Emission Colours of Bistable Photochromic Compounds: Ce-Doped Alkaline (Rb, K, Na) – Indium Fluorides.
Manuel Gaudon, Ines Andron, Alain Demourgues, Vincent Rodriguez, Alexandre Fargues, Etienne Durand, Anthony Chiron, Christine Frayret, Veronique Jubera

To cite this version:
Manuel Gaudon, Ines Andron, Alain Demourgues, Vincent Rodriguez, Alexandre Fargues, et al.. Emission Colours of Bistable Photochromic Compounds: Ce-Doped Alkaline (Rb, K, Na) – Indium Fluorides.. Materials Advances, 2022, 3 (18), pp.7061-7071. 10.1039/D2MA00840H . hal-03738624

HAL Id: hal-03738624
https://hal.science/hal-03738624
Submitted on 26 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
This article can be cited before page numbers have been issued, to do this please use: V. Jubera, M. Gaudon, I. Andron, A. Demourgues, V. Rodriguez, A. Fargues, E. Durand, A. Chiron and C. Frayret, Mater. Adv., 2022, DOI: 10.1039/D2MA00840H.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Emission Colours of Bistable Photochromic Compounds: Ce-Doped Alkaline (Rb, K, Na) – Indium Fluorides.

Manuel Gaudon1*, Ines Andron1, Alain Demourgues1, Vincent Rodriguez3, Alexandre Fargues1, Etienne Durand1, Anthony Chiron1 Christine Frayret2, Véronique Jubera1* 1 Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France. 2 Laboratoire de Réactivité et Chimie des Solides, UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15 Rue Baudelocque, 80000 Amiens Cedex, France. Réseau sur le Stockage Electrochimique de l’Energie (RS2E), France 3 Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France *corresponding authors: manuel.gaudon@icmcb.cnrs.fr / veronique.jubera@u-bordeaux.fr

Abstract

The structural and spectroscopic properties of three Ce3+-doped A3InF6 compounds (with A+= Rb+, K+, Na+) are investigated. Containing indium, they all exhibit 2Ce3+ + In3+ ↔ In+ + 2Ce4+ redox processes induced by UV irradiation between Ce3+ and In3+ cations. The photochromo-luminescent behaviour and associated kinetics, with the Ce3+ and In+ ion emission quenching through the redox equation, respectively, are investigated. Our studies highlight that different mechanisms (surface vs. bulk) need be considered to explain the decrease in the blue (Ce3+) and orange (In+) emission curves. Moreover, the comparison of Ce3+-doped Rb2KInF6, K2NaInF6 elpasolites and K3InF6 cryolite spectral distributions shows that changing the nature of the alkali cation makes colour tuning possible. The shift of the Ce3+ and In+ colour emissions between the three as-prepared compounds is mainly due to the variation in the ionic-covalent nature of the chemical bonds around the active cation sites. The final calculated optical difference between the two bistable states varies from 0.31 to 0.48 depending on the alkali subnetwork.

Keywords: Luminescence, Photochromism, Fluorides, Structures, Elpasolite, Cryolite, Cerium, Indium
1. Introduction

As photochromism can be defined as the ability of a compound to change its colouration under UV or visible irradiation [...], the photochormoluminescence property is herein defined as the ability of the studied inorganic fluorides to reversibly change their emissive colouration resulting from UV irradiation. Hence, in photochormoluminescent materials, the A colour emission state is shifted to the B colour emissive state from irradiation at a λ_A wavelength (forth-irradiation), whereas reversibly, the B state can return to the A state from irradiation at a λ_B wavelength (back-irradiation). Such compounds can be developed in view of various applications, such as information storage, UV sensors, and security inks.

The studied compounds are inorganic indium-based fluorides, with a double perovskite-type structure, constituted mainly on alkali-fluorine ionic bonds with the general formula A_2BKInF$_6$ (A and B being alkaline elements). Compounds were doped with trivalent cerium in substitution of trivalent indium, with a substitution concentration of 2 mol%. Both cerium and indium ions are present at the source of the potential modulation in the emission of the Ce-doped fluorides. Indeed, in such inorganic fluorides: RE-doped A_2BKInF$_6$ series (RE: rare earth element), a redox process can be produced between cerium and indium cations, as demonstrated by Chaminade et al., or more recently developed by Cornu et al.. It was shown in the last former article that the UV irradiation of Ce$^{3+}$-doped Rb$_2$KInF$_6$ elpasolite-type compounds induces a reversible redox process.

Under UV irradiation at 315 nm, the progressive disappearance of two Ce$^{3+}$ ions in favour of the appearance of one In$^+$ cation is associated with the Ce$^{3+}$ blue emission quenching and the increase in the orange In$^+$ emission (forth-irradiation). A reversible phenomenon is observed under material irradiation at 255 nm (back-irradiation). A nice on-off effect of the Ce$^{3+}$/In$^+$ cation emission is obtained; the cycling of this redox process has been checked over 5 cycles under UV irradiation; and the stability of both Ce$^{3+}$-In$^+$ (A state) and Ce$^{4+}$-In$^+$ (B state) states was confirmed over 10 years.

