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Abstract. In discrete signal and image processing, many dilations and
erosions can be written as the max-plus and min-plus product of a ma-
trix on a vector. Previous studies considered operators on symmetrical,
unbounded complete lattices, such as Cartesian powers of the completed
real line. This paper focuses on adjunctions on closed hypercubes, which
are the complete lattices used in practice to represent digital signals
and images. We show that this constrains the representing matrices to
be doubly-0-astic and we characterise the adjunctions that can be repre-
sented by them. A graph interpretation of the defined operators naturally
arises from the adjacency relationship encoded by the matrices, as well
as a max-plus spectral interpretation.

Keywords: Morphological operators · Max-plus algebra · Graph theory.

1 Introduction

Like linear filters can be represented by matrices in discrete image and signal
processing, many morphological dilations and erosions can be seen as applying
a matrix product to a vector, but in the minimax algebra. This is in particular
the case for those defined with structuring functions, either flat or not, local or
non-local [13, 14], translation invariant or spatially variant [4, 7, 10, 16]. They are
commonly known to be the vertical-shift-invariant dilations and erosions [9, 11].
While the matrix point of view is not the most appropriate for the implemen-
tation of these operators, especially translation-invariant ones, it is a valuable
insight for their theoretical understanding. In particular, it can help predict and
control complex behaviours such as those of iterated operators based on adjunc-
tions with non-flat, spatially variant and input-adapted structuring functions [2,
3]. Indeed, it is a flexible and general framework which embraces a very broad
part of morphological literature, and it is supported by the rich theory of Mini-
max algebra [1, 6].

In the abundant literature on spatially-variant morphological image process-
ing, only a few approaches explicitly used the matrix formulation [2, 3, 13, 14],
whereas most contributions were limited to flat structuring elements and focused
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on the local effects of the adaptive strategy. On the theoretical side, the repre-
sentation of morphological adjunctions by matrices was studied in a setting that
does not directly apply to digital signal and image processing, as the co-domain
is usually an unbounded lattice, stable under any vertical translation [11]. Al-
though a method was proposed to convert these adjunctions to new ones on
bounded lattices [12], it is not practical and does not allow for the interpreta-
tions that are exposed here.

In the present paper, we focus on complete lattices of the type [a, b]n, where
a and b represent the minimal and maximal possible signal values (typically
a = 0 and b = 255 for 8-bits images), and n is an integer representing the size
of the signal (typically, the number of pixels of an image, reshaped as a column
vector). This is a theoretical contribution that can be viewed as a companion
paper to previous studies where this framework has been successfully applied to
adaptive anisotropic filtering [2, 3]3. In Section 2 we introduce the matrix-based
morphological setting and prove simple but fundamental results: in particular,
we characterise the adjunctions that can be represented by matrices and show
that these matrices need to be doubly-0-astic. By viewing matrices as encoding
adjacency, we provide in Section 3 a graph interpretation of iterated operators
and their associated granulometries. In Section 4 we draw a link between these
operators and some results on the spectrum of matrices in the max-plus algebra,
before concluding in Section 5.

2 Matrix-based morphological adjunctions

2.1 Notations

In this paper matrices will be denoted by capital letters, such as W , and their i-th
row and j-th column coefficients by corresponding indexed lowercase letters wij .
Similarly, vectors are written as boldface lowercase letters, such as x, and their
i-th component as xi. Let 0 ≤ a < b ∈ R+ be two non-negative real numbers,
n ∈ N∗ a positive integer. The set {1, . . . , n} will be denoted by J1, nK. Let
L = ([a, b]n,≤) be the complete lattice equipped with the usual product partial
ordering (Pareto ordering): x ≤ y ⇐⇒ xi ≤ yi, ∀i ∈ J1, nK. The supremum
and infimum on L are induced by the Pareto ordering: for a family (x(k))k∈K of

L,
∨
k∈K x(k) is the vector y defined by yi =

∨
k∈K x

(k)
i , where K is any index

set. Therefore a = (a, . . . , a)T and b = (b, . . . , b)T are respectively the smallest
and largest elements in L. For x ∈ L, we note xc =̇ b − x + a, and for any

i ∈ {1, . . . , n}, e(i) is the “impulse” vector in L such that e
(i)
i = b and e

