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Abstract: Dependence on multiple nutritional bacterial symbionts forming a metabolic unit has
repeatedly evolved in many insect species that feed on nutritionally unbalanced diets such as
plant sap. This is the case for aphids of the subfamilies Lachninae and Chaitophorinae, which
have evolved di-symbiotic systems in which the ancient obligate nutritional symbiont Buchnera
aphidicola is metabolically complemented by an additional nutritional symbiont acquired more
recently. Deciphering how different symbionts integrate both metabolically and anatomically in
such systems is crucial to understanding how complex nutritional symbiotic systems function and
evolve. In this study, we sequenced and analyzed the genomes of the symbionts B. aphidicola and
Serratia symbiotica associated with the Chaitophorinae aphids Sipha maydis and Periphyllus lyropictus.
Our results show that, in these two species, B. aphidicola and S. symbiotica complement each other
metabolically (and their hosts) for the biosynthesis of essential amino acids and vitamins, but with
distinct metabolic reactions supported by each symbiont depending on the host species. Furthermore,
the S. symbiotica symbiont associated with S. maydis appears to be strictly compartmentalized into
the specialized host cells housing symbionts in aphids, the bacteriocytes, whereas the S. symbiotica
symbiont associated with P. lyropictus exhibits a highly invasive phenotype, presumably because it is
capable of expressing a larger set of virulence factors, including a complete flagellum for bacterial
motility. Such contrasting levels of metabolic and anatomical integration for two S. symbiotica symbionts
that were recently acquired as nutritional co-obligate partners reflect distinct coevolutionary processes
specific to each association.

Keywords: aphids; bacterial symbiont; Buchnera aphidicola; co-obligate Serratia symbiotica; nutritional
mutualism; virulence factors

1. Introduction

Many insect species depend on inherited endosymbiotic bacteria to access certain
nutrients and have evolved specialized cells, the bacteriocytes, to host these nutritional
partners [1]. Bacteriocytes are the interface for metabolic exchanges between the host
and the symbionts. They allow the host to control symbiont populations according to its
nutritional needs and ensure stable vertical transmission of symbionts from mother to
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offspring [2,3]. This compartmentalization into bacteriocytes is considered as the outcome
of a long coevolutionary history between the insect hosts and their obligate bacterial part-
ners [4]. However, a consequence of this intracellular lifestyle is the isolation of symbionts
from any environmental source of prokaryotic DNA, leading to Muller’s ratchet, i.e., the
accumulation of irreversible deleterious mutations in the symbiont genome [5]. Combined
with severe population bottlenecks during vertical transmission and the relaxation of pu-
rifying selection on genes that have become unnecessary in a context of interdependent
association, this leads to the evolutionary degeneration of the symbiont genome [6,7]. Thus,
extreme genomic reduction is a typical feature of obligate insect nutritional symbionts,
often acquired tens of millions years ago [8,9]. This degeneration, once far advanced, can
jeopardize the symbiotic functions of the nutritional symbiont and ultimately represents an
evolutionary dead end for host lineages [10–12].

A compensatory mechanism to cope with the loss of these symbiotic functions is
the acquisition by the host species of additional symbionts that evolve as co-obligate
nutritional partners by forming a metabolic unit with the ancestral obligate symbiont
that has become unable to perform its nutritional function alone [13]. The existence of
such multi-symbiotic nutritional systems has been reported in various sap-feeding insect
species [13–22] with evidence showing that the acquisition of additional obligate symbionts
is a very dynamic process involving recurrent recruitments of new bacterial symbionts and
repeated replacements of pre-existing intracellular ones [17,19,23,24]. While the nutritional
basis of co-obligate symbioses has been examined in different sap-feeding insects through
genomic analyses [13], many aspects of the biology of these associations remain unexplored,
including the infection mechanisms that the co-obligate symbionts may use to colonize host
tissues and the localization of these bacteria within the host. Examining these aspects in light of
the diversity of co-obligate nutritional endosymbiosis is critical for understanding the evolution,
development, and functioning of multi-symbiotic nutritional systems in insects.

Aphids (Hemiptera: Aphididae) of the subfamilies Lachninae and Chaitophorinae are
valuable models for addressing the biology of co-obligate symbiosis in insects. In these
aphids, the eroded metabolic abilities of the ancient obligate symbiont Buchnera aphidicola
are complemented by those of a more recently acquired co-obligate symbiont, often belong-
ing to the Serratia symbiotica species, one of the most common secondary symbionts found
in aphids. Specifically, B. aphidicola and S. symbiotica metabolically complement each other
for the production of certain B vitamins (in particular biotin/B7 and riboflavin/B2) and
essential amino acids [18–22,25–27]. These systems, involving distinct aphid species and
strains of S. symbiotica acquired independently through evolution, are suitable to study the
diversity of multi-symbiotic nutritional symbiosis and to lay the groundwork for studying
the development and functioning of these associations.

In the present study, we sequenced and annotated the genomes of the symbionts
B. aphidicola and S. symbiotica composing the di-symbiotic systems associated with two
Chaitophorinae aphids: the cereal aphid Sipha maydis and the Norway maple aphid Peri-
phyllus lyropictus. The prevalence of S. symbiotica reaches 100% in these two aphid species
and our genomic analyses suggest that the symbiont is a recently acquired co-obligate
partner. We found that the nutritional symbiont exhibits very contrasting infection patterns
in the two aphid species: while S. symbiotica exhibits an invasive phenotype in P. lyropictus,
the co-obligate symbiont is strictly compartmentalized into bacteriocytes in S. maydis. We
suggest that these differences in the anatomical integration of the co-obligate symbiont can
be explained by the way in which S. symbiotica and B. aphidicola complement each other
metabolically in their system, but also by the set of virulence factors that each co-obligate
symbiont has retained over its evolution with its respective host. This work provides insight
into the metabolic and anatomical integration of co-obligate symbionts in Chaitophorinae
aphids in the early stages of co-obligate symbiosis.
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2. Materials and Methods
2.1. Prevalence of S. symbiotica in S. maydis Populations

The prevalence of a symbiont in insect populations is an indication of its symbiotic
status, with a prevalence of 100% indicating that the symbiont is fixed in the host species
concerned and is an obligate partner. To examine the prevalence of S. symbiotica in S. maydis
populations, specimens were collected on three common cereals grown in Morocco (Triticum
turgidum, Triticum aestivum, and Hordeum vulgare) from the main cereal-growing areas of
this country in two sampling campaigns: one in April 2014 covering six regions and
locations with 21 colonies sampled, and one in April–May 2016 covering two regions with
76 colonies sampled (Figure S1; Table S1). The aphids collected consisted only of wingless
parthenogenetic adult females that were stored in 95% ethanol at 4 ◦C until use.

