lie ∞-morphism Φ: (g, [· , ·]g) −→ (X•(E)[1], [· , ·] , adQ) induces

a weak symmetry action of g on F that maps x ∈ g to the base vector field of Φ0(x) ∈ X0(E)

on M .

Proof. A direct computation gives the first implication. Conversely, let us denote by Q′ the

homological vector fields of Lie ∞-alegebroid whose underlying complex of vector bundles is of

the form (24). The map defined in Equation (25) is indeed a lift into a Lie ∞-morphism of the

weak symmetry action ̺:
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• It is not difficult to check that of any ξ ∈ g, one has [Q,Φ0(ξ)] = 0.

• The fact that Φ defines a Lie ∞-morphism can be found using Voronov trick [24], i.e,

doing Jacobi’s identity inside the null derivation

0 = pr ◦ [· · · [[[Q′, Q′], ιξi1 ], ιξi2 ], . . . , ιξik ]. (26)

A direct computation of Equation (26) falls exactly on the requirements of Definition B.3.

Let us compute Equation (26) for a small number of generators (e.g k = 2, 3) in order to show

how it works: from the identity
[[[

Q′, Q′
]
, ιξi1

]
, ιξi2

]
= 0,

one obtains by using twice the Jacobi identity the following relation,
[
Q′,
[[
Q′, ξi1

]
, ξi2
]]

−
[[
Q′, ξi1

]
,
[
Q′, ξi2

]]
= 0. (27)

One should notice that [[Q′, ξi1 ] , ξi2 ] splits into two parts. One part where the Chevalley Eilen-

berg acts to give
[[
dCE, ξi1

]
, ξi2
]
= ι[ξi1 ,ξi2 ]g, while the other part is

[[
Q′ − dCE, ξi1

]
, ξi2
]
. Hence,

by putting them in Equation (27), afterwards projecting on X (S•(E∗)), we get

pr ◦
[
Q′, ι[ξi1 ,ξi2 ]g

]
+ pr ◦ [Q′,

[[
Q′ − dCE, ξi1

]
, ξi2
]
]− pr ◦

[[
Q′, ξi1

]
,
[
Q′, ξi2

]]
= 0.

From there we deduce that

Φ0([ξi1 , ξi2 ]g) = [Q,Φ1(ξi1 , ξi2)] + [Φ0(ξi1),Φ0(ξi2)].

�

Notice that Proposition 3.1 assumes the Lie ∞-algebroid over F exists, not necessarily a

universal one (i.e. Lie ∞-algebroid that is built on a geometric resolution) which always exists

by [18, 19]. In fact we can be more general, we do not need a geometric resolution. The following

Theorem states that given a weak symmetry action of a Lie algebra g on singular foliation F

and a universal Lie ∞-algebroid of F seen as a Lie-Rinehart algebra (i.e. Lie ∞-algebroid that

is built on a free resolution of F , that is, resolutions that do not need to be geometric) there

always exists a Lie ∞-algebroid whose underlying complex of vector bundles is of the form (24)

and that satisfies item (1), (2) and (3) of Proposition 3.1.

Theorem 3.3. Let ̺ : g −→ X(M) be a weak symmetry action on a singular foliation F . Let

((K−i)i≥1,d, ρ) be a free resolution of the singular foliation F over M . The complex of trivial

vector bundles over M

· · ·
d

−→ E−3
d

−→ E−2
d

−→ g⊕E−1
ρ′

−→ TM (28)

where Γ(E−1) = K−i, comes equipped with a Lie ∞-algebroid structure

(1) whose unary bracket is d and whose anchor map ρ′, sends an element x ⊕ e ∈ g⊕ E−1

to ̺(x) + ρ(e) ∈ ̺(g) + TF ,

(2) the binary bracket satisfies

ℓ2 (Γ(E−1),Γ(E−1)) ⊂ Γ(E−1) and ℓ2(Γ(E−1),Γ(g)) ⊂ Γ(E−1),

(3) the g-component of the binary bracket on constant sections of g ×M is the Lie bracket

of g.

For a proof see Appendix C.
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Remark 3.4. When we have ̺(g)∩TmF = 0 for all m in M , the Equation (28) is free resolution

of the singular foliation C∞(M)̺(g) + F and we can apply directly the Theorem 2.1 in [19].

Otherwise, we need to show there is no obstruction in degree −1 while doing the construction

of the brackets if the result still needs to hold.

4. On weak and strict symmetries: an obstruction theory

In this section we apply theorems in Section 2 to define a class obstructing the existence of

strict symmetry action equivalent to a given weak symmetry action.

Let us start with some generalities. Assume we are given

• a Lie algebra g.

• a Lie ∞-algebroid (E,QE) over M , with anchor map ρ : E−1 −→ TM ,

• included as a sub-Lie ∞-algebroid in a Lie algebroid (E′, Q) over M , whose underlying

complex is, E′
−1 := g⊕ E−1, and for any i ≥ 2, E′

−i = E−i, namely

· · ·
d

−→ E−3
d

−→ E−2
d

−→ g⊕ E−1
ρ′

−→ TM. (29)

We also assume that

ℓ′2(x⊕ 0, y ⊕ 0) = [x, y]g ⊕ η(x, y)

for all x, y ∈ g, for some η : ∧2 g −→ E−1, and

ℓ′2(x,Γ(E−1)) ⊂ Γ(E−1)

for all x ∈ g.

In particular, this induces a weak symmetry action ̺ of the Lie algebra g on the singular foliation

F := ρ(Γ(E−1)) which is given by x ∈ g 7→ ̺(x) := ρ′(x) and satisfies for all x, y ∈ g

̺([x, y]g)− [̺(x), ̺(y)] = ρ(η(x, y)). (30)

Lemma 4.1. Let m ∈ M . Assume that the underlying complex (E, ℓ1) is minimal at a point

m, i.e. ℓ1|m = 0. The map

ν : g −→ End
(
E−1|m

)
, x 7−→ ℓ′2(x , ·)|m

satisfies

(a) ν[x, y]g − [ν(x), ν(y)] + ℓ2( ·, η(x, y))|m = 0,

(b) ν(z)
(
η(x, y)|m

)
− η([x, y]g, z)|m+ 	 (x, y, z) = 0.

Proof. Since ℓ1|m = 0, E′
−1|m

is a Lie algebra. The Jacobi identity on elements x, y ∈ g, e ∈

Γ(E−1), evaluated at the point m, implies that

ν([x, y]g)(e|m)− [ν(x), ν(y)](e|m) + ℓ2(η(x, y), e)|m = 0.

This proves item (a). Likewise, Jacobi identity on elements x, y, z ∈ g and since ℓ1|m = 0 give:

ℓ′2(ℓ
′
2(x, y), z)|m+ 	 (x, y, z) = 0 =⇒ ℓ′2([x, y]g, z)|m + ℓ′2(η(x, y), z)|m+ 	 (x, y, z) = 0,

=⇒ ν(z)
(
η(x, y)|m

)
− η([x, y]g, z)|m+ 	 (x, y, z) = 0.