In this paper, attempts to observe a redox phenomenon similar to that in Ce-doped Rb$_2$KInF$_6$ compounds have been performed on the structurally close compounds: Ce-doped K$_2$NaInF$_6$ elpasolite and Ce-doped K$_3$InF$_6$ cryolite. One target is to tune the colour contrast between the two states (forth- and back-irradiation) in this series. The studied halide compounds are all related to the perovskite structure. The latter are generally studied for their wide range of physical properties, such as ferroelectricity, dielectricity, pyroelectricity and piezoelectricity. The crystallographic structure of the three as-prepared compounds (Ce-doped Rb$_2$KInF$_6$ was
again prepared as a reference) was studied by X-ray diffraction and Raman spectroscopy in the first part. In the second part, the luminescence properties of the cerium or indium luminescent centres in these three compounds are compared and interpreted based mainly on the Stokes shift consideration. The kinetic mechanism of Ce$^{3+}$ luminescence quenching (forth redox) and In$^{+}$ luminescence (back redox) quenching is deeply investigated.

2. Experimental

The elpasolite/cryolite compounds were prepared from the solid-state route in sealed tubes. α-InF$_3$ was issued from direct fluorination using diluted F$_2$ (10%, Ar filled) gas treatment at T=450 °C during 6 hours of InF$_3$.xH$_2$O, hydrated fluorides, which were prepared from a coprecipitation process. The reagents RbF, KF, NaF, CeF$_3$ fluorides (commercial compounds, Aldrich) and InF$_3$ used for the synthesis were hygroscopic, so they were previously treated at 110 °C for 3 hours under vacuum to remove all traces of water and then placed in a glove box (BAG). The reagents were then weighed in stoichiometric proportions and ground in an agate mortar. They were introduced into a clamped argon atmosphere glove box and sealed platinum tube to prevent any air entry. The tube was placed in a muffle furnace and heat-treated at 700 °C for 12 hours.

Powder X-ray diffraction patterns were collected on a Philips X’Pert MPD X-ray diffractometer with a Bragg–Brentano geometry using Cu Kα$_{1,2}$ radiation (10 < 2θ < 130°, step 0.02° and counting time of 30 seconds). The diffractograms were refined using the Rietveld refinement method with the conventional reliability factors for refinement quality assessment. The Fullprof program package was used. Unit-cell parameters, zero-shift, peak profile parameters, atomic positions and isotropic displacement factors were refined; however, occupancies were fixed equal to the target composition.

Raman spectra were recorded at room temperature on a Xplora confocal Raman microscope from Horiba Scientific (objective 50×, NA=0.50) using a CW 532 nm laser excitation. The laser power was less than 15 mW for all samples. The spectrometer includes a grating with 2400 grooves/mm and an air-cooled CCD camera for detection. Unpolarized Raman spectra were measured over the frequency range 150–750 cm$^{-1}$ with a spectral resolution better than 3 cm$^{-1}$. The spectral range below 150 cm$^{-1}$ has been deliberately rejected because the longpass edge
filter for the collection of the Raman Stokes signal strongly disturbs the profile and the intensities of the peaks possibly present in this range.

The photoluminescent properties were analysed using a Fluorolog 3 Horiba spectrofluorimeter connected by a 450 W continuous Xenon source. Raw data were corrected for the experimental parameters: variation of the incident flux, monochromator transmission and photomultiplier sensitivity.

3. Results and discussion

3.1. Structural investigation

Perovskite designates any \(\text{ABX}_3 \) structural material, formed on the basis of a three-dimensional network of corner-sharing \(\text{BX}_6 \) octahedra in all three spatial directions and with large A cations occupying all cuboctahedral cavities, delimited by the eight \(\text{BX}_6 \) octahedra (Figure 1).\(^{12}\) The studied halogenated perovskites have the generic formula \(\text{A}_2\text{BB}'\text{F}_6 \) with a strict alternation of the B (Na\(^+\) or K\(^+\)) and B' (In\(^{3+}\)) cations that causes the doubling of the lattice parameter (ordered double perovskites). The Rb\(_2\)KInF\(_6\) (labelled Rb\(_2\)K) and K\(_2\)NaInF\(_6\) (labelled K\(_2\)Na) compounds both crystallize in this so-called elpasolite structure. Finally, a special case of elpasolite is the \(\text{A}_3\text{BX}_6 \) cryolite (named after the Na\(_3\)AlF\(_6\) archetypal mineral), in which the A atoms occupy half of the octahedra and all cuboctahedron sites, as for the K\(_3\)InF\(_6\) (labelled K\(_3\)) compound.
Figure 1. Structural filiations linking the perovskite framework and the two studied double perovskite types: elpasolite-type and cryolite-type.

The X-ray diffraction patterns of the three studied compounds are depicted in Figure 2. The as-quoted Rb₂K and K₂Na compounds both crystallize in the Fm-3m space group, as already attested by the literature (ICSD files 00-048-1754 and 00-023-1361, respectively, for Rb₂K and K₂Na). Moreover, the clear right-shift of the peak positions of the K₂Na phase with respect to the Rb₂K phase already shows that the unit-cell parameter of the first is the smallest. The K₃ compound has a peak series that seems to coincide with the 01-072-1763 file (Fd-3 space group), but the peak assignment is not fully satisfying and deserves deeper investigation.

![X-ray diffraction patterns of the three studied compounds](image)

Figure 2. X-ray diffraction patterns of the three studied compounds: (a) K₂Na, (b) Rb₂K (both with Fm-3 m space group) and (c) K₃ (with intermediate peak indexation corresponding to Fd-3 space-group for the latter).

