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Abstract

Machine learning techniques, such as reduced order models
(ROM), have demonstrated low cost when creating models of
complex systems while aiming at the same accuracy as high
fidelity models, such as Computational Fluid Dynamics (CFD).
Here, ROM are created using CFD simulations of non-premixed lam-
inar flame detailed chemistry and transport. The data obtained for
variable fuel velocity are reduced using the singular value decom-
position (SVD) and then the genetic aggregation response surface
(GARS) algorithm is applied to predict the properties fields for an
arbitrary velocity. This work analyzes the effect of different data pre-
processing approaches on the ROM, i.e., (1) the properties treated
as a uncoupled or as a coupled system, (2) normalization of dif-
ferent properties, and (3) the logarithm of the chemical species.
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For all constructed ROM the energy content of the reduction pro-
cess and the reconstructed fields of the flame properties are analyzed.
This evidences the slower SVD modes convergence of the uncou-
pled ROM, and the faster one when the logarithm preprocessing is
applied. Learning is shown to be achieved with a smaller number of
modes for two of the coupled ROM and the ROM using the loga-
rithm. The reconstruction of the mass fraction fields is characterized
by regions of negative values, which underscores that the baseline
ROM methodology does not preserve the properties monotonicity,
positivity and delimitation. The logarithm preprocessing enables to
overcome these problems and to accurately reproduce the original data.

Keywords: Machine learning, computational fluid dynamics, non-premixed
flames, methane/air combustion.
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2 Introduction

The combustion process is a multi-scale phenomenon, which means that differ-
ent physico-chemical processes occur at different time scales, spanning several
orders of magnitude. In non-premixed flames, which are of interest in this
work, the transport of fuel and oxidant towards the reaction zone is controlled
by diffusion. The multi-step chemical reaction present in such flames occurs in
the vicinity of the stoichiometric surface, from which the combustion products
and the heat released, are transported towards the fresh unburned gases due
to such process present in the flame, these time scales manifest as length scales
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also. Even after decades of a steady increase in the available computational
resources and algorithm improvement which enable the study of combustion,
the direct numerical simulation of hydrocarbon-air flames in scenarios of indus-
trial interest remains challenging. Indeed, the accurate numerical modeling of
such flame requires, thus, that such time and length scales are fully captured,
which often entails a large computational cost. For this reason, the present
work endeavors to contribute to the development of a reduced-order model of
a non-premixed laminar flame configuration.

The studied flame configuration is that of a classical Gülder burner
flame [1–5]. This burner has already been used to compare the effects of nitro-
gen dilution and flame temperature on soot formation in ethylene diffusion
flames. More recently, studies on the Gülder burner have been performed focus-
ing on the soot formation characteristics in non-premixed laminar flames of
a mixture of n-heptane/butanol isomer and air, and also for soot characteri-
zation when ammonia is diluted to n-heptane fuel. Despite the availability of
experimental data for comparison purposes, the focus of the present work is
not on comparing computational and experimental results. Nevertheless, the
focus here is on improving the learning process in a specific class of machine
learning algorithms, known as reduced-order models (ROM).

Machine learning (ML) is an evolving branch of computational algorithms.
In particular, these models are based on fundamental mathematics, linear alge-
bra, optimization, and regression, and such models performance improves as
it is exposed to more and different type of data [6]. Ideally, ML generalizes
the given data, learning its patterns and correlating it with the outcomes that
are intended to be predicted in the field. Once the model is validated, it can
be applied to new database values [7]. Examples of machine learning include
identifying objects in images, selecting relevant search results, and machine
translation [8].

Machine learning algorithms are classified according to its structure, which
can be supervised or unsupervised, depending on the information available to
the model [7]. Supervised learning is the most common form of ML, where
the goal is to make predictions of a target by having expert knowledge learn-
ing, providing corrective information to the algorithm [8]. In unsupervised
approach, the learning occurs without training data being labeled, where the
goal is to find a structure in the data [6, 7].

Regarding the learning available data, machine learning approaches can be
divided into online and offline models. Online models learn the characteristics
of the system while the data is being collected, e.g., artificial neural networks
applied to image recognition [8]. Concerning fluid dynamics applications, the
estimation of the eddy viscosity has been developed using online identification,
which enabled an adaption of a reduced order model to changes of the flow
configuration [9]. Offline models, however, learn the behavior based on previ-
ously collected data. For instance, the ROM of the Navier-Stokes equations of
a flow passing a cylinder has used an offline data collection [10].
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The applications of these algorithms embrace different fields of knowledge,
such as engineering, biomedical, and finance [11–13]. For instance, the ML
has already been applied to the analysis of genome sequencing data sets or
applications in agricultural supply chains in different phases [14, 15]. However,
such algorithms are not yet widely accepted in the operation of engineering
systems, since it is often considered as black-box model, i.e., no prior knowledge
about the underlying physics of the problem or its restrictions is considered
for the learning [8, 16]. To overcome such limitation, it has been proposed to
combine ML with first principles models of engineering systems [16, 17]. An
example is the physics-informed machine learning used to predict the critical
heat flux with superior performance over standalone approaches [18].

Concerning the combustion process, machine learning techniques applica-
tions have been used for over two decades, as highlighted by reviews [19]. For
instance, a reduced order model based on CFD simulations results for oxy-coal
combustion enabled the estimation of the average outlet temperature of the
burnt gases for a given fuel and oxidant mass flow rates, and also to deter-
mine the inlet mass flow rate required to obtain the desired temperature [20].
In a different , a non-intrusive reduced order model has been applied for an
unstable flow using an approach which combines the POD with a feed-forward
neural network [21]. Recently, a non-intrusive methodology, using the proper
orthogonal decomposition and an interpolation method, has been applied to
construct a digital twin using CFD simulations and real-time measurements
of an industrial furnace [22].