(i)
j = a

for j 6= i.
We note Rmax =̇ R ∪ {−∞}, Rmin =̇ R ∪ {+∞} and Mn the set of n × n

square matrices with coefficients in Rmax. Like (Rmax,∨,+), (Mn,∨,⊗) is an
idempotent semiring, with the addition ∨ and product ⊗ defined as follows.
For A,B ∈ Mn, A ⊗ B and A ∨ B are the n × n matrices defined respectively
by (A ⊗ B)ij =

∨n
k=1 aik + bkj and (A ∨ B)ij = aij ∨ bij = max(aij , bij), for

3 An online demo for [3] is available: https://bit.ly/anisop demo.
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1 ≤ i, j ≤ n. Similarly, for x ∈ Rnmax, A ⊗ x is the vector such that (A ⊗ x)i =∨n
j=1 aij + xj . Note that ∨ and ⊗ are associative and ⊗ is distributive over ∨.

Finally, the product of a scalar λ ∈ Rmax by a vector x ∈ Rnmax is λ⊗x =̇ λ+ x,
the vector in Rmax such that (λ⊗x)i = λ+xi. In [6] and [14], special subsets of
Mn are introduced, that we will show to be essential to represent morphological
adjunctions on L.

Definition 1 (0-asticity [6]) A matrix W ∈ Mn is said row-0-astic if for
any 1 ≤ i ≤ n,

∨n
j=1 wij = 0. Similarly, it is said column-0-astic if the

supremum of each column is 0, and doubly-0-astic if the matrix is both row-0-
astic and column-0-astic. Finally, W is simply said 0-astic if

∨
1≤i,j≤n wij = 0.

A special kind of doubly-0-astic matrices are those with zeros on the diagonal
and non-positive coefficients elsewhere.

Definition 2 (CMW matrices [14]) A matrix W ∈ Mn is called a Con-
servative Morphological Weights (CMW) matrix if ∀i, j ∈ J1, nK, wij ≤ 0 and
wii = 0.

We now introduce the morphological framework on L, based on the max-plus
algebra product between matrices and vectors.

2.2 Dilations

For W ∈Mn, we consider the function δW from L to Rnmax such that

∀x ∈ L, δW (x) = W ⊗ x =

 ∨
1≤j≤n

{wij + xj}


1≤i≤n

. (1)

In the processing of digital data such as images we usually want the input to be
comparable with the output. Hence, we will constrain W such that δW (L) ⊆ L.
This has the following consequences:

δW (b) ≤ b⇒ ∀i ∈ J1, nK, b+ (

n∨
j=1

wij) ≤ b⇒ ∀i ∈ J1, nK,
n∨
j=1

wij ≤ 0

since b > −∞. Similarly, δW (a) ≥ a ⇒ ∀i ∈ J1, nK,
∨n
j=1 wij ≥ 0. Hence

a necessary condition to have δW (L) ⊆ L is that W be row-0-astic (Def. 1).
Conversely, the row-0-asticity for W implies that δW (a) = a and δW (b) = b, and
therefore that δW (L) ⊆ L by increasingness of δW . This leads to the following
result.

Proposition 1 Let W ∈ Mn and δW be the function defined by (1). Then δW
is a dilation mapping L to L if and only if W is row-0-astic.

Proof. If δW is a dilation mapping L to L, then δW (L) ⊆ L which, as we showed,
implies that W is row-0-astic. Conversely, we saw that a row-0-astic W implies
δW (L) ⊆ L. Therefore, we only have to verify that δW is a dilation, or equiv-
alently that it commutes with the supremum. This is straightforward from the
definition of W ⊗ x. ut
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2.3 Erosions and adjunctions

Now we suppose that W ∈ Mn is row-0-astic, hence δW is a dilation from L
to L, and we are interested in its adjoint erosion αW defined for any y ∈ L by
αW (y) =

∨
Ey where Ey = {x ∈ L, δW (x) ≤ y}. Let us denote by εW the

function from L to Rnmin such that for any y ∈ L

εW (y) =
(
δWT (yc)

