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ON SYMMETRIES OF SINGULAR FOLIATIONS

RUBEN LOUIS

ABSTRACT. This paper shows that a weak symmetry action of a Lie algebra g on a singular
foliation F induces a unique up to homotopy Lie co-morphism from g to the DGLA of vector
fields on a universal Lie co-algebroid of 7. We deduce from this general result several geometrical
consequences. For instance, we give an example of a Lie algebra action on a sub-affine variety

which cannot be extended on the ambient space. Last, we introduce the notion of tower of

bi-submersions over a singular foliations and lift symmetries to those.
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Singular foliations arise frequently in differential or algebraic geometry. Here following [18,

I, 5, 8, 9] we define a singular foliation on a smooth, complex, algebraic, real analytic manifold
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M with sheaf of functions O to be a subsheaf F: U — F(U) of the sheaf of vector fields
X, which is closed under the Lie bracket and locally finitely generated as an (O-module. By
Hermann’s theorem [15], this is enough to induce a partition of the manifold M into embedded
submanifolds of possibly different dimensions, called leaves of the singular foliation. Singular
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foliations appear for instance as orbits of Lie group actions with possibly different dimensions
or as symplectic leaves of a Poisson structure. When all the leaves have the same dimension, we
recover the usual “regular foliations”[10)].

The purpose of this paper is to look at symmetries of singular foliations. Let (M,F) be
a foliated manifold. A global symmetry of a singular foliation F on M is a diffeomorphism
¢: M — M which preserves F, that is, ¢.(F) = F. The image of a leaf through a global
symmetry is again a leaf (not necessarily the same leaf). For G a Lie group, a strict symmetry
action of G on a foliated manifold (M, F) is a smooth action G x M — M that acts by global
symmetries [11]. Infinitesimally, it corresponds to a Lie algebra morphism g — X(M) between
the Lie algebra (g, [-, -]g) of G and the Lie algebra of symmetries of F.

A strict symmetry action of G on M goes down to the leaf space M/F, even though the
latter space does not exist as a manifold. The opposite direction is more sophisticated since
a strict symmetry action of G on M/F does not induce a strict action over M in general.
However, it makes sense to consider linear maps p: g — X(M) that satisfy [o(z), F] C F for
all # € g, and which are Lie algebra morphisms up F, namely, o([z,ylq) — [o(x), o(y)] € F for all
x,y € g. The latter actions are called “weak symmetry actions”. These actions induce a “strict
symmetry action”on the leaf space i.e. a Lie algebra morphism g — X(M/F), whenever M /F
is a manifold.

In view of [21, 18] it is shown that behind every singular foliation or more generally any Lie-
Rinehart algebras [19] there exists a Lie co-algebroid structure which is unique up to homotopy
called the universal Lie co-algebroid. Here is a natural question: what does a symmetry of a
singular foliation F induce on an universal Lie co-algebroid of F?7 Theorem 2.2 of this paper
gives an answer to that question. It states that any weak symmetry action of a Lie algebra on a
singular foliation F can be lifted to a Lie co-morphism valued in the DGLA of vector fields on
an universal Lie oo-algebroid of F. Such Lie oco-morphism will be called a lift of the symmetry
action. This goes in the same direction as [14] who already underlined Lie-2-group structures
associated to strict symmetry action of Lie groups. Furthermore, Theorem 2.2 says this lift is
unique modulo homotopy equivalence.

This result gives several geometric consequences. Here is an elementary question: can a Lie
algebra action g — X(W) on an affine variety W C C¢ be extended to a Lie algebra action
g — X(C% on C%? Said differently: it is trivial that any vector field on W extends to C¢, but
can this extension be done in such a manner that it preserves the Lie bracket? Although no
“oo-0ids” appears in the question, which seems to be a pure algebraic geometry question, we
claim that the answer goes through Lie oo-algebroids and singular foliations. More precisely,
by Theorem 2.2, we know that it is possible to lift any symmetry action of singular foliation
into a Lie co-morphism. Is it possible to build such a Lie co-morphism where the arity —1 of
the second order Taylor coefficient is zero? There are cohomological obstructions. The idea is
then to say that any g-action on W induces a weak symmetry action on the singular foliation
TwX(C%) of all vector fields vanishing on W (here Zyy is the ideal that defines ). In some
specific cases, obstruction classes of extending this action to the ambient space appear on some
cohomology, although in general the obstruction is rather a Maurer-Cartan-like equations that

may or may not have solutions.

The outline of this paper is made as follows: In Section 1 and Appendix A we present some

definitions and facts on symmetry action of a Lie algebra on singular foliation and give some
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examples. Also, we review Lie oc-algebroid structures and their morphisms in order to fix
notations. In Section 2 we state the main results of this paper and present their proofs. In
Section 3 we describe the relation between weak symmetry actions and Lie oco-algebroids that
have some special properties. In Section 4 we define an obstruction class of extending a Lie
algebra action on an affine variety to ambient space. Finally, in Section 5 we look at symmetries
of bi-submersions. Afterwards, we introduce the notion of tower of bi-submersions over a singular

foliation and point out some observations related to their symmetries.
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1. DEFINITIONS AND EXAMPLES OF WEAK AND STRICT SYMMETRY ACTIONS

Convention 1.1. Throughout this paper, M stands for a smooth or complex manifold, or an
affine variety over C. We will denote the sheaf of smooth or complex, or reqular functions on M
by O and the sheaf of vector fields on M by X(M), and X|[f] stands for a vector field X € X(M)
applied to f € O. Also, K stands for R or C.

Definition 1.2. Let F C X(M) be a singular foliation over M.
e A diffeomorphism ¢: M — M is said to be a symmetry of F, if ¢.(F) = F.
e A vector field X € X(M) is said to be a infinitesimal symmetry of F, if [ X, F] C F. The
Lie algebra of infinitesimal symmetries of F is denoted by sym(F).

In particular, F C sym(F), since [F,F] C F.

Proposition 1.3. [1, 12] Let M be a smooth or complex manifold. The flow of an infinitesimal
symmetry of F, if it exists, is a symmetry of F.

As we will see later, one of the consequences of our future results is that any symmetry
X € sym(F) of a singular foliation F admits a lift to a degree zero vector field on any universal
N@-manifold over F that commutes with the homological vector field . This will allow us to
have an alternative proof and interpretation of Proposition 1.3 (see Section 2).

Let (g, [, -]g) be a Lie algebra over K = R or C, depending on the context. From now on and

in the sequel g is concentrated in degree —1.

Definition 1.4. A weak symmetry action of the Lie algebra g on a singular foliation F on M
is an K-linear map ¢: g — X(M) that satisfies:

e Vx g, [o(x), F] CF,

o Va,y €9, olz,yly) — [o(x), e(y)] € F.
When z — p(z) is a Lie algebra morphism we speak of strict symmetry action of g on F.
There is an equivalence relation on the set of weak symmetry actions which is defined as follows:
two weak symmetry actions, g, 0’ : g — X(M) are said to be equivalent if there exists a linear

map ¢: g — F such that o — o = ¢.
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Remark 1.5. It is important to notice that when F is a regular foliation and M/F is a
manifold, any weak symmetry action of a Lie algebra g on F induces a strict action of g over

M /F. Definition 1.4 is a way of extending this idea to all singular foliations.
Here is a list of some examples.

Example 1.6. Let 7: M — N be a submerssion. Since any vector field on N comes from a
m-projectable vector field on M, therefore any Lie algebra morphism g — X(V) can be lifted
to a weak symmetry action g — X(M) on the regular foliation I'(ker dr), and any two such
lifts are equivalent.

Furthermore, any weak action of a Lie algebra g on a singular foliation F on N can be lifted

up to a class of weak symmetry actions on the pull-back foliation 7=1(F), (see Definition 1.9 in

[1])-

Example 1.7. Let F be a singular foliation on M. For any point m € M, the set F(m) =
{X € F| X(m) =0} is a Lie subalgebra of F. Put Z,,, = {f € C>°(M) | f(m) = 0}. The quo-

f
tient space g,, = I(n;) is a Lie algebra, since Z,,F C F(m) is a Lie ideal. The Lie algebra
gm is called the isotrgbpy Lie algebra of F at m (see [1]). Let us denote by [-, ], its Lie bracket.
(1) Consider p: g — F(m) C X(M) a section of the projection map
Py
I F€© -;E(m) 9m (1)

Then [o(z),ZnF] C I F and o([z,ylg,,) — [0(2), 0(y)] € Z,,F. Hence, the map o: g, —
X(M) is a weak symmetry action of the singular foliation Z,,F. A different section o
of the projection map yields an equivalent weak symmetry action of g,, on Z,,F. An
obstruction class for having a strict symmetry action equivalent to ¢ will be given later
in Section 4.

(2) In particular, for k& > 1, let us denote by g¥, the isotropy Lie algebra of the singular
foliation I,IZJ: at m. Any section g : 9];1 — X(M) of the projection map

Ok
I F > IT"F = g}, (2)

is a weak symmetry action of the Lie algebra g¥, on the singular foliation ZF+1F.

Example 1.8. The following example is taken from [20], and follows the same patterns as in
Examples 1.6 and 1.7. Let (M, F) be a singular foliation on a manifold M and L C M aleaf. Let
[L, M] be a neighbourhood of L in M equipped with some projection 7w : M — L. According
to [20], upon replacing [L, M] be a smaller neighborhood of L if necessary, there exists an
Ehresmann connection (that is a vector sub-bundle H C T'[L, M| with H & ker(dr) = T'[L, M])
which satisfies that I'(H) C F. Such an Ehresmann connection is called an Ehresmann F-
connection and induces a C°°(L)-linear section o : X(L) — FP™ of the surjection FP*® —
X(L), where FP™ stands for vector fields of F m-projectable on elements of X(L).
The section gg is a weak symmetry action of X(L) on the tranverse foliation T := I'(ker dm)N F.

When the Ehresmann connection H is flat, gp is bracket-preserving, and defines a strict sym-

metry of X(L) on the transverse foliation 7.
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Example 1.9. Consider for a fixed k, the singular foliation Fj := ZFX(RY) generated by all
vector fields vanishing to order k at the origin. The action of the Lie algebra gl(R) on R? which

is given by,
0
gl(R) — X(RY), (ai)1<ijca— D GijTin—

idij<a 0%
is a strict symmetry of Fy.

Example 1.10. Let ¢ := (¢1,...,¢,) be a r-tuple of homogeneous polynomial functions in d
variables over K. Consider the singular foliation F, ( see [19] Section 3.2.1) which is generated
by all polynomial vector fields X € X(K?) that satisfy X[p;] = 0 for all i € {1,...,7}. The
action K — X(K%), A\ — AE, is a strict symmetry of F,. Here E stands for the Euler vector
field.