The ML technique, reduced order model, applies a reduction method to
sort the data. For instance, singular value decomposition (SVD) or proper
order decomposition (POD) are usually applied as reduction methods. Subse-
quently, an interpolation/integration method is applied to learn the behavior
of the reduced system. As an example, the application of the POD approach
for a ROM of the Navier-Stokes equation has been used with different meth-
ods of integration/interpolation, comparing the impact of each method on
the ROM [10]. Another recent application of ROM, based on SVD, has been
used coupled with genetic aggregation response surface (GARS) to predict the
behavior of a laminar premixed inverted conical flame [23].

The particular application of reduced order model to combustion problems
covered different topics. For instance, ROM has been used to the description
of properties of a laminar premixed flame based on steady CFD data [23].
Furthermore, the analysis of the infrared radiation emitted by a reacting,
supersonic, turbulent jet has been developed using ROM based on numerical
simulation [24]. Also, an approach that blends data-driven learning with the-
oretical foundations has been proposed for a single injector combustor of a
rocket engine, willing to predict the properties profiles, such as pressure and
temperature [25]. A similar study on physics-based data-driven methods has
been proposed to learn the physics of a single-injector combustor ROM, using
high-fidelity simulations [26].
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Even though turbulent flames typifies most practical combustion indus-
trial processes, the multi-scale physics of laminar non-premixed flames enables
the study of combustion from the perspective of the computational cost of
high-fidelity CFD simulations. The associated multiple time and length scales
present in such flames increase the complexity of such models and its learning
process. Furthermore, the application of reduced order model methodology is
not as explored for laminar non-premixed flames, as it is for turbulent flames
[19, 23].

Regarding the preprocessing, it is known that data preprocessing could
either ease or complicate the ML model predictions [8, 16]. In particular, the
data normalization is a practice widely used in some problems, where the goal
is to change different data values to a common scale without distorting the
differences in the value ranges [7, 11]. Furthermore, to ensure that algorithms
learn with prior knowledge about the underlying physics of the problem or its
restrictions, it has been proposed to combine ML with first principles models
of an engineering system, e.g. the physics informed machine learning used
to predict the critical heat flux, with superior performance over standalone
approaches [16–18]. Here, the focus will be on using preprocessing to solve the
monotonicity problem found in ROM applied to laminar flames using known
combustion principles, such as the exponential decay of chemical species with
distance [27–30].

The main objective of this work is to develop reduced order models of
methane/air laminar non-premixed flame stabilized on a Gülder burner, using
computational fluid dynamic modeling results to construct ROM. The cor-
responding specific objectives are: To analyze the influence of preprocessing
the learning data, which are the CFD modelled combustion properties, on the
ROM results, i.e.,: The impact of creating a ROM for each uncoupled flame
property or treating the properties as a coupled system; The effect of nor-
malizing the data set, including the species data since some minority species
mass fraction are of the order of magnitude of 10−6; The influence of applying
a logarithm transformation of species mass fraction to construct the ROM;
To develop an analysis of the reconstructed modes energy content of each
methodology applied to the learning data; To compare the CFD and ROM
results.

3 Methodology

In this section, the steps to model an non-premixed diffusion flame are pre-
sented. First, the studied diffusion flame and burner are presented, based on
experimental knowledge, followed by the experimental and geometrical setup
definition. Then the two used models are outlined, i.e., the computational fluid
dynamics and the reduced order. Lastly, the methods applied for preprocessing
the learning data used for the ROM are presented.
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3.1 Studied Non Premixed Flame Configuration

In non-premixed flames the transport of fuel and oxidant happens due to
diffusion towards the reaction region, where chemical reactions occur. Hydro-
carbon/air diffusion flames are known to have a high production of soot when
compared to lean premixed flames, and have been extensively used on the
study of soot formation [27, 31]. In this work, the study and modeling of
non-premixed diffusion flames at the well-known Gülder burner is developed.

The Gülder burner has a simple geometry and is widely used on the study
of stable, axisymmetric, non-premixed laminar flames [1–3, 32]. This burner
presents an axial symmetric flow entering the system through two inlets [2], as
shown in Fig. 1a. The non-premixed fuel enters through the central tube, which
inner diameter is 11 mm, whereas the air enters through the annular region
with a radius of 50 mm, being responsible for the flame stabilization. Figure 1b
presents an example of an ethylene/air laminar diffusion flame stabilized on a
Gülder burner [2].

(a) (b)

Fig. 1 (a) Representation of the Gülder burner and (b) Ethylene/air flame stabilized on
the Gülder burner [2].

Based on the burner characteristics [28], one can define the non-premixed
flame experimental setup and geometry and boundary conditions, as pre-
sented on the following section, which are necessary to the development of the
combustion modeling of interest.

To model the Gülder burner flame, it is first necessary to define the system
geometry and mesh, according to the problem of interest. Since the flame
is supposed to be axisymmetric, only a slice of the actual physical domain
is modeled, such that a 2D model represents the burner and computational
domain, as shown at Fig. 2.
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(a) (b)

Fig. 2 (a) Cross-section representation of the Gülder burner along with a schematic of
the computational domain and (b) Computational domain and its dimensions. (A): internal
part, (B): external part.

The geometry dimensions of the fuel and air inlets, and the burner wall
thickness are the same as for the experiments shown in Fig. 1a, radius of
5.5 mm for the fuel inlets, and a tube wall thickness of 1 mm. The two dimen-
sional geometry given at Fig. 2b represents the domain of interest and its
boundary conditions, using different colors to represent each boundary. The
symmetry axis, represented by the yellow line, has a length of 160 mm. The
four gray lines represent the walls, whereas the outlet and the two inlets are
the red and the blue lines, respectively. Two types of walls are considered in
this domain; (1) the burner wall, which has an adiabatic, non catalytic, no-
slip condition, and (2) the one representing the outer boundary, which has a
slip and constant temperature condition. The walls between the burner inlets
are denominated as burner walls, and the free boundary is the external right
boundary, with a length of 150 mm.

