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1.  Introduction
Climate change caused by increased atmospheric greenhouse gas (GHG) mixing ratios has been accelerating 
since the dawn of industrialization (Pachauri et al., 2014). Among the various sources of GHGs, urban areas 
contribute more than half to the emissions of fossil-fuel carbon dioxide (CO2) (Roest et al., 2020) on the global 
scale and are expected to increase as the global population and urbanization grow (Seto et al., 2014). A reliable 
and robust approach to reporting accurate urban emissions is needed to design and implement efficient mitigation 
strategies (Hsu et al., 2019). Conventionally, bottom-up approaches often referred to as emissions inventories, are 
used to estimate GHG emissions based on activity data and emission factors at national and sub-national scales 
(e.g., IPCC, 2006). Recent studies have shown that despite well-established protocols and standards, urban-scale 

Abstract  Stringent mobility restrictions across the world during the COVID 19 pandemic have impacted 
local economies and, consequently, city carbon budgets, offering a unique opportunity to evaluate the capability 
of scientific approaches to quantify emissions changes. Our study aims to quantify and map CO2 emissions 
from fossil fuel and biogenic CO2 fluxes over the Paris metropolitan area during the first lockdown period 
(March-May 2020) in France, in comparison with the same period in 2019. Our inversion system relies 
on transport model simulations initiated with the Weather Research and Forecasting chemistry transport 
model combined with a high-resolution fossil fuel CO2 emissions inventory, and biogenic CO2 fluxes from 
a vegetation model. The inversion with atmospheric observations from a network of six towers resulted in a 
positive re-adjustment of fossil fuel CO2 emissions in 2019 and 2020 compared to prior. In 2020, the inversion 
resulted in a large emission reduction (43%) compared to 2019, while the reductions were estimated to be 37% 
based on the prior inventory itself. By assimilating CO mixing ratios in addition to CO2, the traffic emission 
estimates were reduced by 68% in 2020, compared to nontraffic (29%). Various sensitivity tests show that prior 
emission uncertainty and different background conditions significantly impacted the emissions estimates. We 
conclude that our current inversion system with atmospheric CO2 monitoring makes it possible to identify the 
emission decrease in 2020 partly over the urban region. However, additional information on prior emission 
errors and a dense network will be needed to map emissions precisely.

Plain Language Summary  The study aims to quantify the Paris region's CO2 emissions using 
a Lagrangian-based inversion system during the spring season (March-May) of 2019–2020, using CO2 
and co-emitted CO observations from a network of six ground-based stations. Our Inversion system tends 
to increase the emissions with respect to prior in 2019 and 2020. A significant increase (about 150 g 
CO2 m-2 day-1) in the fossil fuel emissions compared to prior was identified in the central Paris region 
across all our inversion experiments. Sectoral inversion shows an increase in the traffic emissions from the 
high-resolution inventory by about 17% in 2019 and 10% in 2020. However, the impact of COVID 19 lockdown 
on the emissions were −37% to −46% (reduction) depending on the configuration of the inversion system. 
We also identified that the lack of information relative to inventory uncertainties remains a major limitation 
in quantifying the aggregated emissions. Precise mapping of fossil fuel emissions at the urban scale will 
require additional information to quantify both the high-resolution inventory errors and their spatial structures. 
However, we confirmed the impact of lockdown restrictions on CO2 fossil fuel emissions to −12% ({plus 
minus}4%) over the Paris region through inversion.
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inventory estimates tend to omit specific sectors of activities due to limited data access and tend to use outdated 
emission factors, resulting in systematic under-estimation of city emissions (e.g., Gurney et al., 2021). The multi-
plicity of protocols and approaches (Arioli et al., 2020) combined with regular updates of emission factors and 
standards results in major discrepancies when tracking emission changes over the years (Mueller et al., 2021).

Atmospheric transport models representing the atmospheric processes act as the backbone of the inverse mode-
ling technique (Enting, 2002). The atmospheric inversion approach relies on CO2 mixing ratio measurements 
from buildings or towers within and around a city or aircraft has been studied over several metropolitan areas 
(e.g., Paris (Bréon et al., 2015), Indianapolis (Lauvaux et al., 2016) and Los Angeles (Feng et al., 2016)). These 
studies have demonstrated the success of inversion to quantify urban CO2 emissions at annual to 3-year times-
cales for large cities (e.g., Bréon et al., 2015; Lauvaux et al., 2016; Nickless et al., 2018; Oda et al., 2017; Staufer 
et  al.,  2016). More recent studies have also demonstrated that tower-based inversion can detect and quantify 
short-term city-wide emissions changes during the recent COVID 19 lockdown periods (Lian et al., 2022; Yadav 
et al., 2021).

Two sectors of activities, that is, residential/commercial and transport, consume the largest fraction of fossil 
fuel energy in urban areas (Pataki et al., 2006). In addition, point emission sources such as power plants make 
the concentration plume highly variable (Bréon et al., 2015). However, CO2 emitted from these sources mixes 
rapidly with other sources and sinks before being transported outside the city limits by the wind. Therefore, the 
estimation of CO2 fluxes in the city needs to consider observations from within and around the city (McKain 
et al., 2012). Fossil fuel emissions are the dominant source of CO2 in an urban area, whereas, in rural remote loca-
tions, the biogenic influence (net ecosystem exchange) dominates the observed variations (Miles et al., 2021). 
Biogenic sources can partially offset the emissions during the growing season, even at the urban scale, depending 
on the green vegetation fraction and the regional ecosystems (Miller et al., 2020; Staufer et al., 2016). The ability 
of the vegetation models to reproduce the regional biogenic fluxes mostly comes from the highly heterogeneous 
vegetation (depending on the land cover), impacted by human interventions (Gourdji et al., 2022). Radio-isotopic 
tracers such as  14C (Turnbull et al., 2015) or eddy-covariance flux towers (Wehr et al., 2013) have revealed signif-
icant contributions from urban vegetation. For example, the role of parks and gardens in residential areas to the 
observed variations in CO2 mixing ratios over Los Angeles have been discussed by Miller et al., 2020. Based on 
a  14CO2 measurement campaign, Lopez et al. (2013) found the biospheric contribution of 23% in the total CO2 
emissions in Paris in wintertime.

The inversion is impacted by sources of uncertainties associated with the atmospheric transport model (Geels 
et al., 2012) and unreliability in prior emission representation (Lauvaux et al., 2016). Other uncertainties such 
as representation errors arise from the differences between point measurements and transport model grid boxes 
(Gerbig et al., 2003) or aggregation errors due to the inability to separate various sources in a single grid cell 
(Kaminski et al., 2001). At the city scale, spatial and temporal granularity in prior emissions is represented by 
proxies prone to large uncertainties (Super et al., 2021) or due to large local point sources (e.g., industries, power 
plants). Fine-scale (∼1 km) atmospheric transport modeling needs to account for urban heat island effects (Pal 
et al., 2012), urban landscape geometries impacting the local dynamics, and heterogeneous surface characteristics 
(Bréon et al., 2015; Hutyra et al., 2014).

The city of Paris is relatively flat and is densely populated with high emission intensity. Earlier inversion studies 
implemented over the Paris region to estimate urban CO2 emissions (Bréon et al., 2015; Staufer et al., 2016) 
were based on the CHIMERE transport model at a spatial resolution of 16 × 16 km. These studies demonstrated 
that atmospheric gradients provided a sufficient constraint on fossil fuel emissions to estimate annual emissions 
within 10 Mt CO2. Noticeable observation-model mismatches in CO2 mixing ratios remained, even after the 
optimization, due to the variability in background conditions and potential errors in atmospheric transport. More 
recently, Lian et al. (2021) examined the Weather Research and Forecasting (WRF-Chem) model performances 
at higher resolution (1 km) over the Paris region with improved model performances in simulating CO2 gradients 
influenced by the local atmospheric dynamics and emissions.