Example 1.11. Let W be an affine variety realized as a subvariety of C? and Ty C Clzy, ..., 24]
its corresponding ideal. Let us denote by X(W) := Der(Cl[zy,...,x4]/Zw) the Lie algebra of
vector field of W. Let Fy := Ty X(C?) the singular foliation made of vector fields vanishing on
W. Since every vector field on W can be extended to a vector field on C¢ tangent to W. Any
Lie algebra morphism g: g — X(W) extends to a linear map g: g — X(C?) that makes this

diagram commutes

x(C%
g—75 (W)

This extension g is a weak symmetry action of g on Fy over the ambient space C?. Two

different extensions yield equivalent symmetry actions.

2. A LIE co-MORPHISM LIFTING A WEAK SYMMETRY OF A FOLIATION

We refer to Appendix A for the notion of (universal) Lie co-algebroid of a singular foliation.
We denote them by (F, Q) and their functions by £. Also, see Appendix B for the notion of Lie

oo-morphism of differential graded Lie algebras and notations.

Definition 2.1. Let F be a singular foliation over M and (FE, Q) a Lie oo-algebroid over F.
Consider a weak symmetry action g: g — X(M) of g on F.

e We say that a Lie co-morphism of differential graded Lie algebras

®: (g, [ ]g) = (Xe(E)], [+, ], adg)

lifts the weak symmetry action o to (E,Q) if for all x € g, f € O, ®y(x)(f) = o(z)[f].
e When ® exists we say then ® is a lift of o on (E, Q).

We now state the main theorem of this paper.

Theorem 2.2. Let F a be singular foliation over a smooth manifold (or an affine variety) M
and g a Lie algebra. Let p: g — X(M) be a weak symmetry action of g on F. The following
assertions hold:

(1) for any universal Lie co-algebroid (E,Q) of the singular foliation F, there exists a Lie
oo-morphism @: (g, [,];) — (Xe(E)[1], [, ], adq) that lifts o to (E,Q),
(2) any two such Lie co-morphism are homotopy equivalent over the identity of M,
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(3) any two such lifts of any two equivalent weak symmetry actions of g on F are homotopy

equivalent.

Remark 2.3. Item (1) in Theorem 2.2 means that

(1) there exists a linear map ®g: g — Xo(E) such that

Po(z)[f] = o(x)[f], and [Q, Po(x)] =0, Vreg, feO. 3)

This morphism is not a graded Lie algebra morphism, but there exist a linear map
®y: A2g — X_1(E) such that for all z,y, 2 € g,

Po([z,ylg) — [Po(x), Po(y)] = [Q, P1(z, y)].

Also,

o, ([xay]wz) - [@0(1‘)7@1(:[/,2)]—{— O (m,y,z) = [Q7q)2(xayaz)]

for some linear map A%g — X_o(E). These sets of compatibility conditions continue
to higher multilinear maps.

(2) For every element x € g and i > 1, there is a degree zero map V, € Der(F) (i.e.
V.(fe) = fVai(e) + o(x)[f]e, for f € O,e € T'(E)) depending linearly on x, such that

(®o(x) O (a), e) = o(2)[(r, €)] — (a, Vi (e)), for all & € T(E*),e € T(E)). (4)

Therefore, by using Equation (3),(4) and the dual correspondence between Lie oo-
algebroids and N@Q-manifolds [25, 24, 22], we obtain theses compatibility conditions:

1oV, =Vzo0l; and poV,;=adyyonp.

Where ®¢(z)®) stands for the arity zero of ®q(z), and £; stands for the corresponding
unary bracket of (E, Q). Also, for X € X(M), adx := [X, -].

In general, the map g — Der(F), = — V, is not a Lie algebra morphism even when
the action g is strict. In fact, there exists a bilinear map v: A% g — End(E)[1] of
degree 0 that satisfies

v[:}:,y]g - [VJB’ Vy] = V(xa y) oly — o0 W(x’ y) + 62(77(xa y)a ) ),
here /5 is the corresponding 2-ary bracket of (E,Q), and n: A2g — T'(E_1) is such
that o([z,ylg) — [o(2), e(y)] = p(n(z,y)).

Corollary 2.4. Any symmetry X € X(M) of the singular foliation F can be lifted to a degree
zero vector field Z € Xo(E) that commutes with Q, i.e. such that [Z,Q)] = 0.

Proof. To construct Z, it suffices to apply Theorem 2.2 for g = R and take Z to be the image
of 1 through ®p: R — X((F). O
Remark 2.5. In particular Corollary 2.4 has the following consequences:

(1) for any admissible ¢, the flow ®7 : £ — £ of Z induces an isomorphism of vector bundles
E_; — E_4. Since [Q, Z] = 0, the following diagram commutes,
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(@)@

(B-1) —=D(E-1)

where ¢;¥ is the flow of X at .
(2) Consequently, for any open set U C M which is stable under ¢;* , there exists an invertible
matrix MY with coefficients in O(U) that satisfies

X1 X1
X . _ t .
((bt )* . - S)jt)( : )
Xn Xn
for some generators X1, ..., X, of F over U. As announced earlier, we recover Proposi-

tion 1.3, that is, (¢7) (F) = F.

Let (E,Q) and (E’,Q’) be two universal Lie co-algebroids of F. A direct consequence of Ri-
cardo Campos’s Theorem 4.1 in 7] is that the differential graded Lie algebras (X4 (E)[1],[-, -] ,adg)
and (X,(E)[1],[-,"],adg) are homotopy equivalent over the identity of M. This leads to the
following statement.

Corollary 2.6. Let p: g — X(M) be a weak symmetry action of a Lie algebra g on F. Then,
there exist Lie co-morphisms, ®: g — (Xe(E)[1],[-,] ,adg) and ¥: g — (X (E')[1],[-,],adg)
that lift o, and ®, ¥ make the following diagram commute up to homotopy

/ 9 \ (5)
(%.(E)[l],[-,-] 7adQ) = (xO(E/)[lL['v'] 7adQ') .

Proof. The composition of ® with the horizontal map in the diagram (5) is a lift of the action

0. It is necessarily homotopy equivalent to ¥ by item (2) in Theorem 2.2. O

2.1. Cohomology of longitudinal graded vector fields. In this Section we study the co-
homology of longitudinal vector fields, which will help in proving the main results stated in the

beginning of Section 2.

Let F be a singular foliation over M.

Definition 2.7. Let E be a splitted graded manifold over M with sheaf of function £. A
vector field L € X(E) is said to be a longitudinal vector field for F if there exists vector fields
X1,..., X, € F and functions O, ...,0; € &£ such that

k
L(f)=)_Xifle.,  VfeO. (6)
=1

Example 2.8. Here are some examples.

(1) Vertical vector fields are longitudinal.
(2) For any @-manifold (F,Q) over a manifold M. The homological vector field @ € X(FE)
is a longitudinal vector field for F := p(I'(E_1)).
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(3) For (E,Q) a Q-manifold and F := p(I'(E_;)) its basic singular foliation. For any

extension of a symmetry X € sym(F) of F to a degree zero vector field Xe X(E), the
degree +1 vector field [Q, X | is longitudinal for F.

Let us show this last point using local coordinates (z1,...,z,) on M and a local triv-
ialisation &!,¢2,... of graded sections in I'(E*). The vector fields Q and X take the

form:

_ K O kO
Q—ZZQ]£ +ZZ @€ O 08 55

J kK, |€k|=1 I ) 8 7
X = X Lo k0 o
- +Z Z kl le b (@) O 0f agj

J kle B

By using Equation (7) we note that all the terms of [Q,)? ]

& 0
here X = X; .
where ;:1 Z(x)&ci

are vertical except maybe for the ones where the vector field X appears. For k > 1, the

vector field [Q7, &' ®--® fk%,X] is vertical; and for every fix k, one has
J ¢k k J
E i - E — X

"9 0
Thus E J— X F, X try for F and E I e F.
us, 2 Q3. oz, € F, since X is a symmetry for F an Q G

Remark 2.9. Longitudinal vector fields are stable under the graded Lie bracket.

Remark 2.10. Let us study vector fields on FE.

Xu(E

(1) Sections of E are identified with derivations under the isomorphism mapping e € I'(E) —

te € X(F). This allows us to identify a vertical vector field with (maybe infinite) sums
of tensor products of the form © ® e with © € £,e € I'(E).

(2) Any connection on I'(E*) induces vector field of degree zero Vx € X(E) by setting for

f €0, Vx(f) = X[f]. Once a connection is chosen, we have for all k € Z

) >~ @gk—f—j RoT(E-;) @& @0 X(M) ~ @1 T(S(E")kt; @ E_;) ®T(S(E*), @ TM).

j=1

Thus, one can realize a vector field P € Xi(E) as a sequence P = (pg,p1,...), where
po € N(S(E*),®TM) and p; € T'(S(E* )4 ® E_;) for i > 1 are called components of P.
In the diagram (9), P = (po, p1, .- .) is represented as an element of the anti-diagonal and
p; is on column 7. We say that P is of depth n € N if p; = 0 for all ¢ < n. In particular,
vector fields of depth greater or equal to 1 are vertical. Under the decomposition (2),
the differential map adg takes the form

D=D"+> D% (8)

s>0
with D? = 0. Here D" = id®@d or id®p, and DVs: T(S(E*)r@E_;) — [(S(E")jis1®
E_; ) fori >1,s > 0. We denote the latter complex by (£, D). They can be rep-
resented as anti-diagonal lines in the following commutative diagram whose lines are

complexes of O-modules
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column 2 column 1 column 0O

Under this correspondence we understand longitudinal vector fields as the following.
Lemma 2.11. A graded vector field P = (po,p1,...,) € £ is longitudinal if py € € @0 F.
The following theorem is crucial for the rest of this paper.

Theorem 2.12. Let (E,Q) be a universal Q-manifold of F.

(1) Longitudinal vector fields form an acyclic complez.
More precisely, any longitudinal vector field on E which is a adg-cocycle is the image
through adg of some vertical vector field on E.
(2) More generally, if a vector field on E of depth n is a adg-cocycle, then it is the image
through adg of some vector field on E of depth n + 1.

