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ON THE CAUCHY PROBLEM FOR THE HARTREE

APPROXIMATION IN QUANTUM DYNAMICS

RÉMI CARLES, CLOTILDE FERMANIAN KAMMERER, AND CAROLINE LASSER

Abstract. We prove existence and uniqueness results for the time-dependent Hartree
approximation arising in quantum dynamics. The Hartree equations of motion form a
coupled system of nonlinear Schrödinger equations for the evolution of product state
approximations. They are a prominent example for dimension reduction in the context
of the the time-dependent Dirac–Frenkel variational principle. We handle the case of
Coulomb potentials thanks to Strichartz estimates. Our main result addresses a general
setting where the nonlinear coupling cannot be considered as a perturbation. The proof
uses a recursive construction that is inspired by the standard approach for the Cauchy
problem associated to symmetric quasilinear hyperbolic equations.

1. Introduction

We consider the time-dependent Schrödinger equation

(1.1) i∂tψ = Hψ,

where the total Hamiltonian is given by

H = Hx +Hy + w(x, y), Hx = −
1

2
∆x + V1(x), Hy = −

1

2
∆y + V2(y)

with x ∈ R
d1 and y ∈ R

d2 , d1, d2 ≥ 1. The potentials V1, V2 and w are always real-valued,
we will make extra regularity and decay assumptions later on . It is common wisdom that
for dealing with quantum systems “a solution of the wave equation in many-dimensional
space is far too complicated to be practicable” (Dirac 1930) and one aims at approximative
methods that effectively reduce the space dimension. Here, we focus on initial data that
decouple the space variables,

ψ(0, x, y) = φx0(x)φ
y
0(y).

Such a form of initial data indeed suggests a dimension reduction approach. Of course,
if there is no coupling (w(x, y) = 0), the full solution is itself a product state ψ(t, x, y) =
φx(t, x)φy(t, y), with

{

i∂tφ
x = Hxφ

x, φx(0, x) = φx0(x),

i∂tφ
y = Hyφ

y, φy(0, y) = φy0(y).
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When the coupling is present, one seeks for approximate solutions u(t) ≈ ψ(t) of product
form u(t, x, y) = φx(t, x)φy(t, y) in order to reduce the initial system (1.1) in R

d1+d2 to
two systems on spaces of smaller dimensions, Rd1 and R

d2 . In situations, where the overall
configuration space has a natural decomposition of its dimension d1 + · · · + dN , a corre-
sponding product ansatz of N factors is sought. Here we only investigate the case N = 2,
mentioning that repeated application of the binary construction yields the more general
case. Applying the time-dependent Dirac–Frenkel variational principle to the manifold

M =
{

u = ϕx ⊗ ϕy | ϕx ∈ L2(Rd1), ϕy ∈ L2(Rd2)
}

yields the so-called time-dependent Hartree approximation,

ψ(t, x, y) ≈ φx(t, x)φy(t, y) ∈ M,

where the pair (φx, φy) solves the nonlinearly coupled system

(1.2)

{

i∂tφ
x = Hxφ

x + 〈w〉yφ
x, φx(0, x) = φx0(x),

i∂tφ
y = Hyφ

y + 〈w〉xφ
y, φy(0, y) = φy0(y).

The time-dependent potentials result from the averaging process

〈w〉y(t, x) :=

∫

Rd2

w(x, y)|φy(t, y)|2dy,

〈w〉x(t, y) :=

∫

Rd1

w(x, y)|φx(t, x)|2dx,

under the assumption, made throughout this paper, that

(1.3) ‖φx0‖L2(Rd1 ) = ‖φy0‖L2(Rd2 ) = 1.

For any “reasonable” solution (at least with the regularity considered in this paper), the
L2-norms of φx(t, ·) and φy(t, ·), respectively, are independent of time, hence

‖φx(t)‖L2(Rd1 ) = ‖φy(t)‖L2(Rd2 ) = 1,

for all t in the time interval where the solution to (1.2) is well-defined; see §6.3 for a proof.

Even though the time-dependent Hartree approximation is one of the most fundamental
approximations in quantum dynamics, mathematical existence and uniqueness proofs are
rather scarce. Existence and uniqueness have been studied in the case where the interaction
potential is of convolution type, i.e. for w(x, y) =W (x−y) and with one of the subsystems
moving by classical mechanics (see [7, 2, 6] for example). A related investigation has
targeted the time-dependent self-consistent field system [12] with coupling potentials of
Schwartz class. However, our aim here is to discuss the existence and uniqueness of solutions
for system (1.2) when the potentials 〈w〉x or 〈w〉y need not be bounded, and cannot be
considered as a perturbation of V2 or V1, respectively. This framework requires a different
approach. In particular, our result provides the Cauchy theory for the systems discussed
in the articles [3, 4] where the accuracy of the Hartree approximation is studied in the
broader context of composite quantum dynamics and scale separation.
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The steps for our existence and uniqueness proof are strongly inspired by the method
which is classical in the study of quasilinear hyperbolic systems, see e.g. [1]. With n ∈ N,
we associate the iterative scheme of recursive equations

(1.4)

{

i∂tφ
x
n+1 = Hxφ

x
n+1 + 〈wn〉yφ

x
n+1, φxn+1(0, x) = φx0(x),

i∂tφ
y
n+1 = Hyφ

y
n+1 + 〈wn〉xφ

y
n+1, φyn+1(0, y) = φy0(y),

with

(1.5) 〈wn〉y(t, x) =

∫

Rn

w(x, y)|φyn(t, y)|
2dy, 〈wn〉x(t, y) =

∫

Rd

w(x, y)|φxn(t, x)|
2dx.

The main steps of the proof of our existence and uniqueness result are then:

(1) The iterative scheme is well-defined and enjoys bounds in “large” norm, which
control second order derivatives and polynomial growth of order two for some finite
time horizon.

(2) The solution of the scheme converges in “small” norm, which is the L2 norm.
(3) It is possible to pass to the limit n → +∞ in the equation, which leads to the

construction of a solution that one then proves to be unique and global in time
(provided the initial data is regular enough).

1.1. Outline. In the next Section 2, we recall elementary properties of the time-dependent
variational principle and formally derive the Hartree equations (1.2). Then we discuss
coupling potentials w(x, y) of Coulombic and of polynomial type in Section 3, where we
also present our main result Theorem 3.11, which establishes existence and uniqueness of
the solutions to the Hartree system for coupling with polynomial growth. The different
steps of the proof of Theorem 3.11 are the subject of Section 4 (analysis of the iterative
scheme), Section 5 (convergence in small norms) and Section 6 (passing to the limit). A
sufficient condition for the growth of the coupling potential is verified in Section 7. The
Appendices A and B summarize some technical arguments.

1.2. Notations. We write L∞
T for L∞([0, T ]). The notations L2

x, L
2
y, L

2
x,y stand for

L2(Rd1
x ), L2(Rd2

y ), L2(Rd1+d2
x,y ), respectively. We denote by 〈·, ·〉L2

x
, 〈·, ·〉L2

y
, 〈·, ·〉L2

x,y
the

corresponding inner products. For f, g ≥ 0, we write f . g whenever there exists a “uni-
versal” constant (in the sense that it does not depend on time, space, or n, typically) such
that f ≤ Cg.

2. Variational principle

The time-dependent Hartree approximation results from the Dirac–Frenkel variational
principle applied to the manifold

(2.1) M =
{

u = ϕx ⊗ ϕy | ϕx ∈ L2
x, ϕ

y ∈ L2
y

}

,

see also [15, §II.3.1] for the analogous discussion with Hartree products of N orbitals in
L2(R3). The reader can also refer to [14]. The principle determines an approximate solution
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u(t) ∈ M for the time-dependent Schrödinger equation

i∂tψ = Hψ

with initial data ψ(0) ∈ M by requiring that for all times t

(2.2)

{

∂tu(t) ∈ Tu(t)M,

〈v, i∂tu(t)−Hu(t)〉 = 0 for all v ∈ Tu(t)M,

where Tu(t)M denotes the tangent space of M at u(t). For deriving the Hartree equa-
tions, we first have to understand the manifold M and its tangent space. Note that the
representation of a Hartree function is non-unique, since ϕx ⊗ ϕy = (aϕx) ⊗ (a−1ϕy) for
any a ∈ C \ {0}. However, we can have unique representations in the tangent space once
appropriate gauge conditions are set.

Lemma 2.1 (Tangent space). For any u = ϕx ⊗ ϕy ∈ M, u 6= 0,

TuM =
{

vx ⊗ ϕy + ϕx ⊗ vy | vx ∈ L2
x, v

y ∈ L2
y

}

.

Any v ∈ TuM has a unique representation of the form v = vx⊗ϕy +ϕx⊗ vy, if we impose

the gauge condition 〈ϕx, vx〉 = 0. The tangent spaces are complex linear subspaces of L2
x,y

such that u ∈ TuM for all u ∈ M.