Prior to DNA extraction, insect samples were surface sterilized with 99% ethanol and
10% bleach and rinsed with sterile water. Genomic DNA was extracted using the DNeasy
Blood and Tissue kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions.
Each DNA extraction was performed on one individual per colony. DNA extractions were
evaluated qualitatively and quantitatively using a Nanodrop spectrophotometer (Thermo
Scientific, Waltham, MA, USA) and stored at −20 ◦C prior to PCR testing. Aphid samples
were tested for the presence of S. symbiotica by amplifying a partial region of the 16S rRNA
gene (0.4 kb region) using the specific primers 16SA1 and PASScmp [28]. PCR assays were
performed as described previously [29]. The PCR products were stained with ethidium
bromide and visualized on a 1% agarose gel. The amplicons were purified, sequenced, and
then their identity was confirmed by BLAST search.

2.2. Establishment of Aphid Clonal Lines and Rearing Conditions

To perform the genomic approaches and other analyses, we established clonal lines
for S. maydis and for P. lyropictus. For S. maydis, a colony sampled on H. vulgare in Midelt,
(Morocco) in April 2016 was used to generate a clonal lineage from a single individual
(clone Midelt). Aphids were reared on Triticum aestivum (bread wheat) under long day
conditions (16 h light, 8 h dark) in a room maintained at a constant temperature of 20 ◦C to
ensure parthenogenic reproduction.

The clonal line of P. lyropictus was established from one individual collected from Acer
platanoides (Norway maple) in Louvain-la-Neuve in spring 2020 (clone LLN) [30]. Aphids were
reared on young A. platanoides trees under the same conditions as the S. maydis clone Midelt.

2.3. Genome Sequencing and Assemblies

For whole-genome sequencing, DNA samples enriched with bacteria from S. maydis
and P. lyropictus clone lines maintained in the laboratory were prepared following a pre-
viously described protocol [20,31]. Two sequencing approaches were performed on the
DNA extracts: MinION long-read sequencing (Oxford Nanopore approach) and Illumina
short-read sequencing. Both approaches were used to generate a hybrid assembly and thus
obtain the most complete and accurate genomes possible.

Prior to the MinION nanopore sequencing, the integrity of genomic DNA was assessed
using the 5200 Fragment Analyzer System (Agilent, Santa Clara, CA, USA) with the
Genomic DNA 50 kb kit (Agilent). Libraries were then prepared from 400 ng of genomic
DNA following the Rapid Barcoding Sequencing kit (SQK-RBK004) protocol (Oxford
Nanopore Technologies, Oxford, UK). Briefly, the DNA molecules were cleaved by a
transposase, and barcoded tags were attached to the cleaved ends. The barcoded samples
were then pooled, and Rapid Sequencing Adapters were added to the tagged ends. The
pooled libraries were sequenced into a FLO-MIN106 (R9.4.1) flow cell for a 48 h run
according to the manufacturer’s instruction. After the run, fast5 files were basecalled
on the MinIT using default settings in MinKNOWv21.02.5 and Guppy v4.3.4 and a Fast
Basecalling. For the Illumina sequencing, libraries were prepared starting from 30 ng of
genomic DNA using the Illumina DNA prep kit (Illumina, San Diego, CA, USA) following
the manufacturer’s instruction. Briefly, genomic DNA was tagmented using Bead-Linked
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Transposomes, which fragments and tags the DNA with adapter sequences. After a post
tagmentation clean-up, tagmented DNA were amplified using a 12-cycle PCR program and
IDT® for Illumina® DNA/RNA UD Indexes Set A to add the index and adapter sequences.
Libraries were equimolarly pooled and paired-end (2 × 300 bp) sequenced on an Illumina
MiSeq platform (Illumina).

Raw sequences generated by MinION nanopore sequencing were assembled using
meta-flye v.2.9, an assembler supporting metagenomic data that was specifically devel-
oped for the assembly of third-generation long-read sequences [32]. The resulting draft
assemblies were then polished with Illumina short reads by using multiple rounds of Pilon
v1.24 [33]. Four genomes were thus assembled: those of the B. aphidicola and S. symbiotica
symbionts composing the di-symbiotic system of S. maydis (hereafter BaSm and SsSm),
and those of the B. aphidicola and S. symbiotica symbionts of P. lyropictus (hereafter BaPl
and SsPl).

2.4. Genome Annotation and Comparative Analyses

The four assembled genomes were annotated with the Prokaryotic Genome Anno-
tation Pipeline (PGAP) [34]. The genome sequences were deposited on the MicroScope
platform [35,36] and their metabolic capabilities were compared using MicroCyc, a collec-
tion of microbial Pathway/Genome Databases (PGDBs) based on the MetaCyc database
and specifically dedicated to the analysis of microbial pathways [37]. Metabolic recon-
structions generated by MicroCyc were manually verified and CDSs were considered as
pseudogenes when their length was less than 80% of the one of their orthologs in reference
bacterial genomes [38,39].