The burner is designed to ensure that the flame is laminar, and the fuel flow
at the outlet of the fuel tube is fully developed. Therefore, the minimum inlet
tube length is a function of the Reynolds number (Le ∼= 0.05DRe) [33]. The
length of the fuel and air feeding tubes are 60 mm and 50 mm, respectively.
In this experiment, air and fuel enter the domain through different inlets, as
shown in Fig. 2b, such that the mixing of reactants only occurs at the reaction
zone. Regarding the inflow conditions, at the computational model inlets, the
species molar fraction, temperature, pressure and the inlet velocity are given.
The air is a mixture composed by 21% O2 and 79% N2, and the fuel is
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methane. Air and fuel have prescribed temperature and pressure of 300 K and
1 atm, respectively.

Based on the described system geometry and boundary conditions, the
following sections of this work present the overview physical and and compu-
tational models applied in this work.

3.2 Physical Mathematical Model Summary

The studied methane/air diffusion flames are modeled with transport
equations of species, mass, momentum and energy in an axisymmetric refer-
ence frame. The species mass transport equation is solved accounting for the
multi-species diffusion coefficients, the Fick’s law of diffusion, the Soret ther-
modiffusion effects, but the barodiffusion effects are neglected since the flame
is isobaric. The solved energy transport equation accounts for the non unity
Lewis number effects, but neglecting thermal radiation since the modeled flame
here does not present soot formation. Indeed, the participating medium emis-
sion relies on CO2 and H2O at the burnt gases only, thus the flame is considered
transparent regarding the absorption process. Since such mathematical formu-
lation has been extensively studied in the context of combustion of laminar
flames, no further discussion is going to be taken on this work, one can refer
to [27, 34, 35] for a detailed discussion. The momentum transport equation
considers the buoyancy effect, and Newtonian fluid behavior is assumed.

To model the chemical kinetic process a skeletal model called DRM19 is
applied [36], which is a reduced GRI-Mech 1.2 kinetic model. The DRM19
skeletal kinetic model is composed of 19 (plus N2) species and 84 reactions
[36]. Such model has already been used to model laminar flames in different
configurations and one can refer to [23, 37, 38] for such applications.

3.3 Computational Fluid Dynamics Model Overview

In this work, the model of the diffusion flame is developed using Ansys Fluent
2020 R2, which applies finite volume, using the following solution methods:
coupled for the pressure-velocity coupling, Presto for the spatial discretization
of pressure, and the second order upwind to calculate the spatial discretization
of energy, species and momentum [34]. Since those methods are quite standard,
no further discussion is developed here.

The stiff chemistry solver is applied to account for the reaction in the
species transport equation, consisting of a fractional step algorithm for
pressure-based unsteady simulations [39]. Moreover, the In Situ Adaptive Tab-
ulation technique (ISAT table) is used to solve the chemistry in each cell for a
constant pressure. Here, the convection and diffusion terms are treated as in
a non-reacting simulation.

The ISAT has been widely used as an integration method in combustion
simulations [40, 41]. It has been employed to integrate the stiff chemistry to
reduce the burden of a direct integration of the chemistry [40, 42–45]. Fur-
thermore, the performance of ISAT decreases in flames with large time scales,
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since more work is required on the integrator of the ordinary differential
equation [40]. In this work, the ISAT table is used as integration method, and
with an error tolerance of 10−4.

The detailed chemical kinetics mechanisms contain several intermediate
species in addition to the principal species, and these intermediate species
evolve at different reaction rates, leading to a large variation of time scales
for species formation and consumption [27]. The accurate simulation of such
system, thus, requires a small time steps, at mili-second order, increasing the
necessary computational time. Nevertheless, the in-situ adaptive tabulation
integration (ISAT) tool [42] enables the reduction of the computational burden.

Moreover, to properly describe the combustion process and all of its scales,
a refined mesh is necessary on the domain, but using such refined mesh lead to
an infeasible simulations cost. To overcome this problem, as shown in Fig. 2,
here the domain is divided in two parts, one internal, representing the com-
bustion region (A), and one external, representing the fresh and burnt gases
(B). Since the part (A) contains the reactive zone, it has a refined mesh. Such
internal part has a rectangular mesh, with an initial size of 100 µm and 1 mm
in the radial and axial directions, respectively. The external part (B) has a
uniform mesh with a size of 1 mm. Even though the two mesh blocks are used
to decrease the simulation burden, it is enough to properly compute the com-
bustion scales, especially the minor species. Therefore, a mesh adaptation tool
is used to refine and coarsen the mesh when needed.

The mesh adaption tool is also applied to reduce the computational burden
linked to the detailed combustion models, but accurately solving the flow char-
acteristics. Such adaptive mesh refinement is usually performed to reduce the
numerical error with reduced numerical cost. It enables the refinement and/or
coarsening of the mesh based during the numerical simulation [46, 47], adding
or deleting mesh cells/nodes based on a pre-determined property range. For
instance, one can set the adaption based on the temperature gradient, and
then set the minimum and maximal ranges for such property [48].

To overcome the burden linked to modeling such complex combustion sys-
tems, a gradient mesh adaptation based on the temperature is applied in
this work, where the refinement and coarsening thresholds are 10 K/m and
300 K/m, respectively. A trial and error procedure, based on the temperature
sensitivity test in mesh adaptation [38] has been performed to determine the
best threshold values for the case of the laminar diffusion flame, with a fuel
inlet velocity of 17.5 cm/s. For the sake of brevity, this test are not include in
this work, one may consult [37] for a detailed explanation of the mesh adaption
impact on the modeling of a lean premixed flame.

The adaption based on temperature gradient is well known to ensure an
appropriate adaptation criterion for combustion systems [36]. In this work,
an adaptation based on a single property, temperature, is effected every 25
iterations. To exemplify the impact of such adaption procedure on the current
work, the initial characteristic mesh of the system has 11, 667 nodes, however,
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when the simulation for the fuel inlet velocity is 4.38 cm/s converges, it has
81,501 more nodes than the original mesh.

It is worth to mentioning that the ignition of such reactive simulation is per-
formed by imposing a high-temperature region over a fully developed fuel/air
isothermal field. More precisely, departing from a converged isothermal simu-
lation, a patch of 3 mm in the radial and 5 mm in the axial direction is set at
the stoichiometric line (YCH4,st = 0.055), 1 mm above the fuel feed tube out-
let. This patch is initialized with a temperature of 1, 800 K, which corresponds
to the methane adiabatic flame temperature. Once this reactive simulation
converges, the properties fields obtained are used as a ignition trigger initial-
ization for subsequent simulations. Such initialization method decreases the
simulation time necessary for the flame to stabilize, since the ignition phase is
taken into account each time.

Now that the model has been set, it is used to generate data representative
of a Gülder burner flame for different configurations, which are presented later
in this work. However, in order to obtain high-fidelity CFD simulations, there
is a high computational cost, especially in relation to memory and simulation
time, which often makes a parametric study unfeasible. Therefore, a machine
learning techniques, i.e., a reduced order model has been applied to overcome
this shortcoming [10, 19]. More specifically, CFD data generated through the
previously presented model is used to train a reduced order model, and the
next section presents the methodology that is applied to develop the ROM in
this work.

3.4 Reduced Order Models

Reduced order models (ROM) are known to enable a simple representation
of complex systems, but keeping the main characteristics of those systems
[7, 19, 49]. In this work the software Static ROM, of Twin Builder from Ansys,
is used to create ROM for combustion. Such software builds ROM based on
four main steps, as shown in Fig. 3. Its construction steps are the following; (1)
choosing the learning data set, (2) decomposing the data in simplified form,
(3) retaining the main characteristics of the learning set and (4) applying a
machine learning interpolation.

Fig. 3 Procedure scheme to construct a reduced order model with Ansys Static ROM.
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The first step consists on obtaining representative data of the system of
interest, of which, in this case, 60% is used to learn the model, and the remain-
ing 40% to its validation. One may note that the learning set must include
the extremes of the parametric space, in order to avoid an extrapolation when
the obtained ROM is used. In the second step, a singular value decomposition
(SVD) is applied to decompose the system and obtain its modes. The SVD
decomposition organizes the modes matrix in decreasing order, such that the
higher mode values are on the top of the matrix, and those retain the most
important characteristics of the system of interest [50]. Nevertheless, based on
the SVD results, one can reduce the order of the model simply by choosing
the first modes of the system.

It is worth to stress that the data matrix that is decomposed to create the
ROM, in the second step of Fig. 3, contains in the columns the cases modeled
separated as the learning data, and the rows are the information from each
cell of the domain. Note that the each data provided to create the ROM has
the same number of rows, which means that even though CFD simulations use
adaptive meshing, the data provided to the ROM is extracted from a uniform
mesh.

The third step constitutes the filtering of the system through the SVD,
where only the most important characteristics are retained, i.e., the higher
order modes. This procedure generates a reduced base which is then used to
describes the entire system [50].

The last step of the modeling is, then, the interpolation is performed with
Genetic Aggregation Response Surface (GARS), which applies a selection pro-
cess to determine what type of response surface (RS) better describes the
system [51, 52]. Such method is defined as a weighted average of a set of
response surfaces, and has a cross-validation process, where the risk of an
algorithm spreading the data set is estimated, and thus present an improved
reliability when compared to other classical response surface [51, 53].

Moreover, the genetic aggregation algorithms (GA) are based on the
principle of natural selection, improving the population from generation to
generation, and making the algorithm more effective [6, 53]. Such algorithms
can based on different process, such as crossover, mutation or replication [51].
More specifically, the Genetic Aggregation Response Surface (GARS) is based
on different response surface methods as population, which, in this work, corre-
sponds to the integration methods of polynomial regression, Kriging, support
vector regression and moving least squares [54–57]. The GARS algorithm,
thus, chooses the combination of response surface (RS) that best describes the
system, which, in this work, are the flame properties fields.

To summarize, a reduced model is created, based on the chosen modes and
RS, describing the behavior of the system. Furthermore, the model validation
is performed through the available validation data. It is worth to note that the
accuracy of the ROM is influenced by several factors. For instance, the data
available (learning and testing), the number of modes used on the reduction
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of the learning set, and the interpolation method error [25]. Varying such
parameters might strongly change the ROM and its accuracy.

One may note that, in classical combustion problems, it is important
to account for some physical restrictions. More specifically, with respect to
the combustion scalars, monotonicity, positivity, and boundedness are critical
properties [34, 35]. Note also, that other problems, such as bankruptcy pre-
dictions, or medical diagnosis that use machine learning algorithms, are also
concerned by monotonicity restrictions [58]. Therefore, a ROM methodology
for describing a non premixed flame must guarantee these three properties.

3.5 Preprocessing Methods

On Machine Learning studies and applications, it is well known that the
data provided for learning an specific system has a remarkable impact on the
obtained model. As a consequence, knowing the main characteristics of the
data is important to achieve a representative ROM. Thereby, data process-
ing tools are often used to provide insights on the data, thus, facilitating the
learning process.

In this work, an ROM of a laminar diffusion flame based on several flame
properties obtained through CFD is created, and some difficulties linked to
the learning such different flame scales have been seen. For instance, an issue
related to the monotonicity of the combustion properties obtained has been
observed, which is detailed in [28]. To overcome such monotonicity prob-
lem [28], different methodologies to preprocess the available data are proposed.
Firstly, a simple methodology regarding the properties being treated as an
uncoupled or as a coupled system in the construction of the ROM is proposed.

For the uncoupled method, each property has its respective ROM. Thus,
for a property A, the available data influences only itself and its reduced order
model, and the same goes for properties B, C, etc. Nevertheless, when the prop-
erties are considered as a coupled system, the data of all properties construct
a single reduced order model. Therefore, the data of property A influences the
data of other properties in the coupled ROM.

Moreover, willing to facilitate learning process, other preprocessing
methodologies are applied to the learning data. More specifically, the normal-
ization of the properties when the system is being treated as coupled, and the
logarithm of the chemical species for the coupled and uncoupled data.

3.5.1 Properties normalization

More precisely, in the studied case, the data of the combustion properties
present scales that differs in several orders of magnitude. For instance, the
maximum temperature reaches about 2, 100 K, whereas the minor chemical
species, such as the CH2 radical, have a maximum mass fraction of 3 · 10−5.
Since the singular values are sorted in hierarchical order on the SVD, the
properties with smaller scales might be ignored when the model reduction is
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applied. Thus, when such a scale disparity is present, one should take it into
account when the coupled method is envisaged to model the system.

Moreover, normalization of the learning that has often been used on
machine learning methodologies. In this work, a normalization method is
applied to harmonize the variance of the learning data, reaching a common
scale, without biasing the differences in the value ranges. Since the studied
flame is multi-scale, the impact of the normalization of temperature, velocity
components, and species are normalized in the following form:

T ∗ =
T (k)− T0
Tad − T0

, u∗ =
u(k)

umax
, umax = u0

Tad
T0

, Y ∗i =
Yi(k)

Yi,max
, (1)

where T ∗, u∗ and Y ∗i are the normalized temperature, velocity component and
species i mass fraction. T0 is the temperature of fresh gas, 300 K; Tad is the
adiabatic flame temperature of stoichiometric methane/air mixtures, 2, 236 K;
u0 is the air inlet velocity, 60 cm/s, and Yi,max is the maximum concentration
of the species i found when the CFD simulation converges.

One may note that, to estimate the temperature and velocity bounds in
the reactive case, the reference temperature in the chemical equilibrium (Tad)
and the inlet velocity are well known, and computed through mathematical
straightforward methods. However, each chemical species maximum concen-
tration is a priori unknown, thus, the estimation of a reference value for such
properties is not straightforward.

Furthermore, now that the normalization method of the coupled combus-
tion system has been given, this work goes beyond the common preprocessing
methodologies. In the following section, a preprocessing method for ROM
models focused on combustion system is proposed.

3.5.2 Logarithm preprocessing

Here, the application of the logarithm on the computed species mass fractions
reactions is proposed. Such method is chosen based on its classical known
link to combustion systems. Indeed, away from the flame reaction zone the
spatial decrease of the mass fractions due to diffusion and convection process
is exponential [27]. Therefore, the use of the logarithm in ML applications
related to chemical kinetics has a theoretical basis [29, 30], easing the learning
process linked to the combustion chemical properties.

Studies on the impact of the logarithm on combustion chemical properties
have already been developed. For instance, in order to reduce the cost linked
to solving the chemical source term of reaction, a neural network architecture
was proposed to approximate chemical kinetics in an efficient and scalable
way [30]. This architecture is composed of 12 neural sub-networks trained on
temperature, pressure and 10 chemical species, where the sum of the mass
fractions of the chemical species has to be equal to one in order not to violate
the mass concentration. Willing to strengthen an accurate prediction of the



Springer Nature 2021 LATEX template

14 ROM of Diffusion Flames: The Impact of preprocessing

different scales of the chemical species, especially the minor and radical species,
a logarithmic normalization of the input data and a loss function using mean
squared logarithmic error for the chemical species concentrations is proposed.
This architecture enabled the prediction of temperature, pressure and species
concentration with a high degree of accuracy compared to the numerical results
for the hydrogen combustion mechanism, with an average species mass fraction
error of the order of 10−5.

Another example of the use of logarithm, as preprocessing method, is the
artificial neural network (ANN) constructed for the tabulation of chemical
reaction terms for premixed flames and ignition flames [29]. The use of a log-
scale normalization for minor and radical species has been adopted, since the
distribution of such species is strongly skewed towards 0. Thus, a standard
normalization would underestimate the contributions of these minor species
concentrations to the reaction kinetics and predictions. The results show that
the ANN with log-scale normalization is more accurate, in particular for species
with low mass fractions.

In this work, the logarithm preprocessing method is then applied to all the
chemical species from the chemical mechanism applied. However, since there
are species regions of the domain where the mass fraction of some species are
zero, the logarithm method might present some instabilities. Thus, to over-
come the problem linked to the regions where chemical species are absent, a
truncation parameter (εc) is imposed on the mass fractions data. Then, the
log10 is applied to the data set before the ROM construction, i.e.,

Yi = log10

(
max(Yt, 10−εc)

)
. (2)

This operation is performed for all the chemical species, since the logarithm
has an know impact on the chemical kinetic properties of the combustion. The
ROM is then computed over the transformed chemical species Yi only, and
thus no pressure, velocity or temperature are included on the model. After the
model is learned, it can be applied to validation, where the logarithm results
obtained with the ROM are recovered to its initial form (Yi = 10Yi).

Furthermore, all of the different preprocessed ROM results are interpolated
on the uniform mesh through Fluent, then those are analyzed and compared
with each other. In this work, a study of the influence of the truncation param-
eter εc on the final result is also performed, aiming to determine a value, which
should best suit all species reconstruction. Such impact is developed by ana-
lyzing the influence on the singular value on the result and the reconstructed
mass fractions. The three truncation parameter values are chosen as 8, 10 and
12, which are all smaller than the maximum mass fractions found for the minor
species.

4 Results and Discussion

In this work, the fields of several combustion properties modeled with CFD are
used to create a reduced order model representative data set of the methane/air
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laminar non-premixed flame. Such data is obtained from 20 reactive CFD
simulations, where the fuel input velocity varies only.

From each CFD case, i.e. for each inlet velocity, a total of 23 property
fields are extracted to build the data set (temperature; velocity components
and the species mass fraction, except for the activated CH∗2). Depending on
the methodology applied in learning data preprocessing step, such properties
are treated either separately or as a coupled system. Since 60% of the CFD
available data is used as learning data, 12 of the 20 numerical simulations are
chosen to construct the reduced order model. Note that all ROM built in this
work have the same learning cases, corresponding to 60% of the data set. For
the purpose of comparison, all the ROMs have the same number of modes,
five, as well as the same learning cases. Then, for the sake of brevity, from the
total of 8 validation cases, only the case of fuel inlet velocity of 3.1 cm/s is
discussed here.

It should be stressed that each CFD computation required around 15 days
to reach convergence, using 18 cores of a 24 CPU in a computer with 32 GB
of memory using Windows 10. The processor used is the AMD Ryzen 9 3900X
12-core, running at 3.79GHz. The software used is Ansys Fluent, version 2020
R2, for flow analysis and flame calculation. Moreover, static ROM from Ansys
Twin Builder, version 2021 R1, is applied to create the ROM.

4.1 SVD Energy Analysis

To study the influence of varying the number of the ROM modes on the pre-
cision of the different models, Figs. 4 - 6 present the singular values from the
SVD for the decoupled, coupled and the logarithm species ROM approach,
respectively. The vertical axis displays the singular values normalized by the
sum on a log10 scale, and the horizontal axis, the number of modes in a lin-
ear scale. The logarithm scale has been chosen to underscore the order of
magnitude variations of the singular values computed.

In a general overview, all properties show similar behavior; i.e., the first
SVD modes have higher singular values and, as the number of modes increases,
the singular value decreases. Such feature comes by construction from the
SVD decomposition, where the singular values are ordered in a decreasing
value, such that that the information given by the first modes retains the main
characteristics of the considered system.

The SVD energy analysis for the uncoupled reduced order models is pre-
sented at Fig. 4. For the sake of brevity, only five different flame properties
are shown in such figure: OH, CH2 and CO2 mass fractions, temperature, and
radial velocity. The temperature, radial velocity and CO2 mass fraction have
a steeper property decrease when compared to OH and CH2 mass fractions.
Such difference becomes even more evident when considering a horizontal line
at y = 100 and analyzing the mode number for which the singular value first
lie below this line. Concerning the temperature, radial velocity and CO2 five
modes are required for the SVD to go below this line. Nevertheless, for OH
and CH2 this is only observed at the ninth and twelfth modes, respectively.



Springer Nature 2021 LATEX template

16 ROM of Diffusion Flames: The Impact of preprocessing

This underscores that learning these minor species is harder than the velocity
components or temperature.
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Fig. 4 Singular values (%) normalized by the sum (λn
s), as a function of the number of

modes (n) for five properties of the uncoupled ROM. •: vy ; H: T ; �: YOH ; �: YCH2
; F:

YCO2
.

In order to evaluate the effect of the different coupling methodologies, the
comparison of the energy related to the reduced order model, with the prop-
erties treated as uncoupled and coupled, is given in Fig. 5. More specifically,
the results corresponding to three methodologies of the coupled properties is
presented; one without normalization, the other two cases with normalization
being applied, using Eq. (1): one having only the temperature and velocity
normalized, and another with all properties normalized.

In Fig. 5, the energy required to reconstruct the ROM using the coupled
properties without a normalization is similar to the energy necessary to the
uncoupled temperature ROM. This is explained by considering that the singu-
lar values are controlled by the highest absolute property value, which in this
case is the temperature, of the order of 103. Despite the normalization of the
temperature and velocity, the energy content is still similar to that required
to reconstruct the temperature, which might be explained by the remarkable
difference between the orders of magnitude of the different species, being sig-
nificantly smaller than one. Nevertheless, when considering the coupled case
with all properties normalized, the decrease of the energy present in each mode
is more similar to the uncoupled OH ROM, i.e., it is slower than the other cou-
pled models. To better illustrate such phenomena, an horizontal line is drawn
at y = 1. Indeed, for both coupled ROM, without normalization and with nor-
malization of temperature and velocity, the energy is smaller than 1 at the
fourth mode. On the other hand, for the coupled ROM with all properties
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Fig. 5 Singular values (%) normalized by the sum (λn
s), as a function of the number of

modes (n). ×: coupled without normalization; +:coupled with normalization of temperature
and velocity; ∗: coupled with all properties normalized; O: uncoupled temperature ROM; �:
uncoupled YOH ROM.

normalized, this occurs only in the seventh mode. Therefore, the ROM with
coupled normalized properties has a learning process limited by the combustion
scalars, i.e., the intermediate minor species, that are “harder” to learn.

Aiming to overcome/avoid the monotonicity problem faced as seen in [28],
here the logarithm to the learning data is applied, as given by Eq. (2). To study
the influence of this method, the effect of truncation parameter is analyzed
first, for three values of εc, where εc is the negative exponent of the truncation
parameter. The values of εc are arbitrarily chosen as 8, 10 and 12.

Accordingly, three reduced order models, using the logarithm technique,
are constructed for each εc. Figure 6 presents the corresponding singular values
normalized by the sum, as a function of the number of modes, for two species;
one minor (CH2) and one major species (CO2).

A qualitatively similar behavior is noticed for those ROM shown in Fig. 6.
Indeed, the singular values of the species for the uncoupled ROM are higher
than those found in the ROM where the logarithm is applied, for almost every
mode. Also, for the CH2, the singular values of the uncoupled ROM are at least
an order of magnitude larger than the one corresponding the the logarithm
ROM.

Regarding the minor species CH2, given in Fig. 6a, one may note a differ-
ence between the singular values starting from the second mode. Also, when
εc = 12, the decrease on the values is smaller when compared to εc = 10 and 8.
For the major species, Fig. 6b, the singular values corresponding to the three
εc chosen are remarkably similar.
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Fig. 6 Singular values (%) normalized by the sum as a function of the number of modes,
for the species mass fraction uncoupled ROM and the ROM using the logarithm approach,
for three different truncation parameters. εc is the negative exponent of the truncation
parameter chosen as the minimum value of the mass fraction range. 5: uncoupled ROM;
+: εc = 8; �: εc = 10; ×: εc = 12.

Comparing the results between the minor and major species it is noted
that learning the behavior of the major species requires a smaller number of
modes than for the minor species, and consequently this facilitates learning
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the behavior of CO2. This behavior can be exemplified by drawing a horizontal
line at y = 100 as done in the previous energy analysis. In the case of CH2, the
first ROM below this line is ε = 8 at the fourth mode, followed by the ROM
of ε equal to 10 and 12, in the respective fifth and sixth modes. For CO2, the
logarithm ROM are below the line in the third mode. Furthermore, the energy
decay in each mode is steeper for the major species than for the minor species,
the same behavior is found when comparing the species in uncoupled ROM.

4.2 Properties Reconstruction Field Comparison

In the previous section, five reduced order models have been presented, with
different preprocessing methodologies. Nevertheless, for the sake of brevity,
only some of the results will be presented here, i.e., the most remarkable ones.
Indeed, it has been observed that the results of the coupled ROM without
normalization and the one with temperature and velocity normalized present
no significant differences when compared to the uncoupled ROM. In particular,
the three models still present negative mass fraction regions [28]. Moreover, for
the coupled ROM with all properties normalized, a smaller region of negative
mass fraction and a worsening in the profiles of the chemical species are seen,
e.g., a spatial bifurcation present in some species such as OH. Such phenomena
has been seen, in the description of chemical species and reduced by increasing
the number of learning cases [28].

Figure 7 shows the mass field of three chemical species (OH, CH2 and CO)
obtained from CFD, using the uncoupled and logarithmic ROM reconstruc-
tions. Each column of the figure represents one of the three methods used to
obtain the field, while each row represents a given species. Those species have
been chosen to illustrate the impact of each model on the intermediate species,
with different length scales. For these species the maximum concentrations are
around 10−3 for OH, 10−5 for CH2, and 10−2 for CO.

The computational domain portion used to visualize the results corresponds
to the air and fuel inlets velocity. The fuel inlet is limited by the burner wall,
which has a thickness of 1 mm (represented by the white rectangle in the
lower part of Fig. 7). Such 1 mm white rectangle present on the figure provides
a scale reference for the dimensions of all figures displaying property fields,
facilitating the analysis. In the following, one may note that the reference to
the air side or fuel side refer to the reactant inlets. More specifically, the air
side is located in the lower left part of the displayed domain, whereas the fuel
side lies at the lower right one part.

Regarding the CFD species profiles, at the first column of Fig. 7, the OH
mass fractions, Fig. 7a, presents a maximum concentration of the species near
the anchoring region, at the air-side burner wall, exhibiting a local maximum at
the symmetry axis. Also, the OH concentration along the stream wise direction
decreases due to the progressive dilution by combustion products. The CH2

mass fraction field, depicted at Fig. 7d, is characterized by a thin (0.8 mm at
1 mm after the fuel feeding tube outlet) and long profile, having its maximum
near the anchoring region, at the air side. One may note that this species has
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the smallest time and length scales, being quickly produced and consumed,
within the reactive region [23]. Accordingly, CH2 is an effective indicator of
the flame front position, since it has the smallest scale in comparison to all
the combustion properties [23]. Lastly, the mass fraction profile of carbon
monoxide is given in Fig. 7g. Unlike the other species produced from methane
oxidation, CO shows a maximum concentration along the inner region of the
flame, and not at the flame front. Indeed, the concentration of this species first
increases along the axis of symmetry and, as it is consumed, the concentration
decreases.

Following, the uncoupled ROM results given at the second column of Fig. 7,
present a negative mass fraction region, represented by the white color on the
OH and CH2 profiles. Such negative mass fraction has no physical meaning,
since the mass fraction are bounded between 0 and 1, thus these negative
values being an artifact of ROM prediction. This negative mass fraction in the
uncoupled ROM reconstruction is present on the predicted result of 15 out of
20 combustion species, with various orders of magnitude, which is not shown
here for the sake of brevity. One may note that the result for OH, Fig. 7b,
shows a smaller region of negative mass fraction than the CH2 field (Fig. 7e),
meaning that there is a difficulty linked to the prediction of the minor chemical
species, such as, CH2.

Concerning the carbon monoxide mass fraction field of the uncoupled ROM,
Fig. 7h, one may note that the reconstructed field is slightly longer than the
CFD one (Fig. 7g). Also, the ROM result predicts a region where the maxi-
mum mass fraction is 0.053, which is higher than the CFD one, of 0.051. The
fact that the ROM predicts a result that is not in the CFD learning data,
suggests that the ROM methodology does not preserve neither the monotonic-
ity nor the boundedness of the properties. Nevertheless, the monotonicity and
the boundedness of the properties are indispensable properties for combustion
studies, and must be preserve to apply the ROM in real industrial combus-
tion scenarios. Despite these shortcomings, the species fields obtained by the
uncoupled ROM are somewhat similar to those obtained by CFD.