In the A₂BB'T₆ investigated compositions, the ionic radius into octahedral sites, either the B ions (1.38 Å, 1.02 Å, for K⁺ and Na⁺, respectively) or the B⁺ ions (0.8 Å for In³⁺), are too high compared to the radii of A cations, which are located in cuboctahedral sites (1.72 Å and 1.64 Å for Rb⁺ and K⁺, respectively). Both the compound frameworks are subjected to internal stresses associated with a Goldschmidt tolerance factor, less than 1, causing the tilting of the octahedra chains to satisfy the valence of the whole cation set.¹³ As previously shown in our former study devoted to Rb₂K compound,⁸,⁹ considering a Fm-3m cubic system for the first two compounds (K₂Na, Rb₂K), the octahedra rotation results in a positioning of the fluorine ions in the 96j Wyckoff position, with an equiprobable random occupancy of a quarter compared to the 24e position located on the In – B – In axes. The 96j fluorine position is distinguished from the 24e position by off-centering the In – B – In axes by a distance that is characterized by the fluorine z coordinate.
The K_3 compound has a Goldschmidt factor significantly lower than 1 ($t = 0.868$), and therefore, a lower symmetry than the Fm-3m cubic cell is expected. From Glazer theory and the fixed symmetry relations between space groups, we assumed that the K_3 phase could crystallize in a cell with an I4/m space group. Furthermore, this space group corresponds to the low-temperature polymorph of Rb$_2$K. Refinements were performed maintaining a “doubled” c parameter with respect to the Fm-3m elpasolite unit-cell. However, the refinement leads to low reliability factors. Thus, a full resolution of the K_3 crystalline framework is proposed with the I4/m space group. There are four positions for indium atoms and three positions for potassium atoms. The twelve-coordinated potassium atoms are located in two different $16i$ positions. Finally, there are ten positions for fluorine atoms. The indium and potassium octahedra constituting the I4/m double-cell of the K_3 compound are depicted in Figure 3, and each distinct octahedron (peculiar Wyckoff position) is represented by a different edge colour.

Table 1 summarizes the refined parameters and reliability factors of the structural hypotheses carried out for fluorine ions at position $24e$ or $96j$ on Rb$_2$K and K$_2$Na, considering the just previously defined I4/m double-cell for K_3 (detailed atomic positions for this latter compound are reported in Table S11a).

![Figure 3. Rietveld refinement considering the I4/m space group for the K_3 compound (a) and representation of all B and B' cationic sites and their crystallographic subframework for the K_3 compound (b).](image)

Table 1. Unit cell parameters, fluorine coordinates and reliability factors extracted from the X-ray powder pattern refinement of the three studied compounds.

<table>
<thead>
<tr>
<th></th>
<th>Rb$_2$K - Fm-3m</th>
<th>K$_2$Na - Fm-3m</th>
<th>K_3 - I4/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>F atom position</td>
<td>a (Å)</td>
<td>b (Å)</td>
<td>c (Å)</td>
</tr>
<tr>
<td></td>
<td>9.0922(3)</td>
<td>9.0921(2)</td>
<td>8.5468(2)</td>
</tr>
<tr>
<td></td>
<td>9.0922(3)</td>
<td>9.0921(2)</td>
<td>8.5459(3)</td>
</tr>
<tr>
<td></td>
<td>0.2317(4)</td>
<td>0.2317(3)</td>
<td>0.2438(4)</td>
</tr>
<tr>
<td></td>
<td>0.2317(4)</td>
<td>0.2317(3)</td>
<td>0.2438(4)</td>
</tr>
<tr>
<td></td>
<td>0.041(1)</td>
<td>0.041(1)</td>
<td>0.045(1)</td>
</tr>
<tr>
<td></td>
<td>0.041(1)</td>
<td>0.041(1)</td>
<td>0.045(1)</td>
</tr>
<tr>
<td></td>
<td>751.64(3)</td>
<td>751.60(4)</td>
<td>624.33(3)</td>
</tr>
<tr>
<td></td>
<td>751.64(3)</td>
<td>751.60(4)</td>
<td>623.95(3)</td>
</tr>
<tr>
<td></td>
<td>$B_{iso}(A)$ (Å2)</td>
<td>$B_{iso}(B)$ (Å2)</td>
<td>$B_{iso}(B')$ (Å2)</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>2.70(5)</td>
<td>2.84(5)</td>
<td>1.73(6)</td>
</tr>
<tr>
<td></td>
<td>1.3(10)</td>
<td>1.27(9)</td>
<td>1.3(1)</td>
</tr>
<tr>
<td></td>
<td>0.89(4)</td>
<td>0.97(4)</td>
<td>0.39(4)</td>
</tr>
<tr>
<td></td>
<td>7.2(1)</td>
<td>3.3(2)</td>
<td>4.8(1)</td>
</tr>
<tr>
<td></td>
<td>11.0</td>
<td>10.8</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>5.35</td>
<td>3.43</td>
<td>4.12</td>
</tr>
<tr>
<td></td>
<td>7.05</td>
<td>4.91</td>
<td>8.74</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>3.4</td>
<td>2.9</td>
</tr>
<tr>
<td>Rp</td>
<td>11.0</td>
<td>10.8</td>
<td>15.2</td>
</tr>
<tr>
<td>Rp</td>
<td>5.35</td>
<td>3.43</td>
<td>4.12</td>
</tr>
<tr>
<td>Rwp</td>
<td>11.3</td>
<td>10.8</td>
<td>15.2</td>
</tr>
<tr>
<td>Bragg R-Factor</td>
<td>7.05</td>
<td>4.91</td>
<td>8.74</td>
</tr>
<tr>
<td>Chi²</td>
<td>3.5</td>
<td>3.4</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Obviously, the unit-cell volume per unit formula (Z) is directly related to the alkaline ionic size of the compounds; thus, the equivalent unit-cell volume ($Z = 4$) decreases from Rb$_2$K ($V= 751.6$ Å3, $Z = 4$), then K$_3$ ($V/4 = 692.47$ Å3, $Z = 16$), and finally to K$_2$Na ($V 623.95$ Å3, $Z = 4$).