Virulomes of both S. symbiotica symbionts were analyzed with the virulence factor
database (VFDB, http://www.mgc.ac.cn/VFs/, accessed on 30 April 2022) [40] integrated
on the MicroScope platform using BLASTp (with a threshold of minimum 50% aa identity,
80% align. Coverage). MacSyFinder was used to identify secretion systems [41]. PHASTER
was used to predict the intact prophage regions [42]. Assemblies and annotations are
available on NCBI (BioProject accession numbers: PRJNA835797 for BaSm, PRJNA837269
for SsSm, PRJNA837360 for BaPl and PRJNA837363 for SsPl).

2.5. Molecular Phylogenetic Analyses

To examine the evolutionary relationships of SsSm and SsPl with other S. symbiotica
symbionts and other bacteria in the genus Serratia, a phylogenetic tree was built using a set
of single-copy core concatenated protein sequences shared across all S. symbiotica strains
for which complete genome sequences are publicly available. S. symbiotica and outgroup
genomes used for phylogenetic analysis are listed in Table S2 in the Supplementary Materi-
als. Genomes were downloaded from the NCBI Assembly Database on 2 June 2022. All
protein sequences of the different species and strains were analyzed with OrthoFinder (ver-
sion 2.0) [43,44] to identify groups of orthologs. A set of 235 protein sequences encoded by
single-copy genes present in each bacterial strain was then used for phylogeny estimation.
The alignments of this set of protein sequences were concatenated using Phyutility [45].
By initially defining each protein as a separate partition, a ModelFinder analysis was per-
formed [46] on the concatenated alignment with IQ-TREE (version 1.6.3) [47]; (options -m
TESTMERGEONLY and -rcluster 10; set of models evaluated: mrbayes) to select the best
partitioning of the alignment and the best model for each partition (-spp option, allowing
each partition to have its own evolution rate). A maximal likelihood analysis was then per-
formed on the best partitioning and modelling scheme (-spp option) with IQ-TREE (options
-bb 1000 and -alrt 1000 for 1000 replicated using ultrafast bootstrapping (UFBoot; [48,49])
and approximate likelihood ratio test (SH-aLRT; [50]), respectively.

2.6. Examination of the Tissue Tropism of S. symbiotica

Tissue tropism of SsSm in S. maydis and of SsPl in P. lyropictus was examined us-
ing whole-mount fluorescence in situ hybridization (FISH). Young adult aphids were
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collected and preserved in acetone until fixation. The fixation, bleaching, and slide
mounting steps were performed as previously described [51]. For S. maydis, the follow-
ing oligonucleotide probes were used for in situ hybridization: Cy5-ApisP2a (5′-Cy5-
CCTCTTTTGGGTAGATCC-3′) targeting 16 S rRNA of B. aphidicola and Cy3-PASSisR
(5′-Cy3-CCCGACTTTATCGCTGGC-3′) targeting 16S rRNA of S. symbiotica [52]. For
P. lyropictus, the probe Cy5-PeriBuch (5′-Cy5-CCTTTTTTGGGCAGATTC-3′) was specif-
ically used to target 16S rRNA of B. aphidicola [22]. The samples were observed under a
Zeiss LSM 710 confocal microscope equipped with Airyscan detector.

3. Results and Discussion
3.1. S. symbiotica Is a Fixed Symbiont in S. maydis

Examination of the prevalence of S. symbiotica in S. maydis populations shows that
all 97 colonies surveyed were positive for the symbiont (Table S1), indicating that, in this
aphid species, S. symbiotica is a fixed symbiont involved in a stable relationship with its
host. Indeed, unlike facultative symbionts that show irregular prevalence in host insect
populations because they are not essential to host survival, are often associated with fitness
costs, and tend to exhibit imperfect maternal vertical transmission [53–55], obligate sym-
bionts are universally present in the host species because both partners have evolved an
interdependent relationship [12]. Their elimination from the host by antibiotic treatment
typically results in developmental disorders and a significant reduction in fertility [56,57].
The universal presence of S. symbiotica in S. maydis suggests that it is an obligate symbiont,
as previously reported in other aphid species of the subfamilies Lachninae and Chaitophori-
nae [19–22,27]. A 100% prevalence of S. symbiotica in P. lyropictus populations has been reported
previously [22,30], indicating that the symbiont is also fixed in this Chaitophorinae aphid.

3.2. Genome Sequencing of the B. aphidicola/S. symbiotica Consortium

Sequencing of the B. aphidicola/S. symbiotica consortium genomes associated with each
aphid species was performed using MinION sequencing (Oxford Nanopore approach)
and Illumina MiSeq paired-end sequencing. For each technology, the total number of
reads yielded, the average read length, and average genome coverage of each symbiont
are summarized in Table S3. Using this hybrid assembly approach, highly contiguous
de novo assemblies were obtained for each symbiont genome. The chromosomes of the
S. maydis-associated B. aphidicola strain (BaSm) and the P. lyropictus-associated B. aphidicola
strain (BaPl) could be circularized. The assembly approach also provided a circularized
chromosome for the S. symbiotica co-obligate symbiont of P. lyropictus (SsPl) and identified
an associated plasmid, namely pSsPl-LLN. The genome of the S. symbiotica strain associated
with S. maydis (SsSm) consists of three contigs.

3.3. General Genomic Features of the Different Symbionts

The general genomic features of the different symbionts targeted in this study are
summarized in Figure 1. Both B. aphidicola genomes are approximately 0.46 Mb in size,
showing that the genomes of strains associated with S. maydis and P. lyropictus are much
more eroded than Buchnera strains involved in mono-symbiotic nutritional systems (only
Buchnera as nutritional symbiont), which are typically featured by a genome size of about
0.64 Mb [58]. These Buchnera symbionts with larger genomes are typically associated
with aphids of the subfamily Aphidinae. In contrast, B. aphidicola symbionts with “small
genomes” (i.e., around 0.45 Mb) are systematically found in aphids where this primary
symbiont forms a metabolic consortium with a more recently acquired nutritional symbiont,
typically in the Lachninae and Chaitophorinae aphids [20–22,25,26]. The small genome
size of BaSm is thus further evidence suggesting that the cereal aphid S. maydis, similar to
the Norway maple aphid P. lyropictus, hosts a di-symbiotic system where b. aphidicola is
metabolically complemented by a S. symbiotica co-obligate symbiont.
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S. maydis and P. lyropictus, respectively.

The genomes of the two S. symbiotica symbionts differ in size: whereas the SsSm
genome consists of a 2.48 Mb genome carrying 1360 presumably intact CDSs, the SsPl
genome consists of a 3.05 Mb chromosome complemented by a large plasmid of 97.8 kb,
carrying 2114 presumably intact CDSs. The genome size we report here for the S. symbiotica
symbiont associated with P. lyropictus is larger than that reported by other authors in a
previous study (2.58 Mb) that used another sequencing approach not compatible with
chromosome circularization and plasmid identification [22]. This suggests that the version
we report here provides a more accurate representation of the genome of the S. symbiotica
co-obligate symbiont associated with P. lyropictus. Our data suggest that SsSm and SsPl
were recently acquired by their host as they have genomes larger than 2.48 Mb, which
is quite large for S. symbiotica co-obligate symbionts. For example, the S. symbiotica co-
obligate symbiont associated with the conifer aphid Cinara cedri (Lachninae subfamily)
has a genome size of 1.76 Mb, and the genome of the strain associated with the giant
willow aphid Tuberolachnus salignus (Lachninae subfamily) is 0.65 Mb in size [59]. The
genomes of SsSm and SsPl are actually similar in size to those of the facultative S. symbiotica
strains reported in A. pisum (SsApIS and SsApTucson) and the S. symbiotica co-obligate
symbionts associated with Cinara tujafilina (SsCt) and Cinara strobi (SsCs) reported as
recently acquired co-obligate symbionts [20,26,59]. The still large genome size of SsSm and
SsPl thus indicates that they are still in the early stages of genomic reduction, especially SsPl,
which retains a larger genome. The hypothesis of recently integrated S. symbiotica symbionts
as obligate nutritional partners is also supported by the presence in both genomes of a
high proportion of pseudogenes: 1258 pseudogenes/2617 total CDSs (48%) in the SsSm
genome and 1172 pseudogenes/3286 total CDSs (36%) in the SsPl genome. The presence of
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a high proportion of pseudogenes is an indicator of massive loss of functional genes and is
another genomic feature typical of the early stages of genome reduction and evolutionary
transition towards a host-dependent lifestyle [60]. The proportion of pseudogenes is much
higher in the SsSm genome than in the SsPl genome, indicating that SsSm is probably more
advanced in the evolutionary process of genomic degeneration than SsPl. This hypothesis
is also supported by the smaller genome size of SsSm as well as the lower proportion of
intact phage regions compared to SsPl (Figure 1 and Table S4).

Finally, it is interesting to note that, at 3.15 Mb (including chromosome and plasmid),
the SsPl genome is the largest S. symbiotica genomes described so far for an aphid co-
obligate symbiont. It is also larger than any genome of facultative S. symbiotica symbiont
reported to date and approaches the genome size of cultivable pathogenic strains that have
been isolated from aphids of the genus Aphis [61–63] and associated with a propensity to
rapidly invade the aphid digestive tract [29,59,63–65]. This support the hypothesis that, in
the evolution of bacterial mutualism, SsPl is at a very early stage of its establishment as a
vertically transmitted obligate symbiont [30].

3.4. Phylogenetic Positioning of SsSm and SsPl

We examined the evolutionary relationships of SsSm and SsPl with all S. symbiotica
strains for which complete genomic sequences are publicly available. Our phylogenetic
analysis is based on 235 shared orthologous genes and is rooted with outgroups that
included other members of the genus Serratia and Yersinia pestis as a more distant Enter-
obacterales species. Our phylogenomic tree shows that the S. symbiotica strains fall into
two clades (Figure 2), as previously established [63,66]. Both SsSm (Midelt) and SsPl (LLN)
are part of clade A, which is composed of strains that act as pathogens or mutualists in
aphids of the subfamily Aphidinae, but also includes co-obligate strains associated with
Chaitophorinae aphids and the co-obligate strain associated with Cinara tujafilina (subfam-
ily Lachninae). Clade B includes only co-obligate strains associated with aphid species of
the subfamily Lachninae.

3.5. Tissue Tropism of SsSm and SsPl

Regarding the tissue tropism of the S. symbiotica co-obligate symbionts in the two
aphid species, it is marked by very contrasting localization patterns. SsPl exhibits a dual
mode of life: intracellular by being housed in large syncytial secondary bacteriocytes
embedded between the primary bacteriocytes containing B. aphidicola in a well-organized
compartmentalization pattern; and extracellular by invading a wide variety of host tissues,
including the digestive tract, hemolymph, and oviduct (Figure 3). The tissue tropism and
infection dynamics of SsPl during P. lyropictus development have been studied in detail
previously [30]. In contrast, SsSm appears to be only compartmentalized within the large
secondary bacteriocytes embedded between the primary bacteriocytes hosting B. aphidicola,
and SsSm is not found in hemolymph or other tissues (Figure 3). Compartmentalization
within bacteriocytes is a typical feature of obligate nutritional symbionts [67,68] and a key
adaptation that underpins the partnership between insects and these bacteria. Indeed,
these specialized host cells mediate metabolic exchanges between the host and symbiotic
bacteria and allow the host to control populations of its symbionts according to its nutri-
tional needs [2,4,69]. The S. symbiotica co-obligate symbiont associated with P. lyropictus
exhibits invasive traits and escape strict compartmentalization into bacteriocytes despite
its integration into a cooperative lifestyle with its host and the ancestral symbiont B. aphidi-
cola [30]. It has been suggested that the invasive phenotype of SsPl could be explained by
the very recent acquisition of the symbiont by its host, which is not yet integrated into a
fully stabilized relationship [30]. The evolutionary history of SsSm with its host is likely
more ancient, resulting in further anatomical integration, i.e., strict compartmentalization
of the co-obligate symbiont into S. maydis bacteriocytes. SsSm likely lost the ability to
adopt an extracellular lifestyle, probably as a result of the loss of the genes required for
it on the road to reductive evolution and which constrains it to an intracellular lifestyle.
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Such an anatomical configuration is expected to support the metabolic exchanges between
B. aphidicola and S. symbiotica. Given the contrasting tissue tropism of S. symbiotica between
P. lyropictus and S. maydis (invasive versus strictly compartmentalized), it is likely that
host-specific mechanisms are used to control populations of the nutritional symbiont. In
particular, host tolerance to the highly invasive nature of SsPL requires further study.

3.6. In the Two Chaitophorinae Aphids, S. symbiotica and B. aphidicola Complement Each Other
Metabolically but in Distinct Layouts

In many Lachninae and Chaitophorinae aphids, the ancestral primary symbiont
B. aphidicola has become unable to synthesize some essential nutrients on its own due to
drastic genome degradation, and the synthesis of these nutrients is supported by the com-
pletion of Buchnera’s missing pathways with those of a more recently acquired co-obligate
symbiont, with the whole forming a metabolic unit [18,22,26,27]. How the co-obligate
symbiont metabolically complements B. aphidicola is usually inferred by genomic analyses.
In Lachninae and Chaitophorinae aphids, the co-obligate symbiont is typically required for
the biosynthesis of the vitamins riboflavin (B2) and biotin (B7) [20–22,25,26]. Analysis of the
di-symbiotic systems of S. maydis and P. lyropictus shows that, in both cases, S. symbiotica
likely takes charge of riboflavin biosynthesis (Figure 4). Indeed, unlike what has been
observed in mono-symbiotic aphids [21], B. aphidicola in the studied Chaitophorinae aphids
did not conserve any of the genes for synthesis of this vitamin. In contrast, all these genes
are present in the genome of co-obligate symbionts, except for the gene encoding the
5-amino-6-(5-phospho-d-ribitylamino)uracil phosphatase enzyme in SsSm. yigB and the
alternative gene ybjI are absent from the genome of SsSm and SsPl. yigL, reported as another
alternative for this phosphatase activity [70] is present and intact in the SsPl genome, but
pseudogenized in the SsSm genome (split into four pieces). The genes known to encode
this enzymatic activity can be missing from the genome of Buchnera strains involved in
mono-symbiotic systems (e.g., the APS strain) [71]. However, it has been postulated that
this phosphatase activity may be performed by alternative enzymes whose identity is still
unclear [70,72]. Regarding biotin biosynthesis, our results show contrasting biosynthetic
capacities between the two co-obligate symbionts SsSm and SsPl. SsSm appears to com-
plement B. aphidicola for the biosynthesis of this vitamin from 7-keto-8-aminopelargonate.
Indeed, the genes bioA, bioB, and bioD are intact in the genome of the co-obligate sym-
biont associated with S. maydis, as is the case in the co-obligate symbionts associated with
Lachninae aphids [21]. In contrast, bioA and bioD are pseudogenized in SsPl. The case of
the di-symbiotic system associated with P. lyropictus for biotin biosynthesis thus differs
from what has been previously reported for other Lachninae and Chaitophorinae aphids
in which the genes bioA, bioB, and bioD of the co-obligate symbiont are intact [18,21,22].
One hypothesis is that the phloem sap of the Norway maple tree on which P. lyropictus
specifically feeds contains this vitamin in sufficient quantities for the aphid to dispense
with the biosynthetic capabilities of its bacterial partners.
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symbiotica genome features are listed in Table S2 in the Supplementary Materials.

Figure 2. Maximum likelihood phylogeny of S. symbiotica based on concatenation of 235 single-copy orthologs shared across S. symbiotica, other Serratia species, and
Yersinia pestis. Branch support (SH-aLRT and ultrafast bootstrap values) was >90% for all but one node *: S. symbiotica Af-2.3, S. symbiotica Af-24.1, S. symbiotica
Apa-8A1, and S. symbiotica Ct. The S. symbiotica strains composing clade A are highlighted in blue while the strains composing clade B are highlighted in green.
The outgroup is highlighted in gray. Strains SsSm-Midelt and SsPl-LLN are denoted in bold red. Genomes used for the phylogeny and relevant references for
S. symbiotica genome features are listed in Table S2 in the Supplementary Materials.



Microorganisms 2022, 10, 1360 10 of 21Microorganisms 2022, 10, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 3. Tissue tropism of the S. symbiotica co-obligate symbiont associated with P. lyropictus and 
with S. maydis. Green, red, and blue signals indicate Buchnera cells, Serratia cells, and host insect 
nuclei, respectively. (A) In P. lyropictus, the S. symbiotica co-obligate symbiont resides extracellularly 
in the gut and intracellularly in secondary bacteriocytes (Sba) embedded between primary bacteri-
ocytes (Pba) harboring the primary symbiont Buchnera. These clusters are distributed along the 
aphid’s abdomen. S. symbiotica can also be found in the gut of embryos (see embryo outlined in 
yellow frame). (B) S. symbiotica massively infecting the gut (here a portion of the midgut). (C) One 
of the bacteriocyte clusters forming the bacteriome composed of syncytial secondary bacteriocytes 
hosting S. symbiotica, embedded between the uninucleated primary bacteriocytes hosting Buchnera. 
Sheath cells that also house the co-obligate symbiont sparsely cover the periphery of the 

Figure 3. Tissue tropism of the S. symbiotica co-obligate symbiont associated with P. lyropictus and
with S. maydis. Green, red, and blue signals indicate Buchnera cells, Serratia cells, and host insect
nuclei, respectively. (A) In P. lyropictus, the S. symbiotica co-obligate symbiont resides extracellularly in
the gut and intracellularly in secondary bacteriocytes (Sba) embedded between primary bacteriocytes
(Pba) harboring the primary symbiont Buchnera. These clusters are distributed along the aphid’s
abdomen. S. symbiotica can also be found in the gut of embryos (see embryo outlined in yellow frame).
(B) S. symbiotica massively infecting the gut (here a portion of the midgut). (C) One of the bacteriocyte
clusters forming the bacteriome composed of syncytial secondary bacteriocytes hosting S. symbiotica,
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embedded between the uninucleated primary bacteriocytes hosting Buchnera. Sheath cells that also house
the co-obligate symbiont sparsely cover the periphery of the bacteriocytes (arrowheads). (D) S. symbiotica
massively infect the periphery of the embryos in the ovarioles. The tissue tropism and infection
dynamics of S. symbiotica in P. lyropictus has been thoroughly mapped previously [30]. (E) In S. maydis,
the bacteriome has a horseshoe shape and consists of secondary bacteriocytes hosting S. symbiotica
embedded between the primary bacteriocytes hosting Buchnera. (F) In S. maydis, the S. symbiotica
co-obligate symbiont is strictly compartmentalized into secondary bacteriocytes. Unlike SsPl, SsSm
does not evolve in the digestive tract of its host nor in the hemolymph, and it does not appear to reside
in the sheath cells. (G) Close-up view of one of the lobes of the bacteriome showing S. symbiotica only
present in the secondary syncytial bacteriocytes.
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Figure 4. B2 and B7 vitamins biosynthetic metabolic capabilities of the di-symbiotic system
B. aphidicola (Ba)-S. symbiotica (Ss) in S. maydis (Sm) and P. lyropictus (Pl). The Buchnera APS strain
forming the mono-symbiotic system (Buchnera-only) associated with the pea aphid A. pisum was
used as a comparison. On the left are the names of the genes encoding the enzymes involved in the
biosynthetic pathway. Each box is associated with the gene encoded by the genome of a symbiont.
The following code is used to characterize the state of each gene: the blue color means that the gene (or
an alternative gene that can perform the same enzymatic function) is present and not pseudogenized,
the gray color indicates that the gene is missing, and the yellow color with the psi (Ψ) symbol means
that the gene is pseudogenized (including its alternative(s)).

Regarding essential amino acid (EAA) biosynthesis (Figure 5), the two di-symbiotic
systems also show contrasting patterns. A notable finding is that in S. maydis, the co-
obligate symbiont SsSm did not retain any intact genes for the synthesis of essential amino
acids, except for lysine biosynthesis. In contrast, the B. aphidicola strain associated with this
aphid, despite its highly eroded genome, fully supports the biosynthesis of several EAAs,
including histidine and tryptophan. In P. lyropictus, histidine biosynthesis is performed by
SsPl, and the tryptophan pathway is split between B. aphidicola and the co-obligate symbiont
in a similar fashion to what has been reported in the Lachninae aphid Cinara cedri [73].
Overall, our results indicate that SsSm has no complementary role to B. aphidicola in EAAs
synthesis and has evolved a dependence on the primary symbiont for the acquisition of
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most EAAs. The opposite situation occurs in P. lyropictus. Indeed, fewer genes involved in
EAA biosynthesis are missing or pseudogenized in the SsPl genome compared to that of
SsSm. The S. symbiotica co-obligate symbiont of P. lyropictus has, for example, all the genes
required for arginine, histidine, lysine, methionine, and threonine biosynthesis and retains
many redundant genes with BaPl. This broader capacity of SsPl for EAAs biosynthesis supports
the hypothesis that this S. symbiotica symbiont was more recently acquired by its host compared
to SsSm in S. maydis. In this scenario, relaxed selection on these genes may not yet have led to
their pseudogenization or elimination in the context of reductive evolution.
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as a comparison. On the left are the names of the genes encoding the enzymes involved in the
biosynthetic pathway. Each box is associated with the gene encoded by the genome of a symbiont.
The following code is used to characterize the state of each gene: the blue color means that the gene (or
an alternative gene that can perform the same enzymatic function) is present and not pseudogenized,
the gray color indicates that the gene is missing, and the yellow color with the psi (Ψ) symbol means
that the gene is pseudogenized (including its alternative(s)).

In light of all these results, both SsSm and SsPl undertake riboflavin biosynthesis,
which B. aphidicola is no longer able to perform. However, the way in which B. aphidicola
and S. symbiotica complement each other metabolically for EAA biosynthesis differs greatly
between the two di-symbiotic systems. One reason for this is that the EAA biosynthetic
capabilities of the ancestral obligate symbiont B. aphidicola differ greatly between the
two strains, in particular for histidine and tryptophan biosynthesis, whose pathways are
complete in BaSm but incomplete in BaPl. This implies that, during the transition from
facultative to co-obligate symbiont, the way in which relaxed selection on metabolism-
related genes of the co-obligate symbiont is exerted depends on the genomic background
of the primary symbiont and, in some cases, also that of the co-obligate symbiont it
replaces. Added to this are the metabolic capabilities of the aphid host, which may differ
between species, but which must play a role in the way di-symbiotic nutritional systems are
shaped during evolution. This aspect has received little attention in studies of metabolic
complementarity between symbionts, in part because it requires laborious sequencing and
annotation of the host insect genome [74], a step that is, however, essential to establish
the most accurate picture of the role of each partner in the functioning of a three-partner
symbiotic system. Finally, another factor that future studies should consider is the nutrient
content of the host plant phloem sap, which is expected to shape the evolution of specific
biosynthetic pathways in nascent nutritional symbionts. Indeed, the nutrient content of
phloem sap can differ greatly between plant species [75,76]. S. maydis and P. lyropictus are
Chaitophorinae aphids that feed on contrasted host plants: while S. maydis feeds on the
phloem sap of Poaceae (herbaceous plants), P. lyropictus feeds specifically on the phloem
sap of the Norway maple A. platanoides (a woody plant). It is likely that the evolution of the
di-symbiotic system associated with each of these aphid species is fashioned by the presumably
very different nutritional content of the phloem sap of their respective host plant.