)c
=
(
WT ⊗ yc

)c
=

 ∧
1≤j≤n

{yj − wji}


1≤i≤n

. (2)

Then we can check that ∀y ∈ L, αW (y) = εW (y) ∧ b. Indeed, from (1) we
see that for any x,y ∈ L, δW (x) ≤ y ⇐⇒ x ≤ εW (y). Therefore, since
δW (a) = a ≤ y we get a ≤ εW (y), which implies εW (y) ∧ b ∈ L; furthermore,
εW (y)∧b ≤ εW (y) so εW (y)∧b ∈ Ey; finally, as both εW (y) and b are upper-
bounds of Ey, so is εW (y)∧b. Hence, εW (y)∧b =

∨
Ey = αW (y). By a similar

reasoning as in Section 2.2, we get the following result.

Proposition 2 Let W ∈ Mn and εW be the function defined by (2). Then εW
is an erosion mapping L to L if and only if W is column-0-astic.

If W is also row-0-astic, then εW = αW is the adjoint of δW , as stated next.

Proposition 3 Let W ∈ Mn and δW and εW be the functions defined by (1)
and (2), respectively. Then (εW , δW ) is an adjunction on L if and only if W is
doubly-0-astic. Furthermore, (εW , δW ) is an adjunction on L with δW extensive
(and εW anti-extensive) if and only if W is a CMW matrix.

Proof. Most of the points have already been addressed above or are straightfor-
ward from Proposition 1. To see that δW extensive implies wii = 0 for all i, just

remark that wii < 0 would imply δW (e(i))i < b = e
(i)
i . ut

2.4 Generality of (εW , δW )

The dilation δW , already introduced in [2, 11, 15], can be viewed as a generalisa-
tion of the non-local and adaptive mathematical morphology [13, 14] on signals
and images. Each column W:,j of W represents the structuring function corre-
sponding to pixel (or instant) j.

As pointed out in [9, 11], the dilations that can be written as matrix-based
max-plus products like Eq. (1) are the shift (or vertical-translation) invariant
ones. However the result stated in [9, 11] does not directly apply to our setting
where the lattice L is different from the lattice of scalars which define vertical
translation of signal values, usually R ∪ {−∞,+∞}. Still, the same idea holds
here with some adaptation, as stated in the next proposition.

Proposition 4 Let δ : L → L be a dilation. Then there exists W ∈ Mn such
that δ = δW if and only if

∀λ ≤ 0,∀x ∈ L, δ
(
(λ+ x) ∨ a

)
=
(
λ+ δ(x)

)
∨ a. (3)
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In that case, the matrix W whose j-th column is W:,j = δ(e(j))−b for 1 ≤ j ≤ n,
is such a representing matrix.

We see that this class of dilations is very broad and covers the most commonly
used in morphological image and signal processing: dilations based on structuring
functions, possibly non-local, varying in space and non-flat.

Proof (Proposition 4). If δ = δW for some W ∈ Mn, then it is straightforward
to check that δ verifies Eq. (3).

Conversely, suppose δ verifies Eq. (3). Then we first remark that δ(b) = b.
Indeed, on the one hand, δ(a) = a as a =

∧
L and δ is a dilation mapping L to

L. On the other hand, δ(a) = δ
(
(a− b) + b

)
= (a− b) + δ(b) by Eq. (3). Hence

a = (a− b) + δ(b) which means that δ(b) = b.
As a consequence: for any i ∈ J1, nK, there is a ji ∈ J1, nK such that δ(e(ji))i = b.
This is simply because b =

∨
1≤j≤n e(j) so b = δ

(∨
1≤j≤n e(j)

)
=
∨

1≤j≤n δ(e
(j)),

which means that, for any i, b =
∨

1≤j≤n δ(e
(j))i and finally that δ(e(ji))i = b

for some ji, as the supremum is reached here.
Now, let x ∈ L. Then it can be decomposed as x =

∨
1≤j≤n

[
(λj + e(j)) ∨ a

]
with λj = xj − b ≤ 0. Hence, as δ is a dilation verifying Eq. (3), we get δ(x) =∨

1≤j≤n
[(
λj + δ(e(j))