For the first two compounds (Rb$_2$K and K$_2$Na), the positioning of fluorine in the 96j position instead of the 24e position makes it possible to significantly reduce the reliability factor values for the two systems. We also observe a decrease in the B_{iso} isotropic displacement factors associated with fluorine ions. The fluorine atom is closer to the position $x = 0.25$ (midpoint between the B and the B’ cation) for the K$_2$Na phase than for Rb$_2$K.

For the K$_3$ sample, a very complex framework based on multiple octahedral sites was evidenced. There are indeed 3 kinds of octahedron sequences along the c axis and 3 successive layers of atoms in the (ab) plane (Figure 3b). Along the c axis, the potassium and indium octahedra generally tilt in the opposite direction from each other, as also observed for the neighbouring octahedra within each layer.

Raman spectroscopy studies of the InF$_6$ entities were undertaken to complete the X-ray diffraction studies. This optical spectroscopy is particularly sensitive to bond vibrations and allows the instantaneous environment of each ion to be probed, including dynamic distortions at short time scales down to a few tens of femtoseconds (fs). As a reminder, both the Rb$_2$K and K$_2$Na phases exhibit a single Wyckoff position for indium and potassium ions. The InF$_6$ octahedral sites are perfectly regular. In contrast, according to previous X-ray diffraction studies, for the K$_3$ compound, the different octahedral sites show strong disparities in their geometry. In the three samples, the InF$_6$ octahedral sites show 3 active Raman modes: v_1 (A_{1g}), v_2 (E_g) and v_5 (F_{2g}). The doubly degenerated antisymmetric valence vibration v_2 (E_g) has a very low intensity at approximately 380 cm$^{-1}$. Therefore, we have concentrated our analysis on the
two other vibration modes: they correspond to the three degenerate v_5 (F_{2g}) shear modes and the nondegenerate v_1 (A_{1g}) breather mode. Whether for the v_5 (F_{2g}) (Figure 4) or v_1 (A_{1g}) (Figure 5) vibration mode, the same observations leading to the same conclusions can be formulated. For these two vibration modes, the Raman intensity profiles of the compounds K_2Na and Rb_2K are perfectly refined by considering that the vibration band comes from a single Gaussian contribution. However, the two vibration signals of the K_3 compound fit better by considering the band resulting from the convolution of at least three Gaussian contributions (the χ^2 value is drastically decreased from 7.064 to 0.639, while 3 Gaussian contributions are taken into account for the fitting). This Raman analysis therefore clearly reflects the great disparity of In sites and In-F distances in cryolite-type structures.

The parameters extracted from the refinement of the v_5 (F_{2g}) and v_1 (A_{1g}) bands for the three studied compounds are listed in Table 2. Two additional observations can be made, considering that the frequency of vibration mode is higher than this one: (i) the respiration mode is strongly constrained by the presence of sodium Na$^+$ instead of K$^+$ on site B (position at 522 cm$^{-1}$ for K_2Na, approximately 502-509 cm$^{-1}$ for Rb_2K and K_3); (ii) the shear mode is strongly relaxed by the presence of Rb^+ ions instead of K$^+$ on site A (218 cm$^{-1}$ for Rb_2K instead of 230-233 cm$^{-1}$ for K_3 and K_2Na).

Figure 4. Refinement of the v_5 (F_{2g}) vibration band attributed to each of the three studied compounds considering a single Gaussian peak or a 3-Gaussian peaks for the K_3 compound.
Figure 5. Refinement of the $v_1(A_{1g})$ vibration band attributed to each of the three studied compounds considering a single Gaussian peak or a 3-Gaussian peak for the K_3 compound.

Table 2. Parameters extracted from the refinement of the $v_3(F_{2g})$ and $v_1(A_{1g})$ bands.

<table>
<thead>
<tr>
<th>Refined parameters</th>
<th>K_2Na</th>
<th>Rb_2K</th>
<th>K_3</th>
<th>K_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d(\text{In-F})_{\text{mean}}$ (Å)</td>
<td>2.12(1)</td>
<td>2.14(1)</td>
<td>2.13(1)</td>
<td>2.13(1)</td>
</tr>
<tr>
<td>$v_3(F_{2g})$ Position (cm$^{-1}$)</td>
<td>233</td>
<td>218</td>
<td>230</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Width (cm$^{-1}$)</td>
<td>14</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Intensity (a.u.)</td>
<td>1.2</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>$v_1(A_{1g})$ Position (cm$^{-1}$)</td>
<td>522</td>
<td>509</td>
<td>502</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Width (cm$^{-1}$)</td>
<td>19</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Intensity (a.u.)</td>
<td>1.2</td>
<td>0.9</td>
<td>1.1</td>
</tr>
</tbody>
</table>