3.7. The Secretion Systems and the Array of Virulence Factors Encoded by S. symbiotica Genomes

The tissue tropisms of SsSm and SsPl suggest that the two co-obligate symbionts,
although both performing a nutritional function, exhibit contrasting lifestyles within the
host. Whereas SsSm is solely compartmentalized into secondary bacteriocytes, SsPl is
capable of infecting a wide diversity of host tissues (Figure 3; [30]). These differences in
invasion patterns should reflect the infection mechanisms that the two symbionts are able
to express despite the ongoing reduction of their genome. The ability of bacteria to invade
host tissues and cells depends in particular on the secretion systems they can express [77].
These protein complexes on bacterial cell membranes allow for the translocation of effector
proteins that can modulate the host environment and facilitate its invasion, for example by
enhancing attachment to eukaryotic cells, plundering resources in an environmental niche,
or intoxicating target cells and disrupting their functions. Our genome analyses reveal
that SsSm and SsPl are associated with a low diversity of secretory systems (Table S5).
The two S. symbiotica co-obligate symbionts retained only the ability to synthesize type V
secretion systems (T5SS). These results are in agreement with those of a previous study
showing that both facultative and co-obligate mutualistic strains of S. symbiotica do not
retain complete secretion systems other than T5SS, in contrast to pathogenic strains that
tend to retain key elements of T3SSs [59]. All S. symbiotica strains whose genomes have
been sequenced so far, including those with extremely small genomes, are virtually capable
of expressing T5SSs [59], raising the question of their possible role in the symbiosis with
the insect host. T5SSs include diverse forms of virulence factor-secreting autotransporters
involved in cell-to-cell adhesion and biofilm formation [78,79]. They may be involved in
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various functions associated with the specific lifestyle of the bacteria, including protease
activity, intracellular mobility, and nutrient acquisition in limited environments. SsSm and
SsPl appear to have retained the ability to synthesize a FdeC-like autotransporter adhesin
(Figure 6; Table S6). This T5SS has been shown to contribute to virulence of uropathogenic
Escherichia coli (UPEC) strains by mediating their adhesion to mammalian cells [80], but
the exact role of this autotransporter remains unknown outside this group of bacteria.
Unlike SsPl, SsSm appears to have retained the genes encoding the autotransporters InvA
(involved in the virulence of Yersinia bacteria [81]) and SinH (involved in the virulence of
UPEC strains [82]). Currently, multiple functions of type V autotransporters have been
identified recently in the context of eukaryotic host–pathogen interactions [78,83]. However,
their potential roles in the context of bacterial mutualism in insects remain unknown.

The success of host colonization by invasive bacteria, whether in a host–pathogen
relationship or mutualistic symbiosis, is largely determined by the ability of microorganisms
to interact with hosts through the expression of virulence factors [84,85]. The content
of virulence factors has been little studied in co-obligate symbionts. However, these
nutritional symbionts, acquired more recently and exhibiting more moderate genome
reduction compared to the ancient primary symbionts, are expected to have retained a
greater diversity of these factors, which may allow them to colonize a greater diversity
of host tissues. Examining virulence genes in the genome of co-obligate symbionts is
therefore crucial to gain insight into the mechanisms underlying the early stages of insect
endosymbiogenesis. In this context, our analyses show that SsSm and SsPl genomes differ
greatly in their virulence factor content (Figure 6). Both genomes contain an equivalent
number of virulence factor-encoding genes, but more genes are pseudogenized in SsSm than
in SsPl (Figure 6; Table S6). This again suggests that SsSm is more advanced in reductive
genome evolution compared to SsPl. The most striking example concerns the ability of
both S. symbiotica strains to biosynthesize a complete flagellum, a macromolecular system
that enables invasive bacteria to move through body fluids, attach the organ surfaces, and
then promotes efficient colonization of host tissues [86]. The SsSm genome contains many
genes encoding a flagellum, but those involved in hook and filament biosynthesis are either
missing (including fliC and flgL) or pseudogenized (including flgK, flgE, flgC, flgF and flgG)
(Table S6), suggesting that this structure has not retained any motility properties. Moreover,
the remaining intact genes (including flgB, flgH, fliE, fliI, fliM, fliN) that correspond to the
basal body of the flagellar structure are also not sufficient for its function as an injectisome,
a macromolecular protein complex whose structure is an evolutionary homologue of the
bacterial flagellum and which is used by many bacteria, including bacterial endosymbionts,
to deliver secreted effector proteins to a eukaryotic host [87,88]. The remnants of the
flagellar apparatus associated with SsSm hardly allow for the biosynthesis of a reduced
flagellum as found in some strains of B. aphidicola [87]. Motility pathways are among the
first to be altered upon transition from a free-living to a host-dependent lifestyle [89]. Given
that the SsSm genome is already highly reduced and pseudogenized, it is not surprising
that this co-obligate symbiont has lost the capacity for motility.

In contrast, the SsPl genome contains all the genes theoretically required for biosynthe-
sis of a complete flagellum (Figure 6; Table S6), suggesting that this S. symbiotica co-obligate
symbiont is endowed with motility and chemotaxis potential. This could explain the ability
of this S. symbiotica co-obligate symbiont to exhibit a highly invasive phenotype [30]. The
case of SsPl, capable to adopt both an intracellular and an extracellular lifestyle, is singular
for a nutritional symbiont, but not unique. Indeed, there are a few cases of bacteriocyte-
associated nutritional symbionts that, despite the significant reduction of their genome and
their specific nutritional function, retain a complete flagellar system [90,91]. Wigglesworthia,
the obligate symbiont of tsetse flies, can adopt both an intracellular lifestyle in bacteri-
ocytes and an extracellular phase in milk gland secretions during which it expresses a
functional flagellum despite a severely reduced genome [90,92]. The case of SsPl is not as
extreme as that of Wigglesworthia, but it illustrates the existence of co-obligate strains of
S. symbiotica that, despite their integration in a cooperative system with the host and the
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primary symbiont B. aphidicola, resemble the previously described pathogenic strains in
that they retain a complete flagellar system and the ability to colonize the host’s digestive
tract [59]. One hypothesis is that SsPl express a functional flagellum depending on the
tissue it colonizes and its lifestyle (i.e., intracellular or extracellular) as is the case for the
symbiont Wigglesworthia in the tsetse fly.
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Note that the absence of a gene may be threshold dependent (minimum 50% aa identity, 80%
align. Coverage).