The use of additional atmospheric tracer species has been studied for separating atmospheric CO2 signals into 
components (e.g., Wong et al., 2015). Among them, carbon monoxide (CO) is the most widely used because of 
its ease of measurement and knowledge of its sources and sinks (Nathan et al., 2018). CO is co-emitted with 
CO2 due to the incomplete combustion of fossil fuels (Potosnak et al., 1999), primarily from vehicles (Meijer 
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et al., 1996; Turnbull et al., 2015). Therefore, utilizing the molar ratio of CO:CO2 can improve fossil fuel CO2 
emission estimates between traffic and nontraffic sectors. Other sources of CO include wildfires and the atmos-
pheric oxidation of methane and non-methane volatile organic compounds (VOC) (Oney et al., 2017) that varies 
depending on the season and location (e.g., Duncan et al., 2007; Griffin et al., 2007). However, in regional-scale 
inversions, CO emitted from methane oxidation can be neglected due to the slow rate of oxidation compared 
to advection over urban area (Holloway et al., 2000). Similarly, VOCs contribute only about 7% and 15% of 
the global CO source (Duncan et al., 2007) but in summer, oxidation of VOCs can result in large quantities of 
urban CO, most likely from biogenic sources (Guenther et al., 1995; Miller et al., 2012; Turnbull et al., 2006; 
Vimont et al., 2019). Hence, CO emitted from vehicles dominates other sources, especially in the winter season 
and can be used to separate fossil fuel CO2 emissions from various other sectors (Colvile et al., 2001). Studies 
by Lopez-Coto et al., 2020 and Super et al. (2017) shows that CO:CO2 emission ratios could provide an addi-
tional constraint on the fossil fuel-generated CO2. In addition, other atmospheric tracer species such as  14CO2 
(Levin et al., 2003; Turnbull et al., 2015), δ 13C (Newman et al., 2016), SF6 (Maiss & Brenninkmeijer, 1998) and 
HFC-125 (Velders et al., 2009) are used to separate emissions from different sub-sectors. Over the Paris region, 
Ammoura et al. (2016) proposed an approach to estimate reliable CO:CO2 ratios using atmospheric mixing ratio 
measurements. The ratios exhibited spatial and seasonal variability within the city. The difference in emissions 
between summer and winter seasons in the study suggested that in addition to traffic, residential heating is 
also a major source of CO, which is not in agreement with the Airparif inventory (Airparif, 2013). Ammoura 
et al. (2014) studied the Môquet tunnel in Thiais, a peri-urban area about 15 km south of Paris center. By evalu-
ating the ratios between CO2 and co-emitted species, they found a good agreement between the local inventory 
and the observed CO:CO2 ratios. Spatial and temporal variabilities in the ratios imply that traffic does not have  a 
unique imprint on the urban plume but rather leaves various signatures, depending on traffic speed and vehicle 
types. Consolidating these aspects, CO measurements can provide an additional source of information to estimate 
fossil-fuel CO2 emissions, but this approach is limited by the uncertainty and space-time variability of CO:CO2 
emission ratios (Kort et al., 2013; Levin & Karstens, 2007; Lopez et al., 2013; Rayner et al., 2014).

Apart from the traditional inversion approach, the Lagrangian-based inversion approach is one of the widely used 
methods for flux estimation. It provides the sensitivity of individual concentration measurements to all upwind 
sources with lesser computational simulations than their Eulerian counterparts (Lin et al., 2003). The present 
study, Lagrangian-based inversion quantifies urban CO2 emissions and biogenic fluxes over the Paris region 
during the first lockdown period of 2020 (March–May) and the same period in 2019, using high-accuracy in situ 
tower measurements of CO2 mixing ratios. Hourly CO2 mixing ratio gradients from six towers in and around 
the Paris urban area are assimilated to produce 5-day mean day-time estimates of fossil fuel CO2 emissions and 
biogenic fluxes. Incorporating the gradients helps to eliminate the variability of CO2 due to the transport of fluxes 
from remote regions (Bréon et al., 2015). In the second part of the study, to separate traffic CO2 emissions from 
other sectors, CO mixing ratios from these sites are jointly assimilated in the inversion. Section 2 summarizes the 
data and methodology utilized in the present study. Results are described in Section 3, followed by a discussion 
in Section 4 with different sensitivity tests and conclusions in Section 5.

2.  Data and Methodology
2.1.  Inverse Methodology

Bayesian inverse modeling provides a top-down technique for verifying the emission and uptake of GHGs 
(Kaminski et al., 1999; Rayner et al., 1999) by combining a priori information with observations using Bayes' 
theorem (Enting, 2002). The Inversion mainly requires three components: (1) mixing ratio measurements (2) 
prior knowledge of fluxes and (3) an operator connecting fluxes/emissions to the measured mixing ratios. This 
operator is considered linear for long-lived species (such as CO2) that do not undergo any chemical reactions 
in the atmosphere. In the Bayesian method, atmospheric observations and a priori information are described in 
terms of their probability density functions (Heimann & Kaminski, 1999; Tarantola, 1987). These three compo-
nents, together with their uncertainties, provide the best estimates of fluxes/emissions. Several global scale stud-
ies (Bousquet et al., 1999; Ciais et al., 2010; Gurney et al., 2002, 2003; Kaminski et al., 1999; Law et al., 2003; 
Peylin et al., 2002; Rayner et al., 1999, 2008) and city-scale flux estimation studies (Bréon et al., 2015; Lauvaux 
et al., 2016; Staufer et al., 2016) utilized Bayesian inversion methodology to estimate emissions/fluxes.
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The atmospheric CO2 mixing ratio observed at a location comprised of surface fluxes/emissions and a back-
ground mixing ratio (assumed constant over the domain but varying in time) coming from distant sources/sinks. 
The mixing ratio observations (c) include information from both local and distant sources. Hence, time-varying 
background mixing ratios must be subtracted based on atmospheric observations sampled upwind of the city, 
assuming that (a) they remain fairly constant across the domain, and (b) the simulated influence of local sources/
sinks remains small compared to the urban enhancements.

Considering the linear relationship between observations and fluxes, which holds for passive tracers, a cost 
function can be defined, which consists of mismatches between modeled and observed mixing ratios and the 
mismatch between prior (known) and posterior (unknown) fluxes along with their respective uncertainties. Mini-
mizing the cost function with respect to the unknown fluxes gives optimized solutions to the surface fluxes 
(posterior fluxes) (f) and posterior covariance matrix, defined as

� = �0 + ��0�� (���0�� + ��
)−1 (� −��0)� (1)

and

𝐶𝐶𝑓𝑓 =
(

𝐻𝐻𝑇𝑇𝐶𝐶𝑐𝑐
−1𝐻𝐻 + 𝐶𝐶𝑓𝑓0

−1
)−1� (2)

here, f0 is the prior fluxes, Cf0 is the error variance-covariance matrix of prior fluxes, H is the Jacobian matrix 
with each element representing the sensitivity of observations to each component of f (Enting, 2002), Cc is the 
error variance-covariance matrix of observations, y is the observed mixing ratios and Hf0 is the modeled mixing 
ratios (Tarantola, 2005).

The present study aims to constrain terrestrial fluxes (5-day mean) over the Paris metropolitan area. Prior fluxes 
and uncertainties are defined at 1 km resolution over a domain of dimension 90 × 90 km. With two emissions/flux 
sectors averaged over 5-days over the day-time (7–17 UTC), the size of the state vector f is 90 × 90 × 2 (=16,200 
unknowns). At the same time, the observation vector consists of hourly afternoon (12–17 UTC) observations 
(tower gradients) across six sites (one background), reaching a maximum of 6 × 5 × 5 (150) mixing ratio obser-
vations. As the advection of air masses across the domain takes less than 5 hr, with the observation time being 12 
UTC, the correction to the emissions applies only to daytime emissions starting from 7 UTC.

In addition, percentage error reduction has been determined to quantify the theoretical improvement in posterior 
fluxes compared with prior. The error reduction UR is defined as the ratio between flux error variances before and 
after inversion, with values ranging from 0% to 100%.

𝑈𝑈𝑅𝑅 = (1 − (𝐶𝐶𝑓𝑓∕𝐶𝐶𝑓𝑓0)) × 100� (3)

A value of 0 indicates no improvement of the initial prior errors, which corresponds to an absence of observation 
constraints in these pixels (emissions/fluxes informed purely by the prior).

