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1valeo.ai, Paris, France
2Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France.

ABSTRACT

We introduce a regularization loss based on kernel mean embeddings with
rotation-invariant kernels on the hypersphere (also known as dot-product kernels)
for self-supervised learning of image representations. Besides being fully compet-
itive with the state of the art, our method significantly reduces time and memory
complexity for self-supervised training, making it implementable for very large
embedding dimensions on existing devices and more easily adjustable than pre-
vious methods to settings with limited resources. Our work follows the major
paradigm where the model learns to be invariant to some predefined image trans-
formations (cropping, blurring, color jittering, etc.), while avoiding a degener-
ate solution by regularizing the embedding distribution. Our particular contri-
bution is to propose a loss family promoting the embedding distribution to be
close to the uniform distribution on the hypersphere, with respect to the maxi-
mum mean discrepancy pseudometric. We demonstrate that this family encom-
passes several regularizers of former methods, including uniformity-based and
information-maximization methods, which are variants of our flexible regulariza-
tion loss with different kernels. Beyond its practical consequences for state-of-
the-art self-supervised learning with limited resources, the proposed generic reg-
ularization approach opens perspectives to leverage more widely the literature on
kernel methods in order to improve self-supervised learning methods.

1 INTRODUCTION

Self-supervised learning is a promising approach for learning visual representations: recent methods
(He et al., 2020; Grill et al., 2020; Caron et al., 2020; Gidaris et al., 2021) reach the performance of
supervised pretraining in terms of quality for transfer learning in many downstream tasks, like classi-
fication, object detection, semantic segmentation, etc. These methods rely on some prior knowledge
on images: the semantic of an image is invariant (Misra & Maaten, 2020) to some small transforma-
tions of the image, such as cropping, blurring, color jittering, etc. One way to design an objective
function that encodes such an invariance property is to enforce two different augmentations of the
same image to have a similar representation (or embedding) when they are encoded by the neural
network. However, the main issue with this kind of objective function is to avoid an undesirable loss
of information (Jing et al., 2022) where, e.g., the network learns to represent all images by the same
constant representation. Hence, one of the main challenges in self-supervised learning is to propose
an efficient way to regularize the embedding distribution in order to avoid such a collapse.

Our contribution is to propose a generic regularization loss promoting the embedding distribution
to be close to the uniform distribution on the hypersphere, with respect to the maximum mean dis-
crepancy (MMD), a distance on the space of probability measures based on the notion of embedding
probabilities in a reproducing kernel Hilbert space (RKHS), using the so-called kernel mean embed-
ding mapping. Inspired by high-dimensional statistical tests for uniformity that are rotation-invariant
(Garcı́a-Portugués & Verdebout, 2018), we choose to embed probability distributions using rotation-
invariant kernels on the hypersphere (dot-product kernels), i.e., kernels for which the evaluation for
two vectors depends only on their inner product (Smola et al., 2000). This paper shows that such an
approach leads to important theoretical and practical consequences for self-supervised learning.

Code: https://github.com/valeoai/sfrik
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Figure 1: Self-supervised learning with rotation-invariant kernels. The invariance criterion min-
imizes the `2-distance between two normalized embeddings {zi(v)}v=1,2 of two views of the same
image xi encoded by the backbone fθ and the projection head gw. To avoid collapse, the embedding
distribution is regularized to be close to the uniform distribution on the hypersphere, in the sense of
the MMD associated to a rotation-invariant kernel K(u,v) = ϕ(u>v) defined on the hypersphere.

Table 1: Correspondence be-
tween kernel choicesK(·, ·) in our
generic regularization loss and
regularizers of former methods.

K(u,v) Method

(uv>)2 Contrastive
e−t‖u−v‖

2
2 AUH

C − ‖u− v‖2s−q+1
2 PointContrast

b1uv
> + b2

q(uv>)2−1
q−1

Analog to VICReg
(cf. Section 3.3)

We demonstrate that our regularization loss family parame-
terized by such rotation-invariant kernels encompasses several
regularizers of former methods. As illustrated in Table 1, they
are variants of our generic loss with different kernels: the
quadratic kernel yields the general sample-contrastive criterion
of Garrido et al. (2023) that englobes many contrastive learning
methods like (HaoChen et al., 2021) (cf. Appendix A.2); the
radial basis function (RBF) kernel yields the uniformity loss
of Alignment & Uniformity on the Hypersphere (AUH) (Wang
& Isola, 2020); the generalized distance kernel (cf. Example 2)
yields one of the regularization used in PointContrast (Xie et al.,
2020); and a linear combination of the linear kernel and the quadratic kernel yields a regularizer that
promotes the covariance matrix of the embedding distribution to be proportional to the identity ma-
trix, similarly to information-maximization methods like VICReg (Bardes et al., 2022). In other
words, these former methods turn out to be particular ways of minimizing the MMD between the
embedding distribution and the uniform distribution on the hypersphere during training, with var-
ious specific kernel choices. The proposed generic regularization approach opens perspectives to
leverage more widely the literature on kernel methods in order to improve self-supervised learning.

Numerically, we show in a rigorous experimental setting with a separate validation set for hyperpa-
rameter tuning that our method yields fully competitive results compared to the state of the art, when
choosing truncated kernels of the form K(u,v) =

∑L
`=0 b`P`(q;u

>v), with L ∈ {2, 3}, b` ≥ 0 for
` ∈ {0, . . . , L}, where P`(q; ·) denotes the Legendre polynomial of order `, dimension q. To our
knowledge, this kernel choice has not been considered in previous self-supervision methods. There-
fore, we introduce SFRIK (SelF-supervised learning with Rotation-Invariant Kernels, pronounced
like “spheric”), which regularizes the embedding distribution to be close to the uniform distribution
with respect to the MMD associated to such a truncated kernel, as summarized in Figure 1.

Importantly, our method significantly reduces time and memory complexity for self-supervised
training compared to information-maximization methods. Due to the kernel trick, the complexity of
SFRIK’s loss is quadratic in the batch size and linear in the embedding dimension, instead of being
quadratic as in VICReg. In practice, SFRIK’s pretraining time is up to 19% faster than VICReg for
an embedding dimension 16384, and it can scale at dimension 32768, as opposed to VICReg whose
memory requirement is too large at this dimension for a machine with 8 GPUs and 32GB of memory
per GPU. Hence our work opens perspectives in self-supervised learning on embedded devices with
limited memory like in (Xiao et al., 2022). We summarize our contributions as follows:

• We introduce a generic regularization loss based on kernel mean embeddings with rotation-
invariant kernels on the hypersphere for self-supervised learning of image representations.

• We show that our loss family encompasses several previous self-supervised learning methods,
like uniformity-based and information-maximization methods.

• We numerically show that SFRIK significantly reduces time and memory complexity for self-
supervised training, while remaining fully competitive with the state of the art.
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2 RELATED WORK

Instance discrimination methods typically rely on a contrastive loss that behaves asymptotically like
an alignment and uniformity loss on the hypersphere in the limit of infinite samples. Our contribu-
tion is to formalize and generalize existing uniformity-based methods by using kernel mean embed-
dings. To the best of our knowledge, the proposed kernel framework establishes the first connection
between uniformity-based methods and information-maximization methods like VICReg.

Instance discrimination One way of learning image representations that are invariant to prede-
fined image transformations (Misra & Maaten, 2020) is to rely on an instance classification approach
(Wu et al., 2018). Typically, contrastive learning (Oord et al., 2018; Hjelm et al., 2019; Chen et al.,
2020a;b; He et al., 2020; Henaff, 2020) discriminates instances within a batch of sampled images
using the noise contrastive estimator (Gutmann & Hyvärinen, 2010), by attracting embeddings of
transformed images coming from the same image instance, and repulsing embeddings coming from
different image instances. In practice, this estimator needs a large number of image representations
in order to achieve good results, which requires a large batch size like SimCLR (Chen et al., 2020a)
or a memory bank (Wu et al., 2018; He et al., 2020). In the limit of infinite samples, the contrastive
loss is shown to behave asymptotically like the alignment and uniformity loss of AUH.

Uniformity on the hypersphere Existing uniformity-based methods avoid collapse by regulariz-
ing the embedding distribution to be somehow close to the uniform distribution on the hypersphere,
which has a high entropy. Bojanowski & Joulin (2017) perform this kind of regularization by align-
ing the learned representations on a fixed number of vectors sampled uniformly at random on the
hypersphere. AUH maximizes the average pairwise distance between embeddings using an RBF
kernel, in the spirit of energy minimization methods that address the problem of scattering points
evenly on the hypersphere (Hardin & Saff, 2005; Liu et al., 2018; Borodachov et al., 2019). Al-
though alternative high-entropy prior distributions (e.g., the uniform distribution on the hypercube)
can be used for regularization (Chen et al., 2021), encoding images into `2-normalized representa-
tions helps to stabilize training (Schroff et al., 2015; Parkhi et al., 2015; Liu et al., 2017).

Kernel mean embedding As a contribution, our generic loss formalizes and generalizes these
previous uniformity losses, by relying on kernel mean embeddings (cf. Appendix A.1) to mea-
sure the distance between probability distributions on high-dimensional spaces, using the MMD
pseudometric (Gretton et al., 2012; Li et al., 2015; Dziugaite et al., 2015; Briol et al., 2019) with
rotation-invariant kernels on the hypersphere (Smola et al., 2000; Pennington et al., 2015; Lyu, 2017;
Dutordoir et al., 2020). These tools are adapted for high-dimensional problems on the hypersphere
whose geometry is different from the one in small dimension, as illustrated by Garcı́a-Portugués &
Verdebout (2018): many statistical tests for uniformity on the hypersphere, i.e., tests for rejecting the
null hypothesis where a batch of normalized vectors is sampled from the uniform distribution on the
hypersphere, are in fact precisely estimators of the MMD between the embedding distribution and
the uniform distribution, for different kernels. Our kernel method for self-supervision is comple-
mentary to (Li et al., 2021), in which the dependency between image instances and their embedding
is maximized with respect to the Hilbert-Schmidt independence criterion (cf. Appendix A.3).