)
∨ a
]
. We now use the result stated just above: for any

i ∈ J1, nK there is a ji ∈ J1, nK such that λji + δ(e(ji))i = xji − b + b = xji ≥ a.
Therefore,

∨
1≤j≤n

[(
λj + δ(e(j))

)
∨ a
]

=
∨

1≤j≤n λj + δ(e(j)) from which we
finally get

δ(x) =
∨

1≤j≤n

λj +δ(e(j)) =
∨

1≤j≤n

(xj−b)+δ(e(j)) =
∨

1≤j≤n

xj +[δ(e(j))−b] (4)

which is exactly W ⊗ x for W the matrix with columns W:,j = δ(e(j)) − b for
1 ≤ j ≤ n. ut

Note that the dual of Proposition 4 obviously holds: the erosions ε : L → L
which can be written as εW for some W ∈Mn are those for which

∀λ ≥ 0,∀x ∈ L, ε
(
(λ+ x) ∧ b

)
=
(
λ+ ε(x)

)
∧ b. (5)

To show this it is sufficient to see that ε verifies (5) if and only if the dilation
δ = ε(·c)c verifies (3), and recall that δW (·c)c = εWT (·).

2.5 Equivalent dilations and erosions

In Proposition 4 we exhibited one possible matrix W ∈ Mn that represents a
dilation, but this matrix is not unique. In this section we characterise the set of
such matrices and show that it is a complete lattice.

Since we are interested in adjunctions (εW , δW ), following Proposition 3 we
focus on the set of matrices in Mn that are doubly-0-astic, which we denote by
D0(n). Let the equivalence relation defined for any two matrices A,B ∈ D0(n)
by

A ∼ B ⇐⇒ δA = δB ⇐⇒ ∀x ∈ L, δA(x) = δB(x) (6)
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and note CW = {M ∈ D0(n), M ∼W} the equivalence class of any W ∈ D0(n).
We provide an easy characterisation of CW that will show useful in numerical
computations of the morphological operators defined earlier. For any u ∈ Rmax

let Iu denote the matrix in Mn whose coefficients are all equal to u. Then two
equivalent matrices are characterised as follows.

Proposition 5 Let M,W ∈ D0(n). Then

M ∈ CW ⇐⇒ M ∨ Ia−b = W ∨ Ia−b ⇐⇒
{
mij = wij if wij > a− b
mij ≤ a− b otherwise.

(7)

This means that if W has coefficients not larger than a− b, these can be set to
any value not larger than a− b, including −∞, and can therefore be ignored in
the computation of δW (x).

Proof (Proposition 5). The second equivalence is just a matter of writing, so
we prove the first one. Let us first notice that for any x ∈ L, I(a−b) ⊗ x ≤ a.
Therefore ∀x ∈ L, (W ∨ I(a−b)) ⊗ x = (W ⊗ x) ∨ (I(a−b) ⊗ x) = W ⊗ x, since
W ⊗ x ≥ a, and this holds for M too. Hence, if M ∨ Ia−b = W ∨ Ia−b, then for
any x ∈ L, W ⊗ x = (W ∨ Ia−b)⊗ x = (M ∨ Ia−b)⊗ x = M ⊗ x, which means
M ∈ CW .

Conversely, suppose that M ∼ W and that wi0j0 > a − b for some i0, j0 ∈
J1, nK. Let x = e(j0) ∈ L, i.e. xj0 = b and xj = a ∀j 6= j0. The 0-asticity
of W and M implies (W ⊗ x)i0 = b + wi0j0 and (M ⊗ x)i0 = b + mi0j0 , hence
mi0j0 = wi0j0 . We have just shown that ∀i, j ∈ J1, nK, (wij > a− b⇒ wij = mij)
and by symmetry of the equivalence relation (mij > a− b⇒ wij = mij), which
combined yields max(mij , a − b) = max(wij , a − b). So finally M ∼ W ⇒
M ∨ Ia−b = W ∨ Ia−b. ut

While it is clear that if A,B ∈ CW then A ∨ B ∈ CW , the characterisation in
Proposition 5 shows that CW is also closed under infimum, that is: A∧B ∈ CW .
This has the following straightforward consequence.