2.2.  Observation Network

This study utilizes the continuous measurement of CO2 mole fractions from 6 towers in the Ile de France (a 
region located in the north-central part of France centered on the capital Paris) network. The tower locations are 
shown in Figure 1 and the exact coordinates of the towers, air intake's height and predominant wind direction are 
summarized in Table 1. The tower network was initiated with two towers equipped in late 2014 and increased 
gradually to seven towers by 2017. The towers are located along the dominant wind direction, similar to most 
mid-latitude cities, that is, from the South-West or the North-East sector 70% of the time. Data from 6 towers are 
only used in the inversion because the GHG sensor at of the sites Coubron went under maintenance during the 
study period.

The tower SAC, located 21  km from the urban area, is best suited to measure the background mixing ratios 
because of its upwind location and the absence of nearby sources. Andilly (AND) and Gonesse (GNS) are located 
in the northeastern part of the Ile de France region. AND is surrounded by a forested area with primary pollution 
from a waste processing facility located 1.4 km north of the tower. GNS is located 17 km North of Paris' center, 
in a residential area with noticeably large enhancements of CH4 from a landfill and a waste treatment facility 
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2.5 km north of the site. Two airports are located nearby: the international Paris airport Charles de Gaulle 8 km to 
the East, and the local Le Bourget airport 4.5 km in the south-east direction. Jussieu (JUS) and Cité des Sciences 
(CDS) are the two towers located at the core of the Paris urban area on building roofs. JUS is situated in the center 
of Paris, and CDS is located in the northeastern part of Paris city center. Versailles-Saint-Quentin Observatory 
(OVS) is located in the south-west part of the Ile de France region. OVS is 24 km south-west of Paris' center on the 
University roof, surrounded by a residential area. Possible pollution sources include Toussus-le-Noble airfield, 
5 km South-East of the site.

Each site is equipped with a high precision Cavity RingDown Spectroscopy instrument (Picarro, inc.) to measure 
CO2, CH4, and CO mole fractions in dry air. The inlet of the instrument collects the air through a Synflex line with 
an outer diameter of ¼ inch. A 2 μm particulate filter is installed on the sampling line to protect the instrument's 
cavity. Except for JUS and SAC, all sites are using the same three cylinders to regularly (every 6 months) estimate 

Figure 1.  Location of the greenhouse gases measurement sites of the Ile de France network.

Tower (ID)

Location

Sea level altitude (m) Air intake altitude (agl) (m)
Predominant 

wind directionLatitude (°N) Longitude (°E)

Andilly (AND) 49.0126 2.3018 175 60 South-west

Cité des Sciences (CDS) 48.8956 2.388 43 34 South

Gonesse (GNS) 49.0052 2.4205 81 36 South-east

Jussieu (JUS) 48.8464 2.35607 38 30 South-east

Versailles-Saint-Quentin Observatory (OVS) 48.7779 2.0486 150 20 South-east

Saclay (SAC) 48.7227 2.142 160 100 South, south-west

Table 1 
Details of Sites in the Ile de France Network Used for Inversion
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the instrument linearity. These cylinders are filled with synthetic air, and the mixing ratio of the species measured 
ranges from 371 to 504 ppm for CO2, 1646–2082 ppb for CH4, and 81–492 ppb for CO. For JUS we are using a 
dedicated set of three cylinders prepared in the same way. One additional calibration gas (called reference gas) is 
measured once a day to correct the measurements for short-term drift between two calibration sequences. All the 
cylinders used on the Ile de France network are calibrated at Laboratoire des Sciences du Climat et de l'environne-
ment (LSCE), France before being installed at the sites. The calibration is performed with a reference instrument 
(Picarro G2401 - CO2, CH4, CO), calibrated against World Meteorological Organization-National Oceanic and 
Atmospheric Administration standards using six cylinders with mixing ratios varying from 368.75 to 516.57 ppm 
for CO2, 1724.9–2548.9 ppb for CH4, and 140.8–492.1 ppb for CO. The instrumentation differs slightly at SAC, 
which is labeled as Integrated Carbon Observation System (ICOS) station (Yver-Kwok et al., 2021). At this site, 
two instruments continuously measure CO2, CH4, and CO. Sampling lines are installed on the tower at three 
different heights: 15, 60, and 100 m above ground level. One of the instruments samples the air only from the 
100 m line, while the other instrument samples from the three lines, hence switching sampling heights every 10 
minutes. Monthly calibration is performed for the two analyzers using four gas cylinders with mixing ratios vary-
ing from 368 to 447 ppm for CO2, 1700–2300 ppb for CH4, and 67–1013 ppb for CO. The SAC data are processed 
every day by the ICOS processing chain, including the H2O correction used to provide the mole fractions in dry 
air from the raw measurements done in wet air conditions and the calibration correction using a linear fit from the 
four reference cylinders (Hazan et al., 2016). A similar scheme is used for the other stations, the only exception 
being the use of the additional reference, as explained before. In order to control the repeatability of the meas-
urements, a quality control gas is systematically measured once a day in each station. The CO2 mole fractions 
of those target-gas are assigned at the LSCE, with a calibration using the World Meteorological Organization 
reference scale. Overall, the mean values of the target tanks measured at the 6 stations differ from the assigned 
values by ±0.07 ppm. The standard deviations of the daily injections are lower or equal to 0.02 ppm at all the 
stations, with extreme differences to the assigned values ranging between +0.11 and −0.13 ppm. Those values 
do not account for the uncertainties of dry gas. According to Rella et al. (2013), the uncertainty associated with 
the water vapor correction is lower than 0.1 ppm for H2O concentrations below 2%, which represent 98% of the 
data set considered in our study. The uncertainty is reduced to ±0.05 ppm using correction factors established at 
LSCE for each instrument (Laurent et al., 2019).

2.3.  Lagrangian Model and Source Receptor Matrix

In our Bayesian formulation, the atmospheric transport operator relates surface fluxes to atmospheric mixing 
ratios. The Jacobian matrix H used to represent it in the inversion was generated using backward simulations of 
the Lagrangian Particle Dispersion Model (LPDM) described by Uliasz (1994). In forward mode, particles are 
released at the source locations and tracked until they pass through the receptor (observation tower). However, 
when the number of sources is larger than the number of receptors, running an LPDM in backward mode becomes 
more computationally efficient. Mass-free particles are released at each receptor location and sampled backward 
in time to potential source regions (Seibert & Frank, 2004). The LPDM was evaluated and used in several other 
inverse studies over different regions (e.g., Karion et al., 2015; Lauvaux et al., 2008).

LPDM is driven by the hourly three-dimensional fields of mean winds (u, v, w), potential temperature, and turbu-
lent kinetic energy obtained from the WRF model (Skamarock et al., 2008) with a chemistry module. WRF-Chem 
v3.9.1 was configured with one-way nesting of the modeling domain at a horizontal grid resolution of 1 km that 
covers the Ile de France region and its surroundings (Lian et al., 2021). The model domain has 44 vertical layers 
extending from the surface to 100 hPa wherein 25 layers are arranged below 1.5 km and the height of the first 
layer top is approximately 3.1 m above the ground level (Lian et al., 2021). Observations from surface weather 
station data and upper-air meteorological fields from the Research Data Archive at the National Center for Atmos-
pheric Research were also assimilated to WRF-Chem (Lian et al., 2019). Initial and boundary conditions for the 
WRF-Chem were obtained from the global European Center for Medium-Range Weather Forecasts (ECMWF) 
Re-Analysis data (ERA5) with 0.75° × 0.75° horizontal resolution (Berrisford et al., 2009). The atmospheric 
boundary layer scheme used is the Mellor-Yamada-Janjic (MYJ) scheme (Janjić, 1990, 1994) coupled with the 
Monin-Obukhov (Jancic Eta) scheme to represent the atmospheric surface layer (Janjic, 1996). Urban canopy 
model BEP (Building Effect Parameterization) (Martilli et al., 2002) is used as urban parametrization, and the 
NOAH land surface model (Chen and Dudhia,  2001) was used to simulate the surface energy balance over 
non-urban land. A more detailed description of the model parametrization can be found in Lian et al. (2018, 2021). 
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In addition to the meteorological fields, we also used the CO2 biogenic fluxes from the WRF-Chem simulation 
estimated using the Vegetation Photosynthesis and Respiration Model (VPRM) (Ahmadov et al., 2007, 2009; 
Mahadevan et al., 2008) which was coupled online to the WRF-Chem model.