The lemma is proved in Appendix A. The following formal arguments show that, in case
that the variational solution u(t) is well-defined and sufficiently regular, the L2 norm and
the energy expectation value are conserved automatically. Indeed,we differentiate with
respect to time t and use the variational condition (2.2) for v = u(t),

d

dt
‖u(t)‖2L2

x,y
= 2Re〈u(t), ∂tu(t)〉L2

x,y
= 2Re〈u(t), 1iHu(t)〉L2

x,y
= 0,

due to self-adjointness of the Hamiltonian. Similarly, using self-adjointness and the varia-
tional condition (2.2) for v = ∂tu(t),

d

dt
〈u(t),Hu(t)〉L2

x,y
= 2Re〈∂tu(t),Hu(t)〉L2

x,y
= 2Re〈∂tu(t), i∂tu(t)〉L2

x,y
= 0.

Let us now formally derive the Hartree system (1.2). We write

u(t) = ϕx(t)⊗ ϕy(t),

with ‖ϕx(t)‖L2
x
= ‖ϕy(t)‖L2

y
= 1. We have

i∂tu = (i∂tϕ
x(t))⊗ ϕy(t) + ϕx(t)⊗ (i∂tϕ

y(t)),

Hu = Hxϕ
x(t))⊗ ϕy(t) + ϕx(t)⊗ (Hyϕ

y(t)) + w(x, y)ϕx(t)⊗ ϕy(t).

Choosing elements v = vx ⊗ ϕy + ϕx ⊗ vy ∈ Tu(t)M and evaluating (2.2), we obtain the
following necessary and sufficient conditions:

(i) If vy=0, we obtain that for all vx ∈ L2
x such that 〈vx, ϕx(t)〉L2

x
= 0,

〈vx, (i∂t −Hx)ϕ
x(t)〉L2

x
=

∫

Rd1+d2

w(x, y)vx(x)ϕx(t, x)|ϕy(t, y)|2dxdy.
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(ii) If vx=0, we obtain that for all vy ∈ L2
y such that 〈vy, ϕy(t)〉L2

y
= 0,

〈vy, (i∂t −Hy)ϕ
y(t)〉L2

y
=

∫

Rd1+d2

w(x, y)vy(y)ϕy(t, y)|ϕx(t, x)|2dxdy.

The choice of ϕx(t) and ϕy(t) satisfying the Hartree system (1.2) guarantees (i) and (ii).

3. Main result

We present existence and uniqueness results for the solution of the time-dependent
Hartree system (1.2). In §3.1, we discuss how Strichartz estimates may be applied to
Coulombic coupling. In §3.2, we give detailed assumptions on polynomial growth condi-
tions. Then, in §3.3 we state our main result Theorem 3.11.

3.1. Coupling potentials of Coulombic form. The case of Coulomb singularities (in
combination with classical nuclear dynamics) has already been addressed in [7, 2] by
Schauder and Picard fixed point arguments, respectively. We briefly revisit the main result
from [7], and show how it may be adapted thanks to Strichartz estimates. We suppose
d1 = d2 = 3, and have in mind the case

(3.1) w(x, y) =
ε

|x− y|
, ε ∈ R.

We consider more generally the case w(x, y) = W (x − y), for a possibly singular W . We
assume that the potentials V1 and V2 are perturbations of smooth and at most quadratic
potentials:

Vj = Vj + vj,

where

Vj ∈ Q =
{

V ∈ C∞(R3;R), ∂αV ∈ L∞(R3), ∀|α| ≥ 2
}

,

and

vj ∈ Lp(R3) + L∞(R3), for some p > 3/2.

Typically, we may consider Coulomb potentials, as

1

|x|
=

1

|x|
1|x|<1 +

1

|x|
1|x|≥1.

The first term on the right hand side belongs to Lp(R3) for any 1 ≤ p < 3, and the second
term is obviously bounded. We then make the same assumption on W . Denote

Hx = −
1

2
∆x +V1, Hy = −

1

2
∆y +V2.

Then e−itHx and e−itHy enjoy Strichartz estimates, and (1.2) can be solved at the L2 level,
by a straightforward adaptation of [10, Corollary 4.6.5]:
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Theorem 3.1. Assume d1 = d2 = 3, V1,V2 ∈ Q, v1, v2,W ∈ Lp(R3) + L∞(R3) for some

p > 3/2, and φx0 , φ
y
0 ∈ L2(R3). Then (1.2) has a unique solution (φx, φy) ∈ C(R;L2(R3))2∩

Lq
loc(R;L

r(R3))2, where 1 = 2/r + 1/p and q is such that

2

q
= 3

(

1

2
−

1

r

)

.

The L2-norms of φx and φy are independent of t ∈ R, hence in view of (1.3),

‖φx(t)‖L2(R3) = ‖φy(t)‖L2(R3) = 1, ∀t ∈ R.

The proof is presented shortly in Appendix B.

Remark 3.2. The sign of ε in (3.1) plays no role here. Indeed, the proof relies on local in
time Strichartz estimates associated to Hx and Hy, respectively, and the potentials v1, v2
andW are treated as perturbations, whose sign is irrelevant in order to guarantee the above
global existence result. On the other hand, Theorem 3.1 brings no information regarding
the quality of the dynamics or the existence of a ground state.

Remark 3.3. Under extra assumptions on the potentials v1 and v2 (no extra assumption
is needed for W , as it is associated to a convolution), it is possible to consider higher
regularity properties. In particular, working at the level of H1-regularity makes it possible
to show the conservation of the energy

E(t) = 〈Hxφ
x(t), φx(t)〉L2

x
+ 〈Hyφ

y(t), φy(t)〉L2
y

+

∫∫

R3×R3

W (x− y)|φx(t, x)|2|φy(t, y)|2dxdy,

provided that ∇v1 and ∇v2 also belong to Lp(R3) + L∞(R3) for some p > 3/2. We refer
to Remark B.5 for more details.

Remark 3.4. The role of the set Q is to guarantee that (local in time) Strichartz estimates
are available for Hx and Hy. The same would still be true for a larger class of potentials,
including for instance Kato potentials ([20]) or potentials decaying like an inverse square
([5]). The choice of this set Q is made in order to simplify the presentation, and because it
is delicate to keep track of all the classes of potentials for which Strichartz estimates have
been proved.

3.2. Coupling potentials with polynomial growth. The core of this paper addresses
the case where the coupling potential w may grow polynomially. To be more concrete, we
recall the example addressed in [4].

Example 3.5. Assume d1 = d2 = 1 and that the potentials are given by

V1(x) =
1

2
x2

( x

2ℓ
− 1

)2
, ℓ > 0, V2(y) =

ω2

2
y2, w(x, y) = χ(x)y2, χ ∈ C∞

0 (R).

Here, V1(x) corresponds to a double well and V2(y) to a harmonic bath. The coupling
w(x, y) could be locally cubic when choosing χ(x) = x for x in a neighborhood of zero.
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We emphasize that in Example 3.5, the average 〈w〉x grows quadratically in y: in terms
of growth, 〈w〉x is comparable to V2 and cannot be considered as a perturbation as far as
the Cauchy problem is concerned. This setting turns out to be very different from the one
in [7, 2] (see also Theorem 3.1), and requires a different approach to be developed below.

3.2.1. Restriction to non-negative potentials. In the general case, we assume d1, d2 ≥ 1.
First, the potentials V1 and V2 are smooth, real-valued, V1 ∈ C∞(Rd1 ;R), V2 ∈ C∞(Rd2 ;R),
and bounded from below:

∀x ∈ R
d1 ,∀y ∈ R

d2 , V1(x) ≥ −C1 and V2(y) ≥ −C2,

for some constants C1, C2 > 0. The operators Hx and Hy then are self-adjoint operators.
Up to changing φx(t, x) to φx(t, x)eitC1 (which amounts to replacing V1 by V1+C1 in (1.2)),
and φy(t, y) to φy(t, y)eitC2 , we may actually assume

(H1) V1(x) ≥ 1, ∀x ∈ R
d1 , and V2(y) ≥ 1, ∀y ∈ R

d2 ,

as we are only interested in existence results for the Cauchy problem (1.2). Thus Hx

and Hy are sums of a nonnegative operator (Laplacian in x and y, respectively) and of
a nonnegative potential. We use them to measure the regularity of the solutions of the
system (1.2).

3.2.2. Functional setting. For k ∈ N, we define the Hilbert spaces

Hk
x =

{

φ ∈ L2(Rd1), Hk/2
x φ ∈ L2(Rd1)

}

and Hk
y =

{

φ ∈ L2(Rd2), Hk/2
y φ ∈ L2(Rd2)

}

,

which are the natural analogues of Sobolev spaces Hk in the presence of (nonnegative)
potentials (in view of (H1)), equipped with the norms given by

‖φ‖2Hk
x
= ‖φ‖2L2

x
+ ‖Hk/2

x φ‖2L2
x
, ‖φ‖2Hk

y
= ‖φ‖2L2

y
+ ‖Hk/2

y φ‖2L2
y
.