Information maximization Our generic regularization approach has the benefit of connecting
uniformity-based and information-maximization methods (Zbontar et al., 2021; Ermolov et al.,
2021; Bardes et al., 2022). The latter are alternatives to distillation methods (Grill et al., 2020;
Gidaris et al., 2020; 2021; Chen & He, 2021; Caron et al., 2021) where a student network learns to
predict the representations of a teacher network. In such methods, using various architecture tricks
(like prediction head, stop-gradient, momentum encoder, batch normalization or centering) is shown
empirically to be sufficient to avoid collapse without instance discrimination, even though it is not
fully understood how these multiple factors induce a regularization during training (Richemond
et al., 2020; Tian et al., 2021). Instead of using these tricks, information-maximization methods use
a Siamese architecture and avoid collapse by maximizing the statistical information of a batch of
embeddings, using a whitening operation (Ermolov et al., 2021), or an explicit regularization term
making the covariance (Bardes et al., 2022) or the cross-correlation (Zbontar et al., 2021) matrix
close to a scaled identity matrix. This paper shows that our generic regularization loss with an appro-
priate kernel also promotes the covariance matrix of the embedding distribution to be proportional
to the identity matrix. But in contrast to VICReg which explicitly computes the covariance matrix,
our method uses the kernel trick to significantly reduce complexity at large embedding dimensions.
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3 METHOD DESCRIPTION

Given an unlabeled dataset of images xi ∼ P, i ∈ [N ] := {1, . . . , N}, sampled independently
from a data distribution P, the goal is to learn a backbone network fθ parameterized by θ (e.g., a
convolutional neural network) such that any new image x ∼ P is encoded by a good representation
fθ(x) whose quality is evaluated in several downstream tasks (see Section 4).

3.1 INVARIANCE AND UNIFORMITY FOR SELF-SUPERVISION

Our self-supervised learning method (see Figure 1) follows the principle of the recent methods
like SimCLR or VICReg. During self-supervised training, each image xi is augmented using two
different random transformations t(1) and t(2) sampled from a distribution T , which yields two
views xi(1) := t(1)(xi) and xi

(2) := t(2)(xi) of the image xi. Two representations zi(v) (v = 1, 2)
are obtained by encoding each xi

(v) with the backbone fθ and `2-normalizing the resulting feature
vector. For a given subset of indices I ⊆ [N ], we write ZI

(v) := {zi(v)}i∈I . The backbone fθ is
trained by minimizing the total objective function:

L = Et(1),t(2)∼T EI⊆[N ] `(ZI
(1),ZI

(2)), (1)

where batches I are drawn at random with a prescribed batch size, and the loss ` is a weighted sum
involving an alignment term `a and a uniformity term `u, in the spirit of AUH:

`(ZI
(1),ZI

(2)) := λ `a(ZI
(1),ZI

(2)) + 0.5 (`u(ZI
(1)) + `u(ZI

(2))) ; (2)

λ > 0 is a hyperparameter that tunes the balance between the two terms. The loss `a enforces the
invariance property of the model, and is defined for a batch I ⊆ [N ] of cardinality |I| as:

`a(ZI
(1),ZI

(2)) :=
1

|I|
∑
i∈I

∥∥zi(1) − zi
(2)
∥∥2

2
. (3)

Our main contribution is in the choice of the uniformity term `u, detailed in the rest of the section.
Note that instead of applying the loss (2) to the output of fθ (called image representation), we add a
projection head gw (a multi-layer perceptron) parameterized by w to the output of fθ and apply (2)
at the output of gw (called image embedding). This common practice (Caron et al., 2020; Grill et al.,
2020) improves the performance in the downstream tasks. Therefore, denoting Sq−1 the unit hyper-
sphere in Rq , the image embedding actually reads zi(v) := (gw ◦fθ)(xi(v))/

∥∥(gw ◦ fθ)(xi(v))
∥∥

2
∈

Sq−1. Both gw and fθ are jointly trained without supervision by minimizing (1) using a stochastic
mini-batch algorithm. After training, gw is discarded and only fθ is kept for the downstream tasks.

3.2 UNIFORMITY LOSS VIA MMD MINIMIZATION

We continue by explaining our generic kernel formulation of `u using the MMD pseudometric and
rotation-invariant kernels. Then we provide examples of such kernels and describe our kernel choice.

3.2.1 MMD PSEUDOMETRIC AND ROTATION-INVARIANT KERNELS

Our uniformity loss relies on a divergence in the space of probability distributions based on a positive
definite kernelK defined on some space X . DenotingH the corresponding RKHS with norm ‖ · ‖H,
the MMD between two probability distributions Q1,Q2 on X can be expressed as the distance in
‖ · ‖H between their kernel mean embeddings (Borgwardt et al., 2006; Muandet et al., 2017):

MMD(Q1,Q2) =

∥∥∥∥∫
X
K(u, ·)dQ1(u)−

∫
X
K(u, ·)dQ2(u)

∥∥∥∥
H
. (4)

We propose to use this pseudometric to measure the distance between the probability distribution of
the embeddings zi(v) (v = 1, 2) and the uniform probability distribution on the hypersphere Sq−1

defined by U := σq−1/
∣∣Sq−1

∣∣, where σq−1 denotes the normalized Hausdorff surface measure
on Sq−1, and

∣∣Sq−1
∣∣ :=

∫
Sq−1 dσq−1 = 2π

q
2 /Γ( q2 ) is the surface area of Sq−1, with Γ denoting

the Gamma function. Intuitively, a good choice of kernel for measuring the distance (4) should
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distinguish any probability distribution from the uniform distribution. Inspired by statistical tests
for uniformity that are rotation-invariant (Garcı́a-Portugués & Verdebout, 2018), we propose to use
rotation-invariant kernels on X := Sq−1 of the form K(u,v) := ϕ(u>v) with ϕ a continuous
function defined on [−1, 1] (Smola et al., 2000). The following theorem characterizes the form of
function ϕ that ensures positive definiteness of K, and thus that (4) is a valid pseudometric.

Theorem 1 (Schoenberg (1942, Theorem 1)) The kernelK(u,v) := ϕ(u>v) on X := Sq−1 with
ϕ continuous is positive definite if, and only if, the function ϕ admits an expansion:

ϕ(t) =

+∞∑
`=0

b`P`(q; t), with b` ≥ 0, (5)

where P`(q; t) := `! Γ
(
q−1

2

)∑b `2 c
k=0

(
− 1

4

)k (1−t2)kt`−2k

k! (`−2k)! Γ(k+ q−1
2 )

is the Legendre (or Gegenbauer)

polynomial of degree ` in dimension q (Müller, 2012, (2.32)).

As we are interested in measuring the distance between the embedding distribution and the uniform
distribution on the hypersphere U, we compute the kernel mean embedding of U for a kernel satisfy-
ing the condition of Theorem 1 using the following known result used, e.g., implicitly in (Brauchart
et al., 2014). As we could not locate a formal proof, we provide one in Appendix B.1.

Lemma 2 Let K(u,v) := ϕ(u>v) be a rotation-invariant kernel on X := Sq−1 where ϕ ad-
mits the expansion (5). The kernel mean embedding of the uniform distribution U on Sq−1 is
constant:

∫
Sq−1 K(u,v) dU(u) = b0 ∈ R for all v ∈ Sq−1. The kernel mean embedding of

any probability distribution Q defined on the hypersphere satisfies:
∫
Sq−1 K(u, ·) dQ(u) = b0 +∫

Sq−1 K̃(u, ·) dQ(u), where K̃(u,v) := ϕ̃(u>v) for any u,v ∈ Sq−1 with ϕ̃ :=
∑+∞
`=1 b`P`(q; ·).

Using Lemma 2 in (4) yields MMD(Q,U) = ‖
∫
Sq−1 K̃(u, ·)dQ(u)‖H for any probability distribu-

tion Q on Sq−1. Then, by the reproducing property in the RKHSH, the squared MMD satisfies, for
any rotation-invariant kernel K verifying the condition of Theorem 1:

MMD2(Q,U) = Ez,z′∼Q

[
K̃ (z, z′)

]
, with z, z′ i.i.d. (6)

3.2.2 ESTIMATOR OF THE SQUARED MMD AND KERNEL CHOICES

The proposed uniformity loss `u for self-supervision is a biased estimator (Gretton et al., 2012) of
MMD2(Q,U) in (6). Given a batch ZI := {zi}i∈I sampled from Q, our uniformity loss is:

`u(ZI) = M̂MD
2
(Q,U; {ZI}) :=

1

|I|2
∑
i∈I

∑
i′∈I
K̃(zi, zi′) =

1

|I|2
∑
i∈I

∑
i′∈I

ϕ̃(z>i zi′). (7)

In our framework, any rotation-invariant kernel satisfying the condition of Theorem 1 can be used
to compute (7) and train a self-supervised model by minimizing (1). The uniformity term (7) can be
interpreted as an energy functional (Brauchart et al., 2014): minimizing the average pairwise energy
quantified by K̃ tends to scatter evenly the embeddings on the hypersphere. We now give examples
of kernels that can be used for this uniformity term. This illustrates that our framework offers a
unification of several strategies for self-supervision.

Example 1: RBF kernel. Using K(u,v) = e−t‖u−v‖
2
2 (with t > 0) in the uniformity term `u (7)

yields the regularization term from AUH, with the only difference that AUH uses the logarithm of
the energy functional as their uniformity loss.

Example 2: Generalized distance kernel. It is defined as K(u,v) := C − ‖u − v‖2s−q+1
2 with

q−1
2 < s < q+1

2 and C > 0 sufficiently large (Brauchart et al., 2014). A variation of this kernel
choice is, e.g., used in the hard-contrastive loss of PointContrast for self-supervision on point clouds.

Example 3: Truncations of the Laplace-Fourier series. A truncated kernel up to order L
(Brauchart et al., 2014) is a kernel K(u,v) =

∑L
`=0 b`P`(q;u

>v), with b` ≥ 0 for ` = 0, . . . , L.
It admits a closed-form expression given by the definition of Legendre polynomials P`(q, ·) in The-
orem 1, e.g., P1(q, t) = t, P2(q, t) = qt2−1

q−1 , P3(q, t) = (q+2)t3−3t
q−1 . We explore numerically this

kernel choice in Section 4, since it has never been considered in previous self-supervision methods.
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The expansion of ϕ in Legendre polynomials (5) for the RBF (Example 1) and the generalized
distance kernel (Example 2) verifies b` > 0 for each integer ` (see Appendix B.2). By (Micchelli
et al., 2006, Theorem 10), this is a necessary and sufficient condition for a rotation-invariant kernel
to be universal, and universality is a sufficient condition for injectivity of the corresponding kernel
mean embedding mapping, i.e., the kernel is characteristic (Fukumizu et al., 2004). The benefit of
this property is to guarantee that the uniform distribution U is the unique solution to the minimization
problem: min

{
MMD(Q,U) | Q is a probability distribution on Sq−1

}
. In contrast, the truncated

rotation-invariant kernel up to an order L (Example 3) is not universal. Yet, our experiments in
Section 4 show that truncated kernels up to order L = 2, 3 provide better results than, e.g., AUH
whose uniformity loss is based on the RBF kernel.

In summary, the uniformity loss in our method, called SFRIK, corresponds to (7) with a truncated
kernel up to order L = 3 and satisfies:

`u({zi}i∈I) =
1

|I|2
∑
i∈I

∑
i′∈I

(
b1z
>
i zi′ + b2

q(z>i zi′)
2 − 1

q − 1
+ b3

(q + 2)(z>i zi′)
3 − 3z>i zi′

q − 1

)
, (8)

where b` ≥ 0, ` = 1, 2, 3, are hyperparameters, and q is the dimension of the image embedding zi.

3.3 CONNECTION WITH INFORMATION-MAXIMIZATION METHODS

We now show that choosing an appropriate kernel in the proposed uniformity term (7) leads to a reg-
ularizer that maximizes a statistical measure of information analog to the one used in VICReg. To the
best of our knowledge, this is the first connection made between uniformity-based and information-
maximization methods. The regularization loss of VICReg is a weighted sum between two terms:

v(ZI) :=
1

q

q∑
j=1

max

(
0, γ −

√
Var(zjI) + ε

)
, c(ZI) :=

1

q

∑
1≤j 6=j′≤q

[C(ZI)]
2
j,j′ , (9)

for a batch of image embeddings ZI := {zi}i∈I , where zj denotes the j-th coordinate of a (random)
vector z and ε is a fixed small scalar. The variance term v(ZI) enforces the empirical variance
Var(zjI) := 1

|I|−1

∑
i∈I(z

j
i − zj)2 in each coordinate j = 1, . . . , q to be above a certain threshold

γ2 > 0 (here z is the empirical mean of ZI ). The covariance term c(ZI) enforces the non-diagonal
entries of the empirical covariance matrix C(ZI) := 1

|I|−1

∑
i∈I(zi − z)(zi − z)> to be zero.

In order to connect VICReg and SFRIK, let us consider for simplicity a truncated kernel K̃(u,v) =∑L
`=1 b`P`(q;u

>v) of order L = 2 (the reasoning would be the same if the kernel was not trun-
cated), and assume b1, b2 > 0. By the addition theorem (Müller, 2012, Theorem 2, §1), there
exists a feature map Φ : Sq−1 → Rm involving an orthonormal basis of spherical harmonics
(homogeneous harmonic polynomials restricted to the hypersphere) of order 1 and 2 such that
Φ(u)>Φ(v) = K̃(u,v). Hence, the kernel mean embedding of a distribution in the associ-
ated RKHS contains its first and second-order moments (see Appendix B.3). Therefore, denoting
N(q, `) the dimension of the space of spherical harmonics of order `, dimension q, and defining
Φ` : Sq−1 → RN(q,`), z 7→ (Y`,k(z))

N(q,`)
k=1 for ` ∈ {1, 2} with

{Y1,k}N(q,1)
k=1 :=

{
u 7→ uj | 1 ≤ j ≤ q

}
,

{Y2,k}N(q,2)
k=1 :=

{
u 7→ ujuj

′
| 1 ≤ j < j′ ≤ q

}
∪
{
u 7→ (uj)2 − 1

q
| 2 ≤ j ≤ q

}
,

(10)

it is possible to show (see Appendix B.3) that the squared MMD (6) can be written as

MMD2(Q,U) = a1 ‖M1Ez∼Q[Φ1(z)]‖22 + a2 ‖M2Ez∼Q[Φ2(z)]‖22 , (11)

where a` := b`|Sq−1|/N(q, `) for ` ∈ {1, 2}, and M1, M2 are two lower triangular matrices with
nonzero diagonal entries. Hence, when Q plays the role of the embedding distribution during self-
supervised training, minimizing MMD2(Q,U) in (11) as we propose for regularizing the embedding
distribution promotes its expectation Ez∼Q[z] and its autocorrelation matrix Ez∼Q[zz>] to be close
to 0 and q−1Iq respectively, where Iq is the identity matrix. When MMD2(Q,U) = 0, the covari-
ance matrix is equal to E[(z− E[z])(z− E[z])>] = E[zz>]− E[z]E[z]> = 1

q Iq because b1, b2 > 0

and the two terms on the right-hand side of (11) are null.
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In conclusion, the regularization both in VICReg and SFRIK induces the embedding distribution
to have a covariance matrix with zero non-diagonal entries. The diagonal entries of the covariance
matrix are encouraged to be equal to 1/q in SFRIK, and greater than γ2 in VICReg (we recall that
the image embeddings {zi}i∈I are not `2-normalized in VICReg). However, one difference in terms
of regularization behavior is that SFRIK encourages the expectation of the embedding distribution
to be zero, as shown in the first term of (11). This is not the case for VICReg, as we can see in (9).

Finally, the memory and computational complexities for computing the uniformity term (8) in
SFRIK areO(|I|2) andO(q|I|2), as opposed toO(q2) andO(q2|I|) for the variance and covariance
terms (9) in VICReg. In the setting where SFRIK and VICReg work best, i.e., larger dimension q
and smaller batch size |I|, SFRIK has the lowest memory and computational complexities. This
computational advantage is due to the kernel trick and it is illustrated in Section 4.

4 EXPERIMENTS

We first demonstrate numerically that the regularization loss (8) of SFRIK outperforms existing
alternatives, in a rigorous experimental setting with a subset of ImageNet-1000 (Deng et al., 2009)
for pretraining and a separate validation set for hyperparameter tuning. Then, we pretrain a ResNet-
50 backbone (He et al., 2016) with SFRIK on the full ImageNet dataset and show competitive results
compared to the state of the art, with significant computational benefits during pretraining.

4.1 EXPERIMENTAL SETTING

The backbone fθ is either ResNet-18 or ResNet-50, depending on the experiment. Following Zbon-
tar et al. (2021), the projection head gw is a three-layer MLP made of two hidden layers with ReLU
activation and batch normalization (Ioffe & Szegedy, 2015), and a linear output layer. Unless other-
wise specified, the size (number of neurons) of the two hidden layers is the same as the one, denoted
q, of the output layer and the default value is q = 8192. The augmentations used for transforming
images into views are the same as the ones used in VICReg. The backbone and the projection head
are trained with a LARS optimizer (You et al., 2017). The weight decay is fixed at 10−6. The
learning rate scheduling starts with 10 warm-up epochs (Goyal et al., 2017) with a linear increase
from 0 to initial lr = base lr ∗ bs/256, where base lr is called the base learning rate (Goyal
et al., 2017) and bs is the batch size, followed by a cosine decay (Loshchilov & Hutter, 2017) with
a final learning rate 1000 times smaller than initial lr. For pretraining, we consider a 20% subset
of ImageNet-1000 (denoted by IN20%), like in (Gidaris et al., 2021), and 100% of ImageNet-1000
(denoted by IN100%). In IN20%, we keep all the 1000 classes but only 260 images per class.

4.2 SFRIK’S REGULARIZER OUTPERFORMS EXISTING ALTERNATIVE ON IN20%

Many existing self-supervision methods are based on the Siamese architecture and have the same
form of training loss λ`a(ZI

(1),ZI
(2)) + µ`r(ZI

(1),ZI
(2)). This is the case of SimCLR, AUH and

VICReg, for which Appendix B.4 gives the expression of the regularization loss `r. For SFRIK,
following (2), we have µ = 0.5 and `r(ZI (1),ZI

(2)) = `u(ZI
(1)) + `u(ZI

(2)) with `u given by (8).

Protocol. To isolate the impact of `r on the quality of the learned representations, we (re)implement
all these four methods in the setting of Section 4.1, to get rid of the influence of other design choices,
like image augmentations or projection head architecture. We fix the batch size at 2048, and tune the
base learning rate and hyperparameters specific to each method’s loss. We also compare different
embedding dimension q ∈ {1024, 2048, 4096, 8192}. In order to perform an extensive hyperparam-
eter tuning by grid search of each method for fair comparisons, we choose a smaller backbone and
a reduced dataset for pretraining, i.e., we pretrain a ResNet-18 on IN20% for 100 epochs with all
methods. Pretrained backbones are then evaluated by linear probing trained on IN20% with labels.

Number of hyperparameters. Note that in total SFRIK with L = 2 has as many hyperparameters
to tune as AUH or VICReg, and SFRIK with L = 3 has a single additional hyperparameter.

Rigorous hyperparameter tuning. In contrast to the common practice in the literature where hy-
perparameters are directly selected on the evaluation dataset, we choose to tune hyperparameters on

7
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Table 2: Linear probing on IN20% (top-1 accuracy) at different embedding dimensions q. All
methods were pretrained on IN20% with a ResNet-18 for 100 epochs. We tuned all hyperparameters
specific to each method and the learning rate. Symbol † indicates models that we retrained ourselves.

SimCLR† AUH† VICReg† SFRIK

L = 1 L = 2 L = 3

q = 1024 45.2 45.3 40.6 - 45.2 -
q = 2048 45.8 45.9 44.0 - 45.9 -
q = 4096 46.0 46.7 44.9 - 46.9 -
q = 8192 46.1 46.8 46.0 27.7 47.0 47.5

a separate validation set that consists of another 20% subset of the ImageNet train set. We select
the hyperparameters that yield the highest top-1 accuracy obtained by weighted kNN-classification
(k = 20) (Wu et al., 2018) on this validation set, and we finally report the evaluation results by linear
probing on the usual ImageNet validation set, which is never seen during hyperparameter tuning.

Results. Table 2 shows that SFRIK at optimal truncation order L = 3 outperforms SimCLR, AUH
and VICReg by at least 0.7 points at q = 8192. The gain in top-1 accuracy by linear probing between
SFRIK at L = 1 and L = 2 is important, but is smaller between L = 2 and L = 3. This suggests
that L > 3 is likely to marginally improve performance, while requiring more hyperparameter
tuning, which is why we did not explore L > 3. We also remark that all methods benefit from
an increase in embedding dimension q, including SimCLR which was originally introduced with a
smaller dimension. Appendix D.2 provides extra results for linear classification on Places205 (Zhou
et al., 2014) and VOC2007 (Everingham et al., 2010) that further support our findings: SFRIK
outperforms AUH while having the same pretraining complexity, and is fully competitive compared
to VICReg with a reduced pretraining complexity.

Table 3: Impact of kernel
choice in the uniformity term
(7). Linear probing on IN20% of
ResNet-18 pretrained on IN20%
for 100 epochs, at q = 8192.

Kernel Top-1 acc.

RBF 41.3
Generalized distance 27.8
Truncated, L = 3, cf. (8) 47.5

Ablation. Table 3 confirms empirically that a truncated kernel
is better than the RBF1 or the generalized distance kernel for the
uniformity term (7). During tuning we observed that the trun-
cated kernel performs well when the weights b2, b3 in (8) are
larger than b1, e.g., (b1, b2, b3) = (1, 40, 40) for q = 8192. This
contrasts with the RBF and the generalized distance kernel for
which the weights b` decay polynomially with respect to ` (see
Appendix B.2). This suggests that it is important to focus more
on order 2, 3 than on order 1 in the Legendre expansion (5).