Proposition 6 Let W ∈ D0(n) and ≤ the partial ordering on CW defined by
A ≤ B ⇐⇒ A ∨B = B ⇐⇒ aij ≤ bij ∀i, j ∈ J1, nK. Then

– (CW ,≤) is a complete lattice (with coefficient-wise supremum and infimum);
– Its greatest element is W = W ∨ Ia−b;

– Its smallest element is W , defined by wij =

{
wij if wij > a− b
−∞ otherwise.

2.6 Iterated operators and granulometries

In this section, given W ∈ D0(n) and p ∈ N∗, we focus on the iterated dilations
and erosions δpW and εpW , as well as their sup and inf integrations, that we note

respectively D
[p]
W =̇

∨p
k=1 δ

k
W and E

[p]
W =̇

∧p
k=1 ε

k
W . One can easily check that

both (εpW , δ
p
W ) and (E

[p]
W , D

[p]
W ) are adjunctions. We note respectively γ

[p]
W =̇δpW ε

p
W

and G
[p]
W =̇D

[p]
WE

[p]
W their corresponding openings.
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Note that if δW is extensive, or equivalently if W is a CMW matrix (Prop. 3),

then these adjunctions are equal (εpW , δ
p
W ) = (E

[p]
W , D

[p]
W ). As this is not true in

general, both adjunctions are worth studying. In particular, we shall examine

whether (γ
[p]
W )p∈N∗ and (G

[p]
W )p∈N∗ define granulometries, that is to say families

of openings that are decreasing with p. The answer is yes and it is a general
result that does not depend on the representation of the adjunction.

Proposition 7 Let (ε, δ) be an adjunction on a complete lattice. For any in-
teger p ∈ N∗, let us note γp = δpεp and Gp = DpEp the openings associated to

the adjunctions (εp, δp) and
(
Ep =

∧
1≤k≤p ε

k, Dp =
∨

1≤k≤p δ
k
)

, respectively.

Then (γp)p∈N∗ and (Gp)p∈N∗ are granulometries.

Proof. We first show that the family of openings (γp)p≥1 decreases with p, hence
a granulometry. This is straightforward by writing γp+1 = δp+1εp+1 = δpγ1ε

p ≤
δpεp = γp. Secondly, regarding (Gp)p≥1, we show Gp+1 ≤ Gp by proving that
GpGp+1 = Gp+1. We obtain this by remarking that Dp+1 = Dp(id

∨
δ), which

makes it an invariant of Gp: GpDp+1 = DpEpDp(id
∨
δ) = Dp(id

∨
δ) = Dp+1.

Then we can conclude GpGp+1 = GpDp+1Ep+1 = Dp+1Ep+1 = Gp+1. ut

To conclude this section, let us write δpW , εpW , D
[p]
W and E

[p]
W as dilations and

erosions represented by one suitable doubly-0-astic matrix. This will help in
their graph interpretation of the next section. The associativity of ⊗ yields
∀x ∈ L, δpW (x) = W ⊗ . . . ⊗ W ⊗ x = W p ⊗ x, therefore δpW = δWp . We

obtain similarly εpW = εWp . The distributivity of ⊗ over ∨ yields D
[p]
W (x) =∨p

k=1 δ
k
W (x) =

∨p
k=1(W k ⊗ x) = (

∨p
k=1W

k) ⊗ x therefore D
[p]
W = δSp(W ), with

Sp(W ) =̇
∨p
k=1W

k. Similarly, E
[p]
W = εSp(W ). Note that by the same arguments

and Proposition 3, we get that D0(n) is closed under ⊗ and ∨.

3 Graph interpretations

3.1 Weighted graphs

Let W ∈Mn and G(W ) = (V,E) be a weighted and directed graph containing n
vertices whose n×n adjacency matrix is W , with the convention that wij > −∞
if and only if (i, j) ∈ E. We now recall that a path from vertex i to vertex j
in G(W ) is a tuple π = (k1, . . . , kl) of vertices such that k1 = i, kl = j, and
(kp, kp+1) ∈ E for 1 ≤ p ≤ l−1. The length of the path, denoted by `(π), is l−1

(the number of its edges). For p ≥ 1, Γ
(p)
ij (W ) denotes the set of paths from i to

j in G(W ) of length p and Γ
(∞)
ij (W ) the set of all paths from i to j. The weight

of a path π = (k1, . . . , kl), denoted by ω(π), is the sum ω(π) =
∑l−1
p=1 wkpkp+1

.