Proof. Since (E, (@) is an universal Q-manifold of F, lines in (9) are exact. It is now a diagram
chasing phenomena. Let P = (pg,p1,...,) € £ be a longitudinal element which is a D-cocycle.
By longitudinality there exists an element b; € I'(S(E*) ® E_;) such that (id ® p)(b1) = po. Set
P = (0,01,0,...), that is we extend b; by zero on I'(S(E*) ® E<_2) and I'(S(E*) @ TM). It
is clear that P — D(Py) = (0,p},ph,...) is also a D-cocycle. In particular we have D"(p}) = 0
by exactness there exists by € T'(S(E*) ® E_5) such that D"(by) = p}. As before put P, =
(0,0,b2,0,...). Similarly, P — D(P;) — D(P2) = (0,0,p4,p%,...) is a D-cocycle. By recursion we

end up to construct Pi, Py, ... that satisfy P — D(P;) — D(P) +--- = 0, that is, there exists an
element B = (0,b1,b2,...) € £ such that D(B) = P. This proves item 1.

To prove item 2 it suffices to cross out in the diagram (9) the columns number 0,...,n — 1,
which does not break exactness. The proof now follows as for item 1. O

In particular we deduce from Theorem 2.12 the following exact subcomplex.

Corollary 2.13. Let (E, Q) be a universal Q-manifold of F. The subcomplez Uq of (X(E),adq)
made of vertical vector fields P € X(F) that satisfy P o Q(f) = 0 for all f € O is exact.
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automatically P o Q(f) =0 for all f € O@). By Theorem 2.12 there exists a vertical vector field

Proof. Let P € X(E) be a vertical vector field which is a adg-cocycle (note that we have
Pe X(F) such that [Q,ﬁ] = P. Moreover, P € B, since for all f € O,

0=[Q,P(f) = (~1)PIP o Q(f).
]

2.2. Proof of the main results. This section is devoted to the proof of the main results stated

in Section 2.

Let F be a singular foliation, and (F, )) a universal Lie co-algebroid of F. We start with the

following lemma.

Lemma 2.14. For every weak symmetry Lie algebra action of g on F there exists a linear map,
Og: g — Xo(E), such that [Q, Po(x)] =0 and Po(x)[f] = o(x)[f] for allz € g, f € O.

—

Proof. For z € g, let o(z) € Xo(E) be any arbitrary extension of o(z) € sym(F) to a degree zero
vector field on E. Since p(x) is a symmetry of F, the degree +1 vector field [Q/(\x), Q)] is also a
longitudinal vector field on E, see Example 2.8 item 3. In addition, [g/(\x), Q] is a adg-cocycle.
By item 1 of Theorem 2.12, there exists a vertical vector field Y (z) € X¢(E) of degree zero such
that

Q.Y (2) + o)) =0 (10)
Let us set for z € g, o(z) == Y (z) + Q/(\x) By construction we have, [Q,®o(x)] = 0 and
Oo(z)[f] = o(x)[f] for all z € g, f € O. O

We will need the following lemma.

Lemma 2.15. Assume (E,Q) is a universal Lie co-algebroid over M. Let ®: (Sgg,Qq) —

(SRX(E)[1],Q) be a coalgebra morphism which is a Lie co-morphism up to arity n > 0, i.e.
(PoQg—Qo @)(Z) = 0 for all integer i € {0,...,n}. Then, ® can be lengthened to an oo-

morphism up to arity n + 1.
Proof. For convenience, we omit the variables. The identity,
Go(®0Qy—Qod) + (PoQ—Qod)oQy=0
taken in arity n + 1 yields,
0=(Qo(@0Q;~ Qo) =[Q.(2oQy~Qo®)" ),

since QE,O) =0and (PoQy—Qo @)(i) =0 for i € {0,...,n}. It is clear that for all n > 0 the
map (i) 0Qg— Qo @)(nﬂ) : Sﬂz"'QQ — X_,(E)[1] take value in vertical vector fields on E. By
virtue of Lemma 2.13 there exists a vector field ¢ € X_,,_1(E)[1] of degree —n — 1 such that

(@20 4 ()= 2™ o) — QW o . (11)
By redefining the arity n + 1 of ® as @™ := &(+1) 4 ¢, One obtains a Lie co-morphism up

to arity n + 1. The proof continues by recursion. O

Proof of Theorem 2.2. Let us show Item 1. Note that Lemma 2.14 gives the existence of a
linear map ®o: g — (Xo(E)[1],[-,],adq) such that, [Q, Po(z)] = 0 for all z € g. For z,y € g,

consider

Az, y) = @o([2,ylg) = [Po(2), Po(y)]- (12)
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Since o([z,ylg) — [o(z), o(y)] € F for all z,y € g, and since p: I'(E_;) — F surjective, we have
o([z,ylg) — [o(x), 0(y)] = p(n(x,y)) for some element 7(zx,y) € ['(E_1) depending linearly on x
and y. Now we consider the vertical vector field of degree —1, ¢, ,) € X_1(U%) which is defined
on I'(E*) as:

Ly (@) = (a,n(@,y)) for all o € T(E*),

and extended it by derivation on the whole space. For every f € O,

(A2, y) = [Q, ty(ay)]) (f) = (o([z,y]g) — [0(x), 0(W)] — p(n(z, 1)) [f] (by definition of ®)
=0 (by definition of )

It is clear that A(x,y) + [Q, ty(z,)] is & adg-cocycle, hence by Corollary 2.13 it is of the form
[Q, Y (x,y)] for some vertical vector field Y (z,y) € X_1(E) of degree —1. For all z,y € g, we
define the Taylor coefficient ®;: A*g — X(E) as ®1(x,y) := T (z,y) + Ly(z,y). By construction,

we have the following relation,

Po([z,ylg) — [Po(x), Po(y)] = [Q, P1(x,y)], V,y € g. (13)

Consider for z,y, 2z € g,

ﬂ(x’y’ Z) =o ([x,y]gaz) - [<I>0(x),<1>1(y, Z)]+ O (x’y’ Z)' (14)

Here O (z,y,z) stands for circular permutation of z,y and z. For degree reason ¥(x,y, z) is

O-linear. Moreover, ¥(z,y, z) is a adg-cocycle:

(@, @1([[z,y]g, 2lg)| + O (2,9, 2) = = [Po ([, ylg) , Po(2)] + O (2,9, 2)
= [[®o(2), QL, @1 (z, y)] — [@1(2,9), Po(2)], Q]+ O (z, ¥, 2)
= [Q, [®o(2), P1(y, 2)]]+ O (z,y, 2).
Where we have used the fact that [Q, Po(z)] = 0 for all x € g, and the Jacobi identity for the

Lie brackets [-,-]; and [-,-]. By Corollary 2.13, there exists a derivation of degree —2 denoted
by ®o(x,y,2) € X_2(E)[1] that satisfies,

79(1‘,2/,2) = [Q7®2(x7y7 Z)] (15)

So far, in the construction of the Lie co-morphism, we have shown the existence of a Lie oco-
morphism ®: Sgg — S§ (X(E)[1]) up to arity 2 that is (® 0 Qq)» = (Q 0 @)@ with i = 0,1,2.
The proof continues by recursion or by applying directly Lemma 2.15. This proves the part 1.
of the theorem. O

Before proving item 3 of Theorem 2.2 we will need the following lemma. For convenience, we

sometimes omit the variables in g.

Lemma 2.16. For any two Lie co-morphisms I',Q: (Sgg,Qq) — (Sg(X(E)[1]),Q) which co-
incide up to arity n > 1, i.e. TW = QO for 0 < i < n, their difference in arity n + 1,
namely,

e+ _ qntl). SH’éJr?g — X1 (E)[1]

is a adg-coboundary.
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Proof. Indeed, a direct computation yields

Qol-—Q)=T-Q)o0Q; = QO o (T — Q)("+1) —(r=)o Qg)("+1) —0

=0
— [Q, ") — o] = ¢
— ) _ Ot — [, g+ (by item 1 of Theorem 2.12)
for some linear map H"*+Y: Spt2g — X, »(E)[1]. O

Let us show item 2 of Theorem 2.2. Let ®,U: g — X(E)[1] be two different lifts of the
action g — X(M). We denote by ®,¥: Skg — S§(X(E)[1]) the unique comorphisms given
respectively by the Taylor’s coefficients

oM §rtlg 2n x_ (EB)[1)

B v , for 0 < r < dimg. (16)
oM. Settg =5 X (B)[1]

For any z € g, the degree zero vector field ®g(x) — ¥o(z) € Xo(F) is vertical. Moreover we
have, [Q, ®o(x) — Wo(z)] = 0. By Corollary 2.13 there exists a vector field Hy € X_1(FE) of
degree —1, such that ¥y(z) — ®o(x) = [Q, Ho(x)]

g (17)
f{O/ - l\po—cbo
£ adg

X1 (B)[1] — Xo(E)[1]

Consider the following differential equation

= QoH+ HyoQy, t€0,1]

= =30

(18)

where (Z¢);¢[0,1) is as in Definition B.7, and for ¢ € [0, 1], H; is the unique Z;-coderivation where
the only non-zero arity is H©) = H,. Equation (18) gives a homotopy between ® and =;. When

we consider the arity zero component in Equation (18), one obtains
—(0
d:g ) _
dt
= [Qa HO]
=Ty — Dy =00 — 5O,

000 7O 4 7O o QO

Therefore, Ego) =30 4 (0O — ®O) and & ~ Z; with O = Ego). Using Lemma 2.16, the
image of any element through the map W) — Egl): SZg — X_1(E)[1] is a adg-coboundary.

Thus, v — Egl) can be written as
oW — = =@, HY], with HY: S2g — X_5(E)[1]. (19)
Let us go one step further by considering the differential equation on [0, 1] given by

% =QoH;+ H;oQ,

—_
:0 =

(20)

[1]

1
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Here H, is the extention of H(®) as the unique ©;-coderivation where all its arities vanish except
the arity 1 which is given by H(). In arity zero, (QEO))te[O,u is constant and has value @go) =),
In arity one we have,
aeW ~ .
o gt
= [Q HY] = w0 - =V,

Hence, @gl) =W 4w —Egl)) with () = @gi) for i = 0,1. We then continue this procedure
by gluing all these homotopies until we reach the dimension of the Lie algebra g. We will obtain
at last a Lie co-morphism € such that ® ~ Q and Q@ = ¥® for i = 1,...,dimg. That means
Q) = U, therefore & ~ ¥. This proves item 2. of Theorem 2.2.