Over an hour, 2,700 particles were released incrementally every 20 s from each measurement tower in the Ile-de-
France network and traced backward-in-time for 24 hr. Most particles have left the simulation domain after 10 hr, 
except during extremely low wind conditions. The maximum travel time of particles based on the 95th percentile 
was 8 hr with a mean of 4 hr. As air masses transport particles, their locations are stored every two minutes for 
any particle located near the surface (within the surface layer, ∼50 m) and finally aggregated over a fixed time 
interval of 1 hr. This spatial information is used to generate the surface footprint of each tower observation (or 
influence function). The model calculated particle counts tcount as

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × (3600∕𝑟𝑟𝑑𝑑𝑑𝑑) × (60∕𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑)� (4)

where rpart is the number of particles released at every model time step (2,700), rdt is the model time step in 
seconds (20) and outdt is the time interval between two output files in minutes (2). From the particle count 
obtained here, we generate the influence function, defined as g2ppm as follows:

�2��� = (�����∕������) × (�∕(1000 × Δ� )) ×
((

29 × 106
)

∕44
)

� (5)

where count is the number of particles in the grid cells, ∆P is the pressure difference in the surface layer (∼720 Pa), 
and g is Earth's gravity.

The surface layer height was set to 50 m which corresponds to approximately 720 Pa. In a well-mixed condition, 
the source–receptor relationship should be independent of the surface layer thickness, as long as the layer is not 
too deep, as the particle count will be adjusted proportionally to the grid box volume (Seibert & Frank, 2004). 
The spatial resolution of the gridded domain consisting of 90 × 90 grid boxes was set to be 1 × 1 km. The surface 
fluxes represented in g CO2 km 2 hr −1 are projected using H into mixing ratios at the measurement sites in units 
of ppm.

2.4.  Prior Flux Estimates and Error Covariance Matrix

2.4.1.  Fossil Fuel Emission Inventory

In our study, a high-resolution inventory of anthropogenic CO2 emissions (Origins. Earth (https://www.origins.
earth) developed over the Ile-de-France region was used for the inversion. The data set includes the emissions 
from six sectors: Industry (including cement), transport, tertiary emissions, residential, energy and waste.

The gridded emissions are based on regional totals downscaled to a 1 × 1 km resolution using spatial proxies 
(i.e., high-resolution French population census, coordination of information on the environment land-use cover, 
locations of the thermal power stations, incinerators, and main emitting industries) at 1h time resolution. For 
stationary combustion, the 85 point-sources corresponding to industries, power plants and waste burning have 
been identified; paid employment density is used as a proxy to spatialize the remaining economic emissions. 
Building age, usage, and type are used as a proxy for the spatial distribution of residential and tertiary emissions. 
Local energy consumption rates are combined for temporal distributions. For road transport, spatial and tempo-
ral distributions are based on the traffic activity measured by a network of 3,345 traffic flow sensors deployed 
across Paris. More details about the inventory are described in Lian et al. (2022, Appendix, text S1). Over the 
Paris metropolitan area, the commercial and residential sectors (buildings) combined contribute to almost 58% 
of the total CO2 emissions, 22% is attributed to on-road transport, and the remaining 20% is distributed among 
the other sectors.

In the second part of the study, CO:CO2 ratios were used to optimize emissions from traffic and nontraffic sectors 
referred to as others in the present study. Gridded CO/CO2 ratios were obtained from TNO GHG and co-emitted 
species database (GHGco) at a resolution of 0.1° × 0.05° (∼6 × 6 km) (van der Gon, 2019). TNO gives emis-
sion ratios for public power, industry, other stationary combustion, fugitives, solvents, road transport, shipping, 
aviation, off-road transport, waste and agriculture sectors. The data set covers the entire European domain for 
the GHGs/CO2 (distinguishing between fossil fuel and biofuel CO2), methane, and key co-emitted species that 
may be used as tracers: CO (also distinguishing between fossil and biofuel) and nitrogen oxides. The emission 

https://www.origins.earth
https://www.origins.earth
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datasets were developed primarily based on the reported data. Gaps in the reported data were filled using other 
emission data from the GHG and air pollution interactions and synergies (GAINS) model (van der Gon, 2019). 
Thereafter, a consistent spatial distribution methodology is applied for Europe where each emission source gets 
a specific proxy assigned, which defined the way emissions are to be spatially distributed over the country. For 
point sources, information was collected on the location of power plants, large industrial installations, oil and gas 
production sites, airports and waste treatment locations (e.g., landfills). For area sources, proxies are collected 
that are thought to best represent the spatial variability of each specific emission source (van der Gon, 2019). 
More details about the inventory are described in van der Gon. (2019).

2.4.2.  Biogenic Flux

Biogenic CO2 fluxes are generated using the VPRM model initiated with meteorological fields from WRF-Chem. 
This simple model uses meteorological, remote sensing, and tower flux data to represent surface fluxes 
(Mahadevan et al., 2008). VPRM uses downward shortwave radiation, surface temperatures, and vegetation indi-
ces derived from the 8-D Moderate Resolution Imaging Spectrometer (MODIS) Surface Reflectance Product 
(MOD09A1). For each vegetation category, four parameters (PAR0, λ, α, β) are optimized against eddy covari-
ance flux measurements over Europe collected during the Integrated EU project “CarboEurope-IP” (http://www.
carboeurope.org/, last access: 12 November 2019). VPRM uses land cover data derived from the 1 km global 
Synergetic Land Cover Product (SYNMAP; Jung et al., 2006; Ahmadov et al., 2007, 2009) classified into eight 
different vegetation classes. The eddy covariance data upon which VPRM has been calibrated do not necessarily 
represent the vegetation of the Paris area, which is a source of uncertainty in modeled biogenic CO2 fluxes.

Figure 2 shows the total fossil fuel CO2 emissions from Origins.Earth and biogenic fluxes from VPRM for the 
2019 spring months (March–May) and the relative changes (percentage) in the emissions and fluxes in 2020 
compared to 2019. Fossil fuel emissions are high in the central and north-west Paris region (∼90 g CO2 m −2 day −1) 
and gradually decrease away from the central Paris region. In addition, a few hotspots are scattered throughout 
the domain. These include 85 individually identified hotspots representing 8.07  Mt CO2 in 2018 over 34.80 
MtCO2. In 2020, the high-resolution inventory suggests that the net emissions decreased by about 10%–60% 
(30 ± 5 MtCO2), most probably due to the pandemic lockdown (two strict confinements in France lasting several 
months) (Figure 2b). The biogenic fluxes shown in Figure 2c represent the Net Ecosystem Exchange (NEE) with 

Figure 2.  Prior flux maps for the fossil fuel emission and biogenic fluxes (daytime + nighttime) from the Origins.Earth inventory. The top row is the CO2 emissions 
during 2019 spring and percentage emission changes in 2020 compared to 2019. The bottom row shows the same for biogenic fluxes.

http://www.carboeurope.org/
http://www.carboeurope.org/
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a negative sign indicating net CO2 uptake. The modeled NEE values are negative over most of the domain (with 
uptake of up to 10 g CO2 m −2 day −1), except over the central Paris region where the values are equal or close 
to 0, which comes from the SYNMAP land use in VPRM. NEE show a uniform 30% increase in 2020 without 
any spatial variations compared to 2019, as suggested by the MODIS driver data and annual meteorological 
conditions.

2.4.3.  Prior Emission Errors

The high spatial and temporal resolutions of the Origins.Earth emission fields are not associated with an explicit 
calculation of their associated errors. According to the Intergovernmental Panel on Climate Change (IPCC) 
guidelines, fossil fuel emission uncertainty includes “naturally” occurring variability in the emissions at the 
annual/national scale. At high resolutions, emissions uncertainties are due to errors in emission factors, missing 
input data, and temporal/spatial downscaling (Oda et al., 2018). In a study by Lauvaux et al. (2016), error vari-
ances were represented as a percentage of net emissions because of the unavailability of a better solution. Here, 
sector-based emissions errors are defined as 100% of the emissions at 1 km resolution, corresponding to a total 
prior uncertainty of about 40% once aggregated over the domain. According to IPCC, quantitative uncertainty 
analysis is performed by estimating the 95% confidence interval of the emissions and sink estimates for individ-
ual categories and the total inventory. In the case of global emissions, the uncertainty can range from as low as 
8% to more than 50% (Eggleston et al., 2006). However, the uncertainty for different sectors can range from 2% 
to 8% on the national scale, whereas the total uncertainty of inventory usually adds up to 5%–20% (Eggleston 
et al., 2006).