4.3 RESULTS FOR RESNET-50 PRETRAINED ON IN100%

Protocol. We pretrain a ResNet-50 with SFRIK on IN100% under the setting of Section 4.1,
with a batch size of 2048. We study the impact of a larger embedding dimension in SFRIK by
considering a projection head with two hidden layers of size 8192, and an output layer of size
q ∈ {8192, 16384, 32768}. Truncation order is either L = 2 or L = 3. For comparison, we also
pretrain a ResNet-50 with VICReg under the same setting with q = 8192. Similarly to the original
paper (Bardes et al., 2022), the alignment, variance and covariance weights are respectively 25, 25,
1, and the base learning rate is 0.2 for VICReg. All pretrained backbones are evaluated by: lin-
ear probing on IN100%; linear classification on Places205 and VOC2007 in order to measure how
the learned representations generalize to an unseen dataset; and semi-supervised learning with few
labels of IN100% (backbones are fine-tuned for classification using 1% or 10% of labeled images).

Computational complexity. We show under this protocol that SFRIK’s time and memory com-
plexity during pretraining is significantly smaller than the one of VICReg for large dimensions. This
allows us to scale SFRIK at dimension 16384 and even to 32768 for better results on downstream
tasks.2 We measure the peak memory per GPU during pretraining on IN100% with a batch size of
2048 and the pretraining wall time of both methods on a 8× AMD Radeon Instinct MI50 32GB:

1The performance gap between AUH and the RBF kernel is only due to the presence of the logarithm in
AUH (cf. Example 1). Future work could clarify the role of this logarithm for regularization in self-supervision.

2We recall that the time and memory complexity is identical for all methods on downstream tasks.
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Table 4: Linear classification on IN100%, Places205, VOC2007, and semi-supervised learning
with few labels of IN100% (accuracy or mean average precision). Methods are pretrained on
IN100% with ResNet-50. We only include methods relying on a Siamese architecture with image
augmentations limited to two views. The scores of methods marked with ∗ are from Chen & He
(2021). The score of VICReg† was obtained by retraining the model ourselves. For each downstream
task, we highlight in bold the best score among all backbones pretrained on 200 epochs.

Linear classification Semi-supervised

Method Epochs IN100% Places205 VOC07 1% labels 10% labels
Top-1 Top-5 Top-1 Top-5 mAP Top-1 Top-5 Top-1 Top-5

SimCLR∗ (Chen et al., 2020a) 200 68.3 - - - - - - - -
SwAV∗ (Caron et al., 2020) (no multi-crop) 200 69.1 - - - - - - - -
SimSiam (Chen & He, 2021) 200 70.0 - - - - - - - -
VICReg† (Bardes et al., 2022) (q = 8192) 200 70.0 89.3 54.1 83.4 84.9 49.4 75.1 65.9 87.2
SFRIK (L = 2, q = 8192) 200 70.1 89.3 53.8 83.0 85.1 46.6 73.3 65.7 87.3
SFRIK (L = 3, q = 8192) 200 70.2 89.6 54.5 83.9 84.6 46.9 73.6 66.0 87.7
SFRIK (L = 2, q = 16384) 200 70.3 89.6 54.3 83.4 85.2 46.0 73.0 65.3 87.2
SFRIK (L = 2, q = 32768) 200 70.3 89.6 54.1 83.0 85.0 46.1 73.0 65.4 87.3
SFRIK (L = 3, q = 32768) 200 70.3 89.7 54.4 83.2 85.1 46.6 73.0 65.8 87.5

SFRIK (L = 2, q = 8192) 400 70.8 89.9 54.4 83.5 85.7 47.8 74.3 66.4 88.0

• at q = 8192, SFRIK is 8% faster than VICReg and needs 3% less
memory per GPU;

• at q = 16384, SFRIK is 19% faster than VICReg and needs 8%
less memory per GPU;

• at q = 32768, SFRIK is still 2% faster than VICReg run in the
lower dimension 16384. It only requires 30.9GB per GPU while
VICReg at q = 32768 needs more than the available memory. Ta-
ble 5 emphasizes this memory advantage at reduced batch sizes.

Table 5: Peak memory per
GPU during pretraining of
ResNet-50 on IN100% at q =
32768.

Batch size VICReg SFRIK (ratio)

256 22.5GB 10.3GB (2.2)
512 25.4GB 13.1GB (1.9)
1024 31.1GB 18.8GB (1.7)

Results. Table 4 compares methods that have the same Siamese architecture and use the same image
augmentations described in our protocol. For completeness, this table is completed in Appendix D.3
by evaluation results of other existing methods such as BYOL (Grill et al., 2020), OBoW (Gidaris
et al., 2020) and SwAV with multi-crop (Caron et al., 2020), which are not comparable to the meth-
ods of Table 4 as they use a teacher-student architecture with momentum encoder and/or image
augmentations with multi-scale cropping, and are beyond the setting of a Siamese architecture with
only two views. Incorporating such designs in SFRIK is possible, and is left as a future work.

Table 4 demonstrates the competitiveness of SFRIK: it has the best accuracy for linear probing on
IN100% among SimCLR, SwAV with no multi-crop, SimSiam and VICReg, and it performs better
than VICReg for linear classification on Places205, VOC2007, and semi-supervised-learning with
10% of labels. We observe that SFRIK and VICReg offer a different trade-off between performance
on linear probing on IN100% and performance on semi-supervised learning with 1% of labels. But
as shown in Appendix D.3, other methods like BYOL and SwAV with multi-crop similarly have
a performance drop compared to VICReg on semi-supervised learning with 1% of labels, even
though they perform better on linear probing. Future work will therefore involve understanding
what specific ingredients of VICReg make it more robust for semi-supervised learning with few
labels. Ideally we could combine these ingredients with our generic kernel framework to design an
improved version of SFRIK that can still benefit from its computational advantages over VICReg.

5 CONCLUSION

We proposed a regularization loss family based on the MMD and rotation-invariant kernels. We
demonstrated that several regularizers of former methods are indeed variants of our flexible loss with
different kernels. This generic regularization approach allowed us to leverage degrees of freedom in
rotation-invariant kernel design to improve self-supervision methods. In practice, using a truncated
kernel, we derived from the proposed framework a fully competitive self-supervised pretraining
method, SFRIK, which significantly reduces time and memory complexity during pretraining com-
pared to information-maximization methods. Combining the approach with kernel approximation
techniques such as quadrature rules or random feature expansions offers promising perspectives to
further enhance the ability to perform self-supervised training with limited computational resources.
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A EXTENDED RELATED WORK

We further discuss some related works referenced in the main paper.

A.1 REMINDERS ON KERNEL MEAN EMBEDDINGS

In this appendix we provide a high-level introduction to the notion of kernel mean embedding. We
refer the reader to (Muandet et al., 2017) for a complete survey.

The idea of kernel mean embedding is to encode a probability distribution in an RKHSH. Denoting
K : X ×X → R the reproducing kernel ofH defined on some space X , the kernel mean embedding
of a probability distribution Q defined on X is

µQ :=

∫
X
K(u, ·)dQ(u) ∈ H. (12)

In other words, the kernel mean embedding mapping Q 7→ µQ transforms a probability distribution
into an element in H. As an application, this allows one to quantify the divergence between proba-
bilities using the norm ‖ · ‖H associated to H. Given two probability distributions Q1,Q2 defined
on X , one can indeed quantify their divergence by

‖µQ1 − µQ2‖H =

∥∥∥∥∫
X
K(u, ·)dQ1(u)−

∫
X
K(u, ·)dQ2(u)

∥∥∥∥
H
, (13)

which is precisely the MMD between Q1 and Q2 defined in (4).

A.2 SAMPLE-CONTRASTIVE CRITERION

Given a batch of embeddings ZI := {zi}i∈I (that are not necessarily normalized), the general
sample-constrative criterion of Garrido et al. (2023) is defined by:

`c(ZI) =
∑

i,i′∈I, i6=i′
(z>i zi′)

2. (14)

Garrido et al. (2023) show that this criterion is minimized in many contrastive learning methods like
(HaoChen et al., 2021). In the case where the embeddings are normalized, this sample-contrastive
criterion can be derived from the proposed generic uniformity loss `u defined by (7) with the
quadratic kernel K(u,v) = (u>v)2 where u,v ∈ Sq−1, as claimed in Section 1. Indeed, since
‖zi‖2 = 1 for all i ∈ I:

`c(ZI) =
∑
i,i′∈I

(z>i zi′)
2 −

∑
i∈I

(z>i zi)
2 = |I|2`u(ZI)− |I|, (15)

where |I| is the batch size. Therefore, the sample-contrastive criterion in the normalized case is an
estimator of the MMD associated to the quadratic kernel between the embedding distribution and
the uniform distribution on the hypersphere.

A.3 KERNEL DEPENDENCE MAXIMIZATION

We further explain the positioning of our paper with respect to (Li et al., 2021), which proposes
a self-supervised learning method based on kernel dependence maximization, using the Hilbert-
Schmidt Independence Criterion (HSIC) (Gretton et al., 2005). The HSIC measures the dependence
between two random variables X ∈ X and Y ∈ Y using two RKHS F on X with kernel k and
G on Y with kernel l, in order to capture nonlinear correlations. It is defined as the squared MMD
associated to the reproducing kernel of the tensor product space F ⊗G between the joint probability
distribution PX,Y and the product PXPY of marginal probability distributions:

HSIC(X,Y ) := ‖µPX,Y
− µPXPY

‖2F⊗G , (16)

where Q 7→ µQ is the kernel mean embedding mapping defined by (12). Then, the self-supervised
learning loss in (Li et al., 2021) is defined as:

LSSL-HSIC := −HSIC(Z, Y ) + γ
√

HSIC(Z,Z), (17)
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where Z encodes embeddings of transformed images, and Y encodes image identity as the index
of the original image (before transformation) in the training dataset. By maximizing HSIC(Z, Y ),
the backbone learns image representations that are invariant to image transformations. To avoid
collapse, high-variance representations are penalized by minimizing HSIC(Z,Z). This is similar
to previous information-maximization methods (Bardes et al., 2022; Zbontar et al., 2021), with the
difference that they take into account nonlinear correlations using kernels.