3.2. Luminescence properties: Photochromoluminescence.

Doped with 2% (molar substitution at the indium site) cerium ions, Rb_2K, K_2Na elpasolites and K_3 cryolite present $4f \rightarrow 5d$ electronic transitions under UV irradiation. Figure 6 shows the corresponding excitation and emission graphs normalized at the maximum. Table 3 lists the
Stokes shift values calculated as the wavenumber difference (cm\(^{-1}\)) between the maximal intensity of the lowest 5d(T\(_{2g}\)) excitation level and the corresponding 4f(\(^{2}F_{5/2}\)) arrival level. The emission band is clearly constituted from the overlapping of two Gaussian contributions, indexed to the 5d(T\(_{2g}\)) \(\rightarrow\) 4f(\(^{2}F_{5/2}\)) and 5d(T\(_{2g}\)) \(\rightarrow\) 4f(\(^{3}F_{7/2}\)) transitions. The deconvolution of the K\(_{3}\) emission is reported as an illustration (Figure 6c). Energy differences of 2897 cm\(^{-1}\), 2347 cm\(^{-1}\) and 2424 cm\(^{-1}\) for Rb\(_{2}K\), K\(_{2}Na\) and K\(_{3}\), respectively, are observed, in agreement with the expected value resulting from the splitting of the two Ce\(^{3+}\) 4f levels by spin orbit coupling.\(^{17}\)

Regardless of the nature of the host lattice, the maximum of the excitation band is located at approximately 313 nm, which indicates a very weak difference in the crystal field effect on the 5d orbital splitting. However, the global emission is significantly shifted to the highest energy versus the decrease in the alkali size (as a reminder, \(r_{Rb}[6/12] = 1.52/1.72\) Å; \(r_{K}[6/12] = 1.38/1.64\) Å; \(r_{Na}[6/12] = 1.02/1.39\) Å). Thus, the Rb\(_{2}K\) and K\(_{2}Na\) emission bands peak at 485 nm and 423 nm, respectively. The K\(_{3}\) emission is maximum at 435 nm. The corresponding trichromatic \(x\), \(y\), \(z\) coordinates associated with luminescence colouration are indicated in Figure 6b (colour panels are also proposed due to the conversion of xyz parameters into the RGB system).

Figure 6: Excitation spectra (a), emission spectra and corresponding colour coordinates (b), deconvolution of the emission spectra into two 5d(T\(_{2g}\)) \(\rightarrow\) \(^{3}F_{2/2}\) and 5d(T\(_{2g}\)) \(\rightarrow\) \(^{3}F_{3/2}\) bands at room temperature of K\(_{3}\) (c) and Stokes shift of Ce\(^{3+}\) doped-fluoride compounds (d).
Table 3: Energy of the Ce$^{3+}$ ion transitions in elpasolite (cryolite) compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>V(Z=4) (Å3)</th>
<th>λ_{ex} max T$_{2g}$ (cm$^{-1}$)</th>
<th>λ_{em} max T$_{2g}$ (cm$^{-1}$)</th>
<th>T${2e}$→T${2g}$F$_{5/2}$ (cm$^{-1}$)</th>
<th>T${2e}$→F${5/2}$ (cm$^{-1}$)</th>
<th>Δ_{SS} (cm$^{-1}$)</th>
<th>ΔE (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K$_2$Na</td>
<td>623.95(3)</td>
<td>31949 (313 nm)</td>
<td>23641 (423 nm)</td>
<td>23891 (419 nm)</td>
<td>21467 (466 nm)</td>
<td>8058</td>
<td>2424</td>
</tr>
<tr>
<td>*K$_3$</td>
<td>692.01(8)</td>
<td>31949 cm$^{-1}$ (313 nm)</td>
<td>22989 (435 nm)</td>
<td>24165 (414 nm)</td>
<td>21818 (458 nm)</td>
<td>7784</td>
<td>2347</td>
</tr>
<tr>
<td>Rb$_2$K</td>
<td>751.60(4)</td>
<td>31949 cm$^{-1}$ (313 nm)</td>
<td>20619 (485 nm)</td>
<td>21212 (471 nm)</td>
<td>18315 (546 nm)</td>
<td>10737</td>
<td>2897</td>
</tr>
</tbody>
</table>

Stokes shift values (Δ_{SS}) follow the order Δ_{SS} Rb$_2$K $>$ Δ_{SS} K$_2$Na $>$ Δ_{SS} K$_3$. The standard deviation of the In-F distances at the Ce$^{3+}$ site is equal to 0.01 Å (Table 2); this parameter cannot explain such an evolution. Δ_{SS} reflects both the variation of the equivalent unit cell volumes (Rb$_2$K $>$ K$_3$ $>$ K$_2$Na) and the breathing of the InF$_6$ polyhedra. As discussed previously, a larger volume results in an increased disorder of the fluorine anions (see Table 1). In particular, considering that the softness of the structure increases with alkali size, we suggest that the capability of a larger Ce$^{3+}$ coordination polyhedron to be distorted, leading to its energetic and spatial reorganization. Thus, the cryolite structure appears as a more rigid host lattice. Such a tendency seems to be confirmed by experimental data reported in the literature for similar structural matrices (Figure 6d). Low-temperature measurements were performed on the K$_3$ compound (an equivalent study has been reported for the Rb$_2$K elpasolite). A weak thermal quenching of 12% (integrated area), a decrease in the full width at half maximum, and a UV shift are observed from a drop in the temperature down to 8 K. The results are illustrated in Figure SI1.

As published previously, the emission of Ce$^{3+}$-doped Rb$_2$KInF$_6$ elpasolite is not stable under UV excitation. An electron transfer occurs between the rare earth and indium cations, leading to a redox process (fourth reaction) between the two elements. It is thus possible to record the kinetics of Ce$^{3+}$ ion oxidation by following the decrease in the corresponding emission curve. As illustrated below (Figure 7a), the redox process has also been detected on the K$_2$Na and K$_3$ compounds. After 10 minutes, losses in intensity of approximately 15%, 6% and 20% are observed for the Rb$_2$K, K$_2$Na and K$_3$ compounds, respectively. A deeper characterization is proposed for both the Rb$_2$K elpasolite and K$_3$ cryolite. The kinetic curves of the Ce$^{3+}$ ions were recorded under excitation at 315 nm and a maximum emission fixed at 485 nm and 435 nm for Rb$_2$K and K$_3$, respectively. On one hand, the oxidation velocity of Ce$^{3+}$ cations and their disappearance have been considered equal to the global emission. Considering this hypothesis
for the low doping rate, the emission intensity is proportional to the concentration of luminescent cations and can be expressed as $V = - \frac{d[\text{Ce}^{3+}]}{dt}$ avec $[\text{Ce}^{3+}]$, the concentration and t, the time. On the other hand, several kinetic models following the general rule $V = k[\text{Ce}^{3+}]^\alpha$ with α, the order of the reaction and k, the velocity constant, have been run by changing the α value.

![Kinetic curves of Ce-doped Rb$_2$K and K$_3$Na elpasolites K$_3$ cryolite](image)

Figure 7: Kinetic curves of Ce-doped Rb$_2$K and K$_3$Na elpasolites K$_3$ cryolite (a); fit of a long-time acquisition of the kinetic curves of Rb$_2$K and K$_3$ compounds. The square value of the residual difference between the calculated and experimental values is reported in inset (b,c). The fitting equations based on the iii model are indicated in pink.
The results of the fits are illustrated in Figure 7b and 7c, and the corresponding parameters are listed in Table SI2. The R^2 reliability factor was calculated as follows:

$$R^2 = 1 - \sqrt{\frac{\sum(x_{\text{signal}} - x_{\text{theo}})^2}{\sum x_{\text{theo}}^2 \times 100}},$$

where x_{signal} is the experimental value and x_{theo} is the simulated value.

Different hypotheses were considered. (i model) is a single first-order kinetic model corresponding to the disappearance of a single cerium luminescent centre such as

$$-d[Ce^{3+}]/dt = k_1[Ce^{3+}],$$

leading to $[Ce^{3+}] = [Ce^{3+}]_0 \exp(-kt)$ expressed as $(100-A)\exp(-k_1t) + A$ on a 100 basis to take into account the A nonreacting cerium fraction. A is the threshold of the minimum intensity reached over a long time, and k_1 is the constant velocity (s$^{-1}$) of cerium III photooxidation. The results are shaped as green curves in Figure 7b,c. (ii model) The reaction is considered a second-order mechanism, always relying on a single redox centre. V is calculated as follows:

$$-d[Ce^{3+}]/dt = k_2[Ce^{3+}]^2,$$

equal to $(100-A)/(1+2(100-A))k_2t+A$, where k_2 is the two-order velocity constant (s$^{-1}$) (blue curves). Finally, the accumulation of two simultaneous 1$^{\text{st}}$ order kinetic laws (iii model) (pink curves) is such as

$$-d[Ce^{3+}]/dt = k_1[Ce^{3+}] + k_2[Ce^{3+}]^2$$

leading to a disappearance kinetic such as $(100-A-B)\exp(-k_1t) + B\exp(-k_2t) + A$, with k_1 and k_2 used for the slow and fast kinetic constants, respectively. The two first law models are not fully satisfactory, and significant residual signals are obtained at the beginning of the irradiation and at 16 hours and 4 hours for Rb$_2$K and K$_3$, respectively. However, the (iii model) leads to a very low R^2 value, and it is reasonable to conclude that two different Ce$^{3+}$ sites with two different kinetics are involved. The total fitted parameter values are reported in Table SI2.

The most surprising finding is that the main part of the cerium is actively embedded in the redox process since the A nonreacting fraction is approximately 20-30% (28.13 and 18.34 are the values extracted from the fit on Rb$_2$K and K$_3$, respectively). Indeed, we have shown in our previous work in Rb$_2$K compound that the redox is clearly originating from an overlapping of the cerium and indium external atomic orbitals, i.e., from cations in the first neighbouring positions. The redox process involves two Ce$^{3+}$ ions for one In$^+$ cation, as illustrated below:

$$2Ce^{3+} + In^{3+} \xrightarrow{hv} 2Ce^{4+} + In^+ \quad \text{or} \quad Ce^{3+} + \frac{1}{2}In^{3+} + \frac{1}{2}h_0 \xrightarrow{\text{e}} Ce^{4+} - In^+ - Ce^{4+}$$