With a Bayesian inversion using linear scaling factors, the inverse solutions can become negative. However, the 
scaling of the error variances to the prior emissions over 5 days limits the occurrence of negative solutions to 
very few isolated cases (Lauvaux et al., 2016). It also implies that pixels with low emissions (=low uncertainties) 
are too constrained to allow large corrections. For that specific reason, our high-resolution inventory takes the 
location of 85 main emission industries and declared CO2 emissions from them as “unknown”, which would 
inevitably not be determined by our approach. The inversion has been tested for two spatial correlation lengths, 
that is, L = 4 km and L = 20 km for the emissions errors. Temporal correlations are considered to be negligible in 
our study, assuming that temporal correlations have vanished beyond 5 days because consecutive 5-days include 
“weekdays only” and a combination of weekdays and weekends. A test study has been carried out to analyze 
the sensitivity of the inversion to the prior emission errors where prior emissions errors are defined as 60% of 
the net emissions. It would represent a total error of 25% over the domain for 3 months (March-May), including 
spatial error correlations. Dependence of error variances on the correlation length is defined similarly to Lauvaux 
et al. (2012) where exponentially decaying correlations with the distance have been applied among urban pixels 
only (based on the National land cover database 2010). The distance-based correlation matrix (mL) is created 
first and then combined with each land cover type assuming no correlation between urban and nonurban pixels 
murb. The combined matrix (M) is created assuming equal weights from both the correlation matrices using the 
following equation (Lauvaux et al., 2016).

𝑀𝑀 =
√

𝑚𝑚𝐿𝐿 ×
√

𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢� (6)

The 5-day inversion window was defined based on the length of synoptic and mesoscale events. For a shorter 
inversion time window (e.g., daily), the surface coverage of aggregated tower footprints would be spatially-limited. 
However, short-term variations may be misrepresented by our solution. Here, we focused on 5-day mean emis-
sion estimates to constrain the spatial distribution over the whole area, assuming the prior diurnal variations are 
correct (similar to Lauvaux et al., 2016). The inversion is carried out over 5-day inversion windows over three 
months (March-May) of 2019 and 2020.

2.4.4.  Balance of Error Contributions

In our study, errors in the WRF-Chem modeling system are propagated into the inversion system by estimating 
the error variances based on metrics representing the model meteorological performances. First, error variances 
are scaled using the normalized distance of a Χ 2 distribution to compute the average variance for a 5-day period. 
Second, using the WRF-Chem generated wind speed and direction, variances are adjusted for each hour. Further-
more, the first step is repeated for the adjusted variances to ensure the error balance within the inversion system. 
More details about this approach are described in Lauvaux et  al.  (2016). Observation errors are considered 
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uncorrelated in both time and space. Whereas day-to-day correlations might be weak and hourly correlations 
might occur within a single afternoon. However, in the absence of rigorous quantification, we assumed that 
hourly correlations are negligible. Therefore, the observation correlation length is set as 0. Our variance estima-
tion approach helps to remove singular time steps associated with poor transport model performances (Lauvaux 
et al., 2016). The ability of the WRF-Chem model to predict the wind direction and speed (in terms of Mean 
Absolute Errors (MAE)) has been quantified using the observed counterparts (Lian et al., 2018). Hourly MAE 
over the inversion domain was determined for both wind direction and speed, a proxy for transport errors over the 
entire domain (at all of our sites) at a given hour. Deviations of the model predictions from the observations point 
to the performance of the WRF-Chem model.

The variances in the inversion represent the errors in the meteorological parameters that cannot be predicted by 
the model, along with prior flux and transport errors. A χ 2 normalized distance λ is defined as,

� = 1∕�
[

(� −��0)�
(

���0�� + ��
)−1 (� − ��0)

]

� (7)

which informs about the balance between the prior error and the observation error in the inversion (Kaminski 
et al., 2001).

2.4.5.  Boundary Inflow

In a domain-limited inversion, the flux estimation depends on the contribution from the background signals that 
originated outside the domain and were transported to the observation sites (Goeckede et al., 2010). Accounting 
for the airflow through the boundaries makes a noticeable difference in quantifying the amount of CO2 from 
distant sources/sinks compared to local emissions (Lauvaux et al., 2012). This quantity can be estimated by using 
measurements upwind of the area, which represents, for the most part, the influence of remote fluxes over the 
region of interest. However, the measured upwind mixing ratios are also influenced by local fluxes and local 
dynamics, hence less representative of the domain background. Since the air inflow depends on the direction of 
the wind and its variability, the selection of the upwind site will vary in time.

There are three primary methods to select the best-suited background mixing ratios: (1) deriving the background 
directly from all the observations, for example, by taking the minimum mixing ratio over the period; (2) using 
hourly mixing ratios from a specific site; and (3) selecting mixing ratios from upwind sites based on wind direc-
tion. The first method has been utilized in many halocarbon studies (e.g., Brunner et al., 2017; Hu et al., 2016; 
Manning et al., 2003). The second approach is ideal when only one site is located outside the city limits. In the 
present study, we have tested only methods 2 and 3 to derive background mixing ratios for the inversion. Method 
1 has not been tested here because based on a study by Lauvaux et al. (2016), it introduced a positive bias in the 
inverse solution by artificially increasing the emissions over the city. In addition, this method is the least realistic 
because the lowest concentrations are often observed at the end of the day, which is inconsistent with the advec-
tion time of air masses across the city (Lauvaux et al., 2016). In method 2, hourly mixing ratios from SAC tower 
for 12–17 UTC are used as the background. The site is upwind most of the time, and it covers a larger footprint 
that does not include major sources and vegetation cover. This is a simple method used for the inversion using a 
limited number of towers. In method 3, we selected AND or SAC as background sites, depending on wind direc-
tion. When the wind is between 135° and 315°, SAC is used as the background site, whereas if the wind is >315° 
and <135°, AND is used as the background site. In both the cases, the local influence is then subtracted from 
the observed values based on the modeled influence of prior emissions and biogenic fluxes originating from our 
inversion domain, similar to Lauvaux et al. (2020).

2.5.  Inversion With an Additional Tracer CO

The second part of the study aims to delineate traffic CO2 emissions using CO mixing ratios and CO:CO2 ratio 
in addition to CO2. Figure 3 shows the total CO2 emissions (March-May) from the Origins.Earth inventory for 
two different sectors for 2019 and their respective changes in 2020. Here, the fossil fuel emissions are grouped 
into traffic and others (nontraffic) emissions. The traffic sector is comprised of on-road and off-road transport 
emissions, whereas others emissions cover industrial, public power sector, stationary combustion (power plants, 
combined heat and power production plants, industrial combustion plants, and district heating plants, as well as 
small plants, e.g., stoves and residential boilers), and emissions from waste, solvents, and agriculture. In 2019, 
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traffic emissions are mainly concentrated around the Paris city and south of the city administrative boundaries. 
Emissions from Others sector is large in the central Paris region where most of the industries are located. In 
2020, both the sectors showed a negative change indicating the emission reduction by about 20% for traffic and 
14%–16% for others sector. Reduction in traffic emission is more prominent in the central Paris region compared 
to the boundaries. This explains the emission reduction during the shutdown of the city during the COVID 19 
lockdown.

In our joint CO-CO2 inversion, mean CO:CO2 ratios were calculated from the gridded ratios based on the TNO 
inventory for all sectors and utilized along with the hourly CO emissions. These mean sectoral factors are multi-
plied by the gridded prior emissions and aggregated into traffic and others sectors to obtain gridded CO emis-
sions, similar to Nathan et al. (2018) and Lauvaux et al. (2020).