Although both our approach and the one in (Li et al., 2021) view self-supervised learning as a kernel
method, we highlight here a main distinction between the two works. Both approaches use the
MMD, but they do not use it to measure the same quantity. As explained above, Li et al. (2021) use
the MMD to measure dependency between random variables (likeZ and Y ), while the regularization
loss we propose uses the MMD to measure the divergence between the embedding distribution and
the uniform distribution on the hypersphere. As explained in Sections 1 and 2, this kernel approach
for self-supervised learning is new in the literature and allows for the unification of several previous
self-supervised learning methods as illustrated in Table 1.

Note that when the image identity Y is a one-hot encoding, (Li et al., 2021) shows that
− HSIC(Z, Y ) = C

(
−E(Z1,Z2)∼pos[k(Z1, Z2)] + EZ3EZ4 [k(Z3, Z4)]

)
, (18)

where C > 0 is a constant, (Z1, Z2) is a positive pair of embeddings, i.e., they are embed-
dings of two transformations of the same original image, and (Z3, Z4) is a pair of indepen-
dent embeddings. In other words, HSIC(Z, Y ) is proportional to the sum of an alignment term
−E(Z1,Z2)∼pos[k(Z,Z ′)] and an energy term EZ3EZ4 [k(Z3, Z4)], similarly to (3) combined with
(7), which yields the proposed loss (2). Our paper shows that, if k(·, ·) is a rotation-invariant kernel
on the hypersphere, then the energy term EZ3

EZ4
[k(Z3, Z4)] is precisely the MMD between the

embedding distribution and the uniform distribution on the hypersphere, cf. (6). However there are
two differences between the maximization of HSIC(Z, Y ) and the minimization of the proposed
loss (2). First, the alignment term and the energy term in (18) are quantified with the same kernel
k(·, ·), which is not the case in (2) where the alignment term is quantified by the `2-distance between
embeddings (equivalent to the linear kernel when the embeddings are normalized), and the unifor-
mity term (7) is quantified by another rotation-invariant kernel. Second, the loss (2) is a weighted
sum between the alignment loss (3) and the uniformity loss (7) controlled by the hyperparameter λ
that tunes the balance between the two terms, which is not the case of (18).

B THEORETICAL RESULTS

We provide proofs and more details about the theoretical results in the main text.

B.1 PROOF OF LEMMA 2

Consider a rotation-invariant kernel K(u,v) defined on the hypersphere Sq−1 such that:

K(u,v) =

+∞∑
`=0

b`P`(q;u
>v), ∀u,v ∈ Sq−1, (19)

with weights b` ≥ 0 and P`(q; ·) the Legendre polynomial of order ` in dimension q. The proof of
Lemma 2 relies on an orthonormal system of spherical harmonics. Let 〈f, g〉(q) :=

∫
Sq−1 fgdσq−1

be the inner product in the space of continuous functions defined on Sq−1 and, for each ` ∈ N,
consider {Y`,k | k = 1, . . . , N(q, `)} an orthonormal basis of spherical harmonics of order ` in
dimension q (homogeneous harmonic polynomials in q variables restricted to Sq−1, see e.g. (Müller,
2012) for more details), where N(q, `) denotes the dimension of this space, which is by (Müller,
2012, Exercise 6, §3):

N(q, `) =

{
q for ` = 1,
(2`+q−2)(`+q−3)!

`! (q−2)! for ` ≥ 2.
(20)

By the addition theorem (Müller, 2012, Theorem 2, §1):
N(q,`)∑
k=1

Y`,k(u)Y`,k(v) =
N(q, `)

|Sq−1|
P`(q;u

>v), u,v ∈ Sq−1. (21)
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Hence, the kernel K(u,v) can be rewritten as:

K(u,v) =

+∞∑
`=0

N(q,`)∑
k=1

b`|Sq−1|
N(q, `)

Y`,k(u)Y`,k(v). (22)

Since {Y`,k | ` = 0, . . . ,+∞, k = 1, . . . , N(q, `)} is an orthonormal system for the inner product
〈·, ·〉(q), and since Y0,1 is constant on Sq−1, we have for any integer ` and k ∈ {1, . . . , N(q, `)} that:∫

Sq−1

Y`,kdσq−1 =
1

Y0,1
〈Y`,k, Y0,1〉(q) =

{
1
Y0,1

if ` = 0, k = 1

0 otherwise
. (23)

Moreover Y0,1 = 1/
√
|Sq−1|, because 1 = 〈Y0,1, Y0,1〉(q) =

∫
Sq−1 Y

2
0,1dσq−1 = Y 2

0,1|Sq−1|.
Therefore, the kernel mean embedding of the uniform distribution on the hypersphere U :=
σq−1/|Sq−1| associated to the kernel K is:

∀v ∈ Sq−1,

∫
Sq−1

K(u,v)dU(u) =

∫
Sq−1

+∞∑
`=0

b`P`(q;u
>v)

dσq−1(u)

|Sq−1|

=

+∞∑
`=0

∫
Sq−1

N(q,`)∑
k=1

b`
N(q, `)

Y`,k(u)Y`,k(v)dσq−1(u)

=

+∞∑
`=0

b`
N(q, `)

N(q,`)∑
k=1

[∫
Sq−1

Y`,k(u)dσq−1(u)

]
Y`,k(v)

= b0
1

Y1,0
Y1,0 = b0,

(24)

where we inverted series and integral in the second equation using the dominated conver-
gence theorem: the series

∑+∞
`=0 b`P`(q;u

>v) converges for every u, v, and for any L,
|
∑L
`=0 b`P`(q;u

>v)| ≤
∑L
`=0

∣∣b`P`(q;u>v)
∣∣ ≤ ∑+∞

`=0 b` =
∑+∞
`=0 b`P`(q; 1), because

|P`(q; ·)| ≤ 1 for all ` by (Müller, 2012, Lemma 2, §8), P`(q; 1) = 1 for all ` by (Müller, 2012, §9),
and

∑+∞
`=0 b`P`(q; 1) < +∞ is integrable on Sq−1. This yields the first claim of Lemma 2.

Consider now any probability distribution Q defined on the hypersphere. The kernel mean embed-
ding of Q is simply rewritten as:

∀v ∈ Sq−1,

∫
Sq−1

K(u,v)dQ(u) =

∫
Sq−1

+∞∑
`=0

b`P`(q;u
>v)dQ(u)

= b0

∫
Sq−1

P0(q;u>v)dQ(u) +

∫
Sq−1

+∞∑
`=1

b`P`(q;u
>v)dQ(u)

= b0 +

∫
Sq−1

K̃(u,v)dQ(u),

(25)

because the Legendre polynomial of order 0 is the constant function equal to 1 (see the closed form
expression of P0(q; ·) in Theorem 1 in the main text) and

∫
Sq−1 dQ = 1. This ends the proof of

Lemma 2.

B.2 LEGENDRE EXPANSION OF ROTATION-INVARIANT KERNELS

We show that the kernel weights b` in the Legendre expansion (5) of the RBF kernel and the gener-
alized distance kernel decay with a rate at least polynomial with respect to `.

RBF kernel The RBF kernel is defined as:

KRBF(u,v) = e−σ‖u−v‖
2
2 = e−2σ(1−u>v) for u,v ∈ Sq, (26)
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where σ > 0 is the scale of the RBF kernel. Denote ϕ(t) := e−2σ(1−t) for t ∈ [−1, 1]. Since the
RBF kernel is positive definite and rotation-invariant, by Theorem 1, there exist weights b` ≥ 0,
` = 0, . . . ,+∞, such that:

ϕ(t) = e−2σ(1−t) =

+∞∑
`=0

b`P`(q; t) for t ∈ [−1, 1]. (27)

The Legendre polynomials P`(q; ·) are orthogonal on the interval [−1, 1] with respect to the weight
function (1− t2)

q−3
2 , see e.g. (Müller, 2012):∫ 1

−1

Pn(q; t)Pm(q; t)(1− t2)
q−3
2 dt = 0 for m 6= n. (28)

Moreover, by (Müller, 2012, Exercise 3, §2):∫ 1

−1

(Pn(q; t))2(1− t2)
q−3
2 dt =

|Sq−1|
|Sq−2|

1

N(q, n)
for any n. (29)

We multiply (27) by P`(q; t)(1− t2)
q−3
2 and integrate the equation on [−1, 1]:∫ 1

−1

ϕ(t)P`(q; t)(1− t2)
q−3
2 dt =

∫ 1

−1

+∞∑
n=0

bnPn(q; t)P`(q; t)(1− t2)
q−3
2 dt

=

+∞∑
n=0

bn

∫ 1

−1

Pn(q; t)P`(q; t)(1− t2)
q−3
2 dt

= b`
|Sq−1|
|Sq−2|

1

N(q, `)
,

(30)

where the inversion between series and integral is justified by the dominated convergence the-
orem: the series

∑+∞
n=0 bnPn(q; t)P`(q; t)(1 − t2)

q−3
2 converges for every t, and for any N ,

|
∑N
n=0 bnPn(q; t)P`(q; t)(1 − t2)

q−3
2 | ≤

∑+∞
n=0 bn(1 − t2)

q−3
2 := g(t) since |Pn(q; ·)| ≤ 1 for

any n by (Müller, 2012, Lemma 2, §8), and g is integrable on [−1, 1] because
∑+∞
n=0 bn < +∞.

Hence:

b` = N(q, `)
|Sq−2|
|Sq−1|

∫ 1

−1

ϕ(t)P`(q; t)(1− t2)
q−3
2 dt. (31)

By the Rodrigues rule (Müller, 2012, Exercise 1, §2), since ϕ has continuous derivatives of all orders
on [−1, 1], we have:

b` = N(q, `)
|Sq−2|
|Sq−1|

Γ( q−1
2 )

2`Γ(`+ q−1
2 )

∫ 1

−1

ϕ(`)(t)(1− t2)`+
q−3
2 dt, ` ∈ N, (32)

where ϕ(`) is the `-th derivative of ϕ, which is ϕ(`)(t) = e−2σ(2σ)`e2σt. We now show that the
weights b` decay very fast with respect to `. We bound the integral:∫ 1

−1

ϕ(`)(t)(1−t2)`+
q−3
2 dt =

∫ 1

−1

e−2σ(2σ)`e2σt(1−t2)`+
q−3
2 dt ≤

∫ 1

−1

(2σ)`dt = 2(2σ)`. (33)

Hence:

b` ≤ 2N(q, `)
|Sq−2|
|Sq−1|

Γ( q−1
2 )

2`Γ(`+ q−1
2 )

(2σ)`. (34)

Denote (a)n := Γ(n+a)/Γ(a) the Pochhammer symbol defined for any integer n and any scalar a.
By the Stirling approximation of the Gamma function (Spiegel et al., 2013, (25.15)), the asymptotic
behavior of (a)n when n goes to infinity is:

(a)n ∼
√

2π

Γ(a)
e−nna+n−1/2 as n→∞. (35)
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Moreover, for a fixed dimension q, the asymptotic behavior of N(q, `) defined by (20) when ` goes
to infinity is:

N(q, `) ∼ 2

(q − 2)!
`q−2 as `→∞. (36)

Therefore, the asymptotic behavior of b` as ` goes to infinity is:

b` = O
(
σ`e``q/2−1−`

)
as `→ +∞. (37)

Generalized distance kernel For q−1
2 < s < q+1

2 , the generalized distance kernel on the hyper-
sphere Sq−1 is defined in (Brauchart et al., 2014, Section 5) as:

K(s)
gd (u,v) := 2Vq−1−2s(Sq−1)− ‖u− v‖2s−q+1

2 for u,v ∈ Sq−1, (38)

where

Vq−1−2s(Sq−1) :=

∫
Sq−1

∫
Sq−1

‖u−v‖2s−q+1
2 dσq−1(u)dσq−1(v) = 22s−1 Γ(q/2)Γ(s)√

πΓ((q − 1)/2 + s)
.