Let us prove item 3 of Theorem 2.2. Given two equivalent weak symmetry actions g, ¢’ of g
on a singular foliation F, i.e. g, ¢ differ by a linear map g — X(M) of the form x — p(B(x))
for some linear map f: g — I'(E_1). Let ®,9": g — (X4(E)[1],[,] ,adg) be a lift into a Lie
oo-morphism of the action ¢ and ¢ respectively. One has for all z € g and f € O,

(Po(@) — To(z) = [, te(m)]) (f) = ple(@)[f] = (Q(f), (2))

Since [Q, ®o(x) — Wo(z) — [@, ty)]] = 0, by Corollary 2.13 there exists a vertical derivation
H(z) € X_1(E) of degree —1 depending linearly on # € g such that

Bo(z) — Vo(z) = [Q, H(x) + tym))-

Let H(z) := H(z)+ Lo(z)> for © € g. The proof continues the same as for item 2 of Theorem 2.2

2.3. Particular examples. We recall that for a regular foliation F on a manifold M, the
Lie algebroid TF C TM, whose sections form F, is a universal Lie oo-algebroid of F. Its
corresponding (Q-manifold is given by the leafwise De Rham differential on T'(A*T™*F).

Example 2.17. Let F be a regular foliation on a manifold M. Any weak symmetry action g —
X(M), z — o(x), of F, can be lifted up to Lie co-morphism ®: g — (X.(E)[1],[-,],adg)
that satisfies [dggr, ®] = 0, given explicitly as follows:

regr— $o(z) = Ly) € Xo(ATHF) (21)
T Ay € Ngr— Oy(z,y) = Ux(ay) € X1 (A*T*F) (22)

and (®;: ATl g — X_;(A°T*F)) =0, for all i > 2, where x(z,y) := o([z,y]g) — [0(z), o(y)] for
x,y € g. Also, Lx stands for the Lie derivative on multi-forms w.r.t X € X(M), and vx is the
internal product.

Example 2.18. Let F be a singular foliation on a manifold M together with a strict symmetry
action ¢: g — X(M) such that g C F. Hence, C*°(M)g is a singular foliation which is
the image of the transformation Lie algebroid g x M. The universality theorem (see [18, 19])
provides the existence of a Lie co-morphism v: g — U”. Let us call its Taylor coefficients
Up: A"Mlg — E_,_1,n>0. We may take for example the 0-th and 1-th Taylor coefficients
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of a Lie oco-morphism that lifts o as:
Dy () = [Q, tyy(w)] € Xo(UF), for z € g.
q)l(xay) = [Q’ Lul(m,y)](il) - Z[[Qa Luo(:v)]a Lyo(y)](k) € :{,1([[}]:), for z,y € g.
E>0

Note that in this case the action p is equivalent to zero, therefore by item 3 of Theorem 2.2 the

Lie co-morphism ® is homotopic to zero.

3. LIFTS OF STRICT SYMMETRY ACTIONS AND LIE 0co-ALGEBROIDS

In this Section, we consider the finite dimensional Lie algebra g as the trivial vector bundle
over M with fiber g.
The following theorem says that any lift of strict symmetry action of g on a singular foliation

F induces a Lie oo-algebroids with some special properties and vice versa.

Proposition 3.1. Let (E,Q) be a Lie co-algebroid over a singular foliation F. Any Lie oo-
morphism ®: (g,[-,],) — (Xe(E)[1],[-, -] ,adq) induces a Lie co-algebroid (E @ g, Q") with

1 . .
Q=d+Q+ > €O 08B (Ei 6, (23)
kE>1i1,...,i=1,...,dim(g)

where d€E is the Chevalley-Eilenberg complex of g, €%,...,64m©@) ¢ g* s the dual basis of
some basis &1, ..., Eqim(g) € 9 and for all k > 0, y: Sktlg — X_1(E)[1] is the k-th Taylor
coefficients of P.

In the dual point of view, (23) corresponds to a Lie co-algebroid over the complex

"'&E_gﬁ)E_Qgg@E_lL)TM (24)
whose brackets satisfy

(1) the anchor map p' sends an element x e € g E_1 to o(x) + p(e) € o(g) + TF,
(2) the binary bracket satisfies

{o (P(E_l),P(E_l)) C F(E_l) and EQ(P(E_l),.%') C P(E_l), Ve g

(3) the g-component of the binary bracket on constant sections of g x M s the Lie bracket
of g.
Conversely, if there exists a Lie oco-algebroid (E', Q") whose underlying complex of vector bun-
dles is of the form (24) and that satisfies item (1),(2) and (3), then there is Lie co-morphism
®: (g, [,]y) — (Xe(B)[1],[,] ,adq) which is defined on a given basis &1, ..., & of g by:

Dp1(&iys - &i) =prof--[[Q e I tes, - Lgik] C X(E)[1], k e N, (25)
where pr stands for the projection map X(E')[1] — X(E)[1].
Remark 3.2. Note that every Lie co-morphism @: (g, [-,];) — (Xe(E)[1], [, ] ,adg) induces

a weak symmetry action of g on F that maps x € g to the base vector field of ®y(x) € Xo(F)
on M.

Proof. A direct computation gives the first implication. Conversely, let us denote by @’ the
homological vector fields of Lie co-alegebroid whose underlying complex of vector bundles is of
the form (24). The map defined in Equation (25) is indeed a lift into a Lie co-morphism of the
weak symmetry action p:
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e It is not difficult to check that of any £ € g, one has [Q, Po(§)] = 0.
e The fact that ® defines a Lie co-morphism can be found using Voronov trick [24], i.e,

doing Jacobi’s identity inside the null derivation

0= pro [ o [[[QI,QI],L&I],L&Q], .. 'aLfik]' (26)

A direct computation of Equation (26) falls exactly on the requirements of Definition B.3.

Let us compute Equation (26) for a small number of generators (e.g k = 2, 3) in order to show

how it works: from the identity

(@0 ] ] o

one obtains by using twice the Jacobi identity the following relation,

[Q,a HQ/’ 5@1] 3£i2:|:| - [[Q,a 5@1] ) [Q,a 5@2“ =0. (27)
One should notice that [[Q’,&;,],&:,] splits into two parts. One part where the Chevalley Eilen-
berg acts to give HdCE, fh] ,£¢2] = Ui, &yl while the other part is HQ’ — d¢F, le] ,fiQ]. Hence,
by putting them in Equation (27), afterwards projecting on X (S®(E*)), we get

pro (@ e, ) + P10 @4 [[Q — AP, 66]) — pro (€64, [@) 6] =0

From there we deduce that

Do ([&ir» Einlg) = 1Q, P1(&iy, §in)] + [Po(&iy ), Po(&is)]-
[l

Notice that Proposition 3.1 assumes the Lie oco-algebroid over F exists, not necessarily a
universal one (i.e. Lie co-algebroid that is built on a geometric resolution) which always exists
by [18, 19]. In fact we can be more general, we do not need a geometric resolution. The following
Theorem states that given a weak symmetry action of a Lie algebra g on singular foliation F
and a universal Lie oo-algebroid of F seen as a Lie-Rinehart algebra (i.e. Lie oco-algebroid that
is built on a free resolution of F, that is, resolutions that do not need to be geometric) there
always exists a Lie oo-algebroid whose underlying complex of vector bundles is of the form (24)
and that satisfies item (1), (2) and (3) of Proposition 3.1.

Theorem 3.3. Let o: g — X(M) be a weak symmetry action on a singular foliation F. Let
((KZi)i>1,d, p) be a free resolution of the singular foliation F over M. The complex of trivial
vector bundles over M

oY, YE, Yyer, LTM (28)
where T'(E_1) = K_;, comes equipped with a Lie co-algebroid structure

(1) whose unary bracket is d and whose anchor map p', sends an element t ®e € g @ E_4
to o(x) + p(e) € olg) + TF,
(2) the binary bracket satisfies

62 (P(E_l),F(E_l)) C F(E_l) and gQ(P(E_1)7F(g)) C P(E_l),

(3) the g-component of the binary bracket on constant sections of g x M is the Lie bracket
of g.

For a proof see Appendix C.
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Remark 3.4. When we have o(g)N7,,F = 0 for all m in M, the Equation (28) is free resolution
of the singular foliation C*°(M)o(g) + F and we can apply directly the Theorem 2.1 in [19].
Otherwise, we need to show there is no obstruction in degree —1 while doing the construction
of the brackets if the result still needs to hold.

4. ON WEAK AND STRICT SYMMETRIES: AN OBSTRUCTION THEORY

In this section we apply theorems in Section 2 to define a class obstructing the existence of

strict symmetry action equivalent to a given weak symmetry action.

Let us start with some generalities. Assume we are given
e a Lie algebra g.
e a Lie oo-algebroid (E,Qg) over M, with anchor map p: E_; — T'M,
e included as a sub-Lie oo-algebroid in a Lie algebroid (E’, Q) over M, whose underlying
complex is, E' | := g@® E_j, and for any ¢ > 2, E' ; = E_;, namely
"'L)E_gi)E_Qi)g@E_lL)TM. (29)
We also assume that
lo(z @0,y ®0) = [z,y]g D (z,y)
for all z,y € g, for some 1: A?>g — E_1, and
Cy(2,T(E_1)) C T(E-1)

for all x € g.

In particular, this induces a weak symmetry action g of the Lie algebra g on the singular foliation

F = p(I'(E_1)) which is given by x € g+ o(x) := p/(x) and satisfies for all z,y € g
o([z, ylg) — [o(x), o(v)] = p(n(z,y)). (30)

Lemma 4.1. Let m € M. Assume that the underlying complex (E,{1) is minimal at a point
m, i.e. £y}, = 0. The map

v: g — End <E,1|m> , x> Ly, ),
satisfies

(a) I/[.%',y]g - [l/(.%'), V(y)] + 62( '7n(x7y))\m =0,

(b) v(2) (n(z,y)),,) — [z, ylg, 2)},, + O (z,9,2) = 0.

Proof. Since £y},, = 0, E’_1| is a Lie algebra. The Jacobi identity on elements x,y € g, e €
I'(E_q), evaluated at the point m, implies that

v([z,ylg)(ey,,) — [v(@),v(y)l(e,,) + La(n(z, ), €)),, = 0.
This proves item (a). Likewise, Jacobi identity on elements x,y, z € g and since 1), = 0 give:
fé(ﬂé(w, y)a Z)\m+ O (xa Y, Z) =0 = Eé([xa y]g, Z)|m + fé(n(% y)’ Z)|m+ O (xa Y, Z) =0,
= v(2) (n(z,9)},,) — 1z, ylg, 2)},, + O (2,5, 2) = 0.

Here we have used the definition of ¢, on degree —1 elements and Jacobi identity for the bracket
[-,]g- This proves item (b). O

By Lemma 4.1, E_; is equipped with a g-module structure when n(z,y)),, is for all z,y € g
valued in the center the Lie algebra E_1|m. The following proposition generalizes this remark.
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Proposition 4.2. Let m € M and assume that
e the underlying complex (E, (1) of (E,Q) is minimal at m,
e forall z,y € g, n(x,y),,, is valued in the center’ Z(E-y,,) of E_1,,.
Then,
(1) the restriction of the 2-ary bracket

,2: g® Z(E71|m) — Z(E71|m)

endows Z(E_1|m) with a g-module structure which does not depend neither on the choice
of weak symmetry action o nor a universal Lie co-algebroid of F, nor of the Lie co-
morphism ®: g — X(E).

(2) the restriction of the map n: N>g — E_1 at m

Mo * Ng— Z(E-1,,)

is a 2-cocycle for the Chevalley-FEilenberg complex of g valued in Z(E_l‘m),
(3) the cohomology class of this cocycle does not depend on the representatives of the equiv-
alence class of o,

(4) If o is equivalent to a strict symmetry action, then 7, is eract.

Proof. We may assume that Z(E_1|m) = E_1|m, ie. fz,, = 0on E_1|m. The first clause
of item (1) follows from item (a) of Lemma 4.1 when f3), = 0. It is easy to see that if we
change the action ¢ to ¢+ p o 8 for some vector bundle morphism 3: g — E_1, the new 2-ary
bracket between sections of g and E_; made in the proof of Theorem 3.3 is modified by (z,e) —
ly(x,e) + £2(B(x),e). Therefore, under the assumption, £y, = 0, we obtain the last clause of
item (1). Item (2) follows from Item (b) of Lemma 4.1 that tells that 7, : A g — E_q,, isa
2-cocycle for the Chevalley-Eilenberg complex of g valued in E,l‘m.

Let ¢’ be a weak action of g on F which is equivalent to o, i.e. there exists a vector bundle
morphim 3: g — E_1 such that ¢'(z) = o(z) + p(B(x)) for all z € g. Let n': A2g — E_; be
such that ¢ ([z,ylg) — [0'(2), o' (v)] = p(1 (z,y)) for all x,y € g. Following the constructions in
the proof of Theorem 3.3, this implies that

' (z,y) = n(z,y) + B[z, ylg) — Loz, B(y)) + L5 (y, B(x)) — L2(B(x), B(y))), for all z,y € g. (31)

Hence, if 77’|m € H(g, E,llm) is exact, i.e. there exists a linear map A: g — E,l‘m such that
d°E(\) = 1|,.- Using Equation (31) and /3|, = 0, one gets dCE(5|m + A) = n,,,- This proves
items (3) and (4). O

Remark 4.3. When (3, # 0. The weak symmetry action ¢ is equivalent to strict one if the

Maurer-Cartan-like equation (31) has no solution with n"m =0.

Let F be a singular foliation. Let us choose a universal algebroid (F, Q) such that (E,¢;)
is minimal at a point m € M. Such a structure always exists. By Proposition 4.14 in [18] the
isotropy Lie algebra g,, of the singular foliation F at the point m € M is isomorphic to ker(p,,).
The following is a direct consequence of Proposition 4.2.

Corollary 4.4. Let m € M be a point of M Assume that the isotropy Lie algebra g., of F at
m is Abelian. Then, for any weak symmetry action o of a Lie algebra action g on F such that
oz, yly) — [o(x), e(y)] € F(m) for all z,y € g

(1) gm s a g-module.

ln particular, when the 2-ary bracket ¢2 is zero at m, on elements of degree —1 we have, Z(E_; ‘m) =F_

L -
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(2) The bilinear map, n,,, : A2 g = gm, 15 2-cocycle for the Chevalley-Eilenberg complex of g
valued 0 g, .

(3) Its class cl(n) € H%(g, gm) does not depend on the choices made in the construction.

(4) Furthermore, cl(n) is an obstruction of having a strict symmetry action equivalent to .

Example 4.5. We return to Example 1.7 with m € M a leaf of F. Since the isotropy Lie
algebra gfn is Abelian for every k > 2 the following assertions hold by Corollary 4.4:

(1) For each k > 1, the vector space gkl is a gF -module.
(2) The obstruction of having a strict symmetry action equivalent to g is a Chevalley-

Eilenberg cocycle valued in g+l

Example 4.6. Let F := Z3X(R") be the singular foliation generated by vector fields vanishing
2 n

to order 3 at the origin. The quotient g := % is a trivial Lie algebra. There is a weak
0

symmetry action of g on F which assigns to an element in g a representative in Z2X(R"). In

this case, the isotropy Lie algebra of F at zero is Abelian and ¢,(g, 90)\0 = 0. Thus, the action

of g on go is trivial. One can choose n: A? g — go such that 7 (mfa%,xfa%) = 2e;;, with
i J
3_0

eij a constant section in a set of generators of degree —1 whose image by the anchor is x7 5.
J

Therefore, 7, (x? 82,’5'322%) # 0. This implies that the class of 7 is not zero at the origin.
Therefore, by item 2 of Corollary 4.4 the weak symmetry action of g on F is not equivalent to

a strict one.

Also, we have the following consequence of Corollary 4.4 for Lie algebra actions on affine va-
rieties, as in Example 1.11. Before going to Corollary 4.10 let us write definitions and some facts.

Settings: Let W be an affine variety realized as a subvariety of C?, and defined by some ideal
Iw C Clzy,...,xq]. We denote by X(W) := Der(Ow ) the Lie algebra of vector fields on W,
where Oy is coordinates ring of W.

Definition 4.7. A point p € W is said to be strongly singular if for all f € Zy, d,f = 0 or
equivalently if for all f € Zyy and X € X(C?), one has X[f](p) € Z,,.

Example 4.8. Any singular point of a hypersurface W defined by a polynomial ¢ € Clz, ..., z4]
is strongly singular.

The lemma below is immediate.

Lemma 4.9. In a strongly singular point, the isotropy Lie algebra of the singular foliation
F = TwX(C?) is Abelian.

Corollary 4.10. Let o: g — X(W) be a Lie algebra morphism.

(1) Any extension ¢ as in Example 1.11 is a weak symmetry action for the singular foliation
F = IwX(CY.

(2) For any strongly singular point p in W if the class cl(n) does not vanish the strict action
0: 9 — Der(Ow) can not be extended to the ambient space.

Let us give an examples of Lie algebra actions on an affine variety that do not extend to the

ambient space.

Example 4.11. Let W C C? be the affine variety generated by the polynomial ¢ = FG with
F,G € Clz,y] = O. We consider the vector fields U = FXg, V = GXr € X(C?), where Xf
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and Xy are Hamiltonian vector fields w.r.t the Poisson structure {x,y} := 1. Note that U,V
are tangent to W, i.e. Uly], V[p] € (p). Tt is easily checked that [U, V] = pX(pa-

The action of the trivial Lie algebra g = R? on W that sends its canonical basis (e1, es) to U,
and V respectively, is a weak symmetry action on the singular foliation F% := (¢)X(C?), and
induces a Lie algebra map,

0: g — X(W). (32)

A universal Lie algebroid of F% is a Lie algebroid (see Example 3.19 of [19]) because,

@%@oid

0 — Ou®e X(C?) F¥

is a O-module isomorphism. Here 4 is a degree —1 variable, so that u? = 0. The universal

algebroid structure over that resolution is given on the set of generators by:
o <M®O 3,u®o 2) = 0_¢M®O 9 _ a—@u@m 9

ox oy ox dy Oy ox

NF,G} 9 B NF,G} 0
Oy Ox or Oy

MRG0 oFG 0

(33)

and {y := 0 for every k > 3. Write X(p g = . Therefore, we can put

Take for example, F(z,y) = y — 2% and G(z,y) = y + 2% The isotropy Lie algebra 9(0,0)
of F¥ is abelian, since zero is a strong singular point of W. By Corollary 4.4 (1), 9(0,0) Is a

R2-module. A direct computation shows that the action on 8(0,0) is not trivial but takes value

0
in Ou®oe e Besides, Equation (34) applied to {F,G} = 4x gives

n(er,es) = —4pu®o (35)

a_y .
If n) (0.0) Were a coboundary of Chevalley Eilenberg, we would have (in the notations of Propo-
sition 4.2) that

1)) = Bl lee) — (e, B) + (0, B@)) € Opo o, forallzyeg  (36)

for some linear map 3: g — g(0,0)- Therefore, Equation (36) is impossible by Equation (35)
and since 7, 7 0. In orther words, its class cl(n) does not vanish. By Corollary 4.10 (2), the

action g given in Equation (32) cannot be extended to ambient space.

5. SYMMETRIES OF BI-SUBMERSIONS

The concept of bi-submersion over singular foliations has been introduced in [1] and it is used

in K-theory [3] or differential geometry [5, 13, 2]. Let us recall some definitions.

Definition 5.1. Let M be a manifold endowed with a singular foliation F. A bi-submersion

over F is a triple (B, s,t) where:

e B is a manifold,

e s,t: B — M are surjective submersions, respectively called source and target,

such that the pull-back singular foliations s~'F and t~'F are both equal to the space of vector
fields of the form £ + ¢ with £ € I'(ker(ds)) and ¢ € I'(ker(dt)). Namely,

s1F =t71F = T'(ker(ds)) + I'(ker(dt)). (37)
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Example 5.2. Let F be a singular foliation over a manifold M. For x € M and Xy,..., X, € F
inducing a basis of F, := F/I,F. We know from [l] that there is an open neighborhood W of
(z,0) € M x R™ such that (W, t,s) is a bi-submersion over F, where’

s(z,y) =z and t(x,y) =exp, <Z yZXZ> (38)
i=1

Such bi-submersions are called path holonomy bi-submersions [1].

5.1. Lifts of symmetries. Let (B, s,t) be a bi-submersion of a singular foliation F on a man-
ifold M.

Definition 5.3. We call lift of a vector field X € X(M) to the bisubmerssion (B, s,t) a vector
field X € X(B) which is both s-projectable on X and ¢-projectable on X.

The coming proposition means that the notion of lift to a bisubmersion only makes sense for

symmetries of the singular foliation.
Proposition 5.4. If a vector field on M admits a lift to (B, s,t), then it is a symmetry of F.

Proof. Let X € ¥(B) be alift of X € X(M). Since X is s-projectable, [X,T'(ker ds)] C I'(ker ds).
Since X is t-projectable, [X, [(ker dt)] C I'(ker dt). Hence:
[X,s '(F)] = [X,T(kerds) + I'(ker dt)]
= [X,T(ker(ds)] + [X, T'(ker dt)]
C T'(kerds) + I'(ker dt) = s~ (F).

In words, X is a symmetry of s™'F. Since X projects through s to X, X is a symmetry
for F. O

In the rest of the section, we investigate on existence of lifts of symmetries of F to bisubmer-

sions over F.