3.  Results
3.1.  Inversion With CO2 Data

3.1.1.  Spatial Distribution of Posterior Fluxes

Figure 4 shows the spatial distributions of total CO2 fossil fuel emission (March-May) differences from prior for 
2019 and 2020 (left column) and their respective percentage error reductions (right column). In 2019, fossil fuel 
emissions significantly increased from prior over the central Paris region (about 66% (Figure 2). On the outskirts 
of the city, the increase is only <50 g CO2 m −2 day −1, down to zero outside Paris in the vicinity of the suburban 
towers (AND, GNS, and OVS). In 2020, the rate of increase in the emissions after inversion is small compared 
to 2019 indicating the effect of lockdown where most of the sources were shut down. A recent study by Lian 
et al. (2022) reported that the decrease in the magnitude is associated with a reduction in traffic emissions as well 
as milder temperature than normal, which has an influence on household emissions.

Figures 4b and 4d depict the gridded percentage error reductions after inversion for 2019 and 2020. The inversion 
reduces the uncertainty in the emissions in the range of 2%–10%. The area surrounding the CDS and JUS sites 

Figure 3.  Prior flux maps for the two fossil fuel emission sectors. CO2 emissions in 2019 from (a) traffic and (c) other sources (industry, stationary and residential) and 
their respective emission changes in 2020 compared to 2019 for (b) traffic and (d) other sources.
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shows the maximum error reduction, indicating that both sites provide a significant atmospheric constraint on 
the fossil fuel emissions in downtown Paris whereas the rest of the urban area shows smaller reductions below 
5%. In contrast, the emission change and error reduction are close to zero outside the metropolitan area, a direct 
consequence of the absence of fossil fuel sources outside the city limits in the Origins.Earth inventory.

Figure 5 shows the changes in biogenic fluxes after inversion and their corresponding percentage error reductions 
for 2019 and 2020. Compared to fossil fuel emissions, the magnitude of biogenic fluxes is about three orders of 
magnitude less. In the vicinity of AND, GNS, and OVS towers, the biogenic fluxes are increased compared to the 
rest of the domain. The absence of biogenic fluxes in the central Paris region (Figure 2) indicates that the VPRM 
simulations exclude small parks and gardens in this area. Land cover maps would be needed at higher resolutions, 
but the current configuration only considers MODIS data at 250-m resolution. In addition, the measurement sites 
that are used in the inversion are mostly sensitive to fossil fuel emissions in their vicinity. Error reductions in 
Figures 5b and 5d for biogenic CO2 fluxes show no change in most parts of the domain except small reductions 
of about 0.2% around the suburban towers.

3.1.2.  Flux Time Series

The evolution of emissions throughout the inversion time-period is analyzed based on time series from March 
to May of each year. Emissions are summed spatially and temporally (i.e., a combination of optimized day-time 
emissions and inventory-based night-time emissions) to represent the total 5-day fossil fuel emissions as shown 
in Figure 6. Shaded areas around the emission lines represent their respective uncertainties.

Fossil fuel CO2 emissions increased significantly after inversion in 2019 over the entire period. The increase 
was largest (about 0.6 MtCO2) at the start of March, which gradually reduced to 0.3 MtCO2 difference in the last 
week of April. It is also noticeable that fluctuations in the posterior emissions are larger than the prior. In 2020, 
fossil fuel emissions were large (1.1 MtCO2) in the first half of March similar to 2019, which was subsequently 
reduced to 0.5 MtCO2 at the beginning of the lockdown period. Here, the decrease in emissions was much faster 
compared to 2019. The posterior emissions in the lockdown window have become almost close to the prior 

Figure 4.  Total fossil fuel emission change for (a) 2019 and (c) 2020, and their corresponding percentage error reductions (b and d). The five measurement sites from 
which CO2 mixing ratios are assimilated are marked as black circles and the background SAC tower is marked as a diamond shape. The prior emissions used here are 
from the respective years.
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Figure 5.  Total biogenic flux change for (a) 2019 and (c) 2020, and their corresponding percentage error reductions (b and d). The five measurement sites from which 
CO2 mixing ratios are assimilated are marked as black circles and the background SAC tower is marked as a diamond shape.

Figure 6.  Five-day time series of prior and posterior fossil fuel emissions (day + nighttime) and their respective uncertainties 
for 2019 and 2020 (colored shaded area). The COVID 19 confinement period in 2020 is shown as shaded gray zones.
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emissions indicating that the Origins.Earth inventory well represented the emission reduction during this period. 
The large reduction after the initial weeks of March 2020 is coincidental with the COVID 19 lockdown period. 
Our inversion system only constrains emissions during day-time (7–17 UTC), but we expect little to no change at 
night except external environmental factors (e.g., temperature).

3.1.3.  Posterior Mixing Ratios—Measuring the Impact of Inversion

Our inversion system was designed to minimize the mismatches between observed and modeled mixing ratios. 
However, the presence of spikes and the high variability in observations motivates an examination of the posterior 
model-data mixing ratio mismatches to evaluate the ability of our inversion system to simulate the local varia-
tions. We note here that the posterior mixing ratio gradients are not shown, but the change from the background 
represents the impact of local sources and sinks. Prior and posterior mixing ratio changes were determined in two 
steps: (1) we multiplied hourly footprints of each site (including background SAC) with the 5-day averaged fluxes 
(fossil + biogenic) for the day-time (7–17 UTC), and (2) removed the corresponding mixing ratios at SAC from 
the other towers (hence excluding the local influence similar to the inversion).

Figure 7 shows the hourly mixing ratio difference from the background station for the five towers used in the 
inversion (excluding SAC) for March 2019. All the tower observations show large fluctuations because of the 
local influence and have larger magnitudes compared to the modeled values. Inversion resulted in a positive read-
justment of emissions and the same is reflected in the mixing ratios as well. However, there is a few exceptions 
are seen; for example, CDS shows negative posterior mixing ratios despite its location in the city center whereas 
JUS shows large positive mixing ratios after inversion. We expect that CDS does not capture all the emissions 
during this period from Paris city because of unfavorable wind conditions. Another exception is seen for AND, 

Figure 7.  CO2 atmospheric mixing ratios (difference from the background) from WRF-LPDM footprints coupled to the Origins.Earth prior emissions (in red), to the 
posterior emissions (in blue), and the observations (black) for the five surface towers for March 2019.



Journal of Geophysical Research: Atmospheres

NALINI ET AL.

10.1029/2021JD036032

15 of 26

where the posterior mixing ratios show larger values despite its location outside city limits. for GNS and OVS, the 
prior mixing ratios were having very low magnitude, which is enhanced after the inversion.

Figure 8 shows the quartiles of hourly observations, prior and posterior mixing ratios of the five towers used 
in the inversion for the periods March-May of 2019 and 2020. The mixing ratio threshold was set to 50 ppm to 
remove outliers, which was around less than 5% of the total number. Corrections in the prior fluxes vary between 
each tower with a maximum for JUS where the initial mismatch between prior and observations is reduced from 
7 to 3 ppm (median) after inversion. CDS, GNS and OVS show a very small correction of about 1 ppm whereas 
mismatch has been amplified for AND. A similar pattern is seen for 2020 where the average mixing ratios fall into 
a very small range except for AND.

3.2.  Inversion With an Additional Tracer CO

3.2.1.  CO-CO2 Inversion—Spatial Distribution of Sectoral Emissions

Here, we aim to optimize fossil fuel CO2 emissions separately for the traffic and nontraffic (others) sectors using 
CO and CO2 mole fractions. Figure 9 shows the maps of emission difference from the prior for the traffic sector 
and respective percentage error reductions (right column) for 2019 and 2020. In 2019, our inversion system 
shows an increase in the traffic emissions by about 16% (20–30 g CO2 m −2 day −1) within the Paris metropolitan 
area compared to only 9% (<10 g CO2 m −2 day −1) in 2020 over the same area. The area surrounding the towers 
in the north-east and south-west quadrants shows little to no change in emissions. The positive readjustment of 
emissions in 2019 and 2020 leads to the impression that the prior emissions were underestimated. Compared to 
2019, the posterior traffic emissions reduced by about 70% in 2020. Error reductions in Figures 9b and 9d show 

Figure 8.  Quartiles of the hourly mixing ratios (difference from background) (for the individual observation towers for 2019 and 2020.
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a similar pattern for 2019 and 2020, with larger reductions in 2020. The error reduction is maximum (about 3% 
compared to prior) near the CDS and OVS towers. In 2019, a significant reduction in the error was seen in the 
south of the Paris region, where no towers are located. However, this needs to be investigated further for a definite 
conclusion. This decrease is co-located with sources from the others sector, possibly due to a compensating effect 
across sectors.