(39)
Following Brauchart et al. (2014, Section 5), the Legendre expansion of the generalized distance
kernel K(s)

gd is:

K(s)
gd (u,v) = Vq−1−2s(Sq−1) +

+∞∑
`=1

α
(s)
` N(q, `)P`(q;u

>v), (40)

α
(s)
` := −Vq−1−2s(Sq−1)

((q − 1)/2− s)`
((q − 1)/2 + s)`

, ` ≥ 1. (41)

The kernel weights indeed decay polynomially with respect to `, because according to Brauchart
et al. (2014, Section 5), the asymptotic behavior of the α(s)

` is:

α
(s)
` ∼ 22s−1 Γ(q/2)Γ(s)√

πΓ((q − 1)/2− s)
`−2s as `→ +∞. (42)

B.3 CONNECTION BETWEEN SFRIK AND VICREG

Consider a rotation-invariant kernel K̃(u,v) :=
∑+∞
`=1 b`P`(q;u

>v) defined on Sq−1 such that
b` ≥ 0 for ` ∈ {1, . . . ,+∞}, with b1, b2 > 0. To show the connection between SFRIK and VICReg,
we construct a high-dimensional feature map Φ : Sq−1 → `2(N), where `2(N) denotes the space
of square-summable sequences with its canonical inner product 〈·, ·〉`2 , such that 〈Φ(u),Φ(v)〉`2 =

K̃(u,v) for any u,v ∈ Sq−1.

One way to construct such a feature map is to consider an orthonormal system of spherical harmon-
ics. For any integer `, denote {Y`,k}N(q,`)

`=1 an orthonormal basis of spherical harmonics of order `
in dimension q. By the addition theorem (Müller, 2012, Theorem 2, §1) recalled in (21), the kernel
K̃(u,v) admits the decomposition:

K̃(u,v) =

+∞∑
`=1

b`P`(q;u
>v) =

+∞∑
`=1

N(q,`)∑
k=1

b`|Sq−1|
N(q, `)

Y`,k(u)Y`,k(v)

= 〈Φ(u),Φ(v)〉`2 ,

(43)

where

Φ :=

(√
b`|Sq−1|
N(q, `)

Φ`

)+∞

`=1

with Φ` :

{
Sq−1 → RN(q,`)

u 7→ (Y`,k(u))
N(q,`)
k=1

for ` ∈ {1, . . . ,+∞}. (44)

Then, the MMD in (6) between any probability distribution Q defined on the hypersphere and the
uniform distribution U on the hypersphere can be written as the norm in `2(N) of the generalized
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moment of Q with the mapping Φ:

MMD2(Q,U) = Ez,z′∼Q[K̃(z, z′)]

= Ez,z′∼Q[〈Φ(z),Φ(z′)〉`2 ]

= 〈Ez∼Q[Φ(z)],Ez′∼Q[Φ(z′)]〉`2 = ‖Ez∼Q [Φ(z)]‖2`2

=

+∞∑
`=1

b`|Sq−1|
N(q, `)

‖Ez∼Q [Φ`(z)]‖22 .

(45)

We now explain how to construct explicitly an orthonormal basis of spherical harmonics {Y`,k | ` =
1, . . . ,+∞; k = 1, . . . , N(q, `)}, based on the following theorem.

Theorem 3 (Axler et al. (2013, Theorem 5.25)) For any order ` ∈ N and any dimension q ≥ 3,
the family

{Y ′`,k}
N(q,`)
k=1 :=

{
u 7→ ∂α1

1 ∂α2
2 . . . ∂αq

q ‖u‖
2−q
2 | α1 + α2 + . . .+ αq = ` and α1 ≤ 1

}
(46)

is a (non-orthonormal) basis of the space of spherical harmonics of order ` in dimension q, where
αj (j = 1, ..., q) are nonnegative integers, and ∂αj

j denotes the αj-th partial derivative with respect
to the j-th coordinate.

Typically, we construct the orthonormal basis {Y`,k}N(q,`)
k=1 by orthonormalizing the basis

{Y ′`,k}
N(q,`)
k=1 of Theorem 3 using, e.g., the Gram-Schmidt procedure. For ` = 1, . . . ,+∞, denote:

Φ′` : Sq−1 → RN(q,`), u 7→ (Y ′`,k(u))
N(q,`)
k=1 . (47)

Then, for each ` = 1, . . . ,+∞, there exists a lower triangular matrix M` such that:

Φ`(u) = M`Φ
′
`(u), for all u ∈ Sq−1. (48)

Remark that it is possible to compute explicitly the entries of the matrices M`, ` = 1, . . . ,+∞,
because there exists a closed-form expression for the inner product 〈Y ′`,k, Y ′`,k′〉(q) for any `, k, k′:
indeed, the function Y ′`,k for any `, k is a polynomial defined on the hypersphere, and the integral
of any monomial with respect to the measure σq−1 on the hypersphere Sq−1 admits a closed-form
expression given by Weyl (1939, Section 3).

By injecting (48) in (45), we obtain:

MMD2(Q,U) =

+∞∑
`=1

b`|Sq−1|
N(q, `)

‖M`Ez∼Q [Φ′`(z)]‖22 . (49)

This yields the claim of Section 3.3 by remarking with Theorem 3 that the families

{Y ′1,k}
N(q,1)
k=1 =

{
u 7→ uj | 1 ≤ j ≤ q

}
,

{Y ′2,k}
N(q,2)
k=1 =

{
u 7→ ujuj

′
| 1 ≤ j < j′ ≤ q

}
∪
{
u 7→ (uj)2 − 1

q
| 2 ≤ j ≤ q

} (50)

are bases of the space of spherical harmonics of order 1 and 2 in dimension q.

B.4 REGULARIZATION LOSS OF SIMCLR, AUH AND VICREG

In SimCLR, AUH, VICReg and SFRIK, each image xi in a batch {xi}i∈I is augmented into two
different views xi

(1) and xi
(2), which are encoded into two embeddings zi

(1) and zi
(2). These

embeddings are normalized in SimCLR, AUH and SFRIK, but not in VICReg. This yields two
batches of embeddings ZI (v) := {zi(v)}i∈I (v = 1, 2). The four methods share the same form of
loss function:

`(ZI
(1),ZI

(2)) := λ `a(ZI
(1),ZI

(2)) + µ `r(ZI
(1),ZI

(2)), (51)
for some scalars λ, µ > 0, where `a is the alignment loss defined by (3) (which is the same for all
the four methods), and `r is the regularization loss specific to each method.
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SimCLR The regularization loss in SimCLR is:

`r(ZI
(1),ZI

(2)) =
1

2|I|

2∑
v=1

∑
i∈I

log

(
2∑

v′=1

∑
i′∈I

1[(v,i)6=(v′,i′)] exp
(
zi

(v)>zi′
(v′)/τ

))
, (52)

where τ > 0 is a hyperparameter of the method called the temperature, and 1[(v,i) 6=(v′,i′)] is equal
to 1 if (v, i) 6= (v′, i′), and 0 otherwise. The scalars λ, µ are fixed at λ = 1

τ and µ = 1.

Alignment & Uniformity The regularization loss in AUH is:

`r(ZI
(1),ZI

(2)) =
1

2|I|2
2∑
v=1

log

(∑
i∈I

∑
i′∈I

exp(−t‖zi(v) − zi′
(v)‖22)

)
, (53)

where t > 0 is a hyperparameter called the scale of the RBF kernel. The scalar λ is tuned as a
hyperparameter and µ is fixed at µ = 1.

VICReg As introduced in Section 3.3, the regularization loss in VICReg is:

`r(ZI
(1),ZI

(2)) =
1

2

[
v(ZI

(1)) + v(ZI
(2))
]

+
1

2µ

[
c(ZI

(1)) + c(ZI
(2))
]
, (54)

where µ is the scalar from (51). Here, v(·) and c(·) are respectively the variance and covariance
terms defined by (9). Both λ and µ are tuned as hyperparameters.

C EXPERIMENTAL SETTING

In the interest of reproducible research, we give more details about the setting of our experiments
presented in Section 4.

C.1 IN20% DATASET DESCRIPTION

The datasets used in our experiments include a subset of 20% of ImageNet-1000 as in (Gidaris et al.,
2021). This reduced dataset, denoted IN20%, contains all the 1000 classes of ImageNet, but we keep
only 260 images per class. The 260 images extracted are the same as those extracted in the official
implementation of OBoW (https://github.com/valeoai/obow). In Section 4.2, we also
use another 20% subset of the ImageNet train set as a separate validation set for hyperparameter
tuning (see Appendix C.4 below). The construction of this validation set is based on the code of
OBoW, and will be exactly detailed in our code that will be released at publication.

C.2 IMAGE AUGMENTATIONS

We follow the same image augmentation pipeline as in (Bardes et al., 2022). Our
experiments include the following image augmentations implemented by PyTorch
(torchvision.transforms):

• RandomResizedCrop(224, scale=(0.08, 1.0)): crop a random area of the image
between 8% and 100% of the total area, and resize it to an image of size 224× 224;

• RandomHorizontalFlip(): flip horizontally an image;
• ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2,
hue=0.1): randomly change brightness, contrast, saturation and hue of an image by a
factor randomly sampled in respectively [0.6, 1.4], [0.6, 1.4], [0.8, 1.2] and [−0.1, 0.1].

• RandomGrayscale(): convert an image into grayscale.