The probability of being involved in a redox process for Ce$^{3+}$ ions, i.e., to not be “isolated” from other Ce$^{3+}$ ions is $P = 1 - (1-p)^n$, where p is the substitution rate by Ce$^{3+}$ at the indium site, and n is the total amount of potential locations to find cerium cations that can coparticipate in the redox reaction (active redox coordination sphere number). The n value is equal to 56.
because, to be isolated from redox potentiality, each Ce\(^{3+}\) ion must be placed farther from a next-to-next neighbouring position from a second Ce\(^{3+}\) ion (56 next-to-next neighbours). The probability of finding a second active cerium ion around the one considered in the active sphere is 1-0.98\(^{56}\) \approx 68\% for p = 2\%, in relatively good agreement with the A value (nonreactive cerium fraction). This first calculation indicates that the redox mechanism is effective, while two cerium cations belong to the first neighbouring sphere of a single indium site (with 12 neighbours). Furthermore, electron transfer between two cerium III must also be considered helpful for this process. Additionally, it can be imagined that Ce\(^{3+}\)-Ce\(^{3+}\)-In\(^{3+}\) chains within a “cascade” double electron injection from the two cerium ions towards the indium site, occur more quickly than the case that two independent cerium ions have to inject one electron each into a “central” indium site. Then, B eliminates the cerium rate, which is the proportion of ions concerned by the rapid kinetic law (k\(_2\) constant) and can correspond to cerium ions involved in this “cascade” transfer. Considering a doping with exactly 2\% of cerium on indium site with perfectly homogeneous distribution, the iii model, implemented with consideration of a quick (Ce-Ce-In triplets) and slow (Ce-In-Ce triplets) redox centre mechanisms, proportion of nonreacting cerium ions (A fraction)/reacting with fast kinetic (B fraction) /reacting with slow kinetic (100-A-B fraction) will be: 1-(1-0.98\(^{56}\)) = 32\%/1- (0.98\(^{12}\)× (1-0.98\(^{56}\))) = 46.6\%/100-46.6-32 = 21.4\%, respectively. These results are in good agreement with the experimental values.

After far UV irradiation, the luminescence of monovalent indium cations was detected for the three studied compounds. It consists of 5s\(^2\) \leftrightarrow 5s\(^1\)5p\(^1\) transitions. Concerning the In\(^+\) cation, spin-orbit coupling results in the global splitting of the p orbitals into \(^3P_0\), \(^3P_1\), \(^3P_2\) and \(^1P_1\) levels, with \(^1S_0\) being the ground state. The absorption bands are labelled A (\(^1S_0\)-\(^3P_0\)), B (\(^1S_0\)-\(^3P_2\)), and C (\(^1S_0\)-\(^1P_1\)). In an octahedral environment, the emission results from the de-excitation of the \(^3P_1\) level, which is split into \(^3A_{1u}\) (\(A_T\) high energy component) and \(^3A_{1u}\) (\(A_x\) low energy component). The first transition is usually quenched at room temperature. In addition, the Jahn-Teller effect is predominant among the spin-orbit couplings, and the spectral distribution in absorption and emission is strongly affected. Figure 8 shows the excitation and emission spectra of the three fluoride compounds. 22-25
As indicated above, the redox process induced under UV irradiation stabilized indium in the monovalent oxidation state. In the three fluorides, a large orange–red emission due to the A_x (3P_0)\rightarrow 1A_1 (3S_0) transition is observed, and the corresponding excitation bands peak at approximately 240 nm. For the Rb$_2$K and K$_3$ compounds, measurements were performed at 8 K to confirm the origin of these transitions through the expected appearance of the A_1 component. The spectral characteristics are listed in Table 4.

Table 4: Energy transition of In$^+$ ions in the reirradiated Ce$^{3+}$-doped elpasolite (*cryolite).

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\lambda_{\text{ex max}}$ (cm$^{-1}$)</th>
<th>$\lambda_{\text{em max}}$ (cm$^{-1}$)</th>
<th>ΔE (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔT (293K)</td>
<td>ΔX (293K)</td>
<td>ΔT (8K)</td>
</tr>
<tr>
<td>Rb$_2$K</td>
<td>40485 (247 nm)</td>
<td>/</td>
<td>15385 (650 nm)</td>
</tr>
<tr>
<td>K$_2$Na</td>
<td>42017 (238 nm)</td>
<td>/</td>
<td>17587 (560 nm)</td>
</tr>
<tr>
<td>*K$_3$</td>
<td>41322 (242 nm)</td>
<td>380</td>
<td>16526 (605 nm)</td>
</tr>
</tbody>
</table>

Both excitation and emission bands are redshifted in parallel to the decrease in the alkali radii. This reflects the Nephelauxetic effect first described by C.K. Jörgensen in 1962. The interelectronic repulsion of a transition metal is weaker when integrated in a complex than for the free ion because of the overlap of the ligand–metal orbitals and the expansion of the electronic cloud over a wider area. The electronic repulsion is reduced, leading to decreased energy levels. This effect is driven by the covalence and polarizability of the chemical bonding. The excitation energy decreases with increasing bond covalence. Antagonist chemical
bonding needs to be considered to better understand the observed shifts in excitation and emission. In all the studied \(A_2B\text{InF}_6 \) (A=B for \(K_3\text{InF}_6 \) cryolite) compounds, indium cations are surrounded by fluorine anions. The stronger the A-F bond ionicity (A=Rb, K, Na) is (Figure SI2), the higher the covalence of the In-F bond, and the lower the energetic levels at the origin of the indium luminescence. Under excitation, the order of \(E_{ex}(\text{Rb}_2\text{K}) = 40485 \text{ cm}^{-1} < E_{ex}(\text{K}_3) = 41322 \text{ cm}^{-1} < E_{ex}(\text{K}_2\text{Na}) = 42017 \text{ cm}^{-1} \) is observed. Consequently, the corresponding emission bands appear to shift in the same manner. RGB colour emission is illustrated as previously.

The reversibility of the redox process (back redox reaction) was checked for both compounds. Figure 9 illustrates the kinetic curves of \(\text{In}^+ \) luminescence under 250/245 nm excitation for \(\text{Rb}_2\text{K} \) and \(\text{K}_3 \). After 10 minutes of irradiation at room temperature, 50% of the \(\text{Rb}_2\text{K} \) signal (Ax component peaking at 650 nm) is lost, whereas this value is equal to approximately 30% for the \(\text{K}_3 \) compound (Ax component peaking at 610 nm). The decrease in \(\text{In}^+ \) is associated with a recovery of \(\text{Ce}^{3+} \) ions, as mentioned previously.\(^{8,9}\)
The three previously described kinetic models have been applied similarly to the In\(^+\) ion decreasing curves. The different fitted parameters are listed in Table SI3; the residual signals are reported in the inset of Figure 9.

Nearly all the In\(^+\) luminescent ions that were formed during the fourth redox process are involved in the back-redox reaction (98% and 94% for Rb\(_2\)K and K\(_3\), respectively). The fits
show that the best result is obtained for the 2nd order kinetic law (lowest residual signal and highest value of R^2), in agreement with the fact that the indium ions have to release two electrons through two different neighbouring ceriums (one per cerium cation) to be reoxidized.

$$2Ce^{4+} + In^+ \xrightarrow{\text{hv}} 2Ce^{3+} + In^{3+} \quad \text{or} \quad Ce^{4+} + \frac{1}{2}In \xrightarrow{\hbar} Ce^{3+} - In^{3+} - Ce^{3+}$$

The constant k_1 for the K_3 compound is twice the value of Rb_2K. A total of 170 hours of irradiation are necessary to reach 10% of the initial signal for Rb_2K, whereas 12 hours are sufficient to quench 90% of the K_3 emission. This can be interpreted as the smaller the alkali cations are, the more rigid the host lattice is thus, the rigidity of the crystallographic network could accelerate the electron transfer.

Finally, the UV irradiation of Ce^{3+}-doped Rb_2KlnF_6, K_2NaInF_6 elpasolites and K_4InF_6 cryolite makes possible a reversible switch of the luminescence from blue to yellow–orange-red from a reversible redox process between cerium and indium ions due to atomic orbital overlapping. Due to different polarizabilities, the use of various alkali cations makes it possible to tune the redox kinetics and these emissive colours, as illustrated in Figure 10.

From the chromatic x and y parameters between the Ce^{3+} and In^+ spectral distributions, the maximum of the calculated optical contrast ($OC = \sqrt{(x_{Ce^{3+}} - x_{In^+})^2 + (y_{Ce^{3+}} - y_{In^+})^2}$) is obtained with the cryolite compound and is equal to 0.482. OC values of 0.314 and 0.424 are calculated for the Rb_2K and K_2Na compounds, respectively.

![Figure 10: CIE xy trichromatic diagram based on Ce^{3+} and In^+ in Ce^{3+}-doped Rb_2KlnF_6, K_2NaInF_6 elpasolites and K_4InF_6 cryolite](image)

Conclusion
From solid-state synthesis, three Ce\(^{3+}\)-doped fluorides, Ce-doped Rb\(_2\)KInF\(_6\) and K\(_2\)NaInF\(_6\) elpasolite-type and Ce-doped K\(_3\)InF\(_6\) cryolite-type, have been prepared. In addition to the refinement of the crystallographic elpasolite structures as already well described in the literature, coupling X-ray diffraction and Raman spectroscopy, a new space group with full atomic positioning was herein proposed for the cryolite-type compound.

The reversible photochromoluminescent properties of Ce\(^{3+}\)-doped Rb\(_2\)KInF\(_6\), K\(_2\)NaInF\(_6\) elpasolite and K\(_3\)InF\(_6\) cryolite have been demonstrated. Supported by the neighbouring probability of the involved cations, photoluminescence is confirmed to come from the redox process between neighbouring cerium and indium ions due to orbital overlap. Before far UV irradiation (Ce\(^{3+}\)/In\(^{3+}\) state), Ce\(^{3+}\) emission bands are shifted to lower energy with increasing alkali size. After the forth-redox reaction (Ce\(^{4+}\)/In\(^{+}\) state), the In\(^{+}\) luminescence is also tuned by the alkali size due to the Nephelauxetic effect. Hence, cyan to red (Rb\(_2\)K) or blue to yellow (K\(_3\)) photochromism can be achieved. A deep kinetic investigation was performed to better understand the successive decrease in Ce\(^{3+}\) and In\(^{+}\) emission during forth- and back-irradiation, respectively. The forth-redox is governed by the accumulation of two 1\(^{st}\) order laws, while for the back-redox, the In\(^{+}\) disappearance kinetic curve follows a 2\(^{nd}\) order law. The redox processes appear faster for the cryolite compound than for the Rb\(_2\)K compound, suggesting that a more rigid host lattice accelerates electron transfer. Noticeable changes in the optical contrasts were obtained along the fluoride series.

Acknowledgements

This investigation was supported by the CNRS and the Nouvelle Aquitaine region. This study was carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of a non thematic program (PRIDE - ANR-16-CE08-0029) and in the frame of “the Investments for the future” Program IdEx Bordeaux – LAPHIA (ANR-10-IDEX-03-02).

References

5 H. Rosset, Security element having a variable optical effect and security sheet or document or article comprising it, FR 2933428, 2010

8 L. Cornu, M. Gaudon, O. Toulemonde and P. Veber, Optical contrast and cycling of bistable luminescence properties in Rb$_2$KIn$_{1-x}$Ce$_x$F$_6$ compounds, Dalton Trans., 2016, 45, 3380, DOI: 10.1039/C5DT04772B.

18. https://fr.wikiversity.org/wiki/Cin%C3%A9tique_chimique/Lois_de_vitesse_simples

19. https://www.techno-science.net/definition/3325.html