3.2 Iterated operators

Recall that for W ∈ Mn and p ∈ N∗, W p is the p-th power of W in the ⊗
sense, and Sp(W ) is the matrix defined in Section 2.6, denoted by Sp here for
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simplicity. We note respectively w
(p)
ij and s

[p]
ij their coefficients. The following

result is well known in tropical algebra and graph theory [5, 6], and will help
interpret the operators defined earlier. It can be proved by induction.

Proposition 8 Let W ∈Mn and p ∈ N∗. Then for any 1 ≤ i, j ≤ n,

w
(p)
ij = max

{
ω(π), π ∈ Γ (p)

ij (W )
}

and s
[p]
ij = max

ω(π), π ∈
⋃

1≤k≤p

Γ
(k)
ij (W )


(8)

with the convention max(∅) = −∞.

The equations in (8) are equivalent to saying that

1. w
(p)
ij > −∞ (resp. s

[p]
ij > −∞) if and only if there is at least a path in G(W )

from vertex i to vertex j of length exactly (resp. at most) p;

2. w
(p)
ij (resp. s

[p]
ij ) is the maximal weight over the set of paths from vertex i to

vertex j of length exactly (resp. at most) p.

Therefore the graphs G(W p) and G(Sp) have the same set of vertices as the
original graph G(W ), but an edge exists between vertices i and j in G(W p)
(resp. G(Sp)) whenever there is a path of length exactly (resp. at most) p from
i to j in G(W ). The weights associated with this new edge are the maximal
weights over the corresponding set of paths.

Now if W ∈ D0(n), following Section 2.6 we get, for x ∈ L and i ∈ J1, nK:

δpW (x)i =
∨
j∈Np

i
{xj + w

(p)
ij } , εpW (x)i =

∧
j∈Ňp

i
{xj − w(p)

ji } (9)

and
D

[p]
W (x)i =

∨
j∈Np

i
{xj + s

[p]
ij } , E

[p]
W (x)i =

∧
j∈Ňk

i
{xj − s[p]

ji } (10)

where N p
i is the set of neighbours of vertex i in G(W p) or, equivalently, the

set of vertices in G(W ) that can be reached from i through a path of length

p; Ň p
i =

{
j ∈ {1, . . . , n}, i ∈ N p

j

}
; Np

i = ∪1≤k≤pN k
i and Ňp

i = ∪1≤k≤pŇ k
i .

Hence these dilations and erosions are suprema and infima of “penalised” values
over extended neighbourhoods induced by the original graph. The penalization is
given by the strength of the connection between vertices: the closer the penalising
weight to zero, the more the neighbours’ value contributes to the result. The fact
that we can restrict the supremum and infimum over graph neighbourhoods in (9)
and (10) is due to the weight values being −∞ outside these neighbourhoods,
hence not contributing to the supremum and infimum.

3.3 Path interpretation of the opening G
[p]
W

The goal of this section is to show that G
[p]
W can be interpreted similarly to a

path opening [8], in the sense that it preserves bright values that are connected
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to other bright values forming long enough paths in a graph. We can first remark
that for any x ∈ L, i ∈ J1, nK and t ∈ [a, b]:

G
[p]
W (x)i ≥ t ⇐⇒ ∃j ∈ Np

i , such that ∀l ∈ Ňp
j xl ≥ t− s[p]

ij + s
[p]
lj , (11)

which is straightforward from the expressions in (10), as G
[p]
W = D

[p]
WE

[p]
W . This

directly yields

G
[p]
W (x)i =

∨{
t ∈ [a, b],∃j ∈ Np

i , ∀l ∈ Ň
p
j , xl ≥ t− s[p]

ij + s
[p]
lj

}
. (12)

In the case of binary weights, i.e. wij = 0 if vertex j is neighbour of i in G
and wij = −∞ otherwise, which corresponds to a non-weighted graph, then

s
[p]
ij = s

[p]
lj = 0 in (11) and (12). Therefore, if G

[p]
W (x)i ≥ t, then there is a vertex

j which is at most p steps away from i, such that all paths of length at most
p and ending in j, including those of length exactly p and passing through i (if
they exist), show values larger than t. In the general case, the additional term

−s[p]
ij +s

[p]
lj modulates this constraint in function of the strength of the connection

of i and the other vertices of Ňj , to j.

4 Links to the max-plus spectral theory

Now we present the consequences and interpretations of some results from the
spectral theory in max-plus algebra. We first report definitions from [6] necessary
to Theorem 1 (also from [6]). Then we draw the links to our setting and more
particularly in the case of a symmetric matrix, corresponding to a non-directed
graph. In all this section, W ∈Mn.

4.1 General definitions and results

Definition 3 (Eigenvector, eigenvalue [6]) Let x ∈ Rnmax and λ ∈ Rmax.
Then x is an eigenvector of W with λ as corresponding eigenvalue if W ⊗ x =
λ ⊗ x = λ + x. If there exists finite x and λ solutions to this equation, we say
that the eigenproblem is finitely soluble.

In the graph G(W ), a path (k1, . . . , kl) is called a circuit if k1 = kl. We
will note C(W ) the set of all circuits of G(W ). Circuits allow us to distinguish
another class of matrices in Mn, called definite matrices. They are important
to the present framework as they include the doubly-0-astic matrices.

Definition 4 (Definite matrix [6]) W is said definite if maxc∈C(W ) ω(c) = 0.
In other words, all the circuits of G(W ) have non positive weights, and at least
one circuit c∗, called a zero-weight circuit, achieves ω(c∗) = 0.

To see that if W is row or column-0-astic, then it is definite, it is sufficient to
build an increasing path with zero-weight, until one vertex repeats. The path
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can be initialized with any vertex j1. Then given the current path (j1, . . . , jm),
we extend it by adding a vertex jm+1 such that wjmjm+1

= 0. This is always
possible thanks to the row or column-0-asticity of W. Since there are n distinct
vertices in G(W ), an index will repeat after at most n iterations.

Definition 5 (Eigen-node, equivalent eigen-nodes [6]) Let W be a defi-
nite matrix. An eigen-node is any vertex in G(W ) belonging to a zero-weight
circuit. Two eigen-nodes are said equivalent if there is a zero-weight circuit
passing through both of them.

In [6], Sn(W ) =
∨

1≤k≤nW
k is denoted by∆(W ) and called the metric matrix.

Recall that for i, j ∈ J1, nK, ∆(W )ij is the maximal weight over the set of paths
from vertex i to vertex j of length at most n, in G(W ) (Prop. 8). If W is definite,
circuits have non-positive weights in G(W ) and therefore any path longer than
n can be reduced to a shorter path with non larger weight. Hence, ∆(W )ij is
actually the maximal weight over the set of all paths from i to j. This provides
an easy characterisation of eigen-nodes for W definite: j is an eigen-node of
G(W ) if and only if ∆(W )jj = 0. Furthermore, the j-th column ξj of ∆(W ) is
a map of the ancestors of j in G(W ). It tells which vertices can reach j and at
which cost.

Definition 6 (Fundamental eigenvectors, eigenspace [6]) Let W be a def-
inite matrix. Then a fundamental eigenvector of W is any j-th column ξj of
∆(W ), where j is an eigen-node. Two fundamental eigenvectors are said equiv-
alent if their associated eigen-nodes are equivalent (see Definition 5).
Let E = {ξi1 , ξi2 , . . . , ξik} be a set of k ≥ 1 fundamental eigenvectors of W , all
pairwise non-equivalent. The set E is said to be a maximal set of non-equivalent
fundamental eigenvectors if any other fundamental eigenvector of W is equiva-
lent to one of the eigenvectors in E.
In this case the set {

∨k
j=1 xj + ξij ,x ∈ Rkmax} is called the eigenspace of W and

does not depend on E (see [6], Lemma 24-1).

