
HAL Id: hal-03738430
https://hal.science/hal-03738430

Submitted on 21 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pardinus: A temporal relational model finder
Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha

To cite this version:
Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha. Pardinus: A temporal relational model
finder. Journal of Automated Reasoning, 2022, �10.1007/s10817-022-09642-2�. �hal-03738430�

https://hal.science/hal-03738430
https://hal.archives-ouvertes.fr

Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Pardinus: A temporal relational model finder

Nuno Macedo · Julien Brunel · David Chemouil ·
Alcino Cunha

Received: date / Accepted: date

Abstract This article presents Pardinus, an extension of the popular Kodkod [53] relational
model finder with linear temporal logic (including past operators), to simplify the analysis of
dynamic systems. Pardinus includes a SAT-based bounded-model checking engine and an
SMV-based complete model checking engine, both allowing iteration through the different
instances (or counter-examples) of a specification. It also supports a decomposed parallel
analysis strategy that improves the efficiency of both analysis engines on commodity multi-
core machines.

Keywords Model Checking ·Model Finding · Relational Logic · Temporal Logic

1 Introduction

High-level model finders and constraint solvers are becoming increasingly useful in software
engineering. The ability to specify properties of a system in some expressive logic and then
automatically find solutions (models) that satisfy such properties is useful in many applica-
tions, ranging from early system design validation to test-case generation. Kodkod [53] is
an example of such model finders, supporting a range of features that make it quite popular:

Work financed by the European Regional Development Fund (ERDF) through the Operational Programme for
Competitiveness and Internationalisation (COMPETE2020) and by National Funds through the Portuguese
funding agency, Fundação para a Ciência e a Tecnologia (FCT) within project POCI-01-0145-FEDER-
016826, and the French Research Agency project FORMEDICIS ANR-16-CE25-0007.

Nuno Macedo
INESC TEC and Faculdade de Engenharia da Universidade do Porto
E-mail: nfmmacedo@di.uminho.pt

Julien Brunel
ONERA DTIS and Université fédérale de Toulouse
E-mail: julien.brunel@onera.fr

David Chemouil
ONERA DTIS and Université fédérale de Toulouse
E-mail: david.chemouil@onera.fr

Alcino Cunha
INESC TEC and Universidade do Minho
E-mail: alcino@di.uminho.pt

2 Nuno Macedo et al.

– Problems are described using the single unifying concept of relation (of arbitrary arity),
considerably simplifying the syntax and semantics of the language.

– Constraints are expressed in relational logic, first-order logic enriched with relational
algebra and closure operators, enabling a terse, but still readable, style of specification.

– It allows the user to iterate over alternative solutions of the problem, also implementing
a symmetry breaking mechanism (to avoid the generation of equivalent solutions) which
makes it useful for scenario exploration.

– Partial instances can be provided a priori, in the form of lower- and upper-bounds for
relations, enabling its application to configuration-solving tasks, where the goal is to
find a full instantiation of a partial description of a system.

The best-known application of Kodkod is in the analysis of Alloy 4 and 5 specifications.
Alloy [25] is a language that shares some of Kodkod’s features – the everything is a relation
motto and the usage of relational logic – but that also supports higher-level constructs to
further simplify the description of a system, namely a type system with inheritance.

Despite its usefulness and popularity, Kodkod can only be directly applied to analyse
structural designs. Analysis of behavioural designs is possible, but cumbersome and error-
prone. The state and traces of the system must be explicitly modelled and temporal proper-
ties and (bounded) model checking must be specified directly using transitive closure over
the traces. This approach is often viable for checking simple safety properties, but properly
checking liveness properties is tricky and mostly avoided. Moreover, given the bounded na-
ture of the analysis, complete model checking could only be directly supported by setting a
bound that covers all reachable states, is infeasible for most examples.

This article presents the Pardinus model finder, an extension of Kodkod that addresses
this limitation. It allows the declaration of mutable relations and the usage of temporal re-
lational logic in the specification of properties, an extension of relational logic with linear
temporal logic with past operators (PLTL). Pardinus problems can currently be analysed
by two model finding backends that implement satisfiability checking for temporal rela-
tional logic: the first translates Pardinus problems back to plain Kodkod problems, by
resolving the temporal domain and implementing a procedure that essentially amounts to
bounded model checking with SAT [3]; the second resolves the first-order domain, and re-
duces Pardinus satisfiability checking to PLTL model checking over a universal model of a
system (one that allows all possible behaviours) [45], using the concrete SMV syntax. Like
Kodkod, Pardinus allows iteration over different satisfiable solutions, enabling the user to
quickly explore behavioural scenarios, either different valid execution instances of a system
or different counter-examples to a broken expected property. To speedup analysis, Pardinus
also implements a decomposed solving procedure that splits a problem into two parts, one
containing only immutable relations that is used to enumerate the configurations of the sys-
tem, which are then incorporated in the remainder mutable part and analysed in parallel.
To further speedup the analysis, users can provide more precise partial instances about mu-
table relations using symbolic bounds, which generalize the bounds supported by Kodkod
with expressions referring to the value of immutable relations, thus incorporating in a partial
instance information about the system configuration.

The main application of Pardinus is in the analysis of Alloy 61 specifications. This new
version of Alloy adds support for mutable relations and temporal relational logic, an exten-
sion previously known as Electrum [30]. The architecture of Alloy 6 and Pardinus is de-
picted in Fig. 1, with the scope of this article is captured by thick lines and arrows. Pardinus
is also used as a backend in Forge [50], a system to prototype formal methods tools.

1 https://github.com/AlloyTools/org.alloytools.alloy/releases/tag/v6.0.0

Pardinus: A temporal relational model finder 3

Alloy 6 Pardinus

Kodkod

SMV

MiniSAT

· · ·

Sat4j

NuSMV

· · ·

nuXmv

Fig. 1: Alloy 6 and Pardinus architecture

This article has four main contributions, when compared to previous publications pre-
senting Pardinus and Electrum:

– A unified and complete presentation of both analysis backends (bounded and unbounded
model checking). The paper that introduced Electrum [30] briefly mentions how spec-
ifications can be model checked, but at the time Pardinus did not exist and the two
backends were not unified (bounded model checking was done via a translation to plain
Alloy, and the SMV model checking backend was not as optimised as the current ver-
sion). In a more recent tool paper about the current version of the ElectrumAnalyzer [5],
Pardinus is already mentioned as the underlying model finder but not described.

– A novel path iteration mechanism, that returns only non-isomorphic solutions, and that is
efficiently implemented using incremental SAT solving. Trace iteration was approached
in [6], but only for single state updates and without an efficient implementation.

– A decomposed analysis technique that relies on symbolic bounds and parallel execution
to speed up verification. The support for symbolic bounds and the decomposed analysis
technique was introduced in [33], but only for plain Kodkod problems.

– An extended evaluation, with several new examples and case-studies, providing more
confidence about the effectiveness of the proposed techniques.

The article is structured as follows. Section 2 presents Pardinus problems for temporal
relational model finding. The analysis of such problems is discussed in Section 3, including
the presentation of the two backends. Section 4 describes how instance (or counter-example)
iteration is supported. The parallel decomposed analysis strategy and symbolic bounds are
presented in Section 5. Section 6 presents and discusses the results of evaluating Pardinus
over several examples and case-studies. Related work is discussed in Section 7. Section 8
closes the paper, presenting some conclusions and ideas for future work.

2 Pardinus problems

A Kodkod model finding problem consists of a set of relation declarations plus a single rela-
tional logic formula defined over those (free) relations, whose satisfiability is to be checked.
To make the problem decidable every free relation must be given an upper-bound – the set
of tuples that may be present in the relation in valid bindings. Tuples are sequences of atoms
(uninterpreted identifiers) drawn from a finite universe, that must also be declared upfront.
When declaring a relation it is also possible to specify a lower-bound – the set of tuples
that must be present in the relation – useful to capture a priori partial knowledge about the
solution. Pardinus problems extend Kodkod ones as follows:

4 Nuno Macedo et al.

after φ φ is true in the next instant
always φ φ will always be true

eventually φ φ will eventually be true
φ until ψ ψ will eventually be true and ψ will always be true until then

φ releases ψ ψ will be true at least until φ is true
before φ there was a previous instant and φ was true in it

historically φ φ was always true
once φ φ was once true

φ since ψ ψ was once true and ψ was always true afterwards
φ triggered ψ ψ was always true at least since φ was true

Fig. 2: Pardinus temporal operators

1 {I0 ,I1 ,I2,I3,P0,P1,P2,P3}
2

3 Id :1 {(I0),(I1),(I2),(I3)} {(I0),(I1),(I2),(I3)}
4 next :2 {(I0 ,I1),(I1 ,I2),(I2 ,I3)} {(I0 ,I1),(I1 ,I2),(I2 ,I3)}
5 Process :1 {} {(P0),(P1),(P2),(P3)}
6 id :2 {} {(P0 ,I0),(P0 ,I1),(P0 ,I2),(P0 ,I3),. . .,
7 (P3 ,I0),(P3,I1),(P3,I2),(P3,I3)}
8 succ :2 {} {(P0 ,P0),(P0 ,P1),(P0 ,P2),(P0 ,P3),. . .,
9 (P3 ,P0),(P3,P1),(P3,P2),(P3,P3)}

10 var outbox :2 {} {(P0 ,I0),(P0 ,I1),(P0 ,I2),(P0 ,I3),. . .,
11 (P3 ,I0),(P3,I1),(P3,I2),(P3,I3)}
12 var Elected :1 {} {(P0),(P1),(P2),(P3)}
13

14 id in Process → Id and
15 all p : Process | one p � id and
16 all i : Id | lone id � i and
17 succ in Process → Process and
18 all p : Process | one p � succ and
19 all p : Process | Process in p � ^succ and
20

21 outbox = id and
22 always some p : Process , i : (succ � p) � outbox | outbox ’ =
23 outbox − succ � p → i + p → (i − ^next � (p � id)) and
24

25 always Elected = {p : Process | once (p � id in p � outbox and
26 before not (p � id in p � outbox))}

Fig. 3: A leader election protocol in Pardinus

– Mutable relations, whose value changes over time, can be declared with keyword var.
– Formulas can use (past and future) linear temporal operators to express behavioural

constraints. The informal meaning of these operators is presented in Fig. 2.
– A relational expression in a formula can be primed to denote its value in the succeeding

time instant.

The value of the immutable relations, that remains constant in a trace after being fixed
at start, constitutes a so-called configuration of the system. The syntax2 and semantics of
Pardinus problems3 will be illustrated through a simple example shown in Fig. 3, a specifi-

2 In practice, Kodkod and Pardinus are Java libraries and problems are defined programatically.
3 Kodkod (and Pardinus) also have some limited support for integers which we omit in this presentation.

Pardinus: A temporal relational model finder 5

cation of a leader election protocol. This protocol, first proposed by Chang and Roberts [10],
assumes a ring network of processes (or nodes) with unique comparable identifiers.

Specifying configurations (ll. 1–9, 14–19) The immutable portion of the problem is essen-
tially pure Kodkod and specifies networks following the ring topology, amounting to the
configuration of the protocol. To bound the problem, only rings with up to four nodes will
be considered in the example. Thus, the mandatory universe declaration (l. 1) introduces
four atoms to denote the processes (P0 to P3) and four atoms for the identifiers (I0 to I3).
Next, a set of free relations can be declared that are the target of the model finding process.
For each relation, besides its name, one must declare its arity (the length of the tuples it can
contain), and its lower- and upper-bounds as tuple sets of the same arity. This problem de-
clares two immutable sets (sets are simply normal unary relations) – Id (l. 3) and Process
(l. 5) to denote the set of identifiers and processes, respectively, that will effectively exist
in each solution – and three immutable binary relations – next to capture the total order
between identifiers (l. 4), id to associate processes with their identifiers (l. 6), and succ to
represent the desired topology, associating each process with its successor in the ring (l. 8).

By setting the lower-bound equal to the upper-bound, relations Id and next are de-
clared as constants of the problem, with next fixing a particular total order between the
four possible identifiers. This is an extreme usage of lower-bounds: in many situations the
lower-bound is a smaller subset of the upper-bound, forcing only some of the possible tu-
ples to be present in the valid bindings. In the remaining three immutable declarations, the
lower-bound falls on the other extreme, being empty to allow any possible valuation within
the respective upper-bound. Process is restricted to be any subset of the four possible pro-
cess atoms (recall we intend to specify all rings with up to four processes), id to contain
pairs where the first component is a process and the second is an identifier, and succ to only
contain pairs of processes. The upper-bounds usually encode (loose) typing restrictions, but
are not sufficiently expressive to restrict valid valuations. For instance, the upper-bound of
id alone does not ensure that its tuples only relate processes that are effectively assigned to
Process, which needs to be enforced in the problem’s constraint. However, it still consid-
erably speeds up the analysis by restricting upfront possible valuations.

Then, constraints of the problem are specified with a temporal relational logic formula,
whose free variables are the relations previously declared. Relational logic combines the
standard first-order logic primitives (Boolean connectives and first-order quantifiers) with
relational algebra operators that are used to combine relational expressions. Except for the
closure operators, relational operators do not increase the expressiveness of first-order logic,
but simplify the writing of some constraints. Besides the standard binary set operators –
union (+), intersection (&), difference (−) – relational expressions can also be combined
with the Cartesian product (→), that concatenates all pairs of tuples from two expressions,
the transpose (~), that reverses all tuples in a binary expression, and the quintessential com-
position or dot join (�), that joins all pairs of tuples from two expressions whenever they
have the same last and first atom (dropping this matching atom). Given a binary relational
expression, it is also possible to compute its transitive closure (^) or its reflexive-transitive
closure (*). Three relational constants are predefined, namely univ, to denote the set of all
atoms in the universe, none to denote the empty set, and iden, the identity binary relation
over univ. It is also possible to define relations by comprehension with the usual syntax.

Atomic formulas are either cardinality checks with the multiplicity operators some (the
relational expression has at least one tuple), lone (at most one tuple), one (exactly one tu-
ple), or no (the relational expression is empty), or testing if a relational expression is a subset
of another (in), with equality being just an alias to checking inclusion in both directions. For

6 Nuno Macedo et al.

readers not accustomed with this Alloy style of relational logic, it is perhaps surprising that
membership check is not part of the atomic formulas. This is due to the fact that scalars (for
example, variables introduced by quantifiers) are actually (singleton) sets, which means that
membership is subsumed by inclusion. This also allows scalars to be used in relational ex-
pressions, with composition subsuming relation application. For example expression p �id
(l. 15) determines the identifiers of process p. Complex formulas are then created through
common Boolean constants (true and false) and connectives (not, and, or and implies),
and first-order universal (all) and existential (some) quantifications (occasionally we abuse
the notation and write multi-variable quantifications).

The specification of the ring topology consists of a conjunction of six sub-formulas over
the immutable relations. The first forces id to be a subset of the (Cartesian) product between
Process and Id (l. 14). As already noted, the upper-bound of id alone does not ensure this,
since the actual binding for Process is unknown when defining the problem (the same does
not apply to next that is already exactly bound). The second constraint forces every process
to have exactly one identifier, or, in other terms, forces id to be a function from processes to
identifiers (l. 15). The next constraint ensures that id is also injective, by stating that every
identifier must be related by id to at most one process (l. 16). The next two constraints
(ll. 17–18) force succ to be a function relating each process to exactly one other process.
To ensure that succ forms a ring, the last constraint (l. 19) relies on the transitive closure to
state that the set of all processes must be reachable through succ from every process.

Specifying behaviour (ll. 10–12, 21–26) The remaining of the problem specifies the evo-
lution of the protocol over a given configuration. Note that Pardinus problems do not ex-
plicitly specify a state machine. Instead, behaviour is enforced through arbitrary temporal
constraints that restrict which traces are acceptable in the system being modelled.

The protocol is uniform (every process performs the same operations) and works cor-
rectly if no failures occur (eventually one and at most one leader is elected). The protocol
starts with each process ready to send its own identifier to its successor in the ring. When a
process receives an identifier, it compares it with its own. If it is higher it propagates; oth-
erwise it discards it. A process that receives back its own identifier is the elected leader. To
model this behaviour, a mutable outbox binary relation is declared (l. 10) to associate each
process with the identifiers it should propagate along the ring. As in [25], where this proto-
col is used to illustrate the Alloy 5 language following an explicit state idiom, we abstract
away the inbox of each process and will merge the event of sending an identifier with that
of the respective successor processing the identifier. A mutable Elected set is also declared
(l. 12) to contain the processes that are elected leaders (hopefully, at most one).

With mutable relations, the constraints of a problem can rely on temporal operators.
Relational expressions can be “primed” to retrieve their value in the succeeding state, and
formulas are composed using the past and future temporal operators described in Fig. 2.

The dynamics of the protocol is specified with two constraints. The one in l. 21 specifies
the initial value of the outbox relation (formulas without temporal operators must hold
in the first state), stating it should be the same as relation id, i.e., each process should
start by sending its own identifier to the successor. The formula in ll. 22–23 specifies valid
transitions, stating that at each time instant some process p should pick and process one of
the identifiers in the outbox of its predecessor succ �p. The selected identifier i is removed
from the outbox of the predecessor of p (by subtracting the tuple succ �p→i from outbox)
and added to the outbox of p (by adding the tuple p→i), but only if it is greater than or
equal to its identifier. The expression ^next �(p �id) denotes the set of all identifiers that are
smaller than the identifier of p, and by subtracting it from i (in the expression that computes

Pardinus: A temporal relational model finder 7

π, i |= true
π, i |= Γ in ∆ ≡ JΓKi

π ⊆ J∆Ki
π

π, i |= some Γ ≡
∣∣JΓKi

π
∣∣≥ 1

π, i |= lone Γ ≡
∣∣JΓKi

π
∣∣≤ 1

π, i |= not φ ≡ π, i 6|= φ
π, i |= φ and ψ ≡ π, i |= φ ∧π, i |= ψ
π, i |= all x : Γ | φ ≡ ∀t ∈ JΓKi

π ·π⊕N0 7→ x 7→ {t}, i |= φ
π, i |= after φ ≡ π, i+1 |= φ
π, i |= φ until ψ ≡ ∃i≤ k ·π,k |= ψ ∧∀i≤ j < k ·π, j |= φ
π, i |= before φ ≡ 0 < i∧π, i−1 |= φ
π, i |= φ since ψ ≡ ∃0≤ k ≤ i ·π,k |= ψ ∧∀k < j ≤ i ·π, j |= φ

Fig. 4: Semantics of Pardinus formulas

JrKi
π = πi(r)

JxKi
π = πi(x)

JunivKi
π = {(a) | a ∈A }

JnoneKi
π = {}

JidenKi
π = {(a,a) | a ∈A }

J~ΓKi
π = {(b,a) | (a,b) ∈ JΓKi

π}

J^ΓKi
π = {(a,b) | ∃c1, ...,cn ·(a,c1),(c1,c2), ...,(cn,b) ∈ JΓKi

π}

JΓ + ∆Ki
π = JΓKi

π ∪ J∆Ki
π

JΓ & ∆Ki
π = JΓKi

π ∩ J∆Ki
π

JΓ − ∆Ki
π = JΓKi

π \ J∆Ki
π

JΓ→ ∆Ki
π = {(a1,...,an,b1,...,bm) | (a1,...,an) ∈ JΓKi

π ∧(b1,...,bm) ∈ J∆Ki
π}

JΓ � ∆Ki
π = {(a1,...,an−1,b2,...,bm) | (a1,...,an) ∈ JΓKi

π ∧(b1,...,bm) ∈ J∆Ki
π

∧an = b1}

J{x1 : Γ1,...,xn : Γn | φ}Ki
π = {(a1, ...,an) | (a1) ∈ JΓ1Ki

π ∧ ... ∧(an) ∈ JΓnKi
π∧

π⊕N0 7→ x1 7→ {(a1)}⊕ ...⊕N0 7→ xn 7→ {(an)}, i |= φ}
JΓ’Ki

π = JΓKi+1
π

Fig. 5: Semantics of Pardinus relational expressions (A is the declared universe)

the tuple to be added) the desired behaviour is ensured. Notice that, given the way the update
on outbox is specified (with a constraint that defines the full global value of outbox in the
succeeding instant), exactly one process will propagate exactly one identifier at each instant.
The final constraint (ll. 25–26) defines the set of elected processes by comprehension at each
instant, using a combination of future and past linear time operators: a process is considered
elected if at some point in the past its identifier reappeared in its outbox.

Semantics A model of a Kodkod problem (or a solution) is a binding from the (free) rela-
tions to constants that respects the declared bounds and that satisfies the formula. As usual in
model checking, a model of a Pardinus problem is an infinite path, i.e., an infinite sequence
of bindings from the declared relations to constants that always respects the declared bounds
and satisfies the temporal formula, capturing an execution path of the system.

A path π is a mapping from naturals to bindings, themselves a mapping from relations
to tuple sets. For a path π , πi shall denote its i-th state. A path π is said to respect a set of
relation declarations D , denoted by π |= D , if for every r :a l u ∈D , ∀i≥ 0 · l ⊆ πi(r)⊆ u.

8 Nuno Macedo et al.

If r is declared as immutable, its value must also not change, i.e., ∀i≥ 0 ·πi(r) = π0(r). The
satisfaction of a formula φ at step i of a path π is denoted by π, i |= φ and defined in Fig. 4.
The value of a relational expression Γ at time i of path π is denoted by JΓKi

π and defined
in Fig. 5 under a universe of atoms A . To lighten the presentation, throughout the article
we only detail the semantics of a kernel of operators, omitting the semantics of those easily
defined out of others. This includes temporal operators, where, for instance, eventually φ
can be defined as true until φ , or φ releases ψ as not (not φ until not ψ). The
standard semantics is followed for both first-order connectives and (past and future) linear
temporal operators (the semantics for past is strong, meaning that before is always false at
the initial state). For two mappings m1 and m2, m1⊕m2 denotes the overriding in m1 of the
elements mapped in m2, while x 7→ y denotes the singleton mapping from x to y (we abuse
the notation and, for a set A, write A 7→ y to denote

⋃
x∈A x 7→ y).

A Pardinus problem A D φ is satisfiable under a path π if the bounds are respected
(π |=D) and the formula is valid from the initial state (π,0 |= φ). If a problem is satisfiable,
Pardinus returns a valid solution, using the procedures defined in the next section.

The example protocol specification is satisfiable and a possible valid solution returned
by Pardinus is depicted in Fig. 6. To simplify the presentation, id and outbox are depicted
as attributes of each process. More precisely, for each process pwe depict in its box the value
of p �id and p �outbox. Processes in the Elected set are signalled with a thick border. The
figure presents only the first 6 steps of the solution, with the following (omitted) sequence
being an infinite repetition of the last 3 steps. This is a minimal run of the protocol for 3
processes, where the highest identifier keeps being propagated around the ring.

To check a particular temporal property, one should add its negation to the problem to
try to find a counter-example. If none is found, the property is valid for the given bounds.
The key safety property of this protocol is that at most one leader is elected. On first sight,
one could specify this property as always lone Elected, stating that the set of elected
processes never contains more than one process. However this is too weak, since it allows
different processes to be considered elected at different points in time. A possible correct
specification of this property is as follows, stating that if at any point in time a process p is
considered elected, then afterwards the Elected set is restricted to contain at most p, i.e.,

always all p : Elected | always Elected in p .

Adding the negation of this formula to our problem reveals no counter-example.
To be useful, the protocol should also ensure that some leader is elected. This liveness

property can be specified as

eventually some Elected .

Surprisingly, adding the negation of this formula to our problem reveals a counter-example
for a configuration where the ring contains only one process: in this case, the process keeps
sending its own identifier to itself, and thus is never added to Elected because the outbox
always remains in a state that is indistinguishable from the initial one. This is not a problem
with the protocol, but just a consequence of abstracting away the inbox in our specification
and defining the Elected set over the outbox instead. Without adding the inbox, the alter-
native is to relax the definition of Elected to cover the special case of rings with just one
process, for example adding the disjunct p �succ = p to the comprehension formula.

Pardinus: A temporal relational model finder 9

P0
id: I2

outbox: I2

P1
id: I1

outbox: I1

P2
id: I3

outbox: I3

P0
id: I2

outbox: I2,I3

P1
id: I1

outbox: I1

P2
id: I3
outbox:

P0
id: I2

outbox: I2

P1
id: I1

outbox: I1,I3

P2
id: I3
outbox:

P0
id: I2

outbox: I2

P1
id: I1

outbox: I1

P2
id: I3

outbox: I3

P0
id: I2

outbox: I2,I3

P1
id: I1

outbox: I1

P2
id: I3
outbox:

P0
id: I2

outbox: I2

P1
id: I1

outbox: I1,I3

P2
id: I3
outbox:

Fig. 6: A run of the leader election protocol

π0 π1 πl πl+1 πk

Fig. 7: Bounded witness of an infinite path

3 Temporal relational model finding

The goal of the model finding procedure of Pardinus is to find a valid execution path of a
problem, according to the presented semantics. Given the bounded state space, the logic of
Pardinus enjoys the Ultimately Periodic Model Property (UPMP) of Linear Temporal Logic
(LTL) [18]: if a formula is satisfied by an infinite path, then it is also satisfied by a path that
will eventually repeat itself. Such a path can thus be represented by a bounded witness with
the shape depicted in Fig. 7, a finite sequence with k+ 1 states that loops back to position
l ≤ k, known as a (k, l)-loop (or more generally a k-loop if the looping state is not relevant).
Thanks to the UPMP, Pardinus can limit the search to such paths without loss of generality.
Now, like most model checkers for temporal logic, Pardinus can be run in complete mode –
where it searches for any valid k-loop – or in bounded mode – where it searches for a valid
k-loop where k ≤ n for a user-provided upper-bound n on the size of the witness.

10 Nuno Macedo et al.

Pardinus path

SMV path

solveTRL

toTL

solveTL

fromTL

Fig. 8: Model finding with complete model checking

Pardinus

Kodkod binding

SMV

path

path

solveTRLn

toRL0..n

solveRL

fromRL

toTL

solveTLn

fromTL

Fig. 9: Model finding with bounded model checking

The architecture of the complete model finding engine of Pardinus is depicted in Fig. 8,
and essentially relies on a translation from a Pardinus problem to SMV, to be subsequently
analysed by compatible model checkers such as NuSMV [9] or nuXmv [8]. This engine is
abstracted by procedure solveTRL : Pardinus→ path, that solves a temporal relational
logic Pardinus problem and obtains a valid path (or ⊥ if the problem is unsatisfiable), and
that is implemented using several auxilary procedures according to the following steps:

1. The problem is translated to SMV by eliminating the relational logic part and reduc-
ing it to a normal (propositional) temporal logic problem (procedure toTL), essentially
by expanding relations to matrices of Boolean variables and the relational operators to
operations on matrices. This process is explained in Section 3.2.

2. Any valid execution path found by SMV model checkers (here abstracted by procedure
solveTL) must be converted back to a Pardinus path (procedure fromTL). The former
is a sequence of Boolean bindings while the latter is a sequence of relational bindings:
procedure solveTL is a straightforward translation that reverts the process from the
previous step and assembles the relations from the respective Boolean variables, so its
description will be omitted.

The architecture of the bounded model finding engine of Pardinus, abstracted by proce-
dure solveTRLn : Pardinus→ path, parametrized by the upper-bound n on the size of the
witness, is depicted in Fig. 9. SMV model checkers natively support bounded model check-
ing (here abstracted by solveTLn), so this procedure can actually be implemented using the
translation described above for complete model finding (the sequence of steps in the lower
path of Fig. 9). Nonetheless, an alternative mechanism is also provided (the steps in the up-
per path), that relies on a translation from Pardinus to standard Kodkod (to be subsequently
translated to off-the-shelf SAT solvers), that works as follows:

1. Translate the problem to Kodkod by eliminating the temporal logic part and reducing it
to a normal (static) relational logic problem (procedure toRLk), essentially by introduc-
ing an explicit set of state identifiers and adding those as an extra dimension to mutable

Pardinus: A temporal relational model finder 11

relations. This translation is parametrised by the exact size k of bounded witnesses (in
number of steps until looping back), and is run iteratively from 0 up-to the maximum
size n, stopping when a valid path is found. This process is detailed in Section 3.1.

2. Any valid binding found by the Kodkod model finder (here abstracted by procedure
solveRL) must be converted back to a Pardinus path (procedure fromRL). Again, this
straightforward translation just reverts the process from the previous step by projecting
the static relations on the state identifiers, so its description will not be presented.

3.1 Temporal model finding with Kodkod

The translation from Pardinus to Kodkod explicitly models states and finite path prefixes,
possibly with back loops, and allows the value of mutable relations to vary along the dif-
ferent states of a path by extending them with a state dimension. The explicitly modelling
of state is similar to the idioms commonly used in Alloy for modelling behaviour before
Alloy 6 was introduced, but these often do not consider the back loops (which are essential
to enable the sound verification of liveness properties), In previous work we have presented
this encoding in Alloy 4 for future-only relational temporal logic [16]. It is is based on the
well-known procedure for bounded model checking with SAT [3], but at the higher-level of
relational logic, taking advantage of transitive closure to encode the semantics of temporal
logic operators. However, it cannot be reused directly in Pardinus because it is not sound
when formulas contain past operators. As shown in [2], while the truth value of a future-
only temporal formula in a state inside a loop is the same in all iterations of the loop, the
same does not hold in presence of past operators. This is clear from the fact that, while the
(infinite) future of a state inside a loop is always the same, the (finite) past of that same state
differs in different iterations of the loop. Fortunately, a key result of [2] is that after a num-
ber of iterations equal to the maximum nesting depth of past operators in a formula its truth
value can no longer be distinguished. Therefore, to perform sound bounded model checking
it suffices to unroll the loop that many times. In the following presentation we assume that
the past depth of a Pardinus formula φ is given by bφc.

Given a Pardinus problem with formula φ , procedure toRLk starts by introducing new
relations and constraints to explicitly specify bounded representations of infinite paths with
exactly k+1 states and bφc unrollings of the loop (from now on denoted simply as paths).
Recall that toRLk will be invoked iteratively by solveTRLn starting with k = 0 up to k = n
until a valid solution is found. The new atoms, relations and constraints that are declared by
toRLk are presented in Fig. 10, where some auxiliary notation is used to define bounds using
set comprehension and union. First, a set state of explicit state identifiers is declared to
denote the different instants in a possible execution path (including identifiers for the states
in the unrollings). In particular, an atom S j

i identifies the state at position i of loop iteration
j. Depending on the size of the looping segment, the number of identifiers can vary, hence
the different lower- and upper-bounds: at minimum, solutions will have k+1 states for the
initial path prefix plus the last state in each loop unrolling; and at most, when the path loops
back to the first state, solutions will require (k+ 1)× (bφc+ 1) identifiers. Two singleton
sets, first and last, are declared to denote the first and last state (before looping back)
of the path, respectively. A singleton set loop will choose the state in the last unrolling to
which the path will loop back to. An extra constraint ensures this set will contain exactly one
state. The binary relation succ captures the total order between the state identifiers that will
be part of the path. As the first k+1 states are always present, the lower-bound forces them
to be ordered sequentially. The upper-bound ensures that the states in each of the unrollings,

12 Nuno Macedo et al.

{(S
j
i) | j← 0..bφc, i← 0..k}

state :1 {(S0
i) | i← 0..k}∪{(S j

k) | j← 0..bφc} {(S j
i) | j← 0..bφc, i← 0..k}

first :1 {(S0
0)} {(S

0
0)}

last :1 {(S
bφc
k)} {(S

bφc
k)}

loop :1 {} {(S
bφc
i) | i← 0..k}

succ :2 {(S0
i ,S

0
i+1) | i← 0..k−1}

{(S
j
i ,S

j
i+1) | j← 0..bφc, i← 0..k−1}∪{(S j

k,S
j+1
i) | j← 0..bφc−1, i← 0..k}

same :2 {(S
j
i ,S

0
i) | j← 0..bφc, i← 0..k} {(S j

i ,S
0
i) | j← 0..bφc, i← 0..k}

one loop and loop in state

succ in state → state

all s : state − last | one s �succ
no last �succ

state = first �*succ

all s : state | s �next �same = s �same �next

Fig. 10: New relations and constraints generated by procedure toRLk

if present in a path, are also ordered sequentially. Also, the successor of the last state of each
unrolling (or the initial prefix) can be any of the states in the next unrolling – the exact state
will depend on the position of the back loop. Extra constraints ensure that succ is indeed
a total order between first and last. Finally, same is a binary relation that captures the
equivalence relation between state identifiers, in particular by mapping each state of the
path to the equivalent state in the initial prefix. The final constraint takes advantage of this
relation to ensure that each iteration of the loop is exactly the same (relation next is an
auxiliary relation defined as succ + last → loop).

The declaration of each mutable relation var r:a l u in the problem is then changed
by toRLk: an extra state dimension is added to the correspondent (immutable) Kodkod
relation, representing the value of the relation in each state of a path. For efficiency reasons,
only the values for the states of the initial prefix are recorded: for the states in the succeeding
unrollings the value of the relation can be accessed via the same relation, that returns the
equivalent state in the initial prefix. Thus, a mutable declaration var r:a l u is expanded as

r:(a+1) (l×{(S0
i) | i← 0..k}) (u×{(S0

i) | i← 0..k}) ,

where × is auxiliary notation denoting the Cartesian product of tuple sets.
Finally, the problem formula φ is changed by replacing the temporal operators by their

trace semantics, defined over relations next and succ, respectively in the case of future and
past operators. For the latter succ is used instead of next since, after unrolling, past opera-
tors should not consider the loop back. Like the semantics in Fig. 4, this temporal expansion
of φ , denoted 〈φ〉s, is parametrized by the state s in the path where the truth value of the
formula should be checked, and its definition is presented in Fig. 11. In this definition we
assume that s0 and s1 are always fresh identifiers, and upto[s,s0] and downto[s,s0] are
auxiliary definitions that compute the set of states between s and s0 (not included) when
advancing forwards via next and backwards via the converse of succ, respectively. No-
tice also that the before formulas must test whether the previous state exists. The temporal
expansion of relational expressions is presented in Fig. 12, where the most interesting case

Pardinus: A temporal relational model finder 13

〈true〉s = true
〈Γ in ∆〉s = 〈Γ〉s in 〈∆〉s
〈some Γ〉s = some 〈Γ〉s
〈lone Γ〉s = lone 〈Γ〉s
〈not φ〉s = not 〈φ〉s
〈φ and ψ〉s = 〈φ〉s and 〈ψ〉s
〈all x : Γ | φ〉s = all x : 〈Γ〉s | 〈φ〉s
〈after φ〉s = 〈φ〉s �next
〈φ until ψ〉s = some s0 : s �*next | 〈ψ〉s0 and all s1 : upto[s,s0] | 〈φ〉s1

〈before φ〉s = some s0 : succ �s | 〈φ〉s0

〈φ since ψ〉s = some s0 : *succ �s | 〈ψ〉s0 and all s1 : downto[s,s0] | 〈φ〉s1

Fig. 11: Temporal expansion of formulas (part of toRL)

〈r〉s =

{
r �(s �same) if r mutable
r otherwise

〈x〉s = x
〈univ〉s = univ
〈none〉s = none
〈iden〉s = iden
〈~Γ〉s = ~〈Γ〉s
〈^Γ〉s = ^〈Γ〉s
〈Γ + ∆〉s = 〈Γ〉s + 〈∆〉s
〈Γ & ∆〉s = 〈Γ〉s & 〈∆〉s
〈Γ − ∆〉s = 〈Γ〉s − 〈∆〉s
〈Γ→ ∆〉s = 〈Γ〉s → 〈∆〉s
〈Γ � ∆〉s = 〈Γ〉s � 〈∆〉s
〈{x1 : Γ1,...,xn : Γn | φ}〉s = {x1 : 〈Γ1〉s,...,xn : 〈Γn〉s | 〈φ〉s}
〈Γ′〉s = 〈Γ〉s �next

Fig. 12: Temporal expansion of relational expressions (part of toRL)

corresponds to the expansion of mutable relation identifiers: as explained above, the value of
a mutable relation r at state s is determined by projecting it over state s �same, the state in the
initial prefix equivalent to s. Although the translation of the (omitted) derived temporal op-
erators could be defined by translation to the kernel operators, in practice specialized direct
translations are implemented to promote efficiency. Given these procedures, the problem
formula φ is expanded to 〈φ〉first.

3.2 Relational model finding with SMV

An SMV model (the format accepted by the NuSMV and nuXmv symbolic temporal model
checkers) consists of the definition of a state space, a transition system (initial conditions
and a transition relation) and a LTL formula (possibly including past operators) which is
expected to be satisfied by all traces of the transition system. The translation from Pardinus
to SMV basically consists in expanding the first-order and relational parts of formulas and
expressions into disjunctions and conjunctions, resulting in a propositional LTL formula

14 Nuno Macedo et al.

VrWσ = up(r)
VxWσ = σ(x)
VunivWσ = {(a) | a ∈A }
VnoneWσ = {}

VidenWσ = {(a,a) | a ∈A }
V~ΓWσ = {(b,a) | (a,b) ∈ VΓWσ}

V^ΓWσ = {(a,b) | ∃c1, . . . ,cn ·(a,c1),(c1,c2), . . . ,(cn,b) ∈ VΓWσ}

VΓ + ∆Wσ = VΓWσ ∪V∆Wσ
VΓ & ∆Wσ = VΓWσ ∩V∆Wσ
VΓ − ∆Wσ = VΓWσ \T∆Uσ
VΓ→ ∆Wσ = {(a1, . . .,an,b1, . . .,bm) | (a1, . . .,an) ∈ VΓWσ ∧(b1, . . .,bm) ∈ V∆Wσ}

VΓ � ∆Wσ = {(a1, . . .,an−1,b2, . . .,bm) | (a1, . . .,an) ∈ VΓWσ ∧(b1, . . .,bm) ∈ V∆Wσ ∧an = b1}

VΓ ′Wσ = VΓWσ
V{x1 : Γ1,...,xn : Γn| φ}Wσ = VΓ1 → ... → ΓnWσ

Fig. 13: Computing the constant upper-bound of bounding expressions

supported by SMV model checkers. In this scenario, the automaton considered by model
checking would be the universal automaton, allowing all possible behaviours; in practice,
the resulting formula is analysed to refine the state machine under analysis.

The state space is described by declarating Boolean variables corresponding to atomic
propositions of the LTL formula produced by the translation. A Boolean variable rt stands
for the presence of tuple t in relation r. Such a variable is declared in the VAR (resp. FROZENVAR)
section of the SMV format if the relation r is mutable (resp. immutable).

The LTLSPEC section of the SMV format contains the formula that is expected to hold.
The negation of the propositional LTL expansion of a formula φ of a Pardinus problem con-
taining the system definition and the property to check, denoted by [φ] and presented shortly,
could be directly assigned to the LTLSPEC section. However, according to our experience,
NuSMV and nuXmv perform better if eligible sub-formulas are allocated to specific SMV
sections that restrict the transition system, instead of checking the whole LTL formula over
the transition system that allows any sequence of states. Formula φ often has the shape of a
top-level conjunction φ1∧ . . .∧φn and so does its expansion [φ]. According to the syntactic
shape of each sub-formula [φi], the appropriate SMV section is used, namely:

– A conjunct [φi] not including temporal operator is allocated to the INIT section, which
characterizes initial states.

– A conjunct [φi] that only consists of present- and next-time sub-formulas is allocated to
the TRANS section, which characterizes the transition relation.4

– For a conjunct [φi] of the form Gψi, where ψi does not include temporal operators, ψi is
allocated to the INVARIANT section for formulas assumed to hold in any state.

– The negation of the conjunction of the sub-formulas [φi] that do not fit in any other
section is allocated to the LTLSPEC section, the arbitrary temporal formula characterizing
properties expected to hold in executions satisfying the constraints in the sections above.

The expansion of a constraint φ requires a substitution σ of variables bound in a given
context (e.g., under quantifiers) to atoms. The update of a substitution, introducing a map-
ping from x to t, is written σ [x 7→ t]. The translation of a constraint φ also requires the

4 The ASSIGN section is not used as its restricted syntax makes it a complex target for generation from
Pardinus.

Pardinus: A temporal relational model finder 15

[r]σ (t) =


> if t ∈ TrUσ

rt if t ∈ VrWσ \TrUσ

⊥ otherwise

[x]σ (t) =

{
> if t = σ(x)
⊥ otherwise

[univ]σ (t) = >
[none]σ (t) = ⊥

[iden]σ ((a,b)) =

{
> if a = b
⊥ otherwise

[~Γ]σ ((a,b)) = [Γ]σ ((b,a))
[^Γ]σ (t) = [Γ + . . . + Γ � . . . �Γ︸ ︷︷ ︸

maxLen(VΓWσ)

]σ(t)

[Γ + ∆]σ (t) = [Γ]σ (t)∨ [∆]σ (t)
[Γ & ∆]σ (t) = [Γ]σ (t)∧ [∆]σ (t)
[Γ − ∆]σ (t) = [Γ]σ (t)∧¬[∆]σ (t)
[Γ→ ∆]σ ((a1, ...,an)) = [Γ]σ ((a1, ...,a|Γ|))∧ [∆]σ ((a|Γ|+1, ...,an))

[Γ � ∆]σ (t) =
∨

(a1 ,...,an)∈VΓWσ
(b1 ,...,bm)∈V∆Wσ

an=b1
t=(a1 ,...,an−1 ,b2 ,... ,bm)

([Γ]σ ((a1, ...,an))∧ [∆]σ ((b1, ...,bm)))

[{x1 : Γ1,...,xn : Γn | φ}]σ ((a1, ...,an)) = [Γ1]σ ((a1))∧ ... ∧ [Γn]σ ((an))∧ [φ]σ [x1 7→(a1)]... [xn 7→(an)]

[Γ ′]σ (t) = X[Γ]σ (t)

Fig. 14: Characteristic-function expansion of relational expressions (part of toTL)

computation of the lower- and upper-bounds of relational expressions, denoted by T·Uσ
and V·Wσ , respectively. The latter is defined in Fig. 13. The upper-bound of an expres-
sion is computed using the upper-bounds of its sub-expressions (except for the difference
operator, where the lower-bound of the right sub-expression is used, since a larger right
sub-expression entails a smaller difference expression). When a relation r is referenced, its
upper-bound is the one declared in the problem (here low(r) and up(r) select declaration
r:a l u from the problem definition and return l or u, respectively). The (omitted) definition
of function T·Uσ is dual to V·Wσ , except for comprehension: since φ is an arbitrary formula,
the lower-bound of a comprehension expression is conservatively defined as the empty set,
while the upper-bound can be computed from the upper-bound of the quantified variables.

Each relational expression Γ is translated into its characteristic function [Γ]σ (·), which
determines whether a tuple belongs to an expression Γ under a context σ , and is presented in
Fig. 145. One should not confuse VΓWσ and [Γ]σ (·): the former represents the upper-bound
for Γ calculated at compile time, independent from time, while the latter is a predicate assert-
ing that its argument belongs to (the denotation of) Γ in a particular state. The translation of
a relation identifier produces an atomic formula expressing whether the given tuple is in the
given relation (if the tuple is not in the upper-bound of the relation, the translation directly
returns ⊥). The other rules are mostly straightforward. For instance, a tuple t belongs to the
Cartesian product of Γ and ∆ if its left-hand-side sub-tuple (of arity |Γ|) belongs to Γ while
its right-hand-side sub-tuple (of arity |∆| and starting at index |Γ|+1) belongs to ∆. For the

5 Remark that we use mathematical symbols rather than concrete SMV syntax for better readability. How-
ever, future (X, G, F, U and R) and past (Y, H, O, S and T) temporal operators follow the standard textual
notation also used in SMV.

16 Nuno Macedo et al.

[true]σ = >
[Γ in ∆]σ =

∧
t∈VΓWσ

([Γ]σ (t)⇒ [∆]σ (t))

[some Γ]σ = count{[Γ]σ (t)|t ∈ VΓWσ} ≥ 1

[lone Γ]σ = count{[Γ]σ (t)|t ∈ VΓWσ} ≤ 1
[not φ]σ = ¬[φ]σ
[φ and ψ]σ = [φ]σ ∧ [ψ]σ
[all x : Γ | φ]σ =

∧
t∈VΓWσ

(
[Γ]σ (t)⇒ [φ]σ [x 7→t]

)
[after φ]σ = X[φ]σ
[φ until ψ]σ = [φ]σ U [ψ]σ
[before φ]σ = Y[φ]σ
[φ since ψ]σ = [φ]σ S [ψ]σ

Fig. 15: Relational expansion of formulas (part of toTL)

join of expressions, a tuple t is in Γ �∆ if there are tuples in Γ and in ∆ (of adequate types)
that coincide on the appropriate columns and such that t is their concatenation (without the
said columns). Since relations are finite, the transitive closure of a relational expression is
necessarily finite as well. Hence, it can be replaced by the iterated union of powers of the
said expression (where the join operation is the product), up to a certain exponent. This ex-
ponent is equal to the maximum number of non-empty joins that can be done between pairs
in the upper-bound of the expression. That is, there is a sequence of pairs t1, t2, . . . , tmaxLen

such that t1 � t2 � . . . � tmaxLen is not empty and there is no such sequence of greater length.
We do not detail the exact computation here, abstracted by maxLen, but it essentially de-
pends on atoms that are both in the domain and the codomain of the expression, as these are
the only atoms that may appear both as the source and target of edges in the path and thus
contribute to lengthen it. In the worst case, it is the size of the universe.

The translation of a constraint φ for a context σ is denoted by [φ]σ and presented in
Fig. 15. The initial [φ] denotes the expansion of φ with an empty substitution (if φ has no
free variables). Γ in ∆ is translated to a conjunction (of implications) over the set VΓWσ
of possible values for elements of expression Γ. Each implication then says that each such
element that is in Γ is also in ∆. First-order quantifiers are translated in a similar way, with the
domain of quantification for variable x translated into a membership precondition and the φ
sub-formula evaluated in a substitution where x is mapped to t. Propositional and temporal
connectives (including past ones) are translated in a straightforward way, as propositional
LTL with past is natively implemented in SMV. The translation for multiplicity formulas
makes use of the operator count, which is not an LTL operator strictly speaking but is an
SMV operator. It designates the number of true formulas within a set.

The translation described above would produce uselessly-large formulas. Therefore, the
translation exploits static knowledge to reduce the size of generated formulas. In addition to
basic compile-time short-circuiting simplifications, lower-bounds of relational expressions
are leveraged to produce smaller formulas. For instance, instead of bluntly expanding a
universal quantification into a conjunction over the upper-bound of the quantification range,
we distinguish between the lower-bound – standing for tuples that must be in (the denotation
of) the range – and the tuples that belong to the upper-bound but not to the lower one – the

Pardinus: A temporal relational model finder 17

tuples that may be in the range:

[all x : Γ | φ]σ =
∧

t∈TΓUσ

(
[Γ]σ (t)⇒ [φ]σ [x 7→t]

)
∧

∧
t∈VΓWσ \TΓUσ

(
[Γ]σ (t)⇒ [φ]σ [x 7→t]

)
,

which simplifies to:

[all x : Γ | φ]σ =
∧

t∈TΓUσ

[φ]σ [x 7→t]∧
∧

t∈VΓWσ \TΓUσ

(
[Γ]σ (t)⇒ [φ]σ [x 7→t]

)
.

Another improvement relates to the transitive closure operator. When computing the
transitive closure of a relational expression Γ, we do not need to compute any power of Γ

until the length of the longest possible path (maxLen) is reached. By applying the so-called
iterative square procedure, we can reach a path of length 2n with n iterations of a simple
operation, which consists in performing one union and one join from the expression obtained
in the previous iteration. This procedure allows us to have a significant gain in terms of the
size of the generated LTL formula (in particular in the number of joins), and is defined as

[^Γ]σ (t) = [Γ̂maxLen(VΓWσ)]σ (t) where


Γ̂0 = none → none
Γ̂1 = Γ

Γ̂n = Γ̂dn/2e+ Γ̂dn/2e � Γ̂dn/2e .

As explained at the beginning of Section 3, the translation described above is the same
for complete and bounded model checking as NuSMV and nuXmv both feature algorithms
dedicated to the two approaches. As of this writing, for bounded model checking, both tools
rely on the same incremental algorithm (check_ltlspec_bmc_inc). For complete model
checking, NuSMV relies on a reduction from LTL model checking to CTL model checking
(check_ltlspec) [9] and nuXmv on a k-liveness algorithm (check_ltlspec_ic3) [4].

4 Scenario exploration

As mentioned in Section 1, a key feature of Kodkod is solution iteration: after obtaining
a valid binding, the solver can be instructed to find for a different one, and the process be
repeated until all possible solutions are exhausted. By incorporating a symmetry breaking
mechanism, Kodkod tries to rule out all bindings that are equivalent to a previously gen-
erated one, modulo a permutation of atoms, resulting in solutions that are in general truly
different. This is extremely useful, for example, to allow a user to explore alternative scenar-
ios of a design (or different counter-examples) or as a backend to generate test cases from
specifications. This section explains how a similar feature was implemented in Pardinus.

4.1 Kodkod solution iteration

Pardinus’ solution iteration procedure builds on that of Kodkod, which is efficiently im-
plemented at the SAT solving level. This section briefly introduces this Kodkod procedure
before presenting its extension to the Pardinus context in the succeeding sections.

Previously the solving procedure of Kodkod was abstracted as a function solveRL :
Kodkod→ binding. When iterating, the Kodkod problem is actually also updated in the

18 Nuno Macedo et al.

1 {I0 ,I1 ,I2,I3,P0,P1,P2,P3}
2

3 Id :1 {(I0),(I1),(I2),(I3)} {(I0),(I1),(I2),(I3)}
4 next :2 {(I0 ,I1),(I1 ,I2),(I2 ,I3)} {(I0 ,I1),(I1 ,I2),(I2 ,I3)}
5 Process :1 {} {(P0),(P1),(P2),(P3)}
6 id :2 {} {(P0 ,I0),(P0 ,I1),(P0 ,I2),(P0 ,I3),. . .,
7 (P3,I0),(P3,I1),(P3,I2),(P3,I3)}
8 succ :2 {} {(P0 ,P0),(P0 ,P1),(P0 ,P2),(P0 ,P3),. . .,
9 (P3,P0),(P3,P1),(P3,P2),(P3,P3)}

10

11 id in Process → Id and
12 all p : Process | one p � id and
13 all i : Id | lone id � i and
14 succ in Process → Process and
15 all p : Process | one p � succ and
16 all p : Process | Process in p � ^succ and

Fig. 16: Configuration problem of the leader election protocol

P0 P1 P2

I0 I1 I2 I3

(a) A ring example

P0 P1 P2

I0 I1 I2 I3

(b) A ring non-symmetric to the one in Fig. 17a

P0 P1 P2

I0 I1 I2 I3

(c) A ring symmetric to the one in Fig. 17a

Fig. 17: Alternative ring examples for immutable portion of the problem in Fig. 3

process so that in the next invocation a different binding is returned. In practice a problem is
updated in-place, but to ease the presentation we abstract this procedure as a pure function

solveRL : Kodkod→ Kodkod×binding ,

that, besides a binding solution to the current problem, also returns a novel problem where
that binding is excluded from the search space. This can be achieved by mapping a binding
back to a formula that exactly characterizes it (i.e., that holds only for that binding) and force
its negation in the constraint φ of the problem.

Besides that concrete instance, other instances considered isomorphic (equivalent) should
also be removed from the search space. Formally, since atoms are uninterpreted, a permuta-
tion P : A → A is a symmetry of a Kodkod problem A D φ if for all bindings s, s |= D
and s |= φ iff P(s) |= D and P(s) |= φ under A , where P(s) denotes the application of P to
every atom in every tuple of every relation bound in s. Two instances s and s′ of a problem

Pardinus: A temporal relational model finder 19

are considered isomorphic if there exists a symmetry P such that s′ = P(s). Recall the model
finding problem defined in Fig. 3. If we restrict it to the (immutable) configuration specifica-
tion we obtain a pure Kodkod problem, as depicted in Fig. 16. A possible binding returned
by solveRL for that problem is depicted as a graph in Fig. 17a. Atoms in Process appear in
boxes, atoms in Id appear in circles, and the binary relations succ, next, and id are shown
as edges, with the latter being dashed. One symmetry of this problem is the permutation that
preserves identifier atoms and permutes process atoms as P2 7→ P1,P1 7→ P0,P0 7→ P2. This
renders the solution depicted in Fig. 17c isomorphic to the one in Fig. 17a.

To understand how a formula that excludes the set of isomorphic instances can be de-
fined, consider the instance in Fig. 17a as an example. It could be mapped to a formula
defining what are the values of all the free relations in the problem, such as

some p0,p1,p2,p3,i0,i1,i2,i3 : univ |
univ = p0 + p1 + p2 + p3 + i0 + i1 + i2 + i3 and
Id = i0 + i1 + i2 + i3 and
next = i0 → i1 + i1 → i2 + i2 → i3 and
Process = p0 + p1 + p2 and
id = p0 → i2 + p1 → i1 + p2 → i3 and
succ = p0 → p1 + p1 → p2 + p2 → p3 .

By defining the value of univ, this formula ensures that the existentially quantified variables
denote all the 8 different atoms of the problem’s universe. Since quantified variables may be
assigned any atom combination for which the formula holds, it also holds for all isomorphic
ones, like the one in Fig. 17c.

We will assume the existence of a function ⟪·⟫ : binding→ form that, given a solution,
returns a relational logic formula that restricts the values of relations to those of the solution.
Free variables are created for each atom occurring in the binding, resulting in formulas
such as the one inside the quantifier in the example just presented. Another parametrized
function ⟪·⟫A : binding→ form then existentially quantifies those variables over univ,
resulting in a formula such as the one above, that exactly describes all instances isomorphic
to the solution. For an input problem A D φ and a generated binding s, the new problem
calculated by solveRL can be now described as A D (φ and not ⟪s⟫A).

The model finding procedure of Kodkod reduces the problem to a propositional logic
satisfiability problem, enabling the use of any off-the-shelf SAT solver [53]. Each relation r
of arity a is first encoded as a matrix with a dimensions, with each entry denoting a possible
tuple t in the relation: the entry for t is set to false if t is not allowed by the upper-bound, to
true if t is required by the lower-bound, or otherwise contains a Boolean variable rt whose
value is to be determined by the SAT solver. Then the relational algebra operators are com-
puted as matrix operations (for example, using matrix multiplication for composition), until
atomic formulas are reached and expanded to Boolean formulas (for example, inclusion
tests are expanded to a conjunction of point-wise implications between the two computed
matrices). Finally, the Boolean connectives are applied, universal quantifiers are unrolled to
conjunctions, and existential quantifiers are skolemized when possible or unrolled to dis-
junctions. The whole process is highly optimised by resorting to special data-structures to
represent the (usually quite sparse) matrices and quantifier-free Boolean formulas.

For efficiency reasons, iteration in Kodkod is also implemented directly at the propo-
sitional logic level, taking advantage of incremental SAT solving. This means that, in fact,
solveRL is not stateless but keeps a SAT solver alive between executions (which we ab-
stract in our representation of Kodkod problems). To obtain the next solution Kodkod just
adds a new clause to the SAT problem asking for a different valuation of at least one of the
Boolean variables. For example, the clause added to obtain the next solution after the one of

20 Nuno Macedo et al.

Fig. 17a, where id was assigned {(P0,I2),(P1,I1),(P2,I3)}, would include conjunct

id(P0,I0) ∨id(P0,I1) ∨¬id(P0,I2) ∨id(P0,I3) ∨id(P1,I0) ∨¬id(P1,I1) ∨id(P1,I2) ∨id(P1,I3)
∨

id(P2,I0) ∨id(P2,I1) ∨id(P2,I2) ∨¬id(P2,I3) ∨id(P3,I0) ∨id(P3,I1) ∨id(P3,I2) ∨id(P3,I3) .

This procedure removes from the search space the instance from Fig. 17a but not other iso-
morphic solutions. To that purpose, Kodkod introduces in the SAT problem a symmetry
breaking clause [53], which has also proved to improve the efficiency of the analysis by re-
ducing the search space. A symmetry detector (which here will be abstracted as a procedure
SD) tries to finds all permutations that are symmetries of a problem by processing only the
bounds of declarations D . For efficiency reasons, this detector only attempts to find a poly-
nomially computable subset of all possible symmetries, but for most problems it detects all
of them. For each symmetry detected by SD, a procedure SP creates a lexicographic leader
symmetry breaking predicate [15] that given an order on Boolean variables, guarantees that
only the lexicographically smallest solution is allowed. For the relational context this can be
simplified by comparing the variables representing the presence of tuples containing the per-
muted atoms [49]. The order on relations determines which relations preserve their values
when symmetry is broken, and in Kodkod lower arity relations are given priority.

For instance, consider a problem with a pair of relations a :1 {} {(A0),(A1)} and
r :2 {} {(A0,A0),(A0,A1),(A1,A0),(A1,A1)}. A0 and A1 would be identified as sym-
metric by SD and a permutation P = A0 7→ A1 returned. Let a Boolean variable rt determine
the presence of tuple t in relation r. Then SP generates the symmetry breaking predicate

[a(A0),r(A0,A0),r(A0,A1)]≤ [a(A1),r(A1,A1),r(A1,A0)] ,

meaning that, for instance, a = {(A1)} and r = {(A1,A1)} could be returned, but not
a = {(A0)} and r = {(A0,A0)}which is isomorphic. When iterating, bindings a = {(A1)}
and r = {(A0,A0)} and a = {(A0)} and r = {(A1,A1)} are possible new solutions but
are isomorphic with each other. Due to the order on relations in the symmetry breaking
predicate, the former would be selected, preserving the value of a. This predicate is easily
implemented at the propositional level as follows.

a(A0)→ a(A1) ∧
(a(A0) = a(A0))→ (r(A0,A0)→ r(A1,A1)) ∧

(a(A0) = a(A0)∧r(A0,A0) = r(A1,A1))→ (r(A0,A1)→ r(A1,A0))

4.2 Pardinus path iteration

Having a similar approach to iteration in Pardinus (i.e., return any different path) would
often fail to incorporate the users expectations when exploring alternative paths. In our ex-
perience, scenario exploration is often performed in distinct stages. For instance, the user
may first explore different configurations, each framing the context over which the path
can evolve, and then explore alternative paths for a selected configuration, trying to find an
interesting evolution scenario. In this section (and the next), we show how to specify (and
implement) in Pardinus two concrete iteration operations that support different kinds of sce-
nario exploration. Other operations could be implemented following a similar approach6.

6 For instance, Pardinus also implements an operation to change a segment of a path, which is used by
the Alloy 6 Analyzer to change the initial state and for forking paths.

Pardinus: A temporal relational model finder 21

Unlike Kodkod, the constraints introduced in each iteration step will not always be
cumulative: for instance, when iterating over alternative paths a fixed configuration is en-
forced, which must be reset when an alternative configuration is requested. Thus, we extend
Pardinus problems as A D φ | ψ , where a distinguished formula ψ represents a temporary
constraint that characterises the current configuration. As in Kodkod, although in practice
a Pardinus problem is updated in-place, we abstract this process by pure functions with
type Pardinus→ Pardinus×path that, besides the solution path, also return an updated
problem. Abusing notation, the specification of the iteration operations will rely on a func-
tion ⟪·⟫ : path→ form (defined shortly) that maps a given path solution π to a tempo-
ral formula that restricts the values of the declared relations, and a parametrized function
⟪·⟫A : path→ form that then quantifies over univ and returns a formula that characterizes
all solutions isomorphic to the given path. The notion of isomorphic path is also defined
by extending the notion of isomorphic binding. Formally, a permutation P on atoms is said
to be a symmetry of a Pardinus problem A D φ if for all paths π , π |= D and π |= φ iff
P(π) |=D and P(π) |= φ , where P(π) applies the permutation to all bindings πi for all i≥ 0.
Two paths π and π ′ are isomorphic if there exists a symmetry P such that π ′ = P(π).

The first operation, solveTRLC, allows iteration at the configuration level, forcing changes
in the immutable relations and allowing the remaining relations to adapt freely to the new
configuration. The behaviour of this operation can be formalized as

solveTRLC(A D φ | ψ) = (A D φ ′ | ψ ′,π)
where π = solveTRL(A D (φ and not ψ))

φ ′ = φ and not ψ and not ⟪π⟫A

ψ ′ = ⟪π|S⟫A ,

where π|S retrieves the configuration from a path π – i.e., a binding for immutable relations.
The new solution π is calculated with the negation of the temporary restriction ψ , which
encodes the previous configuration being explored, thus removing it from the state space.
The permanent constraint is also updated with this information so that this configuration is
not visited again. