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Abstract 

Patterns are ubiquitous in living systems and underlie the dynamic organization of cells, tissues 

and embryos. Mathematical frameworks have been devised to account for the self-organization 

of biological patterns, most famously the Turing framework. Patterns can be defined in space, 

for example to form stripes, in time such as during oscillations, or both to form traveling waves. 

The formation of these patterns can have different origins: purely chemical, purely mechanical, 

or a combination of the two. Beyond the variety of molecular implementations of such patterns, 

we emphasize the unitary principles associated with them, across scales, in space and time, 

within a general mechano-chemical framework. We illustrate where such mechanisms of 

pattern formation arise in biological systems from the cellular to tissue scales with an emphasis 

on morphogenesis. We wish to convey a picture of pattern formation that draws attention to 

the principles rather than solely specific molecular mechanisms. 

 

1.  INTRODUCTION 

A pattern is a repeated feature in the organization of the components of a system, whether 

molecules in a cell, cells in a tissue, or organisms in an ecosystem. Pattern formation is a key 

step in the development of all organisms as it leads to the emergence of structures, which later 

support function. For instance, villi in the gut increase the surface area of exchange between 

the bloodstream and the intestinal lumen (Walton et al. 2018), and the non-random distribution 

of feather buds sets up the spatial distribution of feathers in the young bird (Shyer et al. 2017). 

At the cellular scale, patterns can be associated with cell polarization, such as in motile 
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eukaryotic cells (Houk et al. 2012), or cell differentiation, such as actin-rich microvilli 

(Delacour et al. 2016) and microridges (Depasquale 2018), or microtubule rich stereocilia 

(Wagner & Shin 2019) in epithelial cells. 

  

A pattern can be observed as a regular (non-random) variation in molecule concentration or 

alignment in a cell, in cell types or states in a tissue, or in positions, densities, and orientations 

of components either in a tissue or among organisms. Patterns may also occur in time: an 

activity may emerge and subsequently persist, vanish or oscillate. The regularity of the 

variation has a characteristic period in space or time. The period of the pattern can be orders of 

magnitude larger than the components involved: molecules with a size of a few nanometers 

can produce patterns on the order of microns; cells with a size of a few microns can give rise 

to patterns on the order of a few hundreds of microns; molecular binding times of less than a 

second can produce oscillations more than one hundred times longer. How can patterns form 

at much larger scales than their components? 

 

Patterns are said to be self-organized when they emerge from homogeneous, isotropic systems. 

In principle, this means there is no pre-pattern. However, in biological systems some pre-

pattern often coexists with some degree of self-organization (Collinet & Lecuit 2021). At the 

cell scale, pre-patterning can take the form of cellular components that are non-uniformly 

distributed to begin with, as is often the case in newly laid eggs. For example, pattern formation 

in the Drosophila embryo requires an inherent broken symmetry in the egg based on the 

position of maternally-deposited RNA (Roth & Lynch 2009). At the tissue scale, pre-patterned 

localization of molecules along certain directions (e.g. on vertical versus horizontal cell 

junctions) can lead to cell intercalation and tissue flow in many systems (Lecuit et al. 2011). In 

this review, we focus on how patterns can theoretically arise from interactions among 
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components of a system independently of any external cue. The experimental examples we 

present rely mainly on self-organization, but some degree of pre-pattern is often present.  

  

Generally speaking, interactions between components of a system allow patterns to form 

spontaneously through growth and stabilization of a fluctuation, as described in Section 2.1. 

The stabilized fluctuations can be spatial (Sections 2.1, 2.2, 3.1, 3.2), temporal (Sections 2.3, 

3.3), or both (Sections 2.4, 3.4). This principle holds regardless of the nature of the interaction: 

it can be purely chemical as initially investigated by Turing (Section 2), but can also be 

mechanical, or even mechanochemical (Section 3), and can occur at different length scales.  

 

2. SPONTANEOUS FORMATION OF CHEMICAL PATTERNS 

2.1. The theory of Turing patterns 

There exist several theoretical models for how spatial patterns can spontaneously form in an 

initially uniform medium (Gierer & Meinhardt 1972; Rashevsky 1940; Segel & Jackson 1972; 

Turing 1952). Here we will work through the basic logic arising from a selection of these 

models to build a basic understanding of their defining features. Detailed discussion of this 

type of model can be found in several other reviews (Halatek et al. 2018; Hiscock & Megason 

2015; Howard et al. 2011; Koch & Meinhardt 1994; Kondo & Miura 2010; Schweisguth & 

Corson 2019; Wedlich-Söldner & Betz 2018). 

  

We begin by considering models where the medium is composed of diffusive species that 

interact chemically. The interactions are assumed to be such that the system is initially in stable 

equilibrium, but that a variation of the parameters can cause the equilibrium to become unstable 

(Segel & Jackson 1972; Turing 1952). Exposure of an unstable system to perturbations, such 

as thermal fluctuations, will cause it to depart from equilibrium, allowing non-uniformities in 
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the concentrations of the constituent species to develop. Under certain conditions, some 

wavelengths of concentration variations will be selectively amplified from the initial 

fluctuations, thus creating patterns (Figure 1A). These patterns are often referred to as Turing 

patterns as they were most famously described by Turing in 1952. 

  

Turing's pioneering contribution was his mathematical treatment of interacting and diffusing 

species using a system of reaction-diffusion equations: 

𝜕𝐶#/𝜕𝑡 = 𝐷#𝛻)𝐶# + 𝑅#(𝐶-, 𝐶), . . . , 𝐶0)																																						(1) 

where the subscripts, 𝑖 = 1. . . 𝑛, refer to the 𝑛 different species, 𝐶# are their concentrations, 𝐷# 

are their diffusion constants, 𝑅# are the cross-reactions between the species, and 𝛻) ≡

𝜕)/𝜕𝑥) + 𝜕)/𝜕𝑦). These equations describe the changes in concentration of each species in 

the solution as a function of their diffusion constants and their cross-reactions with one another. 

To simplify these equations, Turing considered the simple case of only two species interacting. 

He also worked under the assumption that the concentrations did not vary greatly from their 

original uniform distribution, and so all terms non-linear in these variations could be neglected. 

These considerations allowed him to provide a mathematical description that was solvable 

analytically under certain conditions. 

  

In his article, Turing explored the general solutions of reaction-diffusion equations in different 

physical scenarios. He found that the solutions took the form of sums of terms, each containing 

a sinusoidal spatial component multiplied by a component that grows or shrinks exponentially 

in time. All terms in this sum are negligible compared with those that grow the fastest. His 

main finding was that, under certain conditions, it is possible for the solutions to yield a 

stationary wave pattern. He gave examples of reactions that would yield this behavior, and 
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some general mathematical conditions, but did not provide an intuitive interpretation of these 

conditions. 

  

Segel and Johnson's 1972 article described in depth the conditions for the appearance of spatial 

patterns with finite wavelength in a two-species system. To achieve the stationary wave case 

discovered by Turing, they found that it was necessary for one species to act as an inhibitor 

that decreases the concentration of both species and for the other to act as an activator that 

increases the concentration of both species. They also showed that it was necessary for the 

inhibitor to diffuse faster than the activator (Figure 1B left). 

 

In 1972, Gierer and Meinhardt independently proposed the need for an activator and an 

inhibitor with diffusion of the inhibitor greater than that of the activator. They also proposed 

that the depletion of a substance that is consumed during activation can play the role of a long-

range inhibition (Figure 1B right). While they drew some similar conclusions to earlier works, 

their model also included non-linear interaction terms. The inclusion of nonlinear terms (see 

also (FitzHugh 1961; Gray & Scott 1984; Thomas 1976)) was an important development since 

the types of patterns formed by reaction-diffusion equations depend strongly on their 

nonlinearity (Barrio et al. 1999; Ermentrout 1991; Maini 2004; Oster & Murray 1989). Some 

examples of patterns that can be produced by these models are shown in Figure 1C. 

 

There has been much debate about what constitutes a Turing pattern and whether or not these 

simple models can be relevant in inherently complex biological systems. We chose to refer 

broadly to ‘Turing-like’ patterns, where the diffusion of chemicals can be replaced by spatial 

coupling caused by more complex chemical or cellular phenomena (Hiscock & Megason 

2015). In the sections that follow, we introduce examples where these models accurately 
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predict biological behavior, first in the formation of static patterns as discussed above, then for 

the more complex cases of temporal oscillations and waves. 

  

2.2. Turing patterns in biological systems 

While the models described above are grossly simplified, they can provide insight into real 

biological systems. The simplest pattern is a variation in the concentration of one species along 

a single axis, known as polarity. Polarization is a key stage in the morphogenesis of many 

species, and is often triggered by the prepatterning of small molecules such as GTPases (Park 

& Bi 2007). However, there exist cases where polarity can occur spontaneously in the absence 

of pre-existing spatial cues.  

 

This is true for budding yeast (Saccharomyces cerevisiae) (Figure 1D), which, when mutated 

to remove spatial landmarks, still polarize to form a single bud at a random location (Bender 

& Pringle 1989; Chant & Herskowitz 1991; Howell et al. 2012). The location of the bud is 

determined by the spontaneous formation of a gradient of the GTPase Cdc42 (Halatek et al. 

2018; Park & Bi 2007). Several models have been developed that demonstrate that this 

polarization can arise through a Turing mechanism (Borgqvist et al. 2021; Goryachev & 

Pokhilko 2008; Howell et al. 2012). The role of the activator is played by the active, membrane-

bound form of Cdc42, which can autocatalytically recruit more active Cdc42. The inhibition is 

caused by the substrate depletion of the inactive, cytosolic form of Cdc42, as it is effectively 

consumed to form active Cdc42 (Figure 1D). The validity of these models has been supported 

by different experimental perturbations, where components of the system are removed or 

constitutively activated (Howell et al. 2012; Irazoqui et al. 2003; Wedlich-Soldner et al. 2003). 

Spontaneous polarization on the cellular scale also exists in other systems, such as during cell 

motility in  Dictyostelium discoideum (Iglesias & Devreotes 2008). 
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Turing patterns in biological systems are not limited to simple polarity and single cells. At the 

subcellular level, molecules can form patterns of spots at the scale of hundreds of nanometers 

(Kryuchkov et al. 2020). At the tissue level, interactions between cells can also lead to Turing 

patterns. One biological example of a tissue level pattern is the formation of rugae that form 

the mouse palate (Economou et al. 2012). Rugae formation aligns with a striped pattern of Shh 

expression, which  occurs as a result of the interaction between FGF signaling that acts as an 

activator and Shh signaling that acts as an inhibitor (Figure 1E). Other examples include: body 

axis determination (Müller et al. 2012; Rogers et al. 2017; Sekine et al. 2018), and branched or 

stripped organ patterns (Menshykau et al. 2019; Scoones & Hiscock 2020). 

 

Another example of a striped pattern is the regular pattern of digits in vertebrates, which can 

be modeled using a three-node network composed of Sox9, Wnt, and Bmp (Newman & Frisch 

1979; Raspopovic et al. 2014). This generates a Turing instability based on three components 

instead of the classical activator-inhibitor pair. Though in this review we focus mainly on 

systems that follow the typical two-component model, there exist many possible network 

topologies with two or more components that can lead to pattern formation (Scholes et al. 

2019). The vast majority of Turing pattern generating networks contain two core motifs: a 

positive feedback on one of the diffusing components, and a negative feedback on another more 

rapidly diffusing component (Scholes et al. 2019). 

 

The ingredients of Turing pattern formation can even hold between individuals. For example, 

it has been shown that ants cluster their dead into piles following a Turing mechanism 

(Theraulaz et al. 2002). Local activation arises because the probability of a worker ant 

depositing a dead individual in an existing pile grows with the size of the pile, and inhibition 
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arises from a depletion of dead in the surroundings (Figure 1F). Large-scale Turing pattern 

formation also exists in the patterns in expanding populations of genetically programmed E. 

Coli cells (Liu et al. 2011), and could also play a role in the formation of the intricate structure 

of insect nests (Heyde et al. 2021; Khuong et al. 2016; Perna & Theraulaz 2017). 

 

There are also cases where it is not clear whether or not a pattern arises from a Turing 

mechanism. For example, early investigations into stripe formation in fish found that 

interactions between different types of pigment cells followed a local activation, long-range 

inhibition mechanism and concluded that the stripes were Turing patterns (Frohnhöfer et al. 

2013; Nakamasu et al. 2009). However, it was later shown that the interactions between the 

pigment cells were regulated by cell projections instead of diffusion (Eom et al. 2015; 

Mahalwar et al. 2014) and that therefore, while the criteria for local activation and long-range 

inhibition still held, it did not fit the traditional reaction-diffusion requirements of a true Turing 

pattern (Watanabe & Kondo 2015a,b). Even more recently, it has been suggested that growth 

of the tissue is important for stripe formation as well (Owen et al. 2021). This pattern could 

thus be said to be formed by a ‘Turing-like’ mechanism, where cell motion takes the role of 

molecular diffusion in the original Turing mathematical model. 

 

Overall, these examples demonstrate the breadth of biological systems that rely on Turing or 

Turing-like mechanisms for pattern formation. It appears that the general requirements of local 

activation and long-range inhibition (or substrate depletion) can lead to the appearance of 

patterns across a wide range of interaction types and scales. 

 

2.3. Temporal oscillations 
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We now focus on how temporal oscillations arise. There is a strong analogy between spatial 

and temporal pattern formation. In the former case, a standing wave can be produced by an 

activator and an inhibitor, with different diffusion coefficients. In the latter case, a temporal 

wave can be produced by an activator and an inhibitor, with a time delay in the inhibition 

(Figure 2A). We mainly describe activator-inhibitor systems, but other networks can give rise 

to oscillations based on more complex feedback loops. The general ingredients for oscillations 

in chemical systems are delayed negative feedback and non-linearity (Beta & Kruse 2017; 

Novák & Tyson 2008). A time delay can come from intermediate chemical reaction steps 

involving more chemical species. The dynamics of two-component systems can be visualized 

using a phase plot, which shows the concentration of one species on each axis; a point on the 

graph represents the two concentrations at a given time point. Given the ingredients mentioned 

above, and careful parameter choices, a limit cycle (or a closed loop) can appear in the phase 

plot, revealing the existence of oscillations (Figure 2A right).  

 

A historical example of an oscillatory system is the predator-prey model described by Lotka 

(Lotka 1920) and Volterra (Volterra 1926). The population of predators grows when a predator 

catches a prey, hence proportionally to the population of the prey times that of the predators (a 

non-linear effect). An increase of prey thus progressively causes a progressive increase of 

predators. Conversely, the predators slowly consume the prey population according to a similar 

non-linear equation, decreasing the prey population after a delay. When the prey population 

becomes too small, the predator population declines, allowing the prey population to expand 

again. As a result, each population oscillates with the same period but with a phase difference 

(Figure 2A). Intuitively, the time delay here results from the time needed for the predator 

population to grow before it starts decreasing the prey population. 
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Many examples of oscillating systems exist in biology, involving glycolysis (Pye & Chance 

1966), cAMP (Gerisch et al. 1975), the cell cycle and cyclins (Evans et al. 1983), and somite 

clock genes (Palmeirim et al. 1997). One function of these oscillations is to implement a 

biological clock. The most famous example is probably the animal circadian clock (Bargiello 

& Young 1984; Bargiello et al. 1984; Konopka & Benzer 1971; Reddy et al. 1984; Zehring et 

al. 1984). Oscillating reaction network can convey information through both amplitude 

(molecule concentration) and frequency encoding (Cai et al. 2008; Li et al. 1998; Purvis & 

Lahav 2013; Yang & Wu 2018). 

 

An important subset of oscillatory systems is oscillatory excitable systems (Ferrell et al. 2011; 

Gelens et al. 2014). In addition to delayed inhibition, oscillatory excitable systems include a 

strong positive feedback loop of the activator onto itself, as in the example of the FitzHugh-

Nagumo model (Ferrell et al. 2011) (Figure 2B). Above a threshold, there is an abrupt increase 

in activator concentration (Figure 2B). After a delay, the inhibitor causes an abrupt decrease of 

the activator concentration back to the initial value, completing one cycle of relaxation 

oscillations. In a phase plot, a slow increase/decrease in concentration approximately follows 

the activator nullcline (the line where the partial time derivative of the activator is zero), while 

a fast increase/decrease happens when the system jumps from one point on the nullcline to the 

next, as in a hysteretic switch (Figure 2B). The added positive feedback allows for a wider 

range of frequencies without changing the amplitude, and also allows oscillations to occur over 

a wider range of parameters (Tsai et al. 2008), thereby enhancing the system robustness (Beta 

& Kruse 2017). In many biological cases, a refractory period follows the de-excitation: no 

stimulus is able to trigger the excitation again for some finite time, which corresponds for 

example to the degradation time of the inhibitor. Most biological oscillatory systems are 

oscillatory excitable systems.  
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An example of an oscillating excitable system is Dictyostelium cell migration, which is 

controlled by two oscillatory systems with different time scales (Figure 2C,D,E) (Huang et al. 

2013). The fast-oscillating system (CON) is based on actin and its regulatory proteins 

SCAR/WAVE, Arp2/3 and a negative feedback mediated by Coronin. It results in small 

undulations of the cell edge, but is ready to be excited, like an idling motor. The slow-

oscillating system (STEN) is based on a positive feedback involving Ras, PI(3)K and Rac, and 

also displays waves. The STEN and CON oscillators are coupled via Rac. Thereby, the slow-

oscillating system can stimulate the fast-oscillating one (Figure 2E, left) to produce larger 

stable cell protrusions (Figure 2E, right) which promotes cell migration (Huang et al. 2013). 

The slow oscillating system is excitable, as shown by the presence of a refractory phase and a 

maximal response to any stimuli above a threshold (Huang et al. 2013). 

  

Oscillations can be synchronized in space, either through a pacemaker or through local 

interactions, resulting in collective oscillations. Circadian clocks are entrained by 

environmental cues, such as light (Ceriani et al. 1999; Emery et al. 1998). In mammals, the 

hypothalamus entrains the peripheral clocks via hormones (reviewed in (Buijs & Kalsbeek 

2001)). Collective oscillations also exist within groups of organisms. For example, fireflies can 

flash collectively (Morse 1916). At high enough density, the firefly flashes (around 2 per 

second) are synchronized with millisecond precision by visual feedback between individuals 

(Buck & Buck 1968; Sarfati et al. 2021). Interestingly, some wave patterns have also been 

observed in firefly swarms (Sarfati et al. 2021). 

 

2.4. Spatiotemporal patterns 
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Chemical networks can also generate traveling waves when spatial coupling acts on top of 

oscillatory, bistable, or excitable dynamics (Gelens et al. 2014). Waves based on spatial 

coupling, hence physical in nature, are different from kinematic or pseudo- waves, which result 

from a pre-established phase shift between oscillators. Physical waves can be identified 

because the wave can be stopped using a physical isolation or barrier. In contrast, kinematic 

waves are not stopped by barriers. 

  

The spatial coupling needed to form physical waves can be provided by diffusion in an 

excitable or a bistable system. A small increase in the activator concentration above a threshold 

is amplified by a positive feedback loop, bringing the excitable or bistable system to a state 

with high activator concentration. Now, if the activator is allowed to diffuse, it will cause the 

neighboring concentration to exceed the threshold, thus getting pushed to high concentration 

(Figure 3A). Hence, a wave of activation will propagate spatially in the medium, as a trigger 

wave. This requires the diffusion to be slow compared to the characteristic time of the positive 

feedback loop (Gelens et al. 2014). This prevents diffusion from decreasing the concentration 

too much before the feedback has time to act (Figure 3A). A single mathematical model of 

excitable systems, such as the FitzHugh-Nagumo model (FitzHugh 1961), can exhibit spatial, 

temporal, and spatiotemporal patterns (waves) depending on the parameters (Gelens et al. 

2014). 

 

Traveling waves can occur in cell-scale systems, where diffusion provides spatial coupling 

(reviewed in (Beta & Kruse 2017; Yang & Wu 2018)). In the bacteria Escherichia coli, the 

division regulator proteins MinC, MinD and MinE oscillate at the poles of the rod-like bacteria 

(de Boer et al. 1989; Hu & Lutkenhaus 1999; Raskin & Boer 1999; Wettmann & Kruse 2018) 

and define a zone of lower activity in the center where the fission apparatus is assembled. Min 
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proteins can also form waves in vitro, which can be modeled by cooperative binding of proteins 

at the membrane and diffusion, with non-linearity (Loose et al. 2008).  In vivo, usually only 

oscillations are present, but traveling waves can appear in the case of a growing bacterium 

(Bonny et al. 2013).  

 

Another important example of cell-scale waves is actin waves (Allard & Mogilner 2013; Alt 

& Tranquillo 1995; Inagaki & Katsuno 2017; Vicker 2002), which propagate due to diffusion 

or polymerization (Bretschneider et al. 2009). In big oocytes of several animal species, for 

example frog (Hara et al. 1980) and starfish (Hamaguchi & Hiramoto 1978), waves of actin 

propagate at the surface of the egg (surface contraction waves or SCW) in association with the 

cell cycle. The contraction is based on RhoA-GTP (Bement et al. 2015) that leads to 

actomyosin contractility (Bischof et al. 2017). SCW propagate in interphase, when Cyclin-

dependent kinase 1 (Cdk1) is inhibited (Bement et al. 2015), starting at the point of lowest 

Cdk1 concentration (Bischof et al. 2017; Wigbers et al. 2021). Cdk1 inhibits the RhoGEF Ect2, 

such that a gradient of Cdk1 leads to a trigger wave of Ect2, itself leading to a traveling wave 

of RhoA-GTP (Wigbers et al. 2021) (Figure 3B). Negative feedback shaping the RhoA 

waveform comes from components downstream of RhoA (Bischof et al. 2017), for example 

actin itself (Bement et al. 2015). Interestingly, when Ect2 is overexpressed, spiral waves of 

RhoA-GTP appear (Bement et al. 2015), revealing the excitable nature of the system (Figure 

3B).  

 

A possible function for surface contraction waves could be to synchronize mitosis in big cells 

like Xenopus (1.2mm) (Chang & Ferrell Jr 2013), or to sense the shape of the cell (Wigbers et 

al. 2021). Indeed, in systems with multiple nuclei dividing and without membrane separation, 

mitosis is coordinated by waves of Cdk1, for example in Xenopus egg extracts (Chang & Ferrell 
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Jr 2013) and the Drosophila syncytial embryo (Deneke et al. 2016; Vergassola et al. 2018). In 

Drosophila, mitotic waves are kinematic waves induced by a Cdk1 trigger wave (Deneke et al. 

2016) (Figure 3C), though an alternative model of Cdk1 wave was recently proposed 

(Vergassola et al. 2018).  

 

An important function of waves is to propagate information faster and over longer distances 

than can be accomplished by diffusion alone (Gelens et al. 2014). Most notably, action 

potential, the propagation of a change in voltage across a membrane due to opening of ion 

channels (Hodgkin & Huxley 1952), propagates as a trigger wave in neurons at a speed of 100 

m/s over meters (Heimburg & Jackson 2007). Similarly, waves of free cytosolic calcium ions 

based on phospho-lipid signaling, reach speeds up to 30 m/s (reviewed in (Jaffe 2008)). At the 

tissue scale, calcium waves can cover 20 cells/s (Koenigsberger et al. 2010). Calcium waves 

are important for muscle contraction, and are also present in developing tissues such as the fly 

ommatidia (Ready & Chang 2021) and wing disk (Balaji et al. 2017). 

 

Progress in time-resolved microscopy of developing organisms is revealing that spatial tissue 

patterns often emerge through wave-like patterns. For example, the patterning underlying adult 

vertebrate formation (Pourquié 2003), and insect segmentation (El-Sherif et al. 2012, 2014) 

rely on waves of gene expression. Another example is the Drosophila crystal-like eye structure, 

which is made of elementary units, the ommatidia, with a geometrical arrangement. Ommatidia 

are formed progressively, following a wave front of hedgehog and decapentaplegic gene 

expression that sweeps across the eye disk surface (Heberlein et al. 1993; Ready et al. 1976). 

This phenomenon has been modeled as a ‘switch-and-template’ cellular model, with cell-

autonomous bistability and separation of time- and length- scales as key ingredients (Gavish et 

al. 2016; Lubensky et al. 2011). 



16 

 

At an even larger scale, groups of organisms can also form oscillating wave patterns, such as 

groups of the amoeba Dictyostelium that display oscillations, waves, and spirals of cAMP 

(Pálsson & Cox 1996). 

 

3. SPONTANEOUS FORMATION OF MECHANOCHEMICAL PATTERNS 

The processes that we have discussed so far involve only interactions between chemical 

species. However, mechanics is known to play an important role in biology, from active 

transport of matter by molecular motors, to large-scale flows within the cytoplasm, to the 

folding of tissues during morphogenesis (Hannezo & Heisenberg 2019). In this section, we 

focus on how mechanical forces can play a role in pattern formation within biological systems 

and how this compares to and interacts with self-organization involving only chemical 

interactions. 

 

3.1. Theory of mechanically- and mechanochemically- formed spatial patterns 

To consider the impact of mechanics on the flow of a medium, one must consider what different 

forces are acting in the system. Many biological systems contain an actomyosin cortex 

composed of a cytoskeletal meshwork of actin filaments that are crosslinked by myosin motors. 

By consuming ATP, the myosin motors can move along the actin filaments, thereby generating 

contractile stresses. Because of this underlying active, contractile cortex, these systems can be 

considered as viscous active fluids (Bois et al. 2011). In such systems, the relevant forces arise 

due to the passive viscous stress (𝜎:), the active stress driven by myosin (𝜎;), and any external 

forces in play such as friction. The force balance given by these elements is (Bois et al. 2011): 

𝛻 ⋅ 𝜎 = 𝛾𝑣																																																																											(2) 
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where 𝜎 ≡ 𝜎:+𝜎; is the total stress, 𝛾 is the friction coefficient, 𝑣 is velocity of the medium. 

This equation yields the intuitive result that flows are directed towards regions of high stress 

such as can be generated by high myosin concentration. These flows will carry with them (or 

advect) any objects that are contained in the medium. 

  

We can now compare the impact of advection with that of diffusion, which drives the formation 

of patterns in purely chemical systems. These two processes have opposite effects, with 

advection concentrating material to regions of high stress and diffusion dispersing any non-

uniformity in concentration. Diffusion can produce large effects locally, but cannot propagate 

information quickly or over large length scales (Gelens et al. 2014). On the contrary, forces 

generated by stress can travel a million times faster than diffusion, and over long distances 

(Howard et al. 2011). 

  

Due to their opposing impacts, interesting effects can occur when advection and diffusion are 

considered together. Adding advection to the reaction-diffusion model gives an updated 

version of Equation 1 (Bois et al. 2011; Gross et al. 2017): 

 𝜕𝐶#/𝜕𝑡 = −𝛻 ⋅ (𝑣𝐶#) + 𝐷#𝛻)𝐶# + 𝑅#(𝐶-, . . . 𝐶0)																																(3) 

where 𝑣 is the advection velocity, which is calculated using Equation 2. Advection of 

components of active stress regulation, such as myosin itself, works as a positive feedback that 

amplifies local density fluctuations and causes instability. Viscosity, friction and diffusion 

work as long-range inhibitors of such instabilities. Temporarily removing the reaction terms 

gives a set of equations where self-reinforcing concentration of myosin is balanced by the 

stabilizing effects of viscosity, friction, and diffusion (Figure 4A) (Bois et al. 2011).  
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Advection is not the only mechanical effect that can play a role in pattern formation. While 

biological systems can generally be treated as viscous systems, in certain circumstances it can 

be important to consider the contributions of elasticity (Özkaya et al. 2017). Elasticity can be 

considered theoretically by including contributions of the elastic modulus to the stress tensor 

(𝜎) given in Equation 2 (Murray & Oster 1984) and having 𝑣 represent the elastic displacement 

field instead of the advection velocity (Gross et al. 2017). Elasticity can work as a long-range 

inhibitor of pattern formation since a stiffer medium will reduce the displacement field (Figure 

4B). 

 

Biological systems seldom use mechanics alone, instead relying on the interplay between 

chemical and mechanical effects (Mammoto & Ingber 2010). In addition to causing flow, 

which impacts the localization of contractile species, stresses in a system can lead to advection 

of other, passive molecules. These passive molecules, while not creating stress in and of 

themselves, can alter the mechanics of the system, thereby creating complex feedback loops 

(Gross et al. 2017). 

 

3.2. Spatial mechanochemical patterns in biological systems 

The importance of mechanics in biological pattern formation has been shown experimentally 

in many systems. For example, the ability for contractility to act as a self-reinforcing activator 

with friction acting as its inhibitor has been demonstrated in the formation of actin rings in the 

Drosophila trachea (Hannezo et al. 2015). The authors model the trachea using a system of 

equations equivalent to those given by Equations 2 and 3 with the addition of a term related to 

actin turnover. Solving these equations gives a wavelength for rings of actin that encircle the 

trachea. They show that the predicted wavelength approximates that seen experimentally, and 
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that by tuning the myosin contractility and the friction coefficient of the system they can change 

the spacing of the rings as predicted (Figure 4C). 

  

The effects of elasticity on pattern formation of fibroblasts and mesenchymal cells has been 

studied for a long time (Figure 4D) (Harris et al. 1981, 1984; Murray et al. 1983). In these 

systems, contractility acts to provide local activation while tissue stiffness due to elasticity acts 

as an inhibitor (Oster & Murray 1989). More recently, experiments have been performed that 

show a similar interplay between local contractile forces and long-range elastic forces during 

the formation of follicle patterns in avian skin (Shyer et al. 2017). The pattern of follicle 

primordia changes in response to changes in the stiffness and contractility of avian skin 

explants (Figure 4E). 

  

The interplay between mechanics and chemistry has also been shown to be sufficient for pattern 

formation in simulations (Brinkmann et al. 2018; Mercker et al. 2016; Veerman et al. 2021), 

and in several experimental processes at the cell or tissue scales. In keratocytes and neutrophil 

cells, membrane tension generated by actin polymerization at the leading edge provides a long-

range inhibition to Rac activity. This enables polarization of the front of migrating cells and 

prevents secondary fronts from appearing (Houk et al. 2012) (Figure 4F). A similar mechanism 

operates at the tissue scale; the formation of the avian primitive streak occurs because 

mechanical tension inhibits constriction over a long range, ensuring the development of a single 

constriction site (Figure 4G) (Caldarelli et al. 2021). Other examples include the establishment 

of polarity in the Caenorhabditis elegans embryo (Gross et al. 2019; Mayer et al. 2010), Hydra 

regeneration (Mercker et al. 2015), and myosin patterns in stress fibers and sarcomeres 

(Dasbiswas et al. 2018). 
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3.3. Temporal patterns 

We saw in Section 2 that non-linearity and delayed negative feedback loops in chemical 

reactions can generate oscillations. Mechanical forces or deformation, sensed by molecules, 

can also cause delayed feedback in a chemical system, causing it to oscillate. The delay can be 

a direct consequence of the addition of new intermediate mechanochemical reactions. In 

addition, mechanical properties such as advection and elasticity, can feed directly back into a 

system, as discussed above. For example, collections of molecular motors can generate 

oscillations of cytoskeletal polymers like microtubules (Beta & Kruse 2017). One striking 

example of oscillations in the cytoskeleton is the case of actomyosin pulses. 

Oscillations in actin and non-muscle Myosin II (MyoII) concentration occur at the cortex of 

cells, accompanied by cortical contractions (most recently reviewed in (Miao & Blankenship 

2020)). Such oscillations were first observed in the C.elegans cortex (Munro et al. 2004). It is 

now clear that this is a conserved feature, present in the gastrulating Drosophila embryo 

(Martin et al. 2009; Rauzi et al. 2010; Solon et al. 2009), the cortex of the mouse blastocyst 

(Maître et al. 2015), and the Xenopus mesoderm (Kim & Davidson 2011). Cortical MyoII 

pulses are involved in morphogenetic processes, such as apical cell constriction (Martin et al. 

2009; Solon et al. 2009), cell intercalation (Collinet et al. 2015; Kim & Davidson 2011; Rauzi 

et al. 2010; Yu & Fernandez-Gonzalez 2016), tissue elongation (Alégot et al. 2018; He et al. 

2010), wound healing (Antunes et al. 2013; Razzell et al. 2014), blastocyst compaction (Maître 

et al. 2015), cell delamination (An et al. 2017; Michel & Dahmann 2020; Simões et al. 2017), 

and partner-cell matching (Zhang et al. 2020).  

 

In some cases, oscillations in MyoII activation happen downstream of Rho signaling, with Rho-

GTP oscillating independently (Michaux et al. 2018; Nishikawa et al. 2017). The pulse of Rho-

GTP is initiated by positive feedback of RhoA-GTP onto itself (Michaux et al. 2018), and 
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terminated by delayed negative feedback arising from F-actin accumulation and subsequent 

concentration of the RhoA GTPase-activating protein RGA-3/4, an inhibitor of RhoA that is 

recruited by F-actin (Michaux et al. 2018). In other cases, mechanical feedback from the 

contractility itself is necessary for increased MyoII at cell junctions (Fernandez-Gonzalez et al. 

2009), and for medial apical pulses (Munjal et al. 2015) (Figure 5A). Such feedback could 

come from a mechanosensitive motor binding/unbinding rate (Greenberg et al. 2016; 

Hayakawa et al. 2011; Kovács et al. 2007; Ren et al. 2009), from other mechanosensitive 

pathways (e.g. calcium signaling (Kapustina et al. 2008)), or from advection of positive 

regulators due to cortical flows (Munjal et al. 2015). 

 

Theoretical work has shown that it is possible to obtain oscillations and limit cycles (Section 

2.3) based on mechanical feedback (Dierkes et al. 2014; Koride et al. 2014; Kumar et al. 2014; 

Machado et al. 2014). For example, an active elastomer model with strain-induced unbinding 

of MyoII can account for experimentally observed MyoII pulses in Drosophila (Banerjee et al. 

2017). These models can also be extended to include the associated Rho pulses (Staddon et al. 

2021). Theoretical work can help identify the importance of mechanics in such systems. 

 

 

3.4. Spatiotemporal patterns 

As in chemical systems, adding spatial coupling to the mechanochemical oscillations described 

above can lead to wave propagation. More often than not, biological waves involve both 

chemical and mechanical elements.  

  

One method for wave formation is for the positive feedback loop to be mechanical. 

Mechanochemical models show that actomyosin pulses can propagate in space as waves 
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(Banerjee et al. 2017; Dierkes et al. 2014; Kumar et al. 2014) due to diffusion. In this case, 

there is chemical spatial coupling based on diffusion, and a mechanical positive feedback loop 

based on advection. Such actomyosin waves can be seen within Drosophila amnioserosa cells 

(Blanchard et al. 2010).  

 

Alternatively, the spatial coupling can be mechanical. This is the case in actin waves that form 

in migrating cells. In particular, the tip of an actin-rich lamellipodium undergoes cycles of 

protrusion and retraction that propagate as a wave (Abercrombie et al. 1970; Allard & Mogilner 

2013; Giannone et al. 2004; Inagaki & Katsuno 2017; Ryan et al. 2012b; Weiner et al. 2007). 

Protrusion-retraction can be modeled as an excitable system (Ryan et al. 2012a) though it is 

not clear what mechanism provides spatial coupling. One possibility is that the wave is set by 

coupling from diffusion and a chemical positive feedback, such as a RhoA-RhoGDI pacemaker 

(Machacek et al. 2009; Tkachenko et al. 2011). However, spatial coupling could alternatively 

arise from mechanical forces or deformation since the protrusion-retraction cycle has been 

linked to MyoII contractility (Driscoll et al. 2012; Giannone et al. 2007). Curvature-sensing 

proteins could also play a role in actin protrusion waves (Peleg et al. 2011; Shlomovitz & Gov 

2007). The presence of convex membrane proteins that activate actin polymerization, together 

with MyoII contractility, could theoretically give rise to membrane ruffles or waves. MyoII 

contractility bends the membrane inward where actin is dense, creating two ‘shoulders’ of 

opposite curvature on either side of the patch. The membrane proteins diffuse to these shoulders 

due to their favored curvature, increasing actin and myosin concentration and leading to a wave 

(Shlomovitz & Gov 2007). Such wave-like deformations may have a role in cell motility: 

deformations produced by actin waves in migrating cells could be more efficient at probing the 

environment (Wigbers et al. 2021), or could help avoid obstacles (Weiner et al. 2007) and crawl 

when adhesion is low (Allard & Mogilner 2013; Driscoll et al. 2012). 
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At the tissue scale, spatial coupling cannot be provided by diffusion or polymerization, since 

the cell membrane acts as a barrier. We therefore need to consider what physical mechanisms 

might play a role in such systems. In principle, active mechanical stress in a tissue propagates, 

causing deformation at a distance. This deformation can then be sensed by a dedicated cellular 

chemical pathway, triggering a positive feedback. We can see such phenomena in expansion-

contraction waves in expanding or colliding epithelial monolayers (Rodríguez-Franco et al. 