We also use image augmentations implemented by PIL, as in VICReg’s code available at https:
//github.com/facebookresearch/vicreg:

• GaussianBlur(): blur an image using a Gaussian kernel with standard deviation uniformly
sampled in [0.1, 2.0];

• Solarization(): randomly invert all pixel values above a threshold, which is 130.
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In our experiments, the first image view is obtained by composing the following random augmenta-
tions: random cropping resized to 224 × 224, random horizontal flip applied with probability 0.5,
random color jittering applied with probability 0.8, random grayscale conversion applied with prob-
ability 0.2, random Gaussian blur applied with probability 0.1, and random solarization applied with
probability 0.2. The second view is obtained by composing the same random augmentations as the
first view, except that Gaussian blur is applied every time (probability 1), and solarization is never
applied (probability 0).

C.3 EVALUATION PROTOCOL

We describe the downstream tasks on which self-supervision methods are evaluated in our experi-
ments of Section 4.

Linear probing on IN20% and IN100% Following, e.g., (Bardes et al., 2022), the weights of
the backbone (ResNet-18 or ResNet-50) are frozen and a linear layer followed by a softmax on top
of the backbone is trained in a supervised setting on a training set. Then the model is evaluated
on a test set. The training set is either IN20% or IN100%, but with labels. The test set is the
validation set of ImageNet. The linear layer is trained using an SGD optimizer with momentum
parameter equal to 0.9 during 100 epochs. We apply a weight decay of 10−6. The learning rate
follows a cosine decay scheduling. The batch size is fixed at 256. Training images are augmented
by composing a random cropping of an area between 8% and 100% of the total area resized to
224 × 224, and a random horizontal flip of probability 0.5. Images at test time are resized to
256 × 256, and cropped at the center with a size 224 × 224. The initial learning rate is tuned
as a hyperparameter, and we report the top-1 accuracy on the validation set of ImageNet obtained
after the last training epoch, along with the corresponding top-5 accuracy. The code that we use
for linear probing on IN20% or IN100% is adapted from (Bardes et al., 2022) available at https:
//github.com/facebookresearch/vicreg.

Linear probing on Places205 We use the code of Gidaris et al. (2021), available at https://
github.com/valeoai/obow, for the evaluation by linear probing on Places205. The weights
of the backbone (ResNet-50) pretrained on IN100% are frozen and a linear prediction layer is trained
for the classification task on Places205. We note that a batch normalization layer with non-learnable
scale and bias parameters is added at the output of the backbone in (Gidaris et al., 2021). The linear
prediction layer is trained with an SGD optimizer with a 0.9 momentum parameter during 28 epochs.
The weight decay is 10−4. The batch size is 256. The learning rate decreases by a factor of 10 at
epoch 10 and epoch 20. We use the same image augmentation pipeline for training and testing as in
linear probing on IN100%. The initial learning rate is tuned as a hyperparameter, and we report the
top-1 accuracy on the validation set of Places205 obtained after the last training epoch, along with
the corresponding top-5 accuracy.

Linear classification on VOC2007 After pretraining a ResNet backbone, we use the VISSL
library (Goyal et al., 2021) to extract features of VOC2007 images resized to 224 × 224 by taking
the output of the last average pooling layer of the pretrained ResNet backbone. We then learn a
linear SVM with LIBLINEAR (Fan et al., 2008) on top of these features to predict the presence or
the absence of a given class in the test images. An average precision score is then computed for
each class after a 3-fold cross-validation, and we report the mean score over all classes as the mean
average precision (mAP).

Semi-supervised learning After pretraining a ResNet backbone by self-supervision, we fine-tune
this backbone and the linear classifier on the ImageNet classification task with only 1% or 10% of
the labeled data. The labeled images that are considered in these subsets are the ones used in the
official code of SimCLR available at https://github.com/google-research/simclr.
We use an SGD optimizer with momentum parameter equal to 0.9 during 20 epochs, without weight
decay. The batch size is fixed at 256. The learning rates of the backbone and the linear classifier
follow a cosine decay scheduling with different initial learning rates. These initial learning rates are
tuned as hyperparameters. We report the top-1 accuracy on the validation set of ImageNet obtained
after the last training epoch, along with the corresponding top-5 accuracy. We use the same image
augmentation pipeline for training and testing as in linear probing on IN100%. The code that we use
for semi-supervised learning with few labels of IN100% is the one of Bardes et al. (2022) available
at https://github.com/facebookresearch/vicreg.
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Figure 2: ImageNet dataset split for hyperparameter tuning in experiments of Section 4.2 on IN20%,
as explained in Appendix C.4

Weighted kNN classification We follow the usual protocol of Wu et al. (2018); Caron et al.
(2021). We compute the normalized representations fθ(xi) of the images xi, i ∈ [N ], in
the training set. The label of an image xtest in the test set is predicted by a weighted vote
of its k nearest neighbors Nk in the representation space: the class c gets a score of wc :=∑
i∈Nk

exp(fθ(xi)
>fθ(xtest)/0.07)1[ci=c] where fθ(xtest) is normalized, ci is the class of xi, and

1[ci=c] is equal to 1 if ci = c, and 0 otherwise. We report the kNN classification top-1 accu-
racy for k = 20. The image augmentation pipeline for both training and testing is the following
one: images are resized to 256 × 256, and cropped at the center with a size 224 × 224. The
code that we use for kNN classification is the one of Caron et al. (2021) available at https:
//github.com/facebookresearch/dino.

C.4 HYPERPARAMETERS FOR EXPERIMENTS ON IN20%

We describe in detail our hyperparameter tuning protocol for the experiments in Section 4.2 on
IN20%. For a rigorous tuning, it is important that the dataset used for the final evaluation remains
unseen during pretraining and hyperparameter tuning. For each pretraining method, we pretrain on
the IN20% training set (blue subset in Figure 2) a backbone for each choice of hyperparameters.
These backbones are then evaluated by weighted kNN classification on a separate validation set,
which is another 20% subset of the ImageNet train set (purple subset in Figure 2), and we select
the hyperparameters yielding the highest top-1 accuracy on this kNN evaluation. Then, we tune the
learning rate for the linear probing evaluation, again on our separate validation set (purple subset in
Figure 2). Finally, we use the model trained with the best learning rate discovered for linear probing
evaluation on the usual ImageNet validation set (red subset in Figure 2), which has never been seen
during hyperparameter tuning.

We report the values of the optimal hyperparameters found after our hyperparameter tuning on a
separate validation set, for each pretraining experiment on IN20% with a ResNet-18 presented in
Section 4.2. These hyperparameters yield the evaluation results reported in Section 4.2 for linear
probing on the usual ImageNet validation set. We recall that the hyperparameters specific to each
self-supervision method was introduced in Appendix B.4.

SimCLR. For each embedding dimension, we fix the batch size at 2048, and tune the temperature τ
and the base learning rate base lr for pretraining with SimCLR. Then, we tune the initial learning
rate lr head for linear probing on IN20%. The optimal hyperparameters are shown in Table 6.

AUH. For each embedding dimension, we fix the batch size at 2048, and tune the alignment weight
λ, the scale of the RBF kernel t, and the base learning rate base lr for pretraining with AUH. Then
we tune the initial learning rate lr head for linear probing on IN20%. The optimal hyperparameters
are shown in Table 7.

Table 6: Hyperparameter choice for SimCLR pretrained on IN20% with a ResNet-18 during 100
epochs, evaluated by linear probing on IN20%.

Dimension Temperature base lr lr head

q = 1024 0.15 1.0 0.2
q = 2048 0.15 1.0 0.2
q = 4096 0.15 1.0 0.2
q = 8192 0.15 0.8 0.2
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Table 7: Hyperparameter choice for AUH pretrained on IN20% with a ResNet-18 during 100 epochs,
evaluated by linear probing on IN20%.

Dimension Alignment weight λ Scale t base lr lr head

q = 1024 400 2.5 1.0 10.0
q = 2048 1000 2.5 1.0 4.0
q = 4096 2000 2.5 1.0 1.0
q = 8192 3000 2.5 1.0 2.0

Table 8: Hyperparameter choice for VICReg pretrained on IN20% with a ResNet-18 during 100
epochs, evaluated by linear probing on IN20%.

Dimension Alignment weight λ Variance weight µ base lr lr head

q = 1024 4 10 0.4 0.2
q = 2048 4 4 0.7 1.0
q = 4096 10 10 0.6 0.2
q = 8192 10 10 0.7 0.2

Table 9: Hyperparameter choice for SFRIK pretrained on IN20% with a ResNet-18 during 100
epochs, evaluated by linear probing on IN20%.

Order Dimension Alignment weight λ Kernel weights (b1, b2, b3) base lr lr head

L = 1 q = 8192 10000 (1, 0, 0) 0.4 10.0

L = 2 q = 1024 400 (1, 40, 0) 1.0 2.0
q = 2048 400 (1, 40, 0) 1.0 4.0
q = 4096 1000 (1, 40, 0) 1.0 4.0
q = 8192 2000 (1, 20, 0) 1.0 10.0

L = 3 q = 8192 4000 (1, 40, 40) 1.2 1.0

VICReg. For each embedding dimension, we fix the batch size at 2048, and we tune the alignment
weight λ, the variance weight µ, and the base learning rate base lr for pretraining with VICReg.
Then, we tune the initial learning rate lr head for linear probing on IN20%. The optimal hyperpa-
rameters are shown in Table 8.

SFRIK, batch size 2048. For each embedding dimension, we fix the batch size at 2048, and tune
the alignment weight λ in (2), the kernel weights b` (` ∈ {2, 3}) in (8), and the base learning rate
base lr for pretraining with SFRIK. Without loss of generality, the first kernel weight b1 in (8) is
fixed at b1 = 1. Then, we tune the initial learning rate lr head for linear probing on IN20%. The
optimal hyperparameters are shown in Table 9.

SFRIK, batch size 4096. We fix the dimension at q = 8192, and the batch size at 4096, and tune
the alignment weight λ in (2), the kernel weights b` (` ∈ {2, 3}) in (8), and the base learning rate
base lr for pretraining with SFRIK. Without loss of generality, the first kernel weight b1 in (8) is
fixed at b1 = 1. Then, we tune the initial learning rate lr head for linear probing on IN20%. The
optimal hyperparameters are: λ = 4000, (b1, b2, b3) = (1, 20, 0), base lr = 0.8, lr head = 1.0.
This yields a top-1 accuracy of 46.3 for linear probing on IN20%, meaning that it is not necessary
to use a batch size larger than 2048 in SFRIK to obtain a better performance.

C.5 HYPERPARAMETERS FOR THE ABLATION ON THE KERNEL CHOICE

We detail the experimental setting of our ablation study on the kernel choice for the generic unifor-
mity term (7) in Table 3 of Section 4.2. We follow the protocol of Section 4.2, with an embedding
dimension of q = 8192. The training loss is λ`a(ZI

(1),ZI
(2))+0.5(`u(ZI

(1))+ `u(ZI
(2))), where

`u is the loss (7) with an RBF or a general distance kernel.
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RBF kernel. The kernel is K(u,v) = e−t‖u−v‖
2
2 . We fix the batch size at 2048, and tune the

alignment weight λ, the scale of the RBF kernel t, and the base learning rate base lr for pretrain-
ing. Then, we tune the initial learning rate lr head for linear probing on IN20%. The optimal
hyperparameters are: λ = 100, t = 2, base lr = 1.0, lr head = 10.