Remark 5.5. For a given X € sym(F), the lift X to a given bisubmersion is not canonical even
when it exists. However, two different lifts of a X € X(M) to a bisubmerssion (B, s, t) differ by
an element of the intersection I'(ker(ds)) N I'(ker(dt).

As the following example shows, the lift of a symmetry to a bi-submersion may not exist.

Example 5.6. Consider the trivial foliation F := {0} on M. For any diffeomorphism ¢: M —
M, (M,id, ¢) is a bi-submersion over F. Every vector field X € X(M) is a symmetry of F. If
it exists, its lift has to be given by X = X since the source map is the identity. But X=Xis
t-projectable if and only if X is ¢-invariant. A non-invariant vector field X therefore admits no
lift to (M, id, ¢).

However, internal symmetries, i.e. elements in F admit lifts to any bisubmersion.

Proposition 5.7. Let (B, s,t) be any bi-submersion of a singular foliation F on a manifold M.

Every internal symmetry, i.e. every vector field in F, admits a lift to (B, s,t).

2For a vector field Y € X(M) and = € M, exp,(Y) stands for the image of = by the time-1 flow of Y.
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Proof. Let X € F. Since s: B — M is a submersions, there exists X* € X(B) s-projectable
on X. Since t is a submersion, there exists X' € X(B) t-projectable on X. By construction
X® € s7YF) and X! € t71(F). Using the property (37) of the bi-submersion (B, s,t), the
vector fields X* and X? decompose as

X® =X+ X7 with X7 € I'(ker(ds)), X7 € I'(ker(dt)),
Xt = X!+ X! with X! e (ker(ds)), X} € T'(ker(dt)).
By construction, X} is s-projectable to X and t-projectable to 0 while X! is s-projectable to
0 and t-projectable to X. It follows that, X = X!+ X?, is a lift of X to the bi-submersion
(B, s,t).
O

As the following lemma shows that the existence of a lift to a bi-submersion of a symmetry
of F is a local property.

Lemma 5.8. Let X € sym(F). If X admits local lifts to the bi-submersion B, i.e. if everyb € B
admits an open neighborhood U C B on which there exists Xy € X(U) such that dt(X) = X

and ds(X) = X\, then X admits a lift X € X(B) to the bisubmerssion (B, s, ).

Proof. By assumption, there exists partition of unity (U, x;)ier of B such that there exists
Xy, as in the statement. The vector field X = ., x; Xy, is both s-projectable on X and
t-projectable on X. O

We can now state the main result of this section. It uses several concepts introduced in [1],

which are recalled in the proof.

Proposition 5.9. Let F be a singular foliation on a manifold M. Any symmetry X € sym(F)
admits a lift

(1) to any path holonomy bi-submersion (B, s,t),
(2) to Androulidakis-Skandalis’ path holonomy atlas,
(3) to a neighborhood of any point in a bisubmersion through which there exists a local

bisection that induces the identity.

Remark 5.10. In the cases 1) or 2) in Proposition 5.9, a linear lift
XX

can be defined on the whole space sym(F) of symmetries of F. As an immediate consequence
of Remark 5.5, we obtain that for all X, Y € sym(F),

[X,Y] - [X, V] € D(ker ds) N D(ker dt). (39)

Proof of Proposition 5.9. Let X € sym(F). Asumme that (B,s,t) = (W, so, o) is a path holo-
nomy bi-submersion associated to some generators Xi,...,X, € F. Fix (y = (y1,...,yn),u) €
W C R"x M, set Y = Z‘ii:l y;iX;. Since dpi (X) = exp(ady)(X) € X + F, there exists
Z, € F depending in smoothly on y such that dto(0, X) = X + Z,. Take Zy € ty *(F) such that
dto(Zy) = Z,. One has,

dtq <(O,X) - Zy> = dso(0, X) = X.

We can write Zy = Z} + 25, with Z} € I'(ker ds), 25 € I'(ker dp). Hence, X := (—Z},X) is a
lift to the bi-submersion (W, sq,tp). This proves item 1.
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If X, € X(B) and X, € X(B’) are two lifts of the symmetry X on the path holonomy bi-
submersions (B, s,t) and (B, s',t') respectively, then (X,, X}) is a lift of X on the composition
bi-submersion B o B’. This proves item 2, since the path holonomy atlas is made of fibered

products of holonomy path holonomy bi-submerssions.

Item 2 in Proposition 2.10 of [1] states that if the identity of M is carried by (B, s,t) at some
point v € B then there exists an open neighbourhood V' C B of v that satisfies 5|, = sg o g and
t),, = to o g, for some submersion g: V. — W. Thus, for all X € sym(F) there exists a vector
field X € X(V) fulfilling ds|, (X) = dt},,(X) = X. This proves item 3.

O

5.2. Tower of bi-submersions and symmetries. We end this paper by considering towers
of bi-submersions. The work contained in this section is entirely original, except for the notion
below that arose in a discussion between C. Laurent-Gengoux, L. Ryvkin, and myself, and will
be the object of a separate study.

Definition 5.11. We call tower of bi-submersion over a singular foliation F on M, a (finite or

infinite) sequence of manifolds and maps as follows

Si4+1 S; Si—1 S1 50
—_ —a — — 3

Tg: - Bii1 Bi___--___Bi___ By, (40)
tiv1 t; ti—1 131 to

together with a sequence F; of singular foliations on B;, with the convention that By = M and
Fo = F, such that
o foralli > 1, F; C I'(kerds;_1) NI'(kerdt;_;),
si
o foreach i > 1, B T B, is a bi-submersion over F;.
t;
Tower of bi-submersions over (M, F) shall be denoted as (Bjy1, Si, ti, Fi)i>0o The tower of bi-
submersions over F in (40) is said to be of of length n € N if B; = B,, and F; = {0} for all
Jj=>n.

Remark 5.12. Let us spell out some consequences of the axioms. For ¢ > 1, two points
bt/ € B; of the same leaf of F; satisfy s;_1(b) = s;_1(b') and ¢;_1(b) = t;—1(V/). In fact, for all
be B;, TyF; C (ker d5i71)|b N (ker dtz;l)

I

Let us explain how such towers can be constructed out of a singular foliation. Let F be a
singular foliation on M. Then,
50
(1) By Proposition 2.10 in [1], there always exists a bi-submersion Bj M over F.
to
(2) The C*°(Bj)-module T'(kerdsg) N I'(ker dtg) is closed under Lie bracket. When it is

locally finitely generated, it is a singular foliation on By. Then, it admits a bi-submersion
s1
By : B . Therefore, we have obtained the two first terms of tower of bisubmersions.
t1
(3) We can then continue this construction provided that I'(ker ds;) N I'(ker d¢;) is locally

finitely generated as a C°°(Bs)-module, and that it will be so at each step®.

3In real analytic case, the module I'(ker dsq1) NI (ker d¢1) is locally finitely generated because of the noetherianity

of the ring of germs of real analytic functions [11, 23].
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Definition 5.13. A tower of bisubmersions (B;1, s;, ti, Fi) over (M, F) is called ezact tower of
bisubmersions over (M,F) when F; = I'(ker(ds;)) N I'(ker(dt;)) for all 4 > 0. It is called a path
holonomy tower of bisubersions (resp. path holonomy atlas tower of bisubersions) if (B;y1, i, t;)
is a path holonomy bisubmersion (resp. a path holonomy atlas) for F; for each ¢ > 0. When a
path holonomy tower is exact we speak of exact path holonomy tower.

Definition 5.14. A symmetry of the tower of bi-submersion (Bjti,si,ti,Fi)i>o is a family
X = (Xi)i>o0, with the i-th component X; in sym(F;), such that ds;—1(X;) = dt;_1(X;) = X;—1
for all i > 1. We denote by sym(7p) the Lie algebra of symmetries of 7.

The next theorem that gives a class of tower of bisubmersions to which any symmetry of the
base singular foliation F lifts.

Theorem 5.15. Let F be a foliation. Let Tg be an exact path holonomy tower of bi-submersions
(or an ezxact path holonomy atlas tower of bisubmersions). A wvector field X € X(M) is a
symmetry of F, i.e. [X,F] C F, if and only if it is the component on M of a symmetry of Tp.

Proof. 1t is a direct consequence of item 2 in Proposition 5.9. O

Lemma 5.16. Let F be a singular foliation on M. Assume that there exists a tower of bi-
submersion Tp = (B;, ti, si, Fi)i>o over F. Then,

dto dty dio
- — kerdsy —— kerds; —— kerdsg —— T'M (41)
By ——— By ——— By —— I\L.

is a complex of vector bundles, which is exact on the sections level' if T is an exact tower of
bisubmersions, i.e. if F; = I'(kerds;—1) NT'(kerdt;—1) for all i > 1.

Proof. For any element b € B;;1 and any vector v € kerds; C T;B;11 one has
dt;(v) € Ty, ) Fi (since I'(ker ds;) C tz_l(]-“l))
= dt;(v) € (kerds;—1 Nkerdt;—1) |,y by Remark 5.12.
= dt;(v) € kerds;—1; and dt;—1 odt;(v) =0, for all i > 1.

This shows the the sequence (41) is a well-defined complex of vector bundles.

Let us prove that it is exact when F; = I'(kerds;—1) N ['(kerd¢;—q) for all ¢ > 1. Let £ €
I' (kerds;—1) be a t;_j-projectable vector field that projects to zero, i.e. dt;—1(§) = 0. This
implies that & € T'(kerds;—1) N T'(kerdt;—1) = F;. Since t; is a submersion there exists a t;-
projectable vector field ¢ € t;l(]:i) that satisfies d¢;(¢) = &£. The vector field ¢ can be written as
¢ = ( + (o with § € T (kerdt;) and ¢ € T' (kerds;), because t; '(F;) = T'(ker ds;) 4 I'(ker dt;).
One has, dt;(¢2) = £. A similar argument shows that the map, I'(ker dsg) dlo, toF, is surjective.
This proves exactness in all degree. ([l

ALet us explain the notion of exactness of level of sections when the base manifolds are not the same: what we
mean is that for all n > 0, I'(kerdt,,) N T'(kerds,) = (tnt1)«(I'(kerdsn+1)).