2017; Serra-Picamal et al. 2012; Tlili et al. 2018). Mechanical expansion-contraction waves 

are associated with chemical ERK waves that propagate and orient migration (Aoki et al. 2017). 

In a given cell, ERK induces contractility, subsequently stretching its neighbors in the plane of 

the tissue. Stretch is then transduced into ERK activity via epidermal growth factor receptor 

activation, resulting in a wave (Boocock et al. 2020; Hino et al. 2020) (Figure 5B). ERK waves 

associated with deformation have also been observed in vivo during zebrafish scale 

regeneration (De Simone et al. 2021). 

 

More complex tissue geometries can lead to different forms of mechanical coupling in tissues. 

In ascidian neural tube closure, a wave of Myosin activation is observed along the junctions of 

the zippering neural tube, just ahead of the zipper (Hashimoto et al. 2015). The mechanism 

responsible for spatial coupling is unknown but could arise from the geometric effect of 

bringing neighboring cells into contact across the midline due to contraction, leading to the 

propagation of activation. Tissues can also fold and deform in three dimensions. During 

Drosophila gastrulation, a transcription-independent wave of MyoII activation propagates 

from cell to cell in the dorsal region of the embryo (Bailles et al. 2019) (Figure 5C). The wave 

depends on MyoII contractility and integrin-based adhesion to the surrounding vitelline 

membrane. The spatial coupling is provided by MyoII-induced tissue invagination that 
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compresses distant cells against the vitelline membrane, creating integrin attachment (Figure 

5C). 

  

What could be the role of tissue-scale waves? Motion occurring in a wave-like pattern could 

be required for proper morphogenesis, as a progressive deformation is more efficient than a 

synchronized one and limits mechanical stress accumulation. During Drosophila placode 

invagination, the cells invaginate as a wave (Nishimura et al. 2007), which has been 

hypothesized to facilitate the bending of the epithelium compared to a gradient-based 

mechanism (Ogura et al. 2018). A wave could also be useful for forming precise and defect-

free cellular patterns. In Drosophila ommatidia, the morphogenetic wave may use one row of 

ommatidia as a mechanical template for the next (Gallagher et al. 2021). In flighted birds, a 

wave of cellular density controls the highly-ordered formation of feathers (Ho et al. 2019). 

 

4. DISCUSSION 

Patterns are ubiquitous in the living world. They occur across scales, from within cells to 

between organisms. They manifest in space and time and rely on a wide range of chemical and 

mechanical processes. Therefore, one may doubt that general principles of pattern formation 

could exist. Indeed, the past few decades have revealed a vast diversity of molecules and 

mechanisms that can produce such patterns. When generality has been suggested, it is mainly 

the conservation of genes and proteins that has been emphasized rather than the logic of how 

patterns emerge. Here, we focus on such a generalized logic and argue that there are principles 

of pattern formation that transcend the specifics of how patterns are created. We focus on a few 

such principles associated with spatial and temporal patterns as identified with mathematical 

models and observed in real biological systems. 
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Chemical and mechanochemical spatial patterns have common features (Figures 1 and 4). At 

their core, they require a local process that amplifies a fluctuation, coupled to a non-local 

process that inhibits at a distance. In chemical systems (Figure 1), this may arise from a positive 

feedback on one of the components, at least one negative feedback, and diffusion, which is 

linear and non-local. The vast majority of two- or three- node networks that produce Turing-

like patterns possess such properties (Scholes et al. 2019). In mechanical systems (Figure 4), 

positive feedback is usually associated with contractility, and mechanical long-range inhibition 

appears as a result of the elasticity or viscosity of the medium. Temporal patterns such as 

oscillations can arise from delayed negative feedback in systems which contain positive 

feedback (Figure 2). When this is combined with spatial coupling mechanisms arising from 

diffusion of molecules (Figure 3), or mechanical forces (Figure 5), waves can emerge that 

propagate across a cell or tissue. 

  

As we have shown in this review, self-organized spatial and temporal patterns rely on effective 

parameters (eg. diffusivity, friction, reaction kinetics) and processes (eg. positive feedback 

loop, or long-range inhibition) that dictate the system’s behavior. Several or many molecules 

may be associated with each process in vivo, but in the end understanding the logic of the 

systems relies on the knowledge of few such processes and effective parameters. 

 

This simplicity can come at a cost; while excitable systems are inherently robust due to their 

positive feedback, spatial Turing patterns are not very robust. Many networks that are able to 

form Turing patterns, can only do so for a small range of parameters (Maini et al. 2012; Scholes 

et al. 2019). However, in nature, spatial patterns must be reproducible. How can such systems 

deal with this sensitivity in the face of noisy and variable conditions? In vivo, self-organized 

patterns are often canalized by external biases that define the initial and boundary conditions 
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through three modules of information: biochemistry, mechanics, and geometry (Collinet & 

Lecuit 2021). Indeed, patterns build upon other patterns during the lifetimes of cells and 

embryos. For example, the Drosophila notum sensory organ precursors are formed from a 

combination of a pre-established gradient and lateral inhibition (Cohen et al. 2010; Corson et 

al. 2017). In addition, it has been shown that the addition of boundary conditions and growth 

to tissues can have profound effects on the patterns and it has been suggested that these effects 

can serve to make pattern formation more robust (Barrio et al. 1999; Maini et al. 2012). It 

would be interesting to experimentally explore this possibility in the future. Using in vitro 

systems, such as gastruloids and organoids, will help disentangle the contribution of 

prepatterning and self-organization in development (Etoc et al. 2016; Gjorevski et al. 2022; 

Schauer et al. 2020; Simunovic et al. 2019; Warmflash et al. 2014).  

 

Whole embryos and synthetic systems both provide a rich context to study the role of chemical, 

mechanical, and geometric constraints on the self-organization of patterns. The combination of 

experimental systems and mathematical models sets the stage for the quest of principles 

underlying the dynamic organization of cells and tissues into a functional whole.   
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FIGURE CAPTIONS 

Figure 1. Chemical Turing patterns: 

(A) Generation of a pattern with finite wavelength from random fluctuations. (B) (Top) 

Schemas of the most simple reaction motifs needed to form a Turing pattern using an activator-

inhibitor or substrate depletion system. (Bottom) Schematic view of the concentration profiles 

that result from the interactions shown above. Figure adapted from (Halatek et al. 2018). (C) 

Simulated Turing patterns that result from linear reaction-diffusion equations, where red is the 

activator concentration. Only the strength with which the inhibitor acts the activator is varied. 