Theorem 1 ([6]) Let W be a definite and 0-astic matrix. Then the following
statements are valid:

– For any fundamental eigenvector ξj of W (finite or not), W ⊗ ξj = ξj.
– The eigenproblem is finitely soluble.
– If two fundamental eigenvectors (finite or not) are equivalent, then they are

equal.
– Any finite eigenvector is associated to the eigenvalue λ = 0, and lies in the

eigenspace of W .

4.2 Consequences and interpretations

In general. As said, the results of the previous section apply to our setting
since we consider adjunctions represented by doubly-0-astic matrices, which are
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both definite and 0-astic. For W ∈ D0(n), ∆(W ) is also in D0(n) and the cor-

responding opening δ∆(W )ε∆(W ) is G
[n]
W . By definition, G

[n]
W (x) projects x ∈ L

onto δ∆(W )(L), which is the set {
∨n
j=1 yj + ξj ,y ∈ L} of max-plus combinations

of columns of ∆(W ). Theorem 1 tells that this decomposition can be split as

G
[n]
W (x) = u ∨ v, where u lies in the eigenspace of W and v is a max-plus com-

bination of the ξj which are not fundamental eigenvectors. This decomposition
may be sparser than the original one, as the dimension of the eigenspace of W ,
i.e. Card(E), can be lower than the number of fundamental eigenvectors.

The case of symmetric W ∈ D0(n). This case corresponds to considering a non-
directed graph supporting the signal x. As the adjacency relationship is often
based on a symmetrical function on pairs of vertex values, this assumption covers
many practical cases (e.g. [2, 3]). The main consequence of W ∈ D0(n) symmetric
is that every vertex j is an eigen-node: for any j ∈ J1, nK there is i such that
wij = 0 = wji and therefore (j, i, j) is a zero-weight circuit. This entails three
other consequences.

First, ∆(W )jj = 0 for every j ∈ J1, nK, following the characterisation of

eigen-nodes described earlier, which implies that δ∆(W ) = D
[n]
W is extensive and

ε∆(W ) = E
[n]
W anti-extensive (Prop. 3). Secondly, W ⊗ ξj = ξj for every column

ξj of ∆(W ), which implies W k ⊗ ξj = ξj for 1 ≤ k ≤ n, hence ∆(W ) ⊗ ξj = ξj

and finally ∆(W )⊗∆(W ) = ∆(W ). This means D
[n]
W and E

[n]
W are idempotent.

They are therefore a closing and an opening respectively and E
[n]
W = G

[n]
W , since

an adjunction (ε, δ) for which ε is an opening and δ a closing verifies ε = δε
(and δ = εδ). The third consequence is the following.

Corollary 1 If W ∈ D0(n) is symmetric, then the set of invariants of G
[n]
W is

exactly the eigenspace of W .

When W is symmetric, a maximal set of k non-equivalent fundamental eigen-
vectors {ξi1 , ξi2 , . . . , ξik}, k ≤ n, can be seen as negative distance maps to the
k corresponding eigen-nodes G(W ), as they contain the optimal cost (maximal
weight) between any vertex and the eigen-nodes4. Hence we can picture the as-

pect of G
[n]
W (x), for x ∈ L: it is the upper-envelope of the largest vertical trans-

lations of these distance maps that are dominated by x. Therefore, adapting
G(W ) to x by well connecting vertices within relevant structures preserves these

structures under the filter G
[n]
W , as shown in [2, 3]. In practice, n might be large,

such as the number of pixels of an image. Since (G
[p]
W )1≤p≤n is a granulometry,

we know that G
[n]
W can be approximated by G

[p]
W with increasing p.

5 Conclusion

In this paper we consolidated the basis of the representation of adjunctions by
matrices in max-plus algebra. We showed that it is a very flexible framework that

4 Note that ∆(W ) is a metric, not exactly between vertices, but between their equiva-
lence classes induced by Def. 5, as all vertices are eigen-nodes when W is symmetric.
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generalises many types of morphological adjunctions. In particular, it allows de-
scribing precisely the behaviour of iterated operators based on spatially-variant,
non-flat structuring functions. This is made possible by their graph interpre-
tation and spectral results in max-plus algebra. Future works shall investigate
further the insights that max-plus algebra can bring to mathematical morphol-
ogy through this framework.
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