Moreover, the ROM results using the logarithm exhibits significant dif-
ferences in comparison to the other methods used. Indeed, none of chemical
species predictions have a negative mass fraction region, corresponding THUS
to the physically expected behavior. In fact, the minimum mass fractions of
all predicted properties are positive and greater than zero, on the order of
magnitude of 10−11. Also, some of the predicted fields using the logarithm
preprocessing methodology are similar to the others ROM. It is worth to note
that the CO mass fraction field, Fig. 7i, still presents a region of high mass
fraction, with a YCO > 0.051, similar to the predicted with the uncoupled
YCO ROM. Concerning the continuity criteria, the maximum standard devia-
tion increases to 10−5, but the error (rYi

= 1 −
∑
Yi) still remains randomly

spatially distributed.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 7 OH (a, b, c), CH2 (d, e, f) and CO (g, h, i) species mass fraction obtained with CFD
(first column), uncoupled ROM (second column) and the one using the logarithm of the
chemical species data as a learning data for εc = 10 (third column), for the validation case
with prescribed fuel inlet velocity of 3.1 cm/s. The color map limits are YOH ∈ [0, 3.9·10−3];
YCH2 ∈ [0, 2.8 · 10−5]; YCO ∈ [0, 5.1 · 10−2]. The color map goes from blue (minimum) to
red (maximum). The fuel inlet is located at the bottom right side, and at the left side is the
air inlet.

To further characterize the effect of the proposed logarithm preprocessing
on the ROM, Fig. 8 shows the mass fractions of OH along the burner symme-
try axis. Figure 8a gives the mass fraction of OH along this axis for the CFD
results, uncoupled ROM and logarithm ROM. One may not that the curve
corresponding to the OH uncoupled ROM exhibits a non-monotonic behav-
ior, between 70 and 80 mm, underscoring the previously discussed phenomena
that is seen in Fig. 7. The OH mass fraction increases and then decreases
to a negative value, which violates the physics, returning to a positive value
near 80 mm. Regarding the ROM using the logarithm preprocessing approach,
Fig. 8a shows that a distinction on the behavior between the different εc val-
ues and the CFD result is not observed until 80 mm. The CFD result has a



Springer Nature 2021 LATEX template

22 ROM of Diffusion Flames: The Impact of preprocessing

maximum OH mass fraction slightly upstream, when compared to the ROM
methods. Moreover, the curves of CFD and εc = 8 are the highest, and the
peak of the curve of the uncoupled ROM is the lowest. Nevertheless, the curves
of ROM using the logarithm approach for εc = 10 and 12 are quite similar to
each other.
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Fig. 8 Mass fractions of OH along the symmetry axis. The y axis is the species mass
fraction and the x axis is the distance in the flow direction [mm], where 60 mm is the outlet
of the fuel feeding tube.
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Regarding now the logarithm representation of the OH mass fraction, given
at Fig. 8b, one can further observe the influence of the chosen truncation
value, εc. As expected, a truncating εc = 8 loses the most information, i.e.,
nearly all the information between the 60 and 65 mm. However, for εc = 12, a
close resemblance to the CFD behavior is seen. For εc = 10, a smaller amount
of information is lost when comparing to the εc = 8 behavior in the same
interval. Using this particular graphical representation, downstream 65 mm, no
significant difference between the CFD results and the different ROM is seen.
Furthermore, the logarithm representation permits to observe that, regarding
the uncoupled ROM, an YOH increase occurs upstream the other results, and
resemblance is seen downstream 80 mm only. Moreover, between 70 and 75 mm,
an oscillation is remarked, corresponding to the non-monotonic behavior, as
previously seen in Fig. 8a. It is worth to stress that, though, that in the
logarithm of OH mass fraction of the uncoupled ROM, the segment without
the dashed line, between 75 - 80 mm, corresponds to the same location where
the OH mass fraction is negative in Fig. 8a

The results clearly underscore the benefits of using the logarithm as a pre-
processing of the data, prior the learning step. Indeed, both the monotonicity
and boundedness properties are preserved, and learning is achieved with a
smaller number of modes when compared to the unprocessed data. The suc-
cess of this strategy may be attributed to the exponential tails of the chemical
species spatial distribution, which contain relevant information to be learned,
and are thus better captured. Furthermore, this preprocessing step effectively
spatially widens the fields of minor species, which also eases the learning.
Finally, this preprocessing also should provide a more generalized re-scaling
of species mass fractions and other properties that span over several orders of
magnitude.

5 Conclusion

The influence of different data preprocessing methods on the reduced order
models of steady-state bi-dimensional laminar methane air diffusion flames has
been investigated. To create the reduced model, high-fidelity CFD results have
been used, which feature an adaptive mesh strategy based on the tempera-
ture gradient, and a skeletal chemical kinetics mechanism. In particular, the
reduced order model was built from the fields of 23 computed flame proper-
ties, where only the fuel inlet velocity varies. The learning data set contained
12 simulated cases and the validation data set used 8 CFD results, which is
relatively small when compared to typical machine learning applications. The
collection of CFD data separated as the learning data set is reduced using
the singular value decomposition, creating a reduced base that represents the
studied system. Subsequently, the machine learning algorithm genetic aggre-
gation response surface (GARS) is applied to this reduced base to predict the
flow properties fields for arbitrary values of the inlet fuel velocity. Each CFD
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simulation required an average of 15 days to reach convergence, whereas the
ROM requires a few seconds to be generated.

A total of five approaches to data preprocessing have been adopted, and
the main conclusions from this work are:

• For either the uncoupled ROM or the logarithmic ROM, it is easier to learn
major chemical species than minor species, i.e., they require less SVD modes
to create the ROM when targeting the same SVD energy.

• Regardless of the coupling strategy for the computed properties, the ROM
exhibited nonphysical non-monotonic minor species fields and, in some cases,
even negative mass fractions.

• The prior knowledge of the system was incorporated by using the logarithm
as a method of preprocessing the data, which eased the learning process and
guarantees the properties restrictions, i.e., the monotonicity, positivity and
boundedness of the flame properties.

The proposed logarithm transformation thus seems to be sufficiently gen-
eral to be considered as a learning strategy improvement in any combustion
problem.
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