For α, β ∈ N, Φ = (φx, φy) ∈ Hα
x ×Hβ

y , we set

‖Φ‖2α,β = ‖φx‖2Hα
x
+ ‖φy‖2

Hβ
y
= ‖φx‖2L2

x
+ ‖Hα/2

x φx‖2L2
x
+ ‖φy‖2L2

y
+ ‖Hβ/2

y φy‖2L2
y
.

All along the paper, we use that in view of (H1), 0 ≤ Hα
x ≤ Hα+1

x and 0 ≤ Hβ
y ≤ Hβ+1

y .

As (1.2) is reversible, from now on we consider positive time only. We shall work with
the time-dependent functional spaces

Xα,β
T =

{

Φ(t) = (φx(t), φy(t)), φx ∈ L∞ ([0, T ],Hα
x ) , φ

y ∈ L∞
(

[0, T ],Hβ
y

)}

.

If Φ = (φx, φy) ∈ Xα,β
T , we set

‖Φ‖
Xα,β

T
= sup

t∈[0,T ]
‖Φ(t)‖α,β .

We choose to consider integer exponents α and β for the sake of simplicity. We emphasize
however that our approach requires α, β ≥ 2; see Section 4 for a more precise discussion
on this aspect. We note that Theorem 3.11 allows α = β = 2.
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3.2.3. Main assumptions. We assume that the coupling potential w ∈ C∞(Rd1+d2 ;R) sat-
isfies

(H2) There exist c0, C > 0 with c0 < 1 such that for all (x, y) ∈ R
d1 × R

d2 ,

|w(x, y)| ≤ c0(V1(x) + V2(y) + C).

We emphasize that no condition is required concerning the above constant C: for instance
if V1 and V2 are bounded, then we may always pick c0 < 1 so that (H2) is satisfied. For
unbounded potentials, the requirement c0 < 1 can be understood as some smallness prop-
erty, in the sense that w(x, y) is a perturbation of V1(x)+V2(y). This actually corresponds
to the physical framework where the system (1.2) is introduced in order to approximate the
exact solution ψ of (1.1) through the formula ψ ≈ φx ⊗ φy; see [3] for a derivation of error
estimates. We also note that the assumption c0 < 1 implies that w is (Hx +Hy)-bounded
with relative bound c0 < 1, hence by Kato–Rellich Theorem (see e.g. [18, Theorem X.12]),
H is self-adjoint.

Remark 3.6. If w is at most quadratic, in the sense that w ∈ C∞(Rd1+d2 ;R)

∂γx,yw ∈ L∞(Rd1+d2), ∀γ ∈ N
d1+d2 , |γ| ≥ 2,

then the assumption (H2) is not needed to guarantee that H is self-adjoint (see the Faris–
Lavine Theorem, [18, Theorem X.38]). Such a framework corresponds to the assumptions
made for the error analysis in [3, 4]. For such potentials w, the assumption c0 < 1 in (H2)
is needed only in order to ensure that the Hartree solutions are global in time.

We also assume some conditions on the regularity of commutators of the coupling potential
with the operators Hx and Hy. For integers α, β ≥ 1, we consider the condition:

(H3)α,β. There exist c1, c2 > 0 such that for all k ∈ {1, · · · , α}, ℓ ∈ {1, · · · , β}, for all
fj = fj(x), gj = gj(y) in the Schwartz class (j ∈ {1, 2}),

∣

∣

∣
〈Hk−1

x [w(·, y),Hx]f1, f2〉L2
x

∣

∣

∣
+

∣

∣

∣
〈[w(·, y),Hx]H

k−1
x f1, f2〉L2

x

∣

∣

∣

≤ c1 (1 + V2(y)) ‖f1‖Hk
x
‖f2‖Hk

x
, for a.a. y ∈ R

d2 ,
∣

∣

∣
〈Hℓ−1

y [w(x, ·),Hy ]g1, g2〉L2
y

∣

∣

∣
+

∣

∣

∣
〈[w(x, ·),Hy ]H

ℓ−1
y g1, g2〉L2

y

∣

∣

∣

≤ c2 (1 + V1(x)) ‖g1‖Hℓ
y
‖g2‖Hℓ

y
, for a.a. x ∈ R

d1 .

Assumption (H3)α,β is made in order to generalize the framework of Example 3.5. The
subsequent proofs do not use the special form of the Hamiltonians Hx, Hy, so that our
result extends as soon as they are self-adjoint operators and assumptions (H1), (H2),
(H3)α,β are satisfied. This applies in particular for magnetic Schrödinger operators.

Remark 3.7. It is not necessary to assume that the potential w is smooth, w ∈ C∞(Rd1+d2 ;R).
We only need enough regularity in order to write assumption (H3)α,β for the α and

β that we consider (recalling that Hk−1
x and Hℓ−1

y are self-adjoint). For example, if
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w ∈ C2(Rd1+d2 ;R), then Theorem 3.11 holds with α = β = 2. We make this regular-
ity assumption for simplicity, as the most important properties are those discussed in this
subsection.

Remark 3.8. Whenever w(x, y) is a Coulomb potential as in Section 3.1, the assump-
tions (H3)α,β are not satisfied. One then needs to take advantage of the convolution
feature of the coupling and of the properties of Hx and Hy such as the Strichartz estimates
in Proposition B.2.

We next present sufficient conditions on the potentials guaranteeing that assumptions
(H2) and (H3)2,2 hold.

Lemma 3.9 (Sufficient conditions). Let V1 ∈ C∞(Rd1 ;R) and V2 ∈ C∞(Rd2 ;R) such

that V1, V2 ≥ 0. The above assumptions (H2) and (H3)2,2 are satisfied provided that the

following estimates hold:

• There exists C > 0 such that

(3.2) |∇V1(x)| ≤ C (1 + V1(x)) ,∀x ∈ R
d1 ; |∇V2(y)| ≤ C (1 + V2(y)) ,∀y ∈ R

d2 .

• There exist 0 < c0 < 1 and c > 0 independent of x ∈ R
d1 and y ∈ R

d2 such that

(3.3)



















|w(x, y)| ≤ c0(V1(x) + V2(y) + c),

|∇xw(x, y)| ≤ c(
√

V1(x) + V2(y) + 1),

|∇yw(x, y)| ≤ c(V1(x) +
√

V2(y) + 1),

|∆xw(x, y)| + |∆yw(x, y)| ≤ c(V1(x) + V2(y) + 1).

The proof of this lemma is given in Section 7.

Remark 3.10. We note that Example 3.5 meets the requirements stated in Lemma 3.9,
provided that ‖χ‖L∞(R) < ω2/2. Thus it satisfies the assumptions of Theorem 3.11 below
for α = β = 2.

3.3. Main result and comments. Before stating our main result we informally summa-
rize the previous assumptions on the potentials for the case of polynomial coupling:

(H1) : boundedness from below of the potentials V1(x) and V2(y);

(H2) : control of w(x, y) in terms of V1(x) + V2(y);

(H3)α,β : control of commutators involving w(x, y), in terms of Hx and Hy.

We have the following result on existence and uniqueness as well norm and energy conser-
vation of the time-dependent Hartree approximation.

Theorem 3.11. Let d1, d2 ≥ 1, α, β ≥ 2 and φx0 ∈ Hα
x , φ

y
0 ∈ Hβ

y . Suppose that (H1),
(H2) and (H3)α,β are satisfied.

• (1.2) possesses a unique, global solution in Φ ∈ C(R+;L
2 × L2) ∩

⋂

T>0X
α,β
T .
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• Conservations: the L2-norms of φx and φy are independent of t ≥ 0, hence in view

of (1.3),

‖φx(t)‖L2(Rd1 ) = ‖φy(t)‖L2(Rd2 ) = 1, ∀t ≥ 0.

In addition, the following total energy is also independent of t ≥ 0:

E(t) := 〈Hxφ
x(t), φx(t)〉L2

x
+ 〈Hyφ

y(t), φy(t)〉L2
y

+

∫∫

Rd1×Rd2

w(x, y)|φx(t, x)|2|φy(t, y)|2dxdy.

We will see that the assumption c0 < 1 in (H2) arises in two steps of the proof of
Theorem 3.11. First, to make sure that the approximating scheme (1.4) introduced below
is well-defined, we invoke Kato–Rellich Theorem, to show essentially that 〈w〉y (or more

precisely, 〈wn〉y) is Hx-bounded with relative bound smaller than one, and that the same
holds when the roles of x and y are swapped. Second, the assumption c0 < 1 guarantees
that the conserved energy E, defined in Theorem 3.11, is a coercive functional, so the
conservation of E provides uniform in times a priori estimates, which in turn allow to show
that the local in time solutions are actually global in time solutions.