Generalized distance kernel. The kernel is K(u,v) = C − ‖u − v‖p2, where we fixed C = 0
because the value of this constant does not change the gradients of the optimization problem, and
p = 2 because we verified empirically that choosing p < 2 yields poor results. We fix the batch size
at 2048, and tune the alignment weight λ, and the base learning rate base lr for pretraining. Then,
we tune the initial learning rate lr head for linear probing on IN20%. The optimal hyperparameters
are: λ = 10000, base lr = 0.6, lr head = 10.

As shown in Table 3, a truncated kernel is empirically a better choice than the RBF or the generalized
distance kernel for the uniformity term (7).

C.6 HYPERPARAMETERS FOR EXPERIMENTS ON IN100%

Table 10 reports the selected hyperparameters for pretraining ResNet-50 on IN100% with SFRIK in
Section 4.3. The tuning protocol is as follows. Since hyperparameter tuning is costly on IN100%,
we pretrain several ResNet-50 for different values of kernel weights b`, alignment weight λ and base
learning rate base lr, and pause the pretraining after 50 epochs. We evaluate the obtained backbones
on kNN classification (top-1 accuracy, k = 20), and select the best performing backbones. Then we
continue pretraining these selected backbones until reaching epoch 200 or 400. Finally we select
the hyperparameters that yield the highest top-1 accuracy for linear probing on IN100% after 200 or
400 epochs of pretraining. Because of the conclusions of Appendix D.1, our hyperparameter tuning
follows the common practice in the self-supervised learning literature where hyperparameters are
selected by measuring the performance on the validation set of ImageNet. Note that we verified
experimentally a posteriori that the hyperparameters obtained by our tuning protocol are similar to
the ones obtained from a tuning on a smaller dataset like STL-10 (Coates et al., 2011). This means
that an alternative is to tune the hyperparameters on STL-10, and generalize these hyperparameters
to pretrain SFRIK on IN100%.

Table 10: Hyperparameter choice for SFRIK pretrained on IN100% with a ResNet-50 during 200 or
400 epochs.

Dimension Order Epoch Alignment weight λ Kernel weights (b1, b2, b3) base lr

q = 8192 L = 2 200 4000 (1, 20, 0) 0.4
L = 3 200 4000 (1, 40, 40) 0.4

q = 16384 L = 2 200 20000 (1, 40, 0) 0.4

q = 32768 L = 2 200 40000 (1, 40, 0) 0.4
L = 3 200 40000 (1, 40, 40) 0.4

q = 8192 L = 2 400 4000 (1, 20, 0) 0.4

Tables 11 and 12 give the optimal hyperparameters found for linear probing on IN100%, linear
probing on Places205, and semi-supervised learning with limited labels of IN100% when evaluating
pretrained ResNet-50 backbones with SFRIK and VICReg. The hyperparameters that are tuned for
evaluation are: the initial learning rate lr head of the linear layer in linear probing; and the initial
learning rate lr backbone and lr head for respectively the backbone and the linear layer in semi-
supervised learning. The reported hyperparameters in the two tables yield the evaluation results
reported in Section 4.3.

C.7 COMPUTATIONAL RESOURCES

Pretrainings of ResNet-18 on IN20% with a batch size of 2048 (respectively 4096) are performed
with 4 (respectively 8) NVIDIA Tesla V100 GPUs with 32GB of memory each. Pretrainings of
ResNet-50 on IN100% are performed with 8 NVIDIA Tesla V100 GPUs with 32GB of memory
each. The total amount of compute used for this work is around 50000 GPU hours.
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Table 11: Hyperparameter tuning for linear probing on IN100% and Places205 for SFRIK and
VICReg pretrained on IN100% with a ResNet-50.

lr head

Method Epochs IN100% Places205

VICReg† (q = 8192) 200 0.02 0.01
SFRIK (L = 2, q = 8192) 200 1.0 0.01
SFRIK (L = 3, q = 8192) 200 2.0 0.01
SFRIK (L = 2, q = 16384) 200 0.3 0.01
SFRIK (L = 2, q = 32768) 200 1.0 0.01
SFRIK (L = 3, q = 32768) 200 0.4 0.01

SFRIK (L = 2, q = 8192) 400 2.0 0.01

Table 12: Hyperparameter tuning for semi-supervised learning for SFRIK and VICReg pretrained
on IN100% with a ResNet-50.

Semi-supervised, 1% labels Semi-supervised, 10% labels

Method Epochs lr backbone lr head lr backbone lr head

VICReg† (q = 8192) 200 0.02 0.2 0.2 0.04
SFRIK (L = 2, q = 8192) 200 0.004 1.6 0.02 0.4
SFRIK (L = 3, q = 8192) 200 0.002 1.0 0.01 0.2
SFRIK (L = 2, q = 16384) 200 0.004 1.4 0.04 0.2
SFRIK (L = 2, q = 32768) 200 0.004 1.0 0.04 0.1
SFRIK (L = 3, q = 32768) 200 0.004 1.0 0.02 0.1

SFRIK (L = 2, q = 8192) 400 0.004 1.4 0.02 0.2

C.8 PUBLIC RESOURCES

We acknowledge the use of the following public resources, during the course of the experimental
work of this paper:

• VICReg official code (Bardes et al., 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• DINO official code (Caron et al., 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• OBoW official code (Gidaris et al., 2021) . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• SwAV official code (Caron et al., 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC 4.0
• SimCLR official code (Chen et al., 2020a) . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• VISSL code (Goyal et al., 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• ImageNet dataset (Deng et al., 2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• Places 205 dataset (Zhou et al., 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attribution CC BY
• VOC2007 dataset (Everingham et al., 2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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D ADDITIONAL EXPERIMENTAL RESULTS

We provide in this appendix other experimental results to complement the main paper.

D.1 HYPERPARAMETER TUNING WITHOUT A SEPARATE VALIDATION SET

A common practice in the self-supervised learning literature, e.g., (Bardes et al., 2022; Chen et al.,
2020a), is to select the hyperparameters by measuring the performance on the validation set of Im-
ageNet (red dataset in Figure 2) instead of a separate validation dataset (purple dataset in Figure 2).
In this paragraph, we verify whether this less rigorous practice changes the conclusion of the exper-
iments in Section 4.2. In Table 13, we report the evaluation of the different backbones pretrained
on IN20% after tuning each method directly on the validation set of ImageNet, which is the same
dataset used for evaluation in linear probing. By comparison with Table 2, which follows the more
rigorous hyperparameter tuning protocol described in Appendix C.4, we observe that although the
absolute figures of merit slightly vary if we use the less rigorous protocol instead of the more rigor-
ous one, the conclusion of the experiments in Section 4.2 does not change. This gives an empirical
justification to this common practice.

Table 13: Linear probing on IN20% (top-1 accuracy) at different embedding dimensions q. All
methods were pretrained on IN20% with a ResNet-18 for 100 epochs. Hyperparameters specific to
each method and the learning rate are tuned on the same dataset as the one used for evaluation in
linear probing, which is less rigorous than tuning the hyperparameters on a separate validation set
as described in Appendix C.4. Symbol † indicates models that we retrained ourselves.

SimCLR† AUH† VICReg† SFRIK

L = 1 L = 2 L = 3

q = 1024 45.2 45.2 40.8 - 44.2 -
q = 2048 45.8 45.6 44.1 - 45.5 -
q = 4096 46.3 46.8 44.9 - 47.0 -
q = 8192 46.2 46.8 46.0 27.5 47.0 47.6

D.2 ADDITIONAL EVALUATION OF SFRIK PRETRAINED ON IN20%

In complement to the results on linear probing on IN20% presented in Table 2, we evaluate SFRIK
by linear probing on Places205 (Zhou et al., 2014) and linear SVM on VOC2007 (Everingham et al.,
2010), following the protocol described in Appendix C.3. The learning rate for linear probing on
Places205 is fixed at 0.01. Table 14 compares SFRIK, AUH and VICReg pretrained with ResNet-18
on IN20% under the setting of Section 4.2.

Table 14: Linear classification on Places205 and VOC2007 (accuracy and mean average pre-
cision). All methods were pretrained on IN20% with a ResNet-18 for 100 epochs. We tuned all
hyperparameters specific to each pretraining method and the learning rate. The symbol † indicates
models that we retrained ourselves.

Linear classification

Method Places205 VOC07
Top-1 Top-5 mAP

VICReg† (q = 8192) 41.6 71.7 73.3
AUH† (q = 8192) 42.3 72.8 73.6
SFRIK (L = 3, q = 8192) 42.7 72.9 74.1

We conclude that, under the rigorous protocol of Section 4.2 and Appendix C.4, SFRIK performs
better than AUH on various downstream tasks, while having the same computational saving offered
by the kernel trick. Compared to VICReg, SFRIK performs better on these tasks with a reduced
complexity.
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D.3 RESULTS OF OTHER PRETRAINING METHODS ON IN100% WITH RESNET-50

In complement to Table 4, Table 15 reports evaluation results for linear probing on IN100% and
semi-supervised learning with few labels of IN100% of different ResNet-50 pretrained on IN100%
with other state-of-the-art methods than the ones presented in Table 4. As mentioned in Section 4.3,
we observe that, similarly to SFRIK, both BYOL and SwAV with multi-crop have a performance
drop compared to VICReg on semi-supervised learning with 1% of labels, even though they perform
better on linear probing on IN100%.

Table 15: Linear probing on IN100%, semi-supervised learning with few labels of IN100%
(top-1 and top-5 accuracy). All methods have been pretrained on IN100% with a ResNet-50 during
the reported number of epochs.

Linear probing Semi-supervised

Method Epochs IN100% 1% labels 10% labels
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

SimCLR (Chen et al., 2020a) 1000 68.3 89.0 48.3 75.5 65.6 87.8
OBoW (Gidaris et al., 2021) 200 73.8 - - 82.9 - 90.7
BYOL (Grill et al., 2020) 1000 74.3 91.6 53.2 78.4 68.8 89.0
SwAV (with multi-crop) (Caron et al., 2020) 800 75.3 - 53.9 78.5 70.2 89.9
Barlow Twins (Zbontar et al., 2021) 1000 73.2 91.0 55.0 79.2 69.7 89.3
VICReg (Bardes et al., 2022) 1000 73.2 91.1 54.8 79.4 69.5 89.5
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