Equivalently, it means that the pull-back of the vector bundles to any one of the manifold B,, with m > n is

exact at the level of sections, i.e

dt,, 1ty
T (tm nt1 kerdsnir) o L(tr, . kerdsy) _ A L(th,n—1 kerds,—1 )

is a short exact sequence of C'°°(By,)-modules, with ty,.n =tp 0--- 0ty for all m > n.
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Corollary 5.17. Under the assumptions of Lemma 5.16. Assume the tower of bi-submersion
Tg is of length n + 1. Then, the pull-back of the sequence of vector bundles

dt, % dto « dtq pry
ker ds,, ——t; kerds,,-1 — -+ —— o kerds; ——= T'Bp 41 X7 kerdsg ——= T'Bj 41
BnJrl7

is a geometric resolution of the pull-back foliation ta}L(]:) C X(Bp+1), where pry is the projection
on TBy,y1 and for i > 1, t; ; is the composition t; 0 ---ot;: Bj 1 — B;.

Proof. By Lemma 5.16, the complex in Equation (5.17) is exact. By construction, the projection
of the fiber product T'By,+1 X1 ker dsg to T'B,+1 induces the singular foliation to, 711(.7-" ). O
Remark 5.18. If there exists a sequence of maps

€0 £1 €9

M: By By - (42)

where for all i > 0, ¢; is a section for both s; and ¢; then by Corollary 5.16, the pull-back of (41)

on M through the sections (g;);>0 is a geometric resolution of F.

Let (X;)i>0 be a lift of X € sym(F). For i > 1, adx, preserves I'(ker ds;_1). Altogether, they
define a chain map between the complex (41) in itself. Let us give a precise meaning to this

statement.
Proposition 5.19. Let Tp = (Bit1, si, ti, Fi)i>0 be an exact path-holonomy tower of bisubmer-
sions over a singular foliation (M,F) of length n + 1.

(1) Any symmetry X € sym(F) of F is the zero component of a symmetry (X;)i>o of Tp.
(2) This, in turn, induces a K-linear chain map

d d
- ——T'(t3,, ker dso) 2 [(t3,, kerdsy) A [(T'Bp+1 X7 ker dsg) R ta}L(]:)
l vz l v w0, l adx,
- ——T'(t3,, ker dss) 2 [(t3,, kerdsy) ——> (T Bny1 X7 ker dsg) R ta}L(]:)
(43)

that satisfies for alli > 1,
(a) VSN (fE) = Xnalf] + fVKNE), for all f € C®(Bny1),& € T(t], ker ds;_1).

(b) Vi odt; = dt; o VE' and pryo VY% =adx,,, opry.

Proof. Let U C Bpy41 an open subset and &p,...,§, € to, 711(.7-") some local generators. Since
Xnt1 € sym(toiyll(}")), this implies [Xp41,&] = Y0, ¢ (2)§p for some smooth functions ¢} (z) €
C>*(U) with i,p = 1,...,r. Pick alocal trivialisation (1,...,(s € I'(T'Bpy1 X1 ker dso),,. We

define a map from I'(T'Bj,4+1 X7 ker dsg) to T'(T'Bp41 X7 ker dsg) as follows,
W= 3 (35t + Xl ) m
p=1 \i=1
Clearly, it satisfies the following Leibniz identity,

VE(fE) = Xpa1[f] + FVX(€), for all f € CF(Bys1),& € T(1], kerds—1). (45)
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Of course, the map V% is constructed to agree with adx and the first projection map pry,
namely

pr; o V% = adx,, o pry. (46)
Equation (46) and Corollary 5.17 imply that Vx restricts to a map over the kernel of pry, that
is,

Vx: kerpr; =im(dt;) — ker pr; = im(dty).

A similar construction allows to construct Vi : I'( 5 kerdsy) — T'(t5, kerdsy) on degree —2
elements that commutes with the differential map dt;. Again, by exactness, we are allowed to
continue on every degree to obtain a map that makes the diagram (43) commutes and satisfies

the Leibniz identity in (45) on every degree. O

Remark 5.20. In [14], under some assumptions, it is shown that if a Lie group G acts on a
foliated manifold (M, F) it acts on its holonomy groupoid. It is likely that this result follows

from Theorem 5.15, this will be addressed in an other study.

APPENDIX A. LIE co-ALGEBROIDS AND THEIR MORPHISMS

Let us now recall the definition of Lie oco-algebroids over a manifold their morphisms and
homotopies. Most definitions of this section can be found in [6, 18, 19] and our convention are
those of [18, 19].

Definition A.1. A Lie co-algebroid over M is the datum of a sequence E = (E_;), 1 <i < o0
of vector bundles over M together with a structure of Lie oc-algebra ({x)r>1 on the sheaf of
sections of £/ and a vector bundle morphism, p: F_1 — T'M, called anchor map such that the
k-ary brackets fi, k # 2 are O-multi-linear and such that

la(er, fez) = pler)[flez + fla(er, e2) (47)
for all ey € I'(E_1),e2 € I'(E,) and f € O.

The sequence

l 4
B, LoTM, (48)

is a complex called the linear part of the Lie oc-algebroid.

Remark A.2. Any Lie oo-algebroid on M has an induced singular foliation on M which is

given by the image of the anchor map, that we call the basic singular foliation.

There is an alternative definition for Lie oo-algebroids in term of Q-manifolds with purely

non-negative degrees.

Definition A.3. A splitted NQ-manifold is a pair (E, Q) where E — M is a sequence of vector
bundles over M indexed by negative integers and where () is a homological vector field of degree
+1, i.e. @Q € Dery (I'(Sg(E™))) is such that [Q, Q] = 0.

We denote by £ and call functions on the splitted N@-manifold £ — M the sheaf of graded
commutative O-algebras made of sections of Sk (E™*).

There is a one-to-one correspondence between splitted N(@Q-manifolds and Lie oco-algebroids
[25, 24, 6, 22]. This formulation allows to write in a compact manner morphisms of Lie oco-

algebroids. From now on, we write (F, Q) to denote a Lie oo-algebroid over M.
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Definition A.4. Let (F,Q) and (E’,Q’) be Lie oo-algebroids on a manifold M resp. M’ with
sheaves of functions £ and &, respectively. A Lie co-algebroid morphism from (E, Q) to (E', Q’),
is a graded algebra morphism ®: & — &' (of degree 0) which interchanges @ with Q'

PoQ=Q 0. (49)
Homotopy equivalence can also be defined, see Section 3.4.3 in [18] or Section 1.2.5 in [19].

Remark A.5. A Lie oo-algebroid morphism ® induces a smooth map ¢: M’ — M called the
base morphism. It also induces a graded vector bundle morphism ¢g: E, — FE, over ¢ which is

called the linear part of ®.
Let us recall from [18, 19] the following definition and theorem.

Definition A.6. Let F C X(M) be a singular foliation on a manifold M. A geometric resolution
of the singular foliation F is a projective resolution ((P_;);>1,(d®);>2,p) of F as a O-module

that corresponds to a sequence of vector bundles (E,d, p) over M

d®) d®)
e, Y, 2oTMm, (50)

Le.
e for i > 1 the O-module of sections of E_; is P_; =T'(E_;)

e for ¢ > 2, the induced maps on the sections level

d9: T(E_)) — D(E_i11) or p:T(E_) — F

coincide with d®: P_; —» P_; 1y or with p: P_; — F respectively.
For convenience we denote by d and p the same as d and p respectively. Also, we call p: E_; —

TM the geometric resolution anchor. A geometric resolution is said to be minimal at a point
m € M if, for all ¢ > 2, the linear maps d|(l): E_;,, — E_it1),, vanish.

m

Theorem A.7. [18, 21, 19] Let F be a singular foliation over M. Any geometric resolution
of F

g, Y, Y g Ty (51)

comes equipped with a Lie co-algebroid structure whose unary bracket is d and whose anchor
map is p. Such a Lie co-algebroid structure is unique up to homotopy and s called a universal
Lie oo-algebroid of F.

Remark A.8. For a given Lie co-algebroid (E, @), the triple (X4(E), [-,-],adg) is a differential
graded Lie algebra, where Xo(F) stands of the module of graded vector fields (=graded deriva-
tions of £) on E, the braket [-, -] is the graded commutator of derivations and adg := [Q,-]. We
say a vector field on F is vertical if it is O-linear.

APPENDIX B. LIE co-MORPHISMS OF DIFFERENTIAL GRADED LIE ALGEBRAS AND
HOMOTOPIES

Let us recall the definitions of Lie co-morphisms and homotopies between differential graded

Lie algebras in terms of coderivations. We restrict ourself to a special case that we need for this

paper.
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B.1. Comorphisms and coderivations. Let g and § be graded Lie algebras over K.

Definition B.1. A linear map ®: Sgg — Sgb is said to be of arity r € Ny, if it sends
polymonomials of Sﬁ%g to those of Sﬂlz_rh. Any linear map ¢ can be decomposed as formal sum:
=) oW (52)

keZ
where for all k € Ny, ®*): Sgg — SH'{kh is a linear map of arity k. Therefore, a linear map

®: Sgpg — Sgb is of arity r € Ny if and only if ®(*) is the unique non-zero term, namely
d®) = 0, for k # r.

Let us denote by A the coalgebra structure S§g and by A’ the one on Sgh. Given any linear
map ®: Sgg — bh. Denoting by @ : Sﬁ?lg — b for k € Ny the restriction of ® to Sﬂlerlg. The
linear map ® can be extended to a unique comorphism d: Sgg — Sgh by taking for r € N the

component on Sgh to be for z1,..., 21 € g

1 T
Z Z E(U)g H D1 (T iy otij_141)1 - - - s To(inttig))- (53)
o

i1+-+ir=k c€&(i1,...,ir)

where &(iy,...,1,) is the set of (i1,...,4,)-shuffles, with 41,...,4, € N.

Every comorphism from Sgg to Sgbh is of this form [16]. That is, a comorphism ®: Sgg —
Sgh is entirely determined by the collection indexed by k € N of maps called its k-th Taylor
coefficients:

op: SEtlg 2 Spp s p, (54)
with pr being the projection onto the term of arity 1, i.e. pr: Sgg — Sﬂkh ~ hj. Notice that the
component ®*) of arity k of ® coincides with k-th Taylor coeffiecient ®; on Sﬂlzﬂg. Hence, a
comorphism ®: Sgg — Sgbh admits a decomposition of the form:

=) oW (55)
k>0
Definition B.2. Let ®: Sgg — Sgb be a graded comorphism. A ®-coderivation of degree N
on Syg is a degree k € Ny linear map H : Sgg — Sgh which satisfies the so-called (co)Leibniz
identity:
ANoH=HP)o A+ (PR H)oA. (56)

When g = § and & = id, we say that H is a coderiavation.
The same results on comorphisms hold for coderivations [16].