The property Φ ∈ C(R+;L
2 × L2) ∩

⋂

T>0X
α,β
T means that t 7→ ‖Φ(t)‖α,β is locally

bounded on R+. The map t 7→ ‖Φ(t)‖1,1 is bounded on R+ in view of the conservation of
the coercive energy E, but higher order norms may not be bounded as t goes to infinity
(recall that Theorem 3.11 requires α, β ≥ 2).

4. Analysis of the iterative scheme: existence and uniform bounds

This section is devoted to the analysis of the system (1.4). For n ∈ N, we denote
by Φn = (φxn, φ

y
n), the solution to the scheme (1.4) and we prove local in time uniform

estimates. At this stage, we only need that φx0 ∈ Hα
x , φ

y
0 ∈ Hβ

y for integers α, β ≥ 1.

Lemma 4.1. Let α, β ≥ 1. Assume that (H1), (H2) and (H3)α,β are satisfied. Assume

φx0 ∈ Hα
x , and φ

y
0 ∈ Hβ

y . Then, the sequence (Φn)n∈N solution to (1.4) is well-defined and

there exists T > 0 such that for all n ∈ N, the solution Φn ∈ Xα,β
T of the scheme (1.4)

satisfies

(4.1) ‖Φn‖Xα,β
T

≤ 2‖Φ0‖α,β.

The proof of this lemma relies on the fact that the control of Φn+1 involves terms which

are linear in Φn+1 and quadratic in Φn, and require the X1,1
T -norm of Φn. For this reason,

the Lemma holds as soon as α, β ≥ 1. However in Theorem 3.11 , we require at least an
X2,2

T regularity. The reason will appear in Section 5, as we do need uniform (in n) estimates

in X2,2
T to show that the sequence (Φn)n converges in X0,0

T = L∞
T L

2.
In Section 4.1, we address the construction of the family (Φn)n∈N, which relies on a

commutation lemma that we prove in Section 4.3. Section 4.2 is devoted to the proof of
the uniform bound stated in Lemma 4.1.
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4.1. Well-posedness of the scheme. Before entering into the proof of Lemma 4.1, let us
discuss why the scheme is indeed well-defined: as Φn+1 solves a decoupled system of linear
Schrödinger equations, it suffices to study the properties of the time-dependent potentials

〈wn〉y and 〈wn〉x. We fix T > 0 arbitrary and take φx0 ∈ Hα
x , and φ

y
0 ∈ Hβ

y , with α, β ≥ 1.

For n = 0, Φ0 is obviously well-defined with Φ0 ∈ Xα,β
T , and

(4.2) ‖φxn(t)‖L2
x
= ‖φyn(t)‖L2

y
= 1, ∀t ∈ R,

holds for n = 0. We argue by induction. If Φn ∈ X1,1
T satisfies (4.2), then in view of (H2),

〈wn〉y(t, x) and 〈wn〉x(t, y) are well-defined. In addition, for t ∈ [0, T ], (H2) yields

(4.3)
|〈wn〉y(t, x)| ≤ c0V1(x)‖φ

y
n(t)‖

2
L2 + C‖φyn(t)‖

2
H1

y
, a.e. x,

|〈wn〉x(t, y)| ≤ c0V2(y)‖φ
x
n(t)‖

2
L2 + C‖φxn(t)‖

2
H1

x
, a.e. y,

for some constant C whose value is irrelevant here, unlike the fact that we assume c0 < 1.
Indeed, together with (4.2), this implies that 〈wn〉y is Hx-bounded with relative bound at

most c0. By Kato–Rellich Theorem (see e.g. [18, Theorem X.12]), Φn+1 ∈ X0,0
T is well-

defined (see e.g. [19, Section VIII.4]), and (4.2) holds at level n + 1. Next, we prove that

Φn+1 ∈ X1,1
T . Applying the operator Hx to the first equation in (1.4), we find

(4.4) (i∂t −Hx)(Hxφ
x
n+1) = 〈wn〉y(t)(Hxφ

x
n+1) + [Hx, 〈wn〉y(t)]φ

x
n+1.

Since Hx is self-adjoint, we deduce

‖H1/2
x φxn+1(t)‖

2
L2
x
= Re〈Hxφ

x
n+1(t), φ

x
n+1(t)〉L2

x

= ‖H1/2
x φx0‖

2
L2
x
+Re

(
∫ t

0

d

ds
〈Hxφ

x
n+1(s), φ

x
n+1(s)〉L2

x
ds

)

= ‖H1/2
x φx0‖

2
L2
x
− Re

(
∫ t

0
〈i[Hx, 〈wn〉y]φ

x
n+1(s), φ

x
n+1(s)〉L2

x
ds

)

.

Minkowski inequality yields, in view of (H3)1,1,

(4.5)
∣

∣

∣
〈[Hx, 〈wn〉y(t)]f1, f2〉L2

x

∣

∣

∣
. ‖φyn‖

2
L∞

T H1
y
‖f1‖H1

x
‖f2‖H1

x
.

We infer the existence of a universal constant C > 0 such that

‖H1/2
x φxn+1(t)‖

2
L2
x
≤ ‖H1/2

x φx0‖
2
L2
x
+ C‖Φn‖

2
X1,1

T

∫ t

0
‖φxn+1(s)‖

2
H1

x
ds.

We deduce

(4.6) sup
t∈[0,T ]

‖φxn+1(t)‖
2
H1

x
. ‖φx0‖

2
H1

x
+ C‖Φn‖

2
X1,1

T

∫ t

0
‖φxn+1(s)‖

2
H1

x
ds,

We have a similar estimate for ‖H
1/2
y φyn+1(t)‖

2
L2
x
:

(4.7) sup
t∈[0,T ]

‖φyn+1(t)‖
2
H1

y
. ‖φy0‖

2
H1

y
+ C‖Φn‖

2
X1,1

T

∫ t

0
‖φyn+1(s)‖

2
H1

y
ds,
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and so Gronwall lemma and the inductive assumption yields Φn+1 ∈ X1,1
T and completes

the construction of the sequence (Φn)n∈N.

4.2. Uniform bounds. We conclude the proof of Lemma 4.1 in analyzing the regularity
of the solutions.

Proof of Lemma 4.1. In view of the definition of the scheme and of the conservations

d

dt
‖φxn‖

2
L2 =

d

dt
‖φyn‖

2
L2 = 0,

we need now consider Hα
x φ

x
n and Hβ

y φ
y
n for α, β ≥ 1. Let

R = 2‖Φ0‖α,β ,

and introduce
BR,T = {Φ ∈ Xα,β

T , ‖Φ‖
Xα,β

T
≤ R}.

We distinguish two cases for the ease of presentation.

First case: α = β = 1. In that case, if Φn ∈ BR,T , then estimates (4.6) and (4.7) imply

‖Φn+1(t)‖
2
X1,1

T

≤ ‖Φ0‖
2
1,1 + CTR2‖Φn+1(t)‖

2
X1,1

T

.

We infer that choosing T > 0 sufficiently small in terms of R, but independently of n,
Φn ∈ BR,T implies Φn+1 ∈ BR,T .

Higher regularity: The control of higher order regularity is obtained by a similar recur-
sive argument which uses an iterated commutator estimate. Let α, β ≥ 1. We have

(4.8)

{

i∂tH
k
xφ

x
n+1 = (Hx + 〈wn〉y)H

k
xφ

x
n+1 + [Hk

x , 〈wn〉y]φ
x
n+1, Hk

xφ
x
n+1|t=0 = Hk

xφ
x
0 ,

i∂tH
ℓ
yφ

y
n+1 = (Hy + 〈wn〉x)H

β
y φ

y
n+1 + [Hℓ

y, 〈wn〉x]φ
y
n+1, Hℓ

yφ
y
n+1|t=0 = Hℓ

yφ
y
0.

The next lemma allows to control the commutators.

Lemma 4.2. Let Φn ∈ X1,1
T for some T > 0, and k, ℓ ≥ 1 be integers. Suppose that

(H3)k,ℓ is satisfied. For all t ∈ [0, T ],
∣

∣

∣
〈[Hk

x , 〈wn〉y(t)]f1, f2〉L2
x

∣

∣

∣
. ‖φyn‖

2
L∞

T H1
y
‖f1‖Hk

x
‖f2‖Hk

x
, ∀f1, f2 ∈ Hk

x
∣

∣

∣
〈[Hℓ

y, 〈wn〉x(t)]g1, g2〉L2
y

∣

∣

∣
. ‖φxn‖

2
L∞

T H1
x
‖g1‖Hℓ

y
‖g2‖Hℓ

y
, ∀g1, g2 ∈ Hℓ

y.

Taking the lemma for granted, (4.8) implies, since Hx is self-adjoint,

‖φxn+1(t)‖
2
Hα

x
= Re〈Hα

x φ
x
n+1(t), φ

x
n+1(t)〉L2

x

= ‖Hα/2
x φx0‖

2
L2
x
+Re

(
∫ t

0

d

ds
〈Hα

x φ
x
n+1(s), φ

x
n+1(s)〉L2

x
ds

)

= ‖Hα/2
x φx0‖

2
L2
x
− Re

(
∫ t

0
〈i[Hα

x , 〈wn〉y]φ
x
n+1(s), φ

x
n+1(s)〉L2

x
ds

)

≤ ‖Hα/2
x φx0‖

2
L2
x
+ CT‖φyn‖

2
L∞

T H1
y

sup
t∈[0,T ]

‖φxn+1(t)‖
2
Hα

x
.
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We have a similar estimate for ‖H
β/2
y φyn+1(t)‖

2
L2
x
, and so if Φn ∈ BR,T , then equa-

tions (4.6) and (4.7) imply

‖Φn+1(t)‖
2
Xα,β

T

≤ ‖Φ0‖
2
α,β + CTR2‖Φn+1(t)‖

2
Xα,β

T

.

We infer that choosing T > 0 sufficiently small in terms of R, but independently of n,
Φn ∈ BR,T implies Φn+1 ∈ BR,T . It thus remains to prove the lemma, which is the subject
of the next subsection. �

Remark 4.3. Lemma 4.1 holds as soon as α, β ≥ 1, but this is not enough in order to
conclude that the sequence (Φn)n∈N converges to some solution of (1.2). Indeed, the mere

boundedness in X1,1
T only implies the convergence of a subsequence in the weak-* topology:

this is not enough to pass to the limit in (1.4), both because the subsequence need not
retain consecutive indices, and because the topology considered is too large to pass to the
limit in nonlinear terms. These issues are overcome by requiring α, β ≥ 2 in Sections 5
and 6.

4.3. Proof of Lemma 4.2. Of course, (4.5) implies the result when k = 1. Take k ≥ 1
and assume that the result holds for all m ≤ k. We write

[Hk+1
x , 〈wn〉y(t)] = Hk

x [Hx, 〈wn〉y(t)] + [Hk
x , 〈wn〉y(t)]Hx

= Hx[H
k−1, 〈wn〉y(t)]Hx +Hk

x [Hx, 〈wn〉y(t)] + [Hx, 〈wn〉y(t)]H
k
x .

We deduce from (4.5) and the recursive assumption that for f1, f2 ∈ S(Rd1), we have
∣

∣

∣
〈[Hk+1

x , 〈wn〉y(t)]f1, f2〉L2
x

∣

∣

∣
≤

∣

∣

∣
〈[Hk−1

x , 〈wn〉y(t)]Hxf1,Hxf2〉L2
x

∣

∣

∣

+
∣

∣

∣
〈Hk

x [Hx, 〈wn〉y(t)]f1, f2〉L2
x

∣

∣

∣
+

∣

∣

∣
〈[Hx, 〈wn〉y(t)]H

k
xf, g〉L2

x

∣

∣

∣
.

By the recursive assumption
∣

∣

∣
〈[Hk−1

x , 〈wn〉y(t)]Hxf1,Hxf2〉L2
x

∣

∣

∣
. ‖φyn‖

2
L∞

T H1
y
‖Hxf1‖Hk−1

x
‖Hxf2‖Hk−1

x

. ‖φyn‖
2
L∞

T H1
y
‖f1‖Hk+1

x
‖f2‖Hk+1

x
.

Finally, in view of (H3)k,ℓ and Minkowski inequality, we have
∣

∣

∣
〈Hk

x [Hx, 〈wn〉y(t)]f1, f2〉L2
x

∣

∣

∣
. ‖φyn‖

2
L∞

T H1
y
‖f1‖Hk+1

x
‖f2‖Hk+1

x
,

∣

∣

∣
〈[Hx, 〈wn〉y(t)]H

k
xf1, f2〉L2

x

∣

∣

∣
. ‖φyn‖

2
L∞

T H1
y
‖f1‖Hk+1

x
‖f2‖Hk+1

x
,

which concludes the proof, after arguing similarly with Hy.

5. Convergence in small norms

The second step of the proof of Theorem 3.11 consists in passing to the limit n → +∞
and prove the existence of a limit to the sequence (Φn)n∈N of solutions to (1.4). The main
result in this section is:
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Lemma 5.1. Assume that there exist T > 0 and R > 0 such that

sup
n∈N

‖Φn‖X2,2
T

≤ R.

Then there exist T1 ∈]0, T ] and Φ ∈ X2,2
T1

such that

(5.1) sup
0≤t≤T1

‖Φn(t)− Φ(t)‖L2
x×L2

y
= ‖Φn − Φ‖

X0,0
T1

−→
n→∞

0.

If in addition (Φn)n is bounded in Xα,β
T for some integers α, β ≥ 2, then Φ ∈ Xα,β

T1
.

Proof. Consider (1.4) at steps n + 1 and n, respectively, and subtract the corresponding
equations. We find, for n ≥ 1,

(i∂t −Hx)
(

φxn+1 − φxn
)

= 〈wn〉yφ
x
n+1 − 〈wn−1〉yφ

x
n

= 〈wn〉y
(

φxn+1 − φxn
)

+
(

〈wn〉y − 〈wn−1〉y

)

φxn,

and energy estimates yield, for T1 ∈]0, T ], since Φn+1|t=0 = Φn|t=0,

(5.2) ‖φxn+1 − φxn‖L∞

T1
L2
x
≤

∫ T1

0

∥

∥

∥

(

〈wn(s)〉y − 〈wn−1(s)〉y

)

φxn(s)
∥

∥

∥

L2
x

ds.

In view of (H2), the key term is estimated by
∣

∣

∣
〈wn(t)〉y − 〈wn−1(t)〉y

∣

∣

∣
.

∫

Rd2

(V1(x) + V2(y) + 1)
∣

∣|φyn(t, y)|
2 − |φyn−1(t, y)|

2
∣

∣ dy.

Writing |φyn|2 − |φyn−1|
2 = Re

(

(φyn − φyn−1)(φ
y
n + φyn−1)

)

, and using Cauchy-Schwarz in-

equality,
∣

∣

∣
〈wn(t)〉y − 〈wn−1(t)〉y

∣

∣

∣
. (V1(x) + 1)

(

‖φyn‖L2
y
+ ‖φyn−1‖L2

y

)

‖φyn − φyn−1‖L2
y

+
(

‖V2φ
y
n‖L2

y
+ ‖V2φ

y
n−1‖L2

y

)

‖φyn − φyn−1‖L2
y

. (V1(x) + 1)) sup
k∈N

‖Φk‖X2,2
T

‖φyn − φyn−1‖L2
y
.(5.3)

Plugging this estimate into (5.2), we infer, thanks to Minkowski inequality,

‖φxn+1 − φxn‖L∞

T1
L2
x
. sup

k∈N
‖Φk‖X2,2

T

∫ T1

0
‖(V1 + 1))φxn(s)‖L2

x
‖φyn(s)− φyn−1(s)‖L2

y
ds

. sup
k∈N

‖Φk‖
2
X2,2

T

∫ T1

0
‖φyn(s)− φyn−1(s)‖L2

y
ds

. R2T1 sup
t∈[0,T1]

‖φyn(t)− φyn−1(t)‖L2
y
.

We obtain a similar estimate by exchanging the roles of x and y, and so

(5.4) ‖Φn+1 − Φn‖X0,0
T1

. R2T1‖Φn − Φn−1‖X0,0
T1

.
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Fixing T1 ∈]0, T ] sufficiently small, the series
∑

n∈N

‖Φn+1 −Φn‖X0,0
T1

converges geometrically, and Φn converges in X0,0
T1

, to some Φ ∈ X0,0
T1

.

On the other hand, the boundedness of (Φn)n in X2,2
T implies that a subsequence is con-

verging in the weak-* topology ofX2,2
T . By uniqueness of limits in the sense of distributions,

we infer Φ ∈ X2,2
T1

. The same holds when X2,2
T is replaced by Xα,β

T for α, β ≥ 2. �

6. Passing to the limit in the equation

We now have all the elements in hands for proving Theorem 3.11 by showing that the
limit function Φ constructed in Lemma 5.1 is a solution to equation (1.2) with the properties
stated in Theorem 3.11.

6.1. Existence of a local solution. Combining Lemmas 4.1 and 5.1, we infer that under
the assumptions of Theorem 3.11, there exists T1 > 0 such that Φn → Φ in X0,0

T1
. By

uniqueness of the limit, we also have Φn ⇀ Φ in Xα,β
T1

(and no extraction of a subsequence

is needed). Resuming the estimates from the proof of Lemma 5.1, we observe that for
n,m ∈ N, t ∈ [0, T1] and x ∈ R

d1 ,

|〈wn(t)〉y − 〈wm(t)〉y| =

∣

∣

∣

∣

∫

Rd2

w(x, y)
(

|φyn(t, y)|
2 − |φym(t, y)|2

)

dy

∣

∣

∣

∣

. (V1(x) + 1) sup
k∈N

‖Φk‖X2,2
T

‖φyn(t)− φym(t)‖L2
y
.