Iron uptake by siderophores are well known to promote host colonization not only
by pathogenic bacteria, but also by insect symbionts such as Sodalis glossinidius, which
uses this system to invade the tsetse fly [93]. Our analyses show that both S. symbiotica
genomes contain many genes involved in siderophore biosynthesis. They both contain
genes involved in the biosynthesis of enterobactin, a catechol-containing siderophore
released by bacteria to bind ferric ions required for metabolic pathways [94]. However,
in both SsSm and SsPl, most of the genes related to enterobactin biosynthesis (entA, entB,
entC, entE and entF) are missing or pseudogenized, suggesting a relaxation of selection on
these genes and that the production of enterobactin-like siderophores became dispensable
during the evolution of both symbionts or was a limiting factor in the establishment of a
persistent relationship between S. symbiotica and the host (Figure 6). Our analyses show
that both symbionts retain intact genes for yersiniabactin (Ybt) biosynthesis, for which
many identified genes are intact (e.g., irp1, irp2, fyuA, and ybtA), especially in SsPl genome.
However, despite many intact genes in the SsPl genome for the ybt locus, close examination
shows that the locus is incomplete with some genes missing, including ybtS, ybtu, ybtT,
ybtD, and psn. Thus, it appears that SsPl has become unable to synthesize yersiniabactin.

Finally, our analyses detected few toxin-related genes in the genomes of both co-
obligate symbionts. SsSm and SsPl appear, however, to be able to synthesize effectors of the
YopJ family, which are well known to promote invasion of pathogenic bacteria, but whose
potential roles in the establishment of the mutualistic symbiosis remain unknown [95].

Based on the analysis of the virulence factors of these two co-obligate symbionts, it
can be concluded that SsSm and SsPl exhibit different sets of virulence factors that reflect
their contrasting lifestyles. The most notable finding is that SsPl is potentially capable of
synthesizing a complete flagellum that would endow it with motility, an ability that could
explain the remarkable invasive phenotype of this co-obligate symbiont. However, both
co-obligate symbionts tend to exhibit low virulence factor diversity compared to cultivable
S. symbiotica and especially compared to entomopathogenic bacteria of the genus Serratia
such as Serratia marcescens [59]. Our results suggest that SsSm and SsPl are derived from
originally pathogenic bacteria capable of synthesizing enterobactin and yersiniabactin-like
siderophores, an ability they seem to have lost. Loss of virulence factors is conducive to the
establishment of a long-lasting, mutualistic lifestyle with the host, which underlies strong
selection for attenuated virulence [7].

4. Conclusions and Perspectives

In conclusion, the S. symbiotica co-obligate symbionts associated with two Chaitophori-
nae species, S. maydis and P. lyropictus, provide a contrasting picture of recent co-obligate
nutritional endosymbiosis in aphids. The di-symbiotic systems associated with these
aphids show contrasting facets regarding genome evolution and the level of anatomical
integration of the co-obligate symbionts into their respective hosts. The S. symbiotica co-
obligate symbiont associated with P. lyropictus still has a large genome, comparable in
size to that reported for pathogenic cultivable strains. Its dual intracellular and extracellu-
lar lifestyle indicate that host dependence on nutritional symbionts may evolve prior to
compartmentalization in the host cells specialized for metabolic exchange and symbiont
control (i.e., bacteriocytes) [30]. Its ability to infect a wide variety of host tissues is probably
due to its ability to express a complete flagellum and thus display an ability to move in
body fluids and on organ surface, a well-known invasive potential typically expressed
by pathogenic bacteria. How such a nutritional symbiont, both compartmentalized into
bacteriocytes and exhibiting such an invasive phenotype, is controlled by its host is a
puzzle to be solved in future studies. The S. symbiotica co-obligate symbiont associated
with S. maydis exhibits another side of co-obligate nutritional endosymbiosis, that of further
anatomical integration into the host (i.e., strict compartmentalization into bacteriocytes),
indicative of a presumably older association with its host compared to SsPl, which is now
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stabilized. In recent years, a growing number of studies have shown that many insect
species harbor nutritional multi-symbiotic systems. However, how they develop and func-
tion remains largely unknown. Studying the diversity of these associations is crucial to
tackle these aspects and address key questions in the evolutionary developmental biology
of endosymbiosis including: How do metabolically complementary symbionts, forming a
metabolic unit, coordinate with each other and with the host? How does the host control
these nutritional symbionts, sometimes associated with an invasive phenotype? How do
the different types of bacteriocytes (primary versus secondary) develop and interact with
each other? The diversity of the di-symbiotic systems associated with Chaitophorinae
aphids provides an ideal playing field to address these questions and better appreciate the
sophistication of bacterial mutualism in insects.
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of the collection sites of S. maydis colonies assayed in this study (for details, see Table S1). Green
spots reference the 2014 sampling and red spots reference the 2016 sampling; Table S1: Collection
details for S. maydis samples (collected in 2014 and 2016 in Morocco) and detection of S. symbiotica in
the different sampled colonies (a Tt: Triticum turgidum; Ta: Triticum aestivum; Hv: Hordeum vulgare;
b A: arid; pA: pre-arid; sA: semi-arid; sH: subhumid); Table S2: Accession numbers and details of
the bacterial strains used for the multigene phylogenetic reconstruction; Table S3: Information on
genome sequencing of symbiotic bacteria in this study; Table S4: Intact phage regions detected with
PHASTER; Table S5: Macromolecular systems predicted by MacSyFinder in the SsSm-Midelt and
SsPl-LLN strains; Table S6: Presence/absence map of S. symbiotica virulence genes. Presence of a
virulence gene is labeled in gray (+) and absence in white (-). The yellow color (Ψ) means that the
gene is pseudogenized. Note that the absence of a gene may be threshold dependent (minimum 50%
aa identity, 80% align. Coverage).
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