Figure  10 shows the flux maps for the others sector. Similar to the traffic sector, posterior emissions have 
increased after inversion more significantly in 2019 (about 38%) compared to 2020 (about 24%), primarily in 
the central Paris region. A large magnitude of about 150 g CO2 m −2 day −1 increase in the emission is seen near 
the central Paris region, while no change is observed near the north-east and south-west part of the domain 
where  other towers are located. Comparison of 2019 and 2020 posterior emissions shows a decrease of only 21% 
in the emissions, which is much lower than the traffic emissions discussed above. The most pronounced decline in 
the traffic sector could be a result of the mobility restrictions during the lockdown period. The initial assessment 
given by AirParif local air quality agency indicates a similar reduction in the traffic and nontraffic sectors (Lian 
et al., 2022). Unlike the previous cases, the error reduction is more confined to the center of the Paris metropol-
itan area (about 10%).

3.2.2.  Flux Time Series

Figure 11 shows the 5-day emissions time-series for traffic and others sectors for 2019 and 2020. The corre-
sponding shaded areas represent their respective uncertainties. In 2019, prior and posterior traffic emissions 
show a nearly constant pattern, whereas others emissions show large fluctuations where prior emissions vary 
between 0.2 and 0.4 MtCO2 and posterior emissions between 0.3 and 0.7 MtCO2. Positive readjustment holds 
valid here only for the others emissions. In 2020, the traffic emissions were the same as 2019 (2 MtCO2) at the 
start of March until decreasing to 0.05 MtCO2 during the confinement period. This again reaches the previous 
year's values by the second week of May. Whereas others posterior emissions were having a larger magnitude at 
the beginning of the period, which rapidly reduced during the confinement period. However, the prior emissions 
show a gradual decrease.

Figure 9.  Flux maps of change in emission (day + nighttime) from prior after inversion for the traffic sector for (a) 2019 and (c) 2020 and their corresponding 
percentage error reductions (b and d). Towers used for the inversion are marked as circles and diamond shape.
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Figure 10.  Flux maps of change in emission (day + nighttime) from prior after inversion for the others emission sector for (a) 2019 and (c) 2020 and their 
corresponding error reductions (c and d). Towers used for the inversion are marked as circles and diamond shapes.

Figure 11.  Five-day time series of sectoral (traffic and others) prior and posterior fossil fuel emissions (day + nighttime) 
and their respective uncertainties for 2019 and 2020 (colored shaded area). The COVID 19 confinement period is shown as 
shaded gray zones.
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3.2.3.  Sectoral Contributions From Origins.Earth Inventory

This part quantifies the contribution of each sector to the mixing ratio variability over the observation towers. 
Figure 12 shows the CO2 mixing ratio contributions from different fossil fuel emission sectors and biogenic fluxes 
at each tower location based on the posterior emissions and biogenic fluxes combined with the LPDM footprints 
for 2019 and 2020. The simulated CO2 mixing ratios correspond to the 1 km surface footprints combined with 
the 5-day mean posterior emissions, averaged over 3 months for 7–17 UTC. Biogenic fluxes contribute to only a 
small fraction of the mixing ratio with negative values. For other emission sectors and total contribution, maxi-
mum enhancement is seen over JUS, a site in the central Paris region, followed by AND, OVS and CDS.

The large enhancement over AND despite its 60 m height could be because of emissions in almost every single 
urban pixel near the site. The nontraffic sector is the most significant contributor to the atmospheric enhance-
ments (40% for 2019% and 70% for 2020 of the total enhancements) at all the tower locations, similar to the emis-
sion ratios for the same sector (38%). In 2020, there is a reduction in the contribution from traffic and nontraffic 
emissions, confirming the overall emission reduction in Paris during the confinement period.

4.  Discussion
4.1.  Experimental Design for Sensitivity Tests

Several assumptions have been applied to our inversion configuration to evaluate their impacts on the inversion 
results. We focused on the CO2-only inversion configuration, but we expect similar results in the CO-CO2 inver-
sion results. We evaluated the impact of background, prior errors and correlation length on the inversion, the 
important components that are expected to influence the inversion system. The consolidated results are shown in 
Table 2. The reference setup for CO2-only and CO-CO2 inversions presented in shaded rows are defined as (a) the 
observations from the SAC tower are used for the background and (b) the prior error correlation length is defined 
as 4 km, and (c) the relative prior error variance at the pixel level is set as 100% of the emissions. CO2-only inver-
sion is tested for a correlation length of 20 km with the same prior error variance and wind-dependent background 
mixing ratios. Another test is carried out where prior error variance is set as 60% of the emissions at the pixel 
level. To test the performance of our inversion system, two tests are carried out where prior emissions of 2019 

Figure 12.  Contribution of different emission sectors and biogenic fluxes to the posterior mixing ratios at the observation 
towers. The values are mean over the inversion period (March–May).
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were used for 2020 and prior errors are set to 200% to make the inversion only dependent on observations. In 
CO-CO2 inversion, a test is carried out where 2019 prior emissions are used for 2020.

4.1.1.  Impact of Prior Errors and Correlation Length on Inverse Emissions

Prior emission errors in high-resolution inversion studies most often lack rigorous and objective quantification. 
We used two different prior error variances in this study to see their impact on the inversion estimates. Our first 
variance estimate was equivalent to 40% of the net emissions aggregated over the domain, that is, it was about 
100% at the pixel level. Our second experiment uses error variances reduced to 60% of the emissions at the pixel 
level (∼25% over the domain) with a correlation length of 4 km. Despite an increase in the emissions after inver-
sion, the correction after inversion has been reduced by about half compared to the reference inversion for 2019 
and 2020. However, the reduction in the posterior emissions from 2019 to 2020 remains almost uniform (−41% 
instead of −43%). We conclude that the 3-month inverse emissions are highly sensitive to the choice of prior 
error variances, while the relative decrease in emissions from 2019 to 2020 due to the restrictions (confinement) 
is nearly insensitive.

Figure 13 shows the difference between the posterior and prior emissions and the error reduction for a large corre-
lation length of 20 km (while keeping the other parameters identical to our reference inversion configuration). 
Here the spatial extent of the emissions corrections increased dramatically compared to the reference inversion 
in Figure 4. It is evident that the prior emission error structures play a major role in the spatial distribution of 

Note. The reference setup for both the inversions are presented in shaded rows. The ability of our inversion system to capture 
confinement emission reductions is presented for 2020 using prior emissions of 2019 (rows 6, 7 and 9).

Table 2 
Comparison of Inversion Results for Different Configurations
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the flux corrections. Similarly, the posterior emissions increased by about 71% for 2019% and 47% for 2020. 
However, the emission reduction ratio from 2019 to 2020 remains identical to our reference inversion (only a 
3% change). It implies that the relative decrease in posterior emissions between 2019 and 2020 is fairly robust, 
irrespective of our input parameters (i.e., both error correlation and variances).

The error reduction follows a similar pattern covering a larger area with values reaching up to 25%. The spatial 
pattern is more circular, a direct consequence of the exponentially-decaying error correlation, with the largest 
values in the center of the inversion domain. The error reduction shows similar pattern in 2019 and 2020. We 
conclude here that mapping the spatial distribution of the emissions will require additional information related 
to the spatial correlations of the inventory uncertainties or additional measurement locations to constrain the full 
extent of the metropolitan area. However, the relative impact of the confinement on fossil fuel emissions remains 
robust to our inversion configuration assumptions.

4.1.2.  Impact of Background on Inversion

The methodology used to compute hourly background values by assimilating local enhancements relative to a 
specified background is one of the major assumptions made in our inversion system. Biases associated with the 
selection of background mixing ratios will be propagated to the posterior flux estimation. Selecting background 
mixing ratios from the upwind tower network is potentially less representative than using spatially resolved 
modeled values. However, Bréon et al. (2015) pointed out that for the city-scale inversion, current regional  models 
would fail to provide sufficient accuracy while using spatially resolved modeled values. Several other studies 
have discussed the impact of background mixing ratios on inversion (e.g., Lauvaux et al., 2016; Miles et al., 2021; 
Mueller et al., 2018; Pisso et al., 2019; Turnbull et al., 2015). Here, we present the results from different strategies 
used to define the background values.