Passing to the limit m→ +∞, we obtain that for n ∈ N, t ∈ [0, T1] and x ∈ R
d1 ,

|〈wn(t)〉y − 〈w(t)〉y| . (V1(x) + 1) sup
k∈N

‖Φk‖X2,2
T

‖φyn(t)− φy(t)‖L2
y
.

Therefore, keeping the same notation R as from Lemma 5.1,
∥

∥

∥
〈wn(t)〉yφ

x
n+1(t)− 〈w(t)〉yφ

x(t)
∥

∥

∥

L2
x

.
∥

∥

∥

(

〈wn(t)〉y − 〈w(t)〉y

)

φxn+1(t)
∥

∥

∥

L2
x

+
∥

∥

∥
〈w(t)〉y

(

φxn+1(t)− φx(t)
)

∥

∥

∥

L2
x

. R‖φyn(t)− φy(t)‖L2
y

∥

∥(V1 + 1)φxn+1(t)
∥

∥

L2
x

+
∥

∥

∥

(

V1 + 1 + ‖φy‖2L∞

T1
H1

y

)

(

φxn+1(t)− φx(t)
)

∥

∥

∥

L2
x

,

where we have used (4.3) and the normalization (1.3). The first term on the right hand
side goes to zero as n → ∞, uniformly in t ∈ [0, T1]. So does the last one in the case

α, β ≥ 3, since by interpolation Φn then converges to Φ strongly in X2,2
T . In the case where

α or β is equal to 2, we can only claim a weak convergence,

〈wn〉yφ
x
n+1 ⇀

n→∞
〈w〉yφ

x in L∞([0, T1];L
2
x) weak-∗.
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Similarly,

〈wn〉xφ
y
n+1 ⇀

n→∞
〈w〉xφ

y in L∞([0, T1];L
2
y) weak-∗,

and Φ solves (1.2) for t ∈ [0, T1], in the sense of distributions. In view of the regularity

Φ ∈ Xα,β
T1

, Duhamel’s formula,

φx(t) = e−itHxφx0 − i

∫ t

0
e−i(t−s)Hx

(

〈w〉yφx

)

(s)ds,

φy(t) = e−itHyφy0 − i

∫ t

0
e−i(t−s)Hy (〈w〉xφy) (s)ds,

then shows the continuity in time Φ ∈ C([0, T1];L
2
x × L2

y).

6.2. Uniqueness. At this stage, it is rather clear that uniqueness holds in X2,2
T , no matter

how large α and β are. Suppose that Φ̃ ∈ X2,2
T is another solution to (1.2) for T > 0: the

system satisfied by Φ − Φ̃ is similar to the one satisfied by Φn+1 − Φn, and considered in

the proof of Lemma 5.1. Since Φ, Φ̃ ∈ X2,2
T , there exists R > 0 such that

‖Φ‖
X2,2

T
+ ‖Φ̃‖

X2,2
T

≤ R,

and repeating the computations presented in the proof of Lemma 5.1, we obtain, for any
T1 ∈]0, T ],

‖Φ − Φ̃‖X0,0
T1

≤ CT1R‖Φ− Φ̃‖X0,0
T1

.

Picking T1 > 0 such that CT1R < 1 shows that Φ ≡ Φ̃ for t ∈ [0, T1], and we infer that

Φ ≡ Φ̃ on [0, T ] by covering [0, T ] by finitely many intervals of length at most T1.

6.3. Conservations. We now address the second point in Theorem 3.11: we assume that
(1.2) has a unique solution Φ ∈ X2,2

T for some T > 0. This implies in particular, in
view of (1.2), that ∂tφ

x ∈ L∞([0, T ];L2
x) and ∂tφ

y ∈ L∞([0, T ];L2
y), and the multiplier

techniques evoked below are justified without using regularizing argument as in e.g. [10].
For the conservation of the L2-norms, multiply the first equation in (1.2) by φx, integrate

in space on R
d1 , and consider the imaginary part: we readily obtain

d

dt
‖φx(t)‖2L2

x
= 0.

We proceed similarly for φy, and the conservation of the L2-norms follows.
For the energy, consider the multiplier ∂tφx in the equation for φx: as evoked above, all

the products are well-defined, in the worst possible case as products of two L2 functions.
Integrate in space and consider the real part: we obtain

d

dt
E(t) = 0.
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6.4. Globalization. In view of Lemmas 4.1 and 5.1, it suffices to prove a priori estimates
on ‖Φ‖X2,2

T
, showing that this quantity is locally bounded in T , to infer that Φ ∈ X2,2

T for

all T > 0, and then globalize the solution by the standard ODE alternative.

We use the conservation of the total energy, whose expression we develop:

E(t) = (Hxφ
x(t), φx(t))L2

x
+ (Hyφ

y(t), φy(t))L2
y

+

∫∫

Rd1×Rd2

w(x, y)|φx(t, x)|2|φy(t, y)|2dxdy

=
1

2
‖∇xφ

x(t)‖2L2(Rd1 ) +

∫

Rd1

V1(x)|φ
x(t, x)|2dx+

1

2
‖∇yφ

y(t)‖2L2(Rd2 )

+

∫

Rd2

V2(y)|φ
y(t, y)|2dy +

∫∫

Rd1×Rd2

w(x, y)|φx(t, x)|2|φy(t, y)|2dxdy.

Since c0 < 1 in (H2), we infer

E(t) ≥
1

2
‖∇xφ

x(t)‖2L2(Rd1 ) +
1

2
‖∇yφ

y(t)‖2L2(Rd2 ) + (1− c0)

∫

Rd1

V1(x)|φ
x(t, x)|2dx

+ (1− c0)

∫

Rd2

V2(y)|φ
y(t, y)|2dy − c0C

∫

Rd1

|φx(t, x)|2dx− c0C

∫

Rd2

|φy(t, y)|2dy.

The conservations established above yield

1

2
‖∇xφ

x(t)‖2L2(Rd1 ) +
1

2
‖∇yφ

y(t)‖2L2(Rd2 ) + (1− c0)

∫

Rd1

V1(x)|φ
x(t, x)|2dx

+ (1− c0)

∫

Rd2

V2(y)|φ
y(t, y)|2dy ≤ E(0) + 2c0C.

This is the coercivity property announced in the introduction, showing that there exists
M depending only on ‖Φ0‖1,1 such that

‖Φ‖X1,1
T

≤M,

for any interval [0, T ] on which the solution is well-defined. Proceeding like in the proof of
Lemma 4.1, we have

(6.1) sup
t∈[0,T ]

‖Hxφ
x(t)‖2L2

x
≤ ‖Hxφ

x
0‖

2
L2
x
+ 2

∫ T

0

∣

∣

∣
([Hx, 〈w〉y(t)]φ

x(t),Hxφ
x(t))L2

x

∣

∣

∣
dt.

In view of Lemma 4.2 with k = 1, f = φx and g = Hxφ
x, we infer

sup
t∈[0,T ]

‖Hxφ
x(t)‖2L2

x
≤ ‖Hxφ

x
0‖

2
L2
x
+ C‖φy‖2L∞

T H1
y

∫ T

0
‖φx(t)‖H2

x
‖Hxφ

x(t)‖L2
x
dt

≤ ‖Hxφ
x
0‖

2
L2
x
+ CM2

∫ T

0
‖φx(t)‖2H2

x
dt.
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The conservation of the L2-norm of φx implies

sup
t∈[0,T ]

‖φx(t)‖2H2
x
≤ ‖φx‖2H2

x
+ CM2

∫ T

0
‖φx(t)‖2H2

x
dt,

hence an exponential a priori control of the H2
x-norm of φx(t) by Gronwall lemma. The

same holds for φy(t), hence the conclusion of Theorem 3.11.

7. Proof of Lemma 3.9

We briefly explain why (3.3) implies (H3)2,2, thanks to an integration by parts, in view

of (3.2). Typically, for f1, f2 ∈ S(Rd1),

〈[w(x, y),Hx]f1, f2〉L2
x
=

1

2
〈∆xw(·, y)f1, f2〉L2

x
+ 〈∇xw(·, y) · ∇f1, f2〉L2

x
.

Therefore, for almost all y ∈ R
d2 , Cauchy-Schwarz inequality yields

∣

∣

∣
〈[w(x, y),Hx]f1, f2〉L2

x

∣

∣

∣
≤

1

2
‖|∆xw(·, y)|

1/2f1‖L2
x
‖|∆xw(·, y)|

1/2f2‖L2
x

+ ‖∇xf1‖L2
x
‖∇xw(·, y)f2‖L2

x
.

Using (3.3),

‖|∆xw(·, y)|
1/2f‖2L2

x
. ‖

√

V1f‖
2
L2
x
+ (1 + V2(y))‖f‖

2
L2
x
. ‖f‖2H1

x
+ (1 + V2(y))‖f‖

2
L2
x
,

‖∇xw(·, y)f‖L2
x
. ‖(

√

V1 + V2(y) + 1)f‖L2
x
. ‖f‖H1

x
+ (1 + V2(y))‖f‖L2

x
.

We deduce the expected relation for k = ℓ = 1:

∣

∣

∣
〈[w(x, y),Hx]f1, f2〉L2

x

∣

∣

∣
. (1 + V2(y))‖f1‖H1

x
‖f2‖H1

x
.

For k = 2, write

∣

∣

∣
〈Hx[w(x, y),Hx]f1, f2〉L2

x

∣

∣

∣
=

∣

∣

∣
〈[w(x, y),Hx]f1,Hxf2〉L2

x

∣

∣

∣

≤
1

2

∣

∣

∣
〈∆xw(·, y)f1,Hxf2〉L2

x

∣

∣

∣
+

∣

∣

∣
〈∇xw(·, y) · ∇f1,Hxf2〉L2

x

∣

∣

∣

. ‖ (1 + V1 + V2(y)) f1‖L2
x
‖Hxf2‖L2

x

+ ‖∇xw(·, y) · ∇f1‖L2
x
‖Hxf2‖L2

x

. ‖f1‖H2
x
‖f2‖H2

x
+ V2(y)‖f1‖L2

x
‖f2‖H2

x

+ ‖∇xw(·, y) · ∇f1‖L2
x
‖f2‖H2

x
,
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where we have used the estimate ‖Hxf‖L2
x
≤ ‖f‖H2

x
. For the last term, (3.3) yields

‖∇xw(·, y) · ∇f1‖L2
x
.

∥

∥

∥

(

√

V1 + V2(y) + 1
)

∇f1

∥

∥

∥

L2
x

.
∥

∥

∥

√

V1∇f1

∥

∥

∥

L2
x

+ (V2(y) + 1) ‖∇f1‖L2
x

.
∥

∥

∥

√

V1∇f1

∥

∥

∥

L2
x

+ (V2(y) + 1) ‖f‖
1/2
L2
x
‖∆f‖

1/2
L2
x

.
∥

∥

∥

√

V1∇f1

∥

∥

∥

L2
x

+ (V2(y) + 1) ‖f1‖H2
x
.

For the first term on the last right hand side, we use an integration by parts:
∥

∥

∥

√

V1∇f1

∥

∥

∥

2

L2
x

=

∫

Rd1

V1(x)∇f1(x) · ∇f1(x)dx

= −

∫

Rd1

V1(x)f1(x)∆f1(x)dx−

∫

Rd1

f1(x)∇V1(x) · ∇f1(x)dx.

By Cauchy-Schwarz inequality, the first term on the right hand side is estimated by

‖V1f1‖L2
x
‖∆f1‖L2

x
≤ 2‖Hxf1‖

2
L2
x
.

Invoking (3.2), and using Cauchy-Schwarz inequality again,
∣

∣

∣

∣

∫

Rd1

f(x)∇V1(x) · ∇f(x)dx

∣

∣

∣

∣

.

∫

Rd1

(1 + V1(x))|f(x)||∇f(x)|dx . ‖(1 + V1)f‖L2
x
‖∇f‖L2

x

.
(

‖f‖L2
x
+ ‖Hxf‖L2

x

)

‖f‖
1/2
L2
x
‖∆f‖

1/2
L2
x

. ‖Hxf‖
1/2
L2
x
‖f‖

3/2
L2
x
+ ‖Hxf‖

3/2
L2
x
‖f‖

1/2
L2
x
. ‖f‖2L2

x
+ ‖Hxf‖

2
L2
x
,

where we have used Young inequality for the last estimate.

|〈[w(x, y),Hx]Hxf1, f2〉| = |〈Hxf1, [w(x, y),Hx]f2〉| ≤ ‖Hxf1‖L2
x
‖∆xw(·, y)f2‖L2

x
.

To estimate 〈[w(·, y),Hx]Hxf1, f2〉L2
x
, we use the self-adjointness of Hx and write

〈[w(·, y),Hx]Hxf1, f2〉L2
x
= 〈Hxf1, [w(·, y),Hx]f2〉L2

x
.

We use the above estimate, where the roles of f1 and f2 have been swapped, to conclude
that the first inequality in (H3)2,2 holds. The proof of the second one is similar.

Appendix A. Tangent space

For completeness, we give the elementary considerations for determining the tangent
spaces of the Hartree manifold, Lemma 2.1.

Proof. We consider a curve Γ(s) = ϕx(s)⊗ ϕy(s) ∈ M with Γ(0) = u. Then,

Γ̇(0) = ϕ̇x(0)⊗ ϕy + ϕx ⊗ ϕ̇y(0),

which verifies the claimed representation of any tangent function as

v = vx ⊗ ϕy + ϕx ⊗ vy.
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Let us consider a = (ax, ay) ∈ C
2 with ax + ay = 0. We set wx = vx + axϕx and

wy = vy + ayϕy. Then, w = wx ⊗ ϕy + ϕx ⊗ wy satisfies

w = vx ⊗ ϕy + ϕx ⊗ vy + (ax + ay)ϕx ⊗ ϕy = v.

Choosing ax = −〈ϕx, vx〉/〈ϕx, ϕx〉 and ay = −ax, we obtain a representation of v satisfying
the claimed gauge condition. We verify that this condition implies uniqueness. We assume
that v = vx ⊗ ϕy + ϕx ⊗ vy = ṽx ⊗ ϕy + ϕx ⊗ ṽy with 〈ϕx, vx〉 = 〈ϕx, ṽx〉 = 0. Then, for
any ϑy ∈ L2

y,

〈ϕx ⊗ ϑy, v〉 = 〈ϕx, ϕx〉〈ϑy, vy〉 = 〈ϕx, ϕx〉〈ϑy, ṽy〉,

which implies vy = ṽy. Then, for any ϑx ∈ L2
y,

〈ϑx ⊗ ϕy, v〉L2
x,y

= 〈ϑx, vx〉L2
x
〈ϕy, ϕy〉L2

y
+ 〈ϑx, ϕx〉L2

x
〈ϕy , vy〉L2

y

= 〈ϑx, ṽx〉L2
x
〈ϕy, ϕy〉L2

y
+ 〈ϑx, ϕx〉L2

x
〈ϕy , ṽy〉L2

y
,

which implies vx = ṽx. Choosing vx = 0 and vy = ϕy, we have v = u so that u ∈ TuM. �

Appendix B. Coulombic type coupling

We recall standard definition and results.

Definition B.1 (Admissible pairs in R
3). A pair (q, r) is admissible if q, r ≥ 2, and

2

q
= 3

(

1

2
−

1

r

)

.

As the range allowed for (q, r) is compact, we set, for I ⊂ R a time interval,

‖u‖S(I) = sup
(q,r) admissible

‖u‖Lq(I;Lr(R3)).

In view of [11] and [13], we have:

Proposition B.2. Let d = 3 and V ∈ Q. Denote H = −1
2∆+V.

(1) There exists Chom such that for all interval I such that |I| ≤ 1,

‖e−itHϕ‖S(I) ≤ Chom‖ϕ‖L2 , ∀ϕ ∈ L2(R3).

(2) Denote

D(F )(t, x) =

∫ t

0
e−i(t−τ)HF (τ, x)dτ.

There exists Cinhom such that for all interval I ∋ 0 such that |I| ≤ 1,

‖D(F )‖S(I) ≤ Cinhom ‖F‖S(I)∗ .

The existence of (local in time) Strichartz estimates of Proposition B.2 is the main
ingredient of the proof of Theorem 3.1. Actually, as soon as such estimates are available
for the operators Hx and Hy, then Theorem 3.1 remains valid. As mentioned in the
introduction, such cases can be found in e.g. [20] or [5]. On the other hand, we emphasize
that for superquadratic potentials, like V1 in Example 3.5, Strichartz estimates suffer a loss
of regularity; see [16, 21].
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Remark B.3. The case of a harmonic potential, V(x) = |x|2, shows that H may have
eigenvalues, and explains why the above time intervals I are required to have finite length.

Remark B.4. The potential V may also be time dependent, in view the original framework
of [11]: V ∈ L∞

loc(Rt × R
3
x) is real-valued, and smooth with respect to the space variable:

for (almost) all t ∈ R, x 7→ V(t, x) is a C∞ map. Moreover, it is at most quadratic in
space:

∀T > 0, ∀α ∈ N
d, |α| ≥ 2, ∂αxV ∈ L∞([−T, T ]× R

3
x).

Under these assumptions, suitable modifications of Proposition B.2 are needed, but they
do not alter the conclusion of Theorem 3.1 (see [8]). See also [20] for another class of time
dependent potentials.

Proof of Theorem 3.1. We give the main technical steps of the proof, and refer to [10] for
details. By Duhamel’s formula, we write (1.2) as

φx(t) = e−itHxφx0 − i

∫ t

0
e−i(t−τ)Hx

(

v1φ
x +

(

W ∗ |φy|2
)

φx
)

(τ)dτ =: F1(φ
x, φy),

φy(t) = e−itHyφy0 − i

∫ t

0
e−i(t−τ)Hy

(

v2φ
y +

(

W ∗ |φx|2
)

φy
)

(τ)dτ =: F2(φ
x, φy).