B.2. Lie oco-morphisms of differential graded Lie algebras. Let (g, [, -]g) a Lie algebra
and (E,Q) a Lie oc-algebroid over M. In the sequel, the Lie algebra g is concentrated in
degree —1. The differential graded Lie algebra (X(E),[-,-],adg) of vector fields on E is shifted
by 1, i.e. a derivation of degree k in Xj(FE) is of degree k — 1 as an element of the shifted
space Xi(E)[1]. The graded symmetric Lie bracket on X(E)[1] is of degree +1 and given on
homogeneous elements u,v € X(E)[1] as

{u,v} = (=1)"u, v].
In the sequel we write (X(E)[1],[-, ] ,adq) instead of (X(E)[1],{-, },adg).
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Let (Sgg,Qq) respectively (Sg(X(E)[1]),Q) be the corresponding formulations in term of
coderivations of the differential graded Lie algebras (g, [-,],) and (X(E)[1],[-,"] ,adg). Precisely,
() is the coderivation defined by putting for every homogeneous monomial z1 A--- Az, € Sﬂlzg,

Qa(zr Av-Awg) = > (=1 Y aga)g Aay Aee By B Ay, (57)
1<i<j<k

and Q = Q@ +QW is the coderivation of degree +1 where the only non zero Taylors coefficients
— ad — .
are, Qs SE(X(E)1) “3 X(E)[1] and QU s2(x(B)[1)) “F x(B)[1].

Definition B.3. [I7] A Lie co-morphism ®: (g,[-,"];) — (Xe(E)[1],[","] ,adq) is a graded
coalgebra morphism ®: (Sgg, Q) — (S& (X(E)[1]),Q) of degree zero which satisfies,
PoQy=Qod. (58)

In order words, it is the datum of degree zero linear maps <<i>k: Sktlg — %_k(E)[1]>k>0 that

satisfies

Z (_1)2—’—]_1@71(['%'17 xj]ga T1s--- 7'/%'\1']'7 s 7xn+2) = [Q7 in-l—l(xh s 7xn+2)] +
1<i<j<n+2

Z 6(0-)[(i)i(xa(1)a s axa(i—i—l))’ (i)j (xa(i—i—Q)a oo ,xa(n+2))]
i+j=n
1< j
0 € Giy1j41

where ;; means that we take z;, z; out of the list. When there is no risk of confusion we write
o for O.

Remark B.4. Definition B.3 and Definition A.4 are compatible when M = {pt}. Therefore,

morphisms in both sense match.

Remark B.5. Its follows from these axioms that if the homological vector field () vanishes at
some point m € M, then the map z — (P € X(E), P, + [®o(z), P]|,,) endows the vector
space X(E)|,, ~ (S(E*)®FE)
O N2g— X_1(E)), at m is a 2-cocycle of Chevalley-Eilenberg.

m

with a g-module structure. Moreover, the restriction of the map

lm

Remark B.6. Let (E,Q) be a Lie oco-algebroid and F its basic singular foliation. Any Lie
oo-morphism @: (g, [-,];) — (Xe(E)[1],[,],adg) gives a weak symmetry action of g on F.
If Q),, = 0 for some point m € M, the g-action defined in Remark B.5, is independent of the

equivalence class of the weak symmetry action.

B.3. Homotopies. Now we are defining homotopy between Lie co-morphisms. A homotopy
that joins two Lie oo-morphisms ®,V: (Skg,Qq) — (S(X(E)[1]),Q) is the datum of an in-
terval [a,b] C R and a chain map
) 2 H ° ° . .
(SKga Q) — (SK:{(E)[H ®C°°([a,b}) Q ([a’ b])a Qg ®id +id ® ddR)
vi— E(v) ® a(t) + H(v) ® (t)dt, for t € [a, b).

which is a coalgebra morphism as well and coincides with ® and ¥ at t = a and b respectively.
For further use, we will write Z; ® 1 for Z(v) ® a(t) and Hy ® dt for H(v) ® 8(t)dt. The map H

induces for every t € [a,b] two different maps. One of them is of degree zero and the other one

of degree —1 respectively:
Z¢  : Sgg — Sp(X(E)[1])
H, :Spg — SE(X(E)[1)).
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Using the property of coalgebra-morphisms and chain map property respectively, one can check
easily that for every ¢ € [a, b], Z; must be a Lie co-morphism of differential graded Lie algebras

and H; a E;-coderivation satisfying the following additional condition over [a, b]

—

d;;:QoHt—i—HtoQg. (59)

We can formulate the definition of homotopies between Lie co-morphisms the following man-

ner.

Definition B.7. Let ®,¥: (Stg,Qy) — (S&(X(E)[1]),Q) be Lie co-morphisms. We say &, ¥
are homotopic over the identity of M if the following conditions hold:
(1) there is a family (Z¢: (Skg, Qg) — (SH%(%(E)[l])aQ))te[og]
which coincide with ® and ¥ at ¢t = 0 and 1, respectively,

made of Lie co-morphisms

(2) and a family of =;-coderivations (Hy).c[,1) of degree —1 such that

—

d;;:QoHt—i—HtoQg. (60)

Remark B.8. Homotopy equivalence in the sense of the Definition B.7 is an equivalence relation

and it is compatible with composition of Lie co-morphisms, see [19] Proposition 1.38.

APPENDIX C. PROOF OF THEOREM 3.3

Proof. (of Theorem 3.3) The complex of Equation (28) being exact everywhere except in degree
—1 we cannot apply directly Theorem 2.1 in [19] but we can mimic the proof given for Theorem
2.1 in [19] to construct the higher brackets when there is no obstruction in degree —1. For
convenience, let us denote R_; := I'(g) & I'(F_1) and R_; := I'(E_;) for ¢ > 2. Given a

_——(k
natural number k£ > 0, we consider the total complex (‘BageE )(R), D =1d, -]RN> of the following

bicomplex
) ) )
d d
~ Homo (OF"'R|, Ry) 4 Homo (OM'R|, ,R2) & Homo (O R, ,dR) = 0
5t 5t 5t
d d
~ Homo (OF'R|, ,Ry) 4 Homo (OM'R|, ,R2) S Homo (O R, ,,dR) = 0
5t 5t 51
~ Homo (QkHR‘_k_NR,g) %4 Home <Ok+1R‘_k_l,R,2) % Homo <@’“+1R|_k_l,d7z,2) =0
T T t
0 0 0
"-3 column" "-2 column" "-1 column"

(61)
The map ¢ stands for the vertical differential which is defined for all ® € Homp <@k+1 R, R)
by
0(P)(r1,. . y7kr1) i =Pod(r1 ©... ®rgs1), Vri,...,Tk41 € R,
where here d acts as an O-derivation on r;1 © ... ® rg41 € @k R and the horizontal differential
given by
®—dod.

_——(k
Since the line the bicomplex is exact the total complex (‘,Bagei )(R), D =[d, |rn > is also

exact.
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Construction of the 2-ary bracket: its construction is almost the same as in [19] we will
adapt what has been done to our case. We first construct a 2-ary bracket on R_; to extend
on every degree. For all k > 1, let us denote by (e Fk))zelk a basis of I'(E_g). The set {X =
p(eg_ )) € F |i€ I} is a set of generators of F. In particular, there exists elements c €0

and satisfying the skew-symmetry condition ck] ji together with
(X0 X5 =D ciXe Vijel. (62)
kel

By definition of weak symmetry one has

lo(&), p(el" ) € Fand  o([6:,&1)g — (&), 0(&)] € F for all (i,5) € Iy x I_1.  (63)

Where (&;)ic1, is a basis for g. Since ((E_;)i>1,d, p) is a geometric resolution of F, there exists
two (9 bilinear maps x: I'(g)x['(E_1) = T'(E_1),n: I'(g) xT'(g) — I'(E_1) defined on generators
§z7 €; by the relations

o(&).p(el ) = p(x(&.eS ™)) and  o([En&ly) — [0(6), 0(&))] = p(n(&i.&))).
We first define a naive 2-ary bracket on I'(E_;) as follows:

(1) an anchor map by p’(eg_l)) = X;, and p’({i) = 0(&), for all i € I, I,
(2) a degree +1 graded symmetric operation l5 on R, as follows:

(a) f2< B 1),637 > Zkelcmek Y for all 4,5 € I,

(§z, §J) €, 5] + 77(&, &),

)
) £

d) 2 IS zero on the other generators
)

anchor p'.

By (a), (b), (c), (d), (), ¢y satisfies the Leibniz identity with respect to the anchor p and
(a), (b), (¢) makes the latter a bracket morphism. The map defined for all homogeneous r1,7ry €
Re by

[d,gg]RN(Tl, 7“2) =do 22 (7“1, 7“2) + 22 (d?“l, 7“2) + (—1)'”‘@2 (7“1, d?“g) , (64)

is a graded symmetric degree +2 operation (R ® R)e — Re42, and [d,gg]RN‘R =0. It is
—1
O-bilinear, i.e. for all f € O,ry1,79 € R

[d, Lo]rn (r1, fra) — fId, ) (1, 72) = 0.

We also have that p([d,gg]RN(rl,frg)) = p(gg(drl,rg)) =0, for all 1 € R_9,79 € R_1, since
pod=0. Thus, [d’g2]RN|R_2xR_1 € dR_2, because ((E_;)i>1,d,p) is a geometric resolution.

- — (1

Therefore, [d, l2]grn is a degree +2 element in the total complex ‘Bage( )(R) The O-bilinear
- — (1 -
operator [d,fs]gn is D-closed in ‘Bage( )(R), since [d, [d, £2]rn]Ry, = 0. So there exists
<2
Ty € @j>2Home (@2 R_j_l,R_j> such as D(7z) = —[d,@g]RN. By replacing s by o+ T We get
a 2-ary bracket ¢ of degree +1 which is compatible with the differential map d and the anchor
map p.

Construction of higher brackets: notice by construction of the 2-ary bracket ¢ one has,
Jac(ry,r9,r3) € dR_9 for all r1, 79,73 € R_1. In other words, Jac € Homo(@3 R_1,dR_3). A
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direct computation shows
dJac(ry,ro,73) = Jac(dri, 7o, 73) + (=1)"Jac(ry, dry, r3) + (=1)MH 2 Jac (), vy, drs)

for all r1,r9, 73 € R. Which means, [Jac,d|gn(r1,72,73) = 0 for all r1,r9,73 € R.
Thus, D(Jac) = 0. It follows that, Jac is a D-coboundary, there exists an element 3 = 2 e

— (2 .
‘Bageg )(7?,) with & € Hom(@3R|7j71,R,j) such that
D(t3) = —Jac. (65)

We choose the 3-ary bracket to be ¢3. For degree reason the remaining terms of the k-ary
brackets for £ > 3 have trivial components on column —1 of the bicomplex (61). From this

point, the proof continues exacly as in the proof of Theorem 2.1 in [19]. O
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