Figure generated using the Turing simulator described in (Kondo & Miura 2010). (D) (left) 

Evolution of GFP-Cdc42 distribution in a budding yeast. Figure adapted with (pending) 

permission from (Slaughter et al. 2009). (right) Simplified model of the substrate depletion 

that leads to the polarization. (E) (left) Picture of a mouse palate and in situ hybridization for 

Shh in wildtype mice and mice with FGF (SU5402) or Hedgehog (cyclopamine) inhibitors. 

Figure adapted with (pending) permission from (Economou et al. 2012). (right) Simplified 

model showing how the interactions between FGF and Shh lead to patterned rugae formation. 

(F) An initially uniform distribution of dead ants is rearranged by worker ants to form piles 

following a simple Turing mechanism. Figure adapted from (Theraulaz et al. 2002); copyright 

2002 National Academy of Sciences. 
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Figure 2. Temporal chemical patterns. 

(A) Oscillatory system. (left) A, activator, I, inhibitor. kA, kI are the reaction rates. (middle) 

Concentration evolution of the activator [A] and of the inhibitor [I], with the same period but 

a phase shift. (right) Phase plot showing a limit cycle. (B) Excitable system. (left) A positive 

feedback is now present. (middle) Concentration evolution of the activator [A]. (right) Phase 

plot with a limit cycle. The S-shape continuous line is the A-nullcline, i.e. the line with 

∂[A]/∂t=0. The straight line is the I-nullcline. In red is the basin of attraction of the upper branch 

of the cycle, in blue the one from the lower branch. The dashed line shows the threshold values 

between both (eg. above which A dominates). Figure adapted from (Gelens et al. 2014). (C-E) 

Migration in Dictyostelium. (C) Experimental TIRF data at cell edge and quantification 

showing fast oscillations of F-actin regulators. Blue, Coronin-GFP. Red, LimE-RFP (F-actin 

sensor). (D) Data-driven network and proposed computer model with slow (STEN) and fast 

(CON) oscillators. Arp2/3 – F-actin – Coronin make the activator/inhibitor module, abstracted 

as Xf and Yf in the simulation. Dashed arrows: indirect or hypothetical interaction. (E) Time 

evolution of oscillator networks (left) and the cellular processes they control (high frequency 

undulations and low frequency protrusions). Figure C,D,E adapted with (pending) permission 

from (Huang et al. 2013). 

 

Figure 3. Chemical trigger waves. 

(A) Propagation of a wave in a bistable system. Spatial diagram (left) and phase plot (right). 

Increased concentration of the activator by diffusion (light red) from the high activator zone 

and reaction (dark red) allows the threshold to be crossed and a wave to propagate. Figure 

adapted from (Gelens et al. 2014). (B) Surface contraction waves in a starfish oocyte 

overexpressing Ect2.The image shows the difference in signal at two different time points from 

a Rho-GTP sensor (GFP-rGBD). The white rectangle shows where the kymograph is drawn 
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(middle). The Cdk1 gradient is produced by the asymmetrically positioned nucleus. Its decay 

leads to the activation of the activator/inhibitor module constituted by Rho-GTP and F-actin. 

Figure adapted with (pending) permission from (Bement et al. 2015). (C) Mitotic waves in the 

Drosophila embryo depend on Cdk1 waves. (left) Red dots are histone-RFP. Figure adapted 

with (pending) permission from (Deneke et al. 2016). 

 

Figure 4. Mechanical Turing-like patterns 

(A) Motor-dependent contractility induces cytoskeletal flow, which advects more motors and 

causes the accumulation of more contractile elements (positive feedback). It therefore acts like 

an activator. The induced flow causes friction which counteracts flow and thereby contraction. 

Friction therefore acts as an inhibitor. (B) Cell contractility leads to buildup in stress in the 

extracellular matrix and the accumulation of more contractile elements. It therefore acts like an 

activator. The buildup of elastic stress prevents further deformation of the matrix which in turn 

counteracts contraction. It therefore acts as an inhibitor. (C) Images of Drosophila tracheal 

tubules where the friction is decreased or removed, thereby changing the pattern of actin rings. 

Figure adapted from (Hannezo et al. 2015). (D) Development of clusters of fibroblasts from an 

initially random distribution. Figure adapted from (Harris et al. 1984). (E) Images of avian skin 

where the pattern of feather follicle primordia changes with changing substrate stiffness. Figure 

adapted with (pending) permission from (Shyer et al. 2017). (F) (top) Polarized formation of 

a pseudopod during neutrophil migration. Figure adapted with (pending) permission from 

(Houk et al. 2012). (bottom) A schema showing the interactions between molecular 

components and tensile forces that underlies cell polarization. (G) (top) An image of localized 

Gdf1 expression in a quail embryo and a snapshot of cell trajectories. Figure adapted with 

(pending) permission from (Caldarelli et al. 2021). (bottom) A schema showing the 

interactions that drive the pattern formation. 
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Figure 5. Mechanochemical spatial-temporal patterns. 

(A) Actomyosin pulse. (top) Experimental data and quantification of a Rho-GTP (aniRBD-

GFP) and MyoII (MRLC-mCherry) pulse. (bottom) Amplification mechanism. Green fibers 

are actin fibers, orange are MyoII motors, blue arrows are advection. The negative feedback 

terminating the pulse is hypothetical (dashed arrow). Figure adapted from (Munjal et al. 2015). 

(B) ERK waves in cell culture. (left) Experimental data and quantification (kymograph) of 

ERK activity (FRET/CFP ratio from EKAREV-NLS) in the migrating epithelium. (right) 

Model proposed, with contraction as a short-range inhibitor/long range activator. Figure 

adapted with (pending) permission from (Hino et al. 2020). (C,D) Drosophila presumptive 

midgut invagination wave. (C) Experimental data of MyoII (MRLC) in the epithelium. A line 

of cells is highlighted in yellow, another in white. (D) (left) Model proposed, with invagination 

as a short-range inhibitor/long range activator of adhesion and contractility. (right) Transversal 

view of the epithelium showing the mechanical cycle. Figure adapted from (Bailles et al. 2019). 
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