Theorem 3.1 follows from a standard fixed point argument based on Strichartz estimates.
For 0 < T ≤ 1, we introduce

Y (T ) = {(φx, φy) ∈ C([0, T ];L2(R3))2 : ‖φx‖S([0,T ]) ≤ 2Chom‖φ
x
0‖L2 ,

‖φy‖S([0,T ]) ≤ 2Chom‖φ
y
0‖L2},

and the distance

d(φ1, φ2) = ‖φ1 − φ2‖S([0,T ],

where Chom stems from Proposition B.2. Then (Y (T ), d) is a complete metric space.
By using Strichartz estimates and Hölder inequality, we have:

‖F1(φ
x, φy)‖S([0,T ]) ≤ Chom‖φ

x
0‖L2 + Cinhom

(

‖v1φ
x‖S([0,T ])∗ +

∥

∥

(

W ∗ |φy|2
)

φx
∥

∥

S([0,T ])∗

)

,

for any (φx, φy) ∈ Y (T ). By assumption (see Theorem 3.1), we may write

v1 = vp1 + v∞1 , v2 = vp2 + v∞2 , W =W p +W∞, vq1, v
q
2,W

q ∈ Lq(R3),

and the value p can obviously be the same for the three potentials, by taking the minimum
between the three p’s if needed. Regarding ‖v1φ

x‖S([0,T ])∗ , we write

‖v∞1 φ
x‖S([0,T ])∗ ≤ ‖v∞1 φ

x‖L1([0,T ];L2) ≤ ‖v∞1 ‖L∞‖φx‖L1([0,T ];L2)

≤ T‖v∞1 ‖L∞‖φx‖L∞≤([0,T ];L2) ≤ T‖v∞1 ‖L∞‖φx‖S([0,T ]).

Let r be such that
1

r′
=

1

r
+

1

p
⇐⇒ 1 =

2

r
+

1

p
.
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Note that this exponent is the one introduced in the statement of Theorem 3.1. The
assumption p > 3/2 implies 2 ≤ r < 6. Let q be such that (q, r) is admissible: r < 6
implies q > 2. Hölder inequality yields

‖vp1φ
x‖S([0,T ])∗ ≤ ‖vp1φ

x‖Lq′ ([0,T ];Lr′) ≤ ‖vp1‖Lp‖φx‖Lq′ ([0,T ];Lr)

≤ T 1/θ‖vp1‖Lp‖φx‖Lq([0,T ];Lr) ≤ T 1/θ‖vp1‖Lp‖φx‖S([0,T ]),

where θ is such that
1

q′
=

1

q
+

1

θ
.

Note that θ is finite, as q > 2

For the convolution term, first write
∥

∥

(

W∞ ∗ |φy|2
)

φx
∥

∥

S([0,T ])∗
≤

∥

∥

(

W∞ ∗ |φy|2
)

φx
∥

∥

L1([0,T ];L2)

≤
∥

∥W∞ ∗ |φy|2
∥

∥

L1([0,T ];L∞)
‖φx‖L∞([0,T ];L2)

≤ T‖W∞‖L∞‖φy‖2L∞([0,T ];L2)‖φ
x‖L∞([0,T ];L2)

≤ T‖W∞‖L∞‖φy‖2S([0,T ])‖φ
x‖S([0,T ]).

Introduce r1 such that

(B.1)
1

r′1
=

1

r1
+

1

2p
⇐⇒ 2 =

4

r1
+

1

p
⇐⇒ 1 +

1

2p
=

1

p
+

2

r1
.

The assumption p > 3/2 implies 2 ≤ r1 < 3. Let q1 be such that (q1, r1) is admissible:
q1 > 4. Hölder inequality yields

∥

∥

(

W p ∗ |φy|2
)

φx
∥

∥

S([0,T ])∗
≤

∥

∥

(

W p ∗ |φy|2
)

φx
∥

∥

Lq′
1 ([0,T ];Lr′

1)

≤
∥

∥W p ∗ |φy|2
∥

∥

Lk([0,T ];L2p)
‖φx‖Lq1 ([0,T ];Lr1)

≤
∥

∥W p ∗ |φy|2
∥

∥

Lk([0,T ];L2p)
‖φx‖S([0,T ]),

where k is such that
1

q′1
=

1

q1
+

1

k
⇐⇒ 1 =

2

q1
+

1

k
.

Note that since q1 > 4, we have q1 > 2k. In view of (B.1), Young inequality yields
∥

∥W p ∗ |φy|2
∥

∥

Lk([0,T ];L2p)
≤ ‖W p‖Lp

∥

∥|φy|2
∥

∥

Lk([0,T ];Lr1/2)
= ‖W p‖Lp‖φy‖2L2k([0,T ];Lr1)

≤ T η‖W p‖Lp‖φy‖2Lq1 ([0,T ];Lr1) ≤ T η‖W p‖Lp‖φy‖2S([0,T ]),

where η > 0 is given by η = 1/(2k) − 1/q1.

The same inequalities obviously holds by switching x and y, and so for T > 0 sufficiently
small, Φ := (φx, φy) 7→ (F1(φ

x, φy), F2(φ
x, φy)) =: F(Φ) leaves Y (T ) invariant.

Using similar estimates, again relying on Strichartz and Hölder inequalities involving the
same Lebesgue exponents (F is the sum of a linear and a trilinear term in Φ), we infer that
up to decreasing T > 0, F is a contraction on Y (T ), and so there exists a unique Φ ∈ Y (T )
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solving (1.2). The global existence of the solution for (1.2) follows from the conservation
of the L2-norms of φx and φy, respectively.

Uniqueness of such solutions follows once again from Strichartz and Hölder inequalities
involving the same Lebesgue exponents as above, like for the contraction part of the argu-
ment. The main remark consists in noticing that the above Lebesgue indices satisfy r > r1,
hence q < q1, and so Lq1

locL
r1 ⊂ Lq

locL
r ∩ L∞L2. �

Remark B.5 (H1-regularity). If in Theorem 3.1, we assume in addition that

∇v1,∇v2 ∈ Lp(R3) + L∞(R3) form some p > 3/2,

then for φx0 , φ
y
0 ∈ H1(R3) and xφx0 , yφ

y
0 ∈ L2(R3) (this last assumption may be removed

when ∇V1,∇V2 ∈ L∞(R3) – the minimal assumption to work at the H1-level with V1, V2 ∈
Q is φx0∇V1, φ

y
0∇V2 ∈ L2(R3), see [9]), the global solution constructed in Theorem 3.1

satisfies

(φx, φy) ∈ C(R;H1(R3))2 ∩ Lq
loc(R;W

1,r(R3))2, (xφx, yφy) ∈ C(R;L2(R3)3)2.

To see this, it suffices to resume the above proof, and check that ∇xF1(φ
x, φy) and

∇yF2(φ
x, φy) satisfy essentially the same estimates as F1(φ

x, φy), F2(φ
x, φy) in S([0, T ]).

One first has to commute the gradient with e−itHx or e−itHy . Typically,

∇xF1(φ
x, φy) = e−itHx∇xφ

x
0 − i

∫ t

0
e−i(t−τ)Hx∇x

(

v1φ
x +

(

W ∗ |φy|2
)

φx
)

(τ)dτ

− i

∫ t

0
e−i(t−τ)HxF1(φ

x, φy)(τ)∇xV1dτ,

where the last factor accounts for the possible lack of commutation between Hx and ∇x,
[−i∂t − Hx,∇x] = ∇xV1. Since V1 is at most quadratic, ∇V1 is at most linear, and we
obtain a closed system of estimates by considering

xF1(φ
x, φy) = e−itHx(xφx0)− i

∫ t

0
e−i(t−τ)Hx

(

x
(

v1φ
x +

(

W ∗ |φy|2
)

φx
))

(τ)dτ

+ i

∫ t

0
e−i(t−τ)Hx∇xF1(φ

x, φy)(τ)dτ,

where we have used [−i∂t −Hx, x] = −∇x. We omit the details, and refer to [10] (see also
[8]). As pointed in Remark 3.3, the energy

E(t) = (Hxφ
x(t), φx(t))L2

x
+ (Hyφ

y(t), φy(t))L2
y

+

∫∫

R3×R3

W (x− y)|φx(t, x)|2|φy(t, y)|2dxdy,

which is well defined with the above regularity, is independent of time. Formally, this can
be seen by multiplying the first equation in (1.2) by ∂tφ

x, the second by ∂tφ
y, integrating

in space, considering the real part, and summing the two identities. To make the argument
rigorous (we may not have enough regularity to be allowed to proceed as described), one



24 R. CARLES, C. FERMANIAN, AND C. LASSER

may use a regularization procedure as in [10], or rely on a clever use of the regularity
provided by Strichartz estimates, as in [17].
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