Here we have used the definition of ℓ′2 on degree −1 elements and Jacobi identity for the bracket

[· , ·]g. This proves item (b). �

By Lemma 4.1, E−1 is equipped with a g-module structure when η(x, y)|m is for all x, y ∈ g

valued in the center the Lie algebra E−1|m . The following proposition generalizes this remark.
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Proposition 4.2. Let m ∈ M and assume that

• the underlying complex (E, ℓ1) of (E,Q) is minimal at m,

• for all x, y ∈ g, η(x, y)|m is valued in the center1 Z(E−1|m) of E−1|m.

Then,

(1) the restriction of the 2-ary bracket

ℓ′2 : g⊗ Z(E−1|m) −→ Z(E−1|m)

endows Z(E−1|m) with a g-module structure which does not depend neither on the choice

of weak symmetry action ̺ nor a universal Lie ∞-algebroid of F , nor of the Lie ∞-

morphism Φ: g −→ X(E).

(2) the restriction of the map η : ∧2 g −→ E−1 at m

η|m : ∧2 g −→ Z(E−1|m)

is a 2-cocycle for the Chevalley-Eilenberg complex of g valued in Z(E−1|m),

(3) the cohomology class of this cocycle does not depend on the representatives of the equiv-

alence class of ̺,

(4) If ̺ is equivalent to a strict symmetry action, then η|m is exact.

Proof. We may assume that Z(E−1|m) = E−1|m, i.e. ℓ2|m = 0 on E−1|m . The first clause

of item (1) follows from item (a) of Lemma 4.1 when ℓ2|m = 0. It is easy to see that if we

change the action ̺ to ̺+ ρ ◦ β for some vector bundle morphism β : g −→ E−1, the new 2-ary

bracket between sections of g and E−1 made in the proof of Theorem 3.3 is modified by (x, e) 7→

ℓ′2(x, e) + ℓ2(β(x), e). Therefore, under the assumption, ℓ2|m = 0, we obtain the last clause of

item (1). Item (2) follows from Item (b) of Lemma 4.1 that tells that η|m : ∧2 g −→ E−1|m is a

2-cocycle for the Chevalley-Eilenberg complex of g valued in E−1|m .

Let ̺′ be a weak action of g on F which is equivalent to ̺, i.e. there exists a vector bundle

morphim β : g −→ E−1 such that ̺′(x) = ̺(x) + ρ(β(x)) for all x ∈ g. Let η′ : ∧2 g −→ E−1 be

such that ̺′([x, y]g) − [̺′(x), ̺′(y)] = ρ(η′(x, y)) for all x, y ∈ g. Following the constructions in

the proof of Theorem 3.3, this implies that

η′(x, y) = η(x, y)+β([x, y]g)− ℓ′2(x, β(y))+ ℓ′2(y, β(x))− ℓ2(β(x), β(y))), for all x, y ∈ g. (31)

Hence, if η′|m ∈ H2(g, E−1|m) is exact, i.e. there exists a linear map λ : g −→ E−1|m such that

dCE(λ) = η′|m . Using Equation (31) and ℓ2|m = 0, one gets dCE(β|m + λ) = η|m . This proves

items (3) and (4). �

Remark 4.3. When ℓ2|m 6= 0. The weak symmetry action ̺ is equivalent to strict one if the

Maurer-Cartan-like equation (31) has no solution with η′|m = 0.

Let F be a singular foliation. Let us choose a universal algebroid (E,Q) such that (E, ℓ1)

is minimal at a point m ∈ M . Such a structure always exists. By Proposition 4.14 in [18] the

isotropy Lie algebra gm of the singular foliation F at the point m ∈ M is isomorphic to ker(ρm).

The following is a direct consequence of Proposition 4.2.

Corollary 4.4. Let m ∈ M be a point of M Assume that the isotropy Lie algebra gm of F at

m is Abelian. Then, for any weak symmetry action ̺ of a Lie algebra action g on F such that

̺([x, y]g)− [̺(x), ̺(y)] ∈ F(m) for all x, y ∈ g

(1) gm is a g-module.

1In particular, when the 2-ary bracket ℓ2 is zero at m, on elements of degree −1 we have, Z(E−1|m
) = E−1|m

.
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(2) The bilinear map, η|m : ∧2 g → gm, is 2-cocycle for the Chevalley-Eilenberg complex of g

valued in gm.

(3) Its class cl(η) ∈ H2(g, gm) does not depend on the choices made in the construction.

(4) Furthermore, cl(η) is an obstruction of having a strict symmetry action equivalent to ̺.

Example 4.5. We return to Example 1.7 with m ∈ M a leaf of F . Since the isotropy Lie

algebra gkm is Abelian for every k ≥ 2 the following assertions hold by Corollary 4.4:

(1) For each k ≥ 1, the vector space gk+1
m is a gkm-module.

(2) The obstruction of having a strict symmetry action equivalent to ̺k is a Chevalley-

Eilenberg cocycle valued in gk+1
m .

Example 4.6. Let F := I3
0X(R

n) be the singular foliation generated by vector fields vanishing

to order 3 at the origin. The quotient g :=
I2
0X(R

n)

I3
0X(R

n)
is a trivial Lie algebra. There is a weak

symmetry action of g on F which assigns to an element in g a representative in I2
0X(R

n). In

this case, the isotropy Lie algebra of F at zero is Abelian and ℓ′2(g, g0)|0 = 0. Thus, the action

of g on g0 is trivial. One can choose η : ∧2 g −→ g0 such that η
(
x2i

∂
∂xi

, x2i
∂

∂xj

)
= 2eij , with

eij a constant section in a set of generators of degree −1 whose image by the anchor is x3i
∂

∂xj
.

Therefore, η|0

(
x2i

∂
∂xi

, x2i
∂

∂xj

)
6= 0. This implies that the class of η is not zero at the origin.

Therefore, by item 2 of Corollary 4.4 the weak symmetry action of g on F is not equivalent to

a strict one.

Also, we have the following consequence of Corollary 4.4 for Lie algebra actions on affine va-

rieties, as in Example 1.11. Before going to Corollary 4.10 let us write definitions and some facts.

Settings: Let W be an affine variety realized as a subvariety of Cd, and defined by some ideal

IW ⊂ C[x1, . . . , xd]. We denote by X(W ) := Der(OW ) the Lie algebra of vector fields on W ,

where OW is coordinates ring of W .

Definition 4.7. A point p ∈ W is said to be strongly singular if for all f ∈ IW , dpf ≡ 0 or

equivalently if for all f ∈ IW and X ∈ X(Cd), one has X[f ](p) ∈ Ip.

Example 4.8. Any singular point of a hypersurfaceW defined by a polynomial ϕ ∈ C[x1, . . . , xd]

is strongly singular.

The lemma below is immediate.

Lemma 4.9. In a strongly singular point, the isotropy Lie algebra of the singular foliation

F = IWX(Cd) is Abelian.

Corollary 4.10. Let ̺ : g −→ X(W ) be a Lie algebra morphism.

(1) Any extension ˜̺ as in Example 1.11 is a weak symmetry action for the singular foliation

F = IWX(Cd).

(2) For any strongly singular point p in W if the class cl(η) does not vanish the strict action

̺ : g −→ Der(OW ) can not be extended to the ambient space.

Let us give an examples of Lie algebra actions on an affine variety that do not extend to the

ambient space.