In the first method, hourly mixing ratios from SAC at the exact time of the observations is used as the background 
mixing ratios for inversion and presented as the reference case. For about 60% of the time, SAC acts as an upwind 
site. In the second method, the optimal site location is identified based on the domain-averaged wind direction. 
SAC and AND are the two most viable options (no large nearby sources) but can be influenced by the local vege-
tation. We note here that if the observations from one site are unavailable, observations from the other are used 

Figure 13.  Day-time total fossil fuel emission change for (a) 2019 and (c) 2020, and their corresponding error reductions (b and d) using 20 km correlation length.
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even if the wind direction is not optimal. The inversion results are consolidated in Table 2 for two different corre-
lation lengths (4 and 20 km). In the reference set up, using SAC and AND as background stations, the posterior 
emissions show an increase of about 35% and 30% in 2019 and 2020, respectively. By comparison, when using 
SAC alone to define the background, the increase was about 30% and 19%, respectively. This correction increases 
further to about 50% for 20 km correlation length, as seen in our reference inversion test case. However, the emis-
sion reduction during confinement is almost the same for both the cases and to the reference case discussed above. 
We conclude here that the choice of the background station has a noticeable impact on the 3-month emissions 
estimates. However, this impact remains lower than the impact of the prior error correlation length.

4.1.3.  Sensitivity of the Prior Inventory

To test whether the existing observations are sufficient to capture the emission reduction per sector during the 
lockdown period, Two tests are performed for CO2-only inversion and one test for CO-CO2 inversion during 
March-May 2020 but using the 2019 prior emissions. The results are shown in the sixth, seventh, and last rows 
of Table 2. Compared with the reference CO2-only inversion, a 10% increase in the emissions was seen after 
inversion (row representing 2020). On the other hand, emission reduction from 2019 to 2020 associated with the 
COVID 19 lockdown shows only a 11% difference, much lower than the original reduction (−43%) in the refer-
ence inversion. The remaining 30% reduction would be the reduction represented in the Origins.Earth inventory 
itself. One of the reasons for the poor sensitivity of our inversion system could be because the towers in the city 
center (CDS) are not capturing the emissions from the city. However, we need to analyze this further to derive 
conclusions.

To test the sensitivity of observations alone to the inversion, an additional sensitivity test has been done where 
prior errors are set to 200% of emissions. Emissions have increased after inversion by 50% and 21% for 2019 
and 2020 respectively compared to the prior emissions. With the same prior emissions (of 2019) in 2020, an 
emission reduction of 18.7% has resulted. Though it is still a small contribution compared to the impact of 
priors, the observations are indeed adding a significant contribution to the results. Compared with the reference 
CO-CO2 inversion (row 8), the prior-to-posterior emission change increased from 14% to 20% for traffic emis-
sions, whereas it decreased by about 15% for the others sector. On the other hand, the emission reduction from 
2019 to 2020 for the traffic sector shows a reduction of only 4%, much lower than the original reduction (−70%) 
in the reference inversion. Compared with the reference CO2-only inversion, the traffic emissions decreased 
by about 68%, whereas the others sector showed a reduction of only 30%. We conclude that the 2019 to 2020 
emission reduction is only partially captured by the atmospheric observations alone (−14% instead of −44%). 
At the sectoral level, the decrease in traffic emissions (in the reference inversion) is almost entirely driven by 
the assumed decrease in the 2020 prior emissions, while the others sector decreases by only 14% (compared to 
21% in the reference inversion). The others sector represents a larger fraction of the city emissions, hence has 
been assigned larger uncertainties. This implies that the actual sectoral reductions due to the confinement are 
not well-constrained by the CO observations. However, our results are consistent with previous studies (Nathan 
et al., 2018). We conclude here that additional tracers for both sectors are needed to separate sectoral emissions 
over the city of Paris (e.g., NOx).

5.  Conclusions
Our study presents fossil fuel emissions estimates from a high-resolution Bayesian inversion system at 1 km 
resolution over the Paris metropolitan area. The inversion is carried out during the spring season (March-May) 
of 2019 and 2020 using a priori emissions from the Origins.Earth inventory and biogenic fluxes from the VPRM 
model. Biogenic fluxes remained nearly constant and small during the March-May period, possibly due to our 
tower gradient approach, which excludes most non-local sources and sinks, or due to the low fluxes from VPRM 
(hence low prior errors compared to the fossil fuel contribution). However, a significant increase (about 150 g 
CO2 m −2 day −1) in the fossil fuel emissions was resulted in the central Paris region across all our inversion exper-
iments. Prior emission errors were reduced by up to 15% after inversion in the center of Paris. Flux time series 
shows a noticeable enhancement in the posterior emissions with large 5-day variations. Across multiple sensitiv-
ity experiments, we quantified the relative impact of the first confinement period due to the COVID 19 pandemic 
on the fossil fuel CO2 emissions over Paris. The estimated impact of COVID 19 confinement on the emissions 
was about −37% to −46% (reduction) depending on the configuration of the inversion system. However, 3-month 
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emissions estimates varied significantly depending on the inversion configuration, starting with the uncertainties 
in the emissions inventory (prior error variances and correlations).

The large reduction after the initial weeks of March in 2020 coincides with the COVID 19 lockdown restrictions, 
which considerably reduced most of the fuel-based activities across the Paris region. We combined CO and CO2 
mole fractions to quantify the fossil fuel CO2 emissions from traffic (on-road and off-road) and nontraffic (others) 
sectors separately. The inversion shows an increase in the traffic emissions from the high-resolution inventory by 
about 17% over the Paris metropolitan area in 2019 and by about 10% in 2020. Emissions from the other sectors 
also increased significantly in 2019 (about 38%) and 2020 (about 24%), primarily within downtown Paris. The 
overall results for the emission over the lockdown period show limited sensitivity to our inversion setup but 
significant to the prior fluxes. The configuration tends to increase the fossil fuel CO2 emission with respect to the 
prior emissions for 2019 and 2020, which gives us the impression that the prior emissions were underestimated. 
However, the joint assimilation of CO with CO2 mixing ratios was of limited use to separate the two sectors. 
We also identified that the lack of information relative to inventory uncertainties remains a major limitation in 
quantifying the aggregated 3-month emissions for both years. While the relative 2019 to 2020 reduction (caused 
primarily by lockdown restrictions) is robust to prior errors, we found large differences in our inverse emissions 
due to prior error correlation structures and due to prior error variances. We also identified background mixing 
ratios as the second most critical assumption. Therefore, precise mapping of fossil fuel emissions at the urban 
scale will require additional information to quantify both the high-resolution inventory errors and their spatial 
structures. However, through the inversion we found the impact of lockdown restrictions on CO2 fossil fuel 
emissions to an additional reduction of −12% (±4%) over the Paris metropolitan area, compared to the reduction 
estimated by the prior inventory.

Data Availability Statement
The observation data from the six towers of the French monitoring network for greenhouse gases were used to 
perform the inversion study. The filtered data used in the model simulations are available to the readers as the 
netcdf files in the repository https://zenodo.org/account/settings/github/repository/nalkrishna/Inversionoutputs# 
(https://doi.org/10.5281/zenodo.6804555). Hourly observation fields used in the model-data comparison and 
inversion for 2019–2020 are available as text files in the repository https://zenodo.org/account/settings/github/
repository/nalkrishna/GHG-data# (https://doi.org/10.5281/zenodo/6806644). All the data from the Ile de France 
network will be released to the public after different levels of quality checks through AERIS data centre, which 
could be accessed via aeris  –  Data  and  Services  for  the  Atmosphere  (aeris-data.fr). CO2 and CO emissions 
are taken from the inventories TNO (Emissions | TNO) and Origins.Earth (Origins.earth: system for monitor-
ing CO2 emissions and access to climate finance). Data analysis is done with Matlab version 2019 (MATLAB 
and Statistics Toolbox Release, 2019; MATLAB Login | MATLAB & Simulink (mathworks.com)).
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