Example 4.11. Let W ⊂ C2 be the affine variety generated by the polynomial ϕ = FG with

F,G ∈ C[x, y] =: O. We consider the vector fields U = FXG, V = GXF ∈ X(C2), where XF
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and XG are Hamiltonian vector fields w.r.t the Poisson structure {x, y} := 1. Note that U, V

are tangent to W , i.e. U [ϕ], V [ϕ] ∈ 〈ϕ〉. It is easily checked that [U, V ] = ϕX{F,G}.

The action of the trivial Lie algebra g = R2 on W that sends its canonical basis (e1, e2) to U ,

and V respectively, is a weak symmetry action on the singular foliation Fϕ := 〈ϕ〉X(C2), and

induces a Lie algebra map,

̺ : g −→ X(W ). (32)

A universal Lie algebroid of Fϕ is a Lie algebroid (see Example 3.19 of [19]) because,

0 // Oµ⊗O X(C2)
ϕ ∂

∂µ
⊗O id

// Fϕ

is a O-module isomorphism. Here µ is a degree −1 variable, so that µ2 = 0. The universal

algebroid structure over that resolution is given on the set of generators by:

ℓ2

(
µ⊗O

∂

∂x
, µ⊗O

∂

∂y

)
:=

∂ϕ

∂x
µ⊗O

∂

∂y
−

∂ϕ

∂y
µ⊗O

∂

∂x
(33)

and ℓk := 0 for every k ≥ 3. Write X{F,G} =
∂{F,G}

∂y

∂

∂x
−

∂{F,G}

∂x

∂

∂y
. Therefore, we can put

η(e1, e2) :=
∂{F,G}

∂y
µ⊗O

∂

∂x
−

∂{F,G}

∂x
µ⊗O

∂

∂y
. (34)

Take for example, F (x, y) = y − x2 and G(x, y) = y + x2. The isotropy Lie algebra g(0,0)

of Fϕ is abelian, since zero is a strong singular point of W . By Corollary 4.4 (1), g(0,0) is a

R2-module. A direct computation shows that the action on g(0,0) is not trivial but takes value

in O µ⊗O
∂

∂x
. Besides, Equation (34) applied to {F,G} = 4x gives

η(e1, e2) = −4µ⊗O
∂

∂y
. (35)

If η|(0,0) were a coboundary of Chevalley Eilenberg, we would have (in the notations of Propo-

sition 4.2) that

η(x, y)|(0,0) = β([x, y]R2)− ℓ′2(x, β(y)) + ℓ′2(y, β(x)) ∈ O µ⊗O
∂

∂x
, for all x, y ∈ g (36)

for some linear map β : g −→ g(0,0). Therefore, Equation (36) is impossible by Equation (35)

and since η|(0,0) 6= 0. In orther words, its class cl(η) does not vanish. By Corollary 4.10 (2), the

action ̺ given in Equation (32) cannot be extended to ambient space.

5. Symmetries of bi-submersions

The concept of bi-submersion over singular foliations has been introduced in [1] and it is used

in K-theory [3] or differential geometry [5, 13, 2]. Let us recall some definitions.

Definition 5.1. Let M be a manifold endowed with a singular foliation F . A bi-submersion

over F is a triple (B, s, t) where:

• B is a manifold,

• s, t : B → M are surjective submersions, respectively called source and target,

such that the pull-back singular foliations s−1F and t−1F are both equal to the space of vector

fields of the form ξ + ζ with ξ ∈ Γ(ker(ds)) and ζ ∈ Γ(ker(dt)). Namely,

s−1F = t−1F = Γ(ker(ds)) + Γ(ker(dt)). (37)
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Example 5.2. Let F be a singular foliation over a manifold M . For x ∈ M and X1, . . . ,Xn ∈ F

inducing a basis of Fx := F/IxF . We know from [1] that there is an open neighborhood W of

(x, 0) ∈ M × Rn such that (W, t, s) is a bi-submersion over F , where2

s(x, y) = x and t(x, y) = expx

(
n∑

i=1

yiXi

)
. (38)

Such bi-submersions are called path holonomy bi-submersions [4].

5.1. Lifts of symmetries. Let (B, s, t) be a bi-submersion of a singular foliation F on a man-

ifold M .

Definition 5.3. We call lift of a vector field X ∈ X(M) to the bisubmerssion (B, s, t) a vector

field X̂ ∈ X(B) which is both s-projectable on X and t-projectable on X.

The coming proposition means that the notion of lift to a bisubmersion only makes sense for

symmetries of the singular foliation.

Proposition 5.4. If a vector field on M admits a lift to (B, s, t), then it is a symmetry of F .

Proof. Let X̂ ∈ X(B) be a lift ofX ∈ X(M). Since X̂ is s-projectable, [X̂,Γ(ker ds)] ⊂ Γ(ker ds).

Since X̂ is t-projectable, [X̂,Γ(ker dt)] ⊂ Γ(ker dt). Hence:

[X̂, s−1(F)] = [X̂,Γ(ker ds) + Γ(ker dt)]

= [X̂,Γ(ker(ds)] + [X̂,Γ(ker dt)]

⊂ Γ(ker ds) + Γ(ker dt) = s−1(F).

In words, X̂ is a symmetry of s−1F . Since X̂ projects through s to X, X is a symmetry

for F . �

In the rest of the section, we investigate on existence of lifts of symmetries of F to bisubmer-

sions over F .

Remark 5.5. For a given X ∈ sym(F), the lift X̂ to a given bisubmersion is not canonical even

when it exists. However, two different lifts of a X ∈ X(M) to a bisubmerssion (B, s, t) differ by

an element of the intersection Γ(ker(ds)) ∩ Γ(ker(dt).

As the following example shows, the lift of a symmetry to a bi-submersion may not exist.

Example 5.6. Consider the trivial foliation F := {0} on M . For any diffeomorphism φ : M −→

M , (M, id, φ) is a bi-submersion over F . Every vector field X ∈ X(M) is a symmetry of F . If

it exists, its lift has to be given by X̂ = X since the source map is the identity. But X̂ = X is

t-projectable if and only if X is φ-invariant. A non-invariant vector field X therefore admits no

lift to (M, id, φ).

However, internal symmetries, i.e. elements in F admit lifts to any bisubmersion.

Proposition 5.7. Let (B, s, t) be any bi-submersion of a singular foliation F on a manifold M .

Every internal symmetry, i.e. every vector field in F , admits a lift to (B, s, t).

2For a vector field Y ∈ X(M) and x ∈ M , expx(Y ) stands for the image of x by the time-1 flow of Y .
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Proof. Let X ∈ F . Since s : B −→ M is a submersions, there exists Xs ∈ X(B) s-projectable

on X. Since t is a submersion, there exists Xt ∈ X(B) t-projectable on X. By construction

Xs ∈ s−1(F) and Xt ∈ t−1(F). Using the property (37) of the bi-submersion (B, s, t), the

vector fields Xs and Xt decompose as



Xs = Xs

s +Xs
t with Xs

s ∈ Γ(ker(ds)), Xs
t ∈ Γ(ker(dt)),

Xt = Xt
s +Xt

t with Xt
s ∈ Γ(ker(ds)), Xt

t ∈ Γ(ker(dt)).

By construction, Xs
t is s-projectable to X and t-projectable to 0 while Xt

s is s-projectable to

0 and t-projectable to X. It follows that, X̂ := Xt
s + Xs

t , is a lift of X to the bi-submersion

(B, s, t).

�

As the following lemma shows that the existence of a lift to a bi-submersion of a symmetry

of F is a local property.

Lemma 5.8. Let X ∈ sym(F). If X admits local lifts to the bi-submersion B, i.e. if every b ∈ B

admits an open neighborhood U ⊂ B on which there exists X̂U ∈ X(U) such that dt(X̂) = X|t(U)

and ds(X̂) = X|s(U)
, then X admits a lift X̂ ∈ X(B) to the bisubmerssion (B, s, t).

Proof. By assumption, there exists partition of unity (Ui, χi)i∈I of B such that there exists

X̂Ui
as in the statement. The vector field X̂ =

∑
i∈I χiX̂Ui

is both s-projectable on X and

t-projectable on X. �

We can now state the main result of this section. It uses several concepts introduced in [1],

which are recalled in the proof.

Proposition 5.9. Let F be a singular foliation on a manifold M . Any symmetry X ∈ sym(F)

admits a lift

(1) to any path holonomy bi-submersion (B, s, t),

(2) to Androulidakis-Skandalis’ path holonomy atlas,

(3) to a neighborhood of any point in a bisubmersion through which there exists a local

bisection that induces the identity.

Remark 5.10. In the cases 1) or 2) in Proposition 5.9, a linear lift

X → X̂

can be defined on the whole space sym(F) of symmetries of F . As an immediate consequence

of Remark 5.5, we obtain that for all X,Y ∈ sym(F),

[̂X,Y ]− [X̂, Ŷ ] ∈ Γ(ker ds) ∩ Γ(ker dt). (39)

Proof of Proposition 5.9. Let X ∈ sym(F). Asumme that (B, s, t) = (W, s0, t0) is a path holo-

nomy bi-submersion associated to some generators X1, . . . ,Xn ∈ F . Fix (y = (y1, . . . , yn), u) ∈

W ⊂ Rn × M , set Y :=
∑d

i=1 yiXi. Since dϕ1
Y (X) = exp(adY )(X) ∈ X + F , there exists

Zy ∈ F depending in smoothly on y such that dt0(0,X) = X +Zy. Take Z̃y ∈ t−1
0 (F) such that

dt0(Z̃y) = Zy. One has,

dt0

(
(0,X) − Z̃y

)
= ds0(0,X) = X.

We can write Z̃y = Z̃1
y + Z̃2

y , with Z̃1
y ∈ Γ(ker ds0), Z̃

2
y ∈ Γ(ker dt0). Hence, X̂ := (−Z̃1

y ,X) is a

lift to the bi-submersion (W, s0, t0). This proves item 1.



22 RUBEN LOUIS

If Xa ∈ X(B) and Xb ∈ X(B′) are two lifts of the symmetry X on the path holonomy bi-

submersions (B, s, t) and (B′, s′, t′) respectively, then (Xa,Xb) is a lift of X on the composition

bi-submersion B ◦ B′. This proves item 2, since the path holonomy atlas is made of fibered

products of holonomy path holonomy bi-submerssions.

Item 2 in Proposition 2.10 of [1] states that if the identity of M is carried by (B, s, t) at some

point v ∈ B then there exists an open neighbourhood V ⊂ B of v that satisfies s|V = s0 ◦ g and

t|V = t0 ◦ g, for some submersion g : V −→ W. Thus, for all X ∈ sym(F) there exists a vector

field X̂ ∈ X(V ) fulfilling ds|V (X̂) = dt|V (X̂) = X. This proves item 3.

�

5.2. Tower of bi-submersions and symmetries. We end this paper by considering towers

of bi-submersions. The work contained in this section is entirely original, except for the notion

below that arose in a discussion between C. Laurent-Gengoux, L. Ryvkin, and myself, and will

be the object of a separate study.

Definition 5.11. We call tower of bi-submersion over a singular foliation F on M , a (finite or

infinite) sequence of manifolds and maps as follows

TB : · · ·

si+1
,,

ti+1

22 Bi+1

si
**

ti

44 Bi

si−1
**

ti−1

44 · · ·

s1
**

t1

44 B1

s0
++

t0

33 B0, (40)

together with a sequence Fi of singular foliations on Bi, with the convention that B0 = M and

F0 = F , such that

• for all i ≥ 1, Fi ⊂ Γ(ker dsi−1) ∩ Γ(ker dti−1),

• for each i ≥ 1, Bi+1

si
**

ti

44 Bi is a bi-submersion over Fi.

Tower of bi-submersions over (M,F) shall be denoted as (Bi+1, si, ti,Fi)i≥0 The tower of bi-

submersions over F in (40) is said to be of of length n ∈ N if Bj = Bn and Fj = {0} for all

j ≥ n.

Remark 5.12. Let us spell out some consequences of the axioms. For i ≥ 1, two points

b, b′ ∈ Bi of the same leaf of Fi satisfy si−1(b) = si−1(b
′) and ti−1(b) = ti−1(b

′). In fact, for all

b ∈ Bi, TbFi ⊂ (ker dsi−1)|b ∩ (ker dti−1)|b .

Let us explain how such towers can be constructed out of a singular foliation. Let F be a

singular foliation on M . Then,

(1) By Proposition 2.10 in [1], there always exists a bi-submersion B1

s0
**

t0

44 M over F .

(2) The C∞(B1)-module Γ(ker ds0) ∩ Γ(ker dt0) is closed under Lie bracket. When it is

locally finitely generated, it is a singular foliation on B1. Then, it admits a bi-submersion

B2

s1
**

t1

44 B1 . Therefore, we have obtained the two first terms of tower of bisubmersions.

(3) We can then continue this construction provided that Γ(ker ds1) ∩ Γ(ker dt1) is locally

finitely generated as a C∞(B2)-module, and that it will be so at each step3.

3In real analytic case, the module Γ(ker ds1)∩Γ(ker dt1) is locally finitely generated because of the noetherianity

of the ring of germs of real analytic functions [11, 23].
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Definition 5.13. A tower of bisubmersions (Bi+1, si, ti,Fi) over (M,F) is called exact tower of

bisubmersions over (M,F) when Fi = Γ(ker(dsi)) ∩ Γ(ker(dti)) for all i ≥ 0. It is called a path

holonomy tower of bisubersions (resp. path holonomy atlas tower of bisubersions) if (Bi+1, si, ti)

is a path holonomy bisubmersion (resp. a path holonomy atlas) for Fi for each i ≥ 0. When a

path holonomy tower is exact we speak of exact path holonomy tower.

Definition 5.14. A symmetry of the tower of bi-submersion (Bi+1, si, ti,Fi)i≥0 is a family

X = (Xi)i≥0, with the i-th component Xi in sym(Fi), such that dsi−1(Xi) = dti−1(Xi) = Xi−1

for all i ≥ 1. We denote by sym(TB) the Lie algebra of symmetries of TB .

The next theorem that gives a class of tower of bisubmersions to which any symmetry of the

base singular foliation F lifts.

Theorem 5.15. Let F be a foliation. Let TB be an exact path holonomy tower of bi-submersions

(or an exact path holonomy atlas tower of bisubmersions). A vector field X ∈ X(M) is a

symmetry of F , i.e. [X,F ] ⊂ F , if and only if it is the component on M of a symmetry of TB.

Proof. It is a direct consequence of item 2 in Proposition 5.9. �

Lemma 5.16. Let F be a singular foliation on M . Assume that there exists a tower of bi-

submersion TB = (Bi, ti, si,Fi)i≥0 over F . Then,

· · · // ker ds2

��

dt2 // ker ds1

��

dt1 // ker ds0

��

dt0 // TM

��
· · · // B3

t2

// B2
t1

// B1
t0

// M.

(41)

is a complex of vector bundles, which is exact on the sections level4 if TB is an exact tower of

bisubmersions, i.e. if Fi = Γ(ker dsi−1) ∩ Γ(ker dti−1) for all i ≥ 1.

Proof. For any element b ∈ Bi+1 and any vector v ∈ ker dsi ⊂ TbBi+1 one has

dti(v) ∈ Tti(b)Fi, (since Γ(ker dsi) ⊂ t−1
i (Fi)).

=⇒ dti(v) ∈ (ker dsi−1 ∩ ker dti−1) |ti(b) by Remark 5.12.

=⇒ dti(v) ∈ ker dsi−1 and dti−1 ◦ dti(v) = 0, for all i ≥ 1.

This shows the the sequence (41) is a well-defined complex of vector bundles.

Let us prove that it is exact when Fi = Γ(ker dsi−1) ∩ Γ(ker dti−1) for all i ≥ 1. Let ξ ∈

Γ (ker dsi−1) be a ti−1-projectable vector field that projects to zero, i.e. dti−1(ξ) = 0. This

implies that ξ ∈ Γ(ker dsi−1) ∩ Γ(ker dti−1) = Fi. Since ti is a submersion there exists a ti-

projectable vector field ζ ∈ t−1
i (Fi) that satisfies dti(ζ) = ξ. The vector field ζ can be written as

ζ = ζ1 + ζ2 with ζ1 ∈ Γ (ker dti) and ζ2 ∈ Γ (ker dsi), because t−1
i (Fi) = Γ(ker dsi) + Γ(ker dti).

One has, dti(ζ2) = ξ. A similar argument shows that the map, Γ(ker ds0)
dt0−→ t∗0F , is surjective.

This proves exactness in all degree. �

4Let us explain the notion of exactness of level of sections when the base manifolds are not the same: what we

mean is that for all n ≥ 0, Γ(ker dtn) ∩ Γ(ker dsn) = (tn+1)∗(Γ(ker dsn+1)).

Equivalently, it means that the pull-back of the vector bundles to any one of the manifold Bm with m ≥ n is

exact at the level of sections, i.e

Γ(t∗m,n+1 ker dsn+1)
dtn+1 // Γ(t∗m,n ker dsn)

dtn // Γ(t∗m,n−1 ker dsn−1 )

is a short exact sequence of C∞(Bm)-modules, with tm,n = tn ◦ · · · ◦ tm for all m ≥ n.
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Corollary 5.17. Under the assumptions of Lemma 5.16. Assume the tower of bi-submersion

TB is of length n+ 1. Then, the pull-back of the sequence of vector bundles

ker dsn

--❬❬❬❬❬❬❬
❬❬❬❬❬

❬❬❬❬❬❬
❬❬❬❬❬❬

❬❬❬❬❬
❬❬❬❬❬❬

❬❬❬❬❬❬
❬❬❬❬❬❬

❬❬❬❬❬
❬❬❬❬

dtn // t∗n ker dsn−1
//

,,❨❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨ · · ·

++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲
dt2 // t∗2,n ker ds1

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

dt1 // TBn+1 ×TM ker ds0

��

pr1 // TBn+1

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

Bn+1
7

is a geometric resolution of the pull-back foliation t−1
0,n(F) ⊂ X(Bn+1), where pr1 is the projection

on TBn+1 and for i ≥ 1, ti,j is the composition ti ◦ · · · ◦ tj : Bj+1 → Bi.

Proof. By Lemma 5.16, the complex in Equation (5.17) is exact. By construction, the projection

of the fiber product TBn+1 ×TM ker ds0 to TBn+1 induces the singular foliation t−1
0,n(F). �

Remark 5.18. If there exists a sequence of maps

M // ε0 // B1
// ε1 // B2

// ε2 // · · · (42)

where for all i ≥ 0, εi is a section for both si and ti then by Corollary 5.16, the pull-back of (41)

on M through the sections (εi)i≥0 is a geometric resolution of F .

Let (Xi)i≥0 be a lift of X ∈ sym(F). For i ≥ 1, adXi
preserves Γ(ker dsi−1). Altogether, they

define a chain map between the complex (41) in itself. Let us give a precise meaning to this

statement.

Proposition 5.19. Let TB = (Bi+1, si, ti,Fi)i≥0 be an exact path-holonomy tower of bisubmer-

sions over a singular foliation (M,F) of length n+ 1.

(1) Any symmetry X ∈ sym(F) of F is the zero component of a symmetry (Xi)i≥0 of TB.

(2) This, in turn, induces a K-linear chain map

· · · // Γ(t∗3,n ker ds2)

∇2
X

��

dt2 // Γ(t∗2,n ker ds1)

∇1
X

��

dt1 // Γ(TBn+1 ×TM ker ds0)

∇0
X

��

pr1 // // t−1
0,n(F)

adXn+1

��

· · · // Γ(t∗3,n ker ds2)
dt2 // Γ(t∗2,n ker ds1)

dt1 // Γ(TBn+1 ×TM ker ds0)
pr1 // // t−1

0,n(F)

(43)

that satisfies for all i ≥ 1,

(a) ∇i−1
X (fξ) = Xn+1[f ] + f∇i−1

X (ξ), for all f ∈ C∞(Bn+1), ξ ∈ Γ(t∗i,n ker dsi−1).

(b) ∇i
X ◦ dti = dti ◦ ∇

i+1
X and pr1 ◦ ∇

0
X = adXn+1 ◦ pr1.

Proof. Let U ⊂ Bn+1 an open subset and ξ1, . . . , ξr ∈ t−1
0,n(F) some local generators. Since

Xn+1 ∈ sym(t−1
0,n(F)), this implies [Xn+1, ξi] =

∑r
p=1 c

p
i (x)ξp for some smooth functions cpi (x) ∈

C∞(U) with i, p = 1, . . . , r. Pick a local trivialisation ζ1, . . . , ζd ∈ Γ(TBn+1 ×TM ker ds0)|U . We

define a map from Γ(TBn+1 ×TM ker ds0) to Γ(TBn+1 ×TM ker ds0) as follows,

∇0
Xζ :=

r∑

p=1

(
r∑

i=1

fic
p
i (x) +Xn+1[fp]

)
ζp. (44)

Clearly, it satisfies the following Leibniz identity,

∇0
X(fξ) = Xn+1[f ] + f∇0

X(ξ), for all f ∈ C∞(Bn+1), ξ ∈ Γ(t∗i,n ker dsi−1). (45)
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Of course, the map ∇0
X is constructed to agree with adX and the first projection map pr1,

namely

pr1 ◦ ∇
0
X = adXn+1 ◦ pr1. (46)

Equation (46) and Corollary 5.17 imply that ∇X restricts to a map over the kernel of pr1, that

is,

∇X : ker pr1 = im(dt1) → ker pr1 = im(dt1).

A similar construction allows to construct ∇1
X : Γ(t∗2,n ker ds1) → Γ(t∗2,n ker ds1) on degree −2

elements that commutes with the differential map dt1. Again, by exactness, we are allowed to

continue on every degree to obtain a map that makes the diagram (43) commutes and satisfies

the Leibniz identity in (45) on every degree. �

Remark 5.20. In [14], under some assumptions, it is shown that if a Lie group G acts on a

foliated manifold (M,F) it acts on its holonomy groupoid. It is likely that this result follows

from Theorem 5.15, this will be addressed in an other study.

Appendix A. Lie ∞-algebroids and their morphisms

Let us now recall the definition of Lie ∞-algebroids over a manifold their morphisms and

homotopies. Most definitions of this section can be found in [6, 18, 19] and our convention are

those of [18, 19].

Definition A.1. A Lie ∞-algebroid over M is the datum of a sequence E = (E−i), 1 ≤ i < ∞

of vector bundles over M together with a structure of Lie ∞-algebra (ℓk)k≥1 on the sheaf of

sections of E and a vector bundle morphism, ρ : E−1 → TM , called anchor map such that the

k-ary brackets ℓk, k 6= 2 are O-multi-linear and such that

ℓ2(e1, fe2) = ρ(e1)[f ]e2 + fℓ2(e1, e2) (47)

for all e1 ∈ Γ(E−1), e2 ∈ Γ(E•) and f ∈ O.

The sequence

· · ·
ℓ1 // E−2

ℓ1 // E−1
ρ

// TM, (48)

is a complex called the linear part of the Lie ∞-algebroid.

Remark A.2. Any Lie ∞-algebroid on M has an induced singular foliation on M which is

given by the image of the anchor map, that we call the basic singular foliation.

There is an alternative definition for Lie ∞-algebroids in term of Q-manifolds with purely

non-negative degrees.

Definition A.3. A splitted NQ-manifold is a pair (E,Q) where E → M is a sequence of vector

bundles over M indexed by negative integers and where Q is a homological vector field of degree

+1, i.e. Q ∈ Der1 (Γ(S
•
K(E

∗))) is such that [Q,Q] = 0.

We denote by E and call functions on the splitted NQ-manifold E −→ M the sheaf of graded

commutative O-algebras made of sections of SK(E
∗).

There is a one-to-one correspondence between splitted NQ-manifolds and Lie ∞-algebroids

[25, 24, 6, 22]. This formulation allows to write in a compact manner morphisms of Lie ∞-

algebroids. From now on, we write (E,Q) to denote a Lie ∞-algebroid over M .
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Definition A.4. Let (E,Q) and (E′, Q′) be Lie ∞-algebroids on a manifold M resp. M ′, with

sheaves of functions E ′ and E , respectively. A Lie ∞-algebroid morphism from (E,Q) to (E′, Q′),

is a graded algebra morphism Φ: E → E ′ (of degree 0) which interchanges Q with Q′:

Φ ◦Q = Q′ ◦ Φ. (49)

Homotopy equivalence can also be defined, see Section 3.4.3 in [18] or Section 1.2.5 in [19].

Remark A.5. A Lie ∞-algebroid morphism Φ induces a smooth map φ : M ′ → M called the

base morphism. It also induces a graded vector bundle morphism φ0 : E
′
• → E• over φ which is

called the linear part of Φ.

Let us recall from [18, 19] the following definition and theorem.

Definition A.6. Let F ⊂ X(M) be a singular foliation on a manifoldM . A geometric resolution

of the singular foliation F is a projective resolution ((P−i)i≥1, (d
(i))i≥2, ρ) of F as a O-module

that corresponds to a sequence of vector bundles (E, d̄, ρ̄) over M

· · ·
d̄(3) // E−2

d̄(2) // E−1
ρ̄

// TM, (50)

i.e.

• for i ≥ 1 the O-module of sections of E−i is P−i = Γ(E−i)

• for i ≥ 2, the induced maps on the sections level

d̄(i) : Γ(E−i) −→ Γ(E−i+1) or ρ̄ : Γ(E−1) −→ F

coincide with d(i) : P−i −→ P−i+1 or with ρ : P−1 −→ F respectively.

For convenience we denote by d̄ and ρ̄ the same as d and ρ respectively. Also, we call ρ : E−1 −→

TM the geometric resolution anchor. A geometric resolution is said to be minimal at a point

m ∈ M if, for all i ≥ 2, the linear maps d
(i)
|m

: E−i|m −→ E−i+1|m vanish.

Theorem A.7. [18, 21, 19] Let F be a singular foliation over M . Any geometric resolution

of F

· · ·
d

−→ E−3
d

−→ E−2
d

−→ E−1
ρ

−→ TM (51)

comes equipped with a Lie ∞-algebroid structure whose unary bracket is d and whose anchor

map is ρ. Such a Lie ∞-algebroid structure is unique up to homotopy and is called a universal

Lie ∞-algebroid of F .

Remark A.8. For a given Lie ∞-algebroid (E,Q), the triple (X•(E), [· , ·] , adQ) is a differential

graded Lie algebra, where X•(E) stands of the module of graded vector fields (=graded deriva-

tions of E) on E, the braket [· , ·] is the graded commutator of derivations and adQ := [Q, ·]. We

say a vector field on E is vertical if it is O-linear.

Appendix B. Lie ∞-morphisms of differential graded Lie algebras and

homotopies

Let us recall the definitions of Lie ∞-morphisms and homotopies between differential graded

Lie algebras in terms of coderivations. We restrict ourself to a special case that we need for this

paper.
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B.1. Comorphisms and coderivations. Let g and h be graded Lie algebras over K.

Definition B.1. A linear map Φ: S•
Kg −→ S•

Kh is said to be of arity r ∈ N0, if it sends

polymonomials of Sk
Kg to those of Sk−r

K
h. Any linear map Φ can be decomposed as formal sum:

Φ =
∑

k∈Z

Φ(k) (52)

where for all k ∈ N0, Φ(k) : S•
Kg −→ S•−k

K
h is a linear map of arity k. Therefore, a linear map

Φ: S•
Kg −→ S•

Kh is of arity r ∈ N0 if and only if Φ(k) is the unique non-zero term, namely

Φ(k) = 0, for k 6= r.

Let us denote by ∆ the coalgebra structure S•
Kg and by ∆′ the one on S•

Kh. Given any linear

map Φ: S•
Kg −→ h. Denoting by Φk : S

k+1
K

g −→ h for k ∈ N0 the restriction of Φ to Sk+1
K

g. The

linear map Φ can be extended to a unique comorphism Φ̂: S•
Kg −→ S•

Kh by taking for r ∈ N the

component on Sr
Kh to be for x1, . . . , xk ∈ g

∑

i1+·+ir=k

∑

σ∈S(i1,...,ir)

ǫ(σ)
1

r!

r∏

j=1

Φij−1(xσ(i1+···+ij−1+1), . . . , xσ(i1+···+ij)). (53)

where S(i1, . . . , ir) is the set of (i1, . . . , ir)-shuffles, with i1, . . . , ir ∈ N.

Every comorphism from S•
Kg to S•

Kh is of this form [16]. That is, a comorphism Φ: S•
Kg →

S•
Kh is entirely determined by the collection indexed by k ∈ N of maps called its k-th Taylor

coefficients:

Φk : S
k+1
K

g
Φ

−→ S•
Kh

pr
−→ h, (54)

with pr being the projection onto the term of arity 1, i.e. pr : S•
Kg → S1

Kh ≃ h. Notice that the

component Φ(k) of arity k of Φ coincides with k-th Taylor coeffiecient Φk on Sk+1
K

g. Hence, a

comorphism Φ: S•
Kg → S•

Kh admits a decomposition of the form:

Φ =
∑

k≥0

Φ(k). (55)

Definition B.2. Let Φ: S•
Kg 7→ S•

Kh be a graded comorphism. A Φ-coderivation of degree N

on S•
Kg is a degree k ∈ N0 linear map H : S•

Kg 7→ S•
Kh which satisfies the so-called (co)Leibniz

identity:

∆′ ◦ H = (H⊗ Φ) ◦∆+ (Φ⊗H) ◦∆. (56)

When g = h and Φ = id, we say that H is a coderiavation.

The same results on comorphisms hold for coderivations [16].

B.2. Lie ∞-morphisms of differential graded Lie algebras. Let (g, [· , ·]g) a Lie algebra

and (E,Q) a Lie ∞-algebroid over M . In the sequel, the Lie algebra g is concentrated in

degree −1. The differential graded Lie algebra (X(E), [· , ·] , adQ) of vector fields on E is shifted

by 1, i.e. a derivation of degree k in Xk(E) is of degree k − 1 as an element of the shifted

space Xk(E)[1]. The graded symmetric Lie bracket on X(E)[1] is of degree +1 and given on

homogeneous elements u, v ∈ X(E)[1] as

{u, v} := (−1)|v|[u, v].

In the sequel we write (X(E)[1], [· , ·] , adQ) instead of (X(E)[1], {· , ·}, adQ).
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Let (S•
Kg, Qg) respectively (S•

K(X(E)[1]), Q̄) be the corresponding formulations in term of

coderivations of the differential graded Lie algebras (g, [· , ·]g) and (X(E)[1], [· , ·] , adQ). Precisely,

Qg is the coderivation defined by putting for every homogeneous monomial x1 ∧ · · · ∧ xk ∈ Sk
Kg,

Qg(x1 ∧ · · · ∧ xk) :=
∑

1≤i<j≤k

(−1)i+j−1[xi, xj ]g ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk, (57)

and Q̄ = Q̄(0)+Q̄(1) is the coderivation of degree +1 where the only non zero Taylors coefficients

are, Q̄(0) : S1
K(X(E)[1])

adQ
−→ X(E)[1] and Q̄(1) : S2

K(X(E)[1])
{· ,·}
−→ X(E)[1].

Definition B.3. [17] A Lie ∞-morphism Φ: (g, [· , ·]g) −→ (X•(E)[1], [· , ·] , adQ) is a graded

coalgebra morphism Φ̄: (S•
Kg, Qg) −→ (S•

K (X(E)[1]) , Q̄) of degree zero which satisfies,

Φ̄ ◦Qg = Q̄ ◦ Φ̄. (58)

In order words, it is the datum of degree zero linear maps
(
Φ̄k : S

k+1
K

g −→ X−k(E)[1]
)
k≥0

that

satisfies
∑

1≤i<j≤n+2

(−1)i+j−1Φ̄n([xi, xj ]g, x1, . . . , x̂ij , . . . , xn+2) = [Q, Φ̄n+1(x1, . . . , xn+2)]+

∑

i+ j = n

i ≤ j

σ ∈ Si+1,j+1

ǫ(σ)[Φ̄i(xσ(1), . . . , xσ(i+1)), Φ̄j(xσ(i+2), . . . , xσ(n+2))]

where x̂ij means that we take xi, xj out of the list. When there is no risk of confusion we write

Φ for Φ̄.

Remark B.4. Definition B.3 and Definition A.4 are compatible when M = {pt}. Therefore,

morphisms in both sense match.

Remark B.5. Its follows from these axioms that if the homological vector field Q vanishes at

some point m ∈ M , then the map x 7−→ (P ∈ X(E), P|m 7→ [Φ0(x), P ]|m) endows the vector

space X(E)|m ≃ (S(E∗)⊗E)|m with a g-module structure. Moreover, the restriction of the map

Φ1 : ∧2 g −→ X−1(E)|m at m is a 2-cocycle of Chevalley-Eilenberg.

Remark B.6. Let (E,Q) be a Lie ∞-algebroid and F its basic singular foliation. Any Lie

∞-morphism Φ: (g, [· , ·]g) −→ (X•(E)[1], [· , ·] , adQ) gives a weak symmetry action of g on F .

If Q|m = 0 for some point m ∈ M , the g-action defined in Remark B.5, is independent of the

equivalence class of the weak symmetry action.

B.3. Homotopies. Now we are defining homotopy between Lie ∞-morphisms. A homotopy

that joins two Lie ∞-morphisms Φ̄, Ψ̄ : (S•
Kg, Qg) −→ (S•

K(X(E)[1]), Q̄) is the datum of an in-

terval [a, b] ⊂ R and a chain map

(S•
Kg, Q̄)

H
−→ (S•

KX(E)[1] ⊗C∞([a,b]) Ω
•([a, b]), Qg ⊗ id + id⊗ ddR)

v 7−→ Ξ(v)⊗ α(t) +H(v)⊗ β(t)dt, for t ∈ [a, b].

which is a coalgebra morphism as well and coincides with Φ̄ and Ψ̄ at t = a and b respectively.

For further use, we will write Ξt ⊗ 1 for Ξ(v)⊗α(t) and Ht ⊗ dt for H(v)⊗ β(t)dt. The map H

induces for every t ∈ [a, b] two different maps. One of them is of degree zero and the other one

of degree −1 respectively: 


Ξt : S•

Kg −→ S•
K(X(E)[1])

Ht : S•
Kg −→ S•

K(X(E)[1]).
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Using the property of coalgebra-morphisms and chain map property respectively, one can check

easily that for every t ∈ [a, b], Ξt must be a Lie ∞-morphism of differential graded Lie algebras

and Ht a Ξt-coderivation satisfying the following additional condition over [a, b]

dΞt

dt
= Q̄ ◦Ht +Ht ◦Qg. (59)

We can formulate the definition of homotopies between Lie ∞-morphisms the following man-

ner.

Definition B.7. Let Φ̄, Ψ̄ : (S•
Kg, Qg) −→ (S•

K(X(E)[1]), Q̄) be Lie ∞-morphisms. We say Φ̄, Ψ̄

are homotopic over the identity of M if the following conditions hold:

(1) there is a family
(
Ξt : (S

•
Kg, Qg) −→ (S•

K(X(E)[1]), Q̄)
)
t∈[0,1]

made of Lie ∞-morphisms

which coincide with Φ̄ and Ψ̄ at t = 0 and 1, respectively,

(2) and a family of Ξt-coderivations (Ht)t∈[0,1] of degree −1 such that

dΞt

dt
= Q̄ ◦Ht +Ht ◦Qg. (60)

Remark B.8. Homotopy equivalence in the sense of the Definition B.7 is an equivalence relation

and it is compatible with composition of Lie ∞-morphisms, see [19] Proposition 1.38.

Appendix C. Proof of Theorem 3.3

Proof. (of Theorem 3.3) The complex of Equation (28) being exact everywhere except in degree

−1 we cannot apply directly Theorem 2.1 in [19] but we can mimic the proof given for Theorem

2.1 in [19] to construct the higher brackets when there is no obstruction in degree −1. For

convenience, let us denote R−1 := Γ(g) ⊕ Γ(E−1) and R−i := Γ(E−i) for i ≥ 2. Given a

natural number k ≥ 0, we consider the total complex

(
P̂age

(k)

• (R),D = [d, ·]RN

)
of the following

bicomplex

...
...

...

↑ ↑ ↑

· · · → HomO

(⊙k+1R |−k−3
,R−3

)
d
→ HomO

(⊙k+1R |−k−3
,R−2

)
d
→ HomO

(⊙k+1R |−k−3
,dR−2

)
→ 0

δ ↑ δ ↑ δ ↑

· · · → HomO

(⊙k+1R |−k−2
,R−3

)
d
→ HomO

(⊙k+1R |−k−2
,R−2

)
d
→ HomO

(⊙k+1R |−k−2
,dR−2

)
→ 0

δ ↑ δ ↑ δ ↑

· · · → HomO

(⊙k+1R |−k−1
,R−3

)
d
→ HomO

(⊙k+1R |−k−1
,R−2

)
d
→ HomO

(⊙k+1R |−k−1
,dR−2

)
→ 0

↑ ↑ ↑

0 0 0

"-3 column" "-2 column" "-1 column"

(61)

The map δ stands for the vertical differential which is defined for all Φ ∈ HomO

(⊙k+1R,R
)

by

δ(Φ) (r1, . . . , rk+1) := Φ ◦ d (r1 ⊙ . . . ⊙ rk+1), ∀ r1, . . . , rk+1 ∈ R,

where here d acts as an O-derivation on r1 ⊙ . . . ⊙ rk+1 ∈
⊙k R and the horizontal differential

given by

Φ 7→ d ◦Φ.

Since the line the bicomplex is exact the total complex

(
P̂age

(k)

• (R),D = [d, ·]RN

)
is also

exact.
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Construction of the 2-ary bracket: its construction is almost the same as in [19] we will

adapt what has been done to our case. We first construct a 2-ary bracket on R−1 to extend

on every degree. For all k ≥ 1, let us denote by (e
(−k)
i )i∈Ik a basis of Γ(E−k). The set {Xi =

ρ(e
(−1)
i ) ∈ F | i ∈ I1} is a set of generators of F . In particular, there exists elements ckij ∈ O

and satisfying the skew-symmetry condition ckij = −ckji together with

[Xi,Xj ] =
∑

k∈I

ckijXk ∀i, j ∈ I1. (62)

By definition of weak symmetry one has

[̺(ξi), ρ(e
(−1)
j )] ∈ F and ̺([ξi, ξj])g − [̺(ξi), ̺(ξj)] ∈ F for all (i, j) ∈ Ig × I−1. (63)

Where (ξi)i∈Ig is a basis for g. Since ((E−i)i≥1,d, ρ) is a geometric resolution of F , there exists

two O-bilinear maps χ : Γ(g)×Γ(E−1) → Γ(E−1), η : Γ(g)×Γ(g) → Γ(E−1) defined on generators

ξi, e
(−1)
j by the relations

[̺(ξi), ρ(e
(−1)
j )] = ρ(χ(ξi, e

(−1)
j )) and ̺([ξi, ξj ]g)− [̺(ξi), ̺(ξj)] = ρ(η(ξi, ξj)).

We first define a naive 2-ary bracket on Γ(E−1) as follows:

(1) an anchor map by ρ′(e
(−1)
i ) = Xi, and ρ′(ξi) = ̺(ξi), for all i ∈ I, Ig,

(2) a degree +1 graded symmetric operation ℓ̃2 on R• as follows:

(a) ℓ̃2

(
e
(−1)
i , e

(−1)
j

)
=
∑

k∈I c
k
ije

(−1)
k for all i, j ∈ I−1,

(b) ℓ̃2

(
ξi, e

(−1)
j

)
= χ

(
ξi, e

(−1)
j

)
,

(c) ℓ̃2 (ξi, ξj) = [ξi, ξj]g + η(ξi, ξj),

(d) ℓ̃2 is zero on the other generators,

(e) we extend ℓ̃2 to R using O-bilinearity and Leibniz identity with respect to the

anchor ρ′.

By (a), (b), (c), (d), (e), ℓ̃2 satisfies the Leibniz identity with respect to the anchor ρ̃ and

(a), (b), (c) makes the latter a bracket morphism. The map defined for all homogeneous r1, r2 ∈

R• by

[d, ℓ̃2]RN(r1, r2) = d ◦ ℓ̃2 (r1, r2) + ℓ̃2 (dr1, r2) + (−1)|r1|ℓ̃2 (r1,dr2) , (64)

is a graded symmetric degree +2 operation (R⊗R)• −→ R•+2, and [d, ℓ̃2]RN|R−1
= 0. It is

O-bilinear, i.e. for all f ∈ O, r1, r2 ∈ R

[d, ℓ̃2]RN(r1, fr2)− f [d, ℓ̃2](r1, r2) = 0.

We also have that ρ([d, ℓ̃2]RN(r1, fr2)) = ρ(ℓ̃2(dr1, r2)) = 0, for all r1 ∈ R−2, r2 ∈ R−1, since

ρ ◦ d = 0. Thus, [d, ℓ̃2]RN|R−2×R−1
∈ dR−2, because ((E−i)i≥1,d, ρ) is a geometric resolution.

Therefore, [d, ℓ̃2]RN is a degree +2 element in the total complex P̂age
(1)

(R). The O-bilinear

operator [d, ℓ̃2]RN is D-closed in P̂age
(1)

(R), since [d, [d, ℓ̃2]RN]RN|R≤−2

= 0. So there exists

τ2 ∈ ⊕j≥2HomO

(⊙2 R−j−1,R−j

)
such as D(τ2) = −[d, ℓ̃2]RN. By replacing ℓ̃2 by ℓ̃2+τ2 we get

a 2-ary bracket ℓ2 of degree +1 which is compatible with the differential map d and the anchor

map ρ̃.

Construction of higher brackets: notice by construction of the 2-ary bracket ℓ2 one has,

Jac(r1, r2, r3) ∈ dR−2 for all r1, r2, r3 ∈ R−1. In other words, Jac ∈ HomO(
⊙3R−1,dR−2). A
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direct computation shows

dJac(r1, r2, r3) = Jac(dr1, r2, r3) + (−1)|r1|Jac(r1,dr2, r3) + (−1)|r1|+|r2|Jac(r1, r2,dr3)

for all r1, r2, r3 ∈ R. Which means, [Jac,d]RN(r1, r2, r3) = 0 for all r1, r2, r3 ∈ R.

Thus, D(Jac) = 0. It follows that, Jac is aD-coboundary, there exists an element ℓ3 =
∑

j>2 ℓ
j
3 ∈

P̂age
(2)

1 (R) with ℓj3 ∈ Hom(
⊙3 R |−j−1

,R−j) such that

D(ℓ3) = −Jac. (65)

We choose the 3-ary bracket to be ℓ3. For degree reason the remaining terms of the k-ary

brackets for k ≥ 3 have trivial components on column −1 of the bicomplex (61). From this

point, the proof continues exacly as in the proof of Theorem 2.1 in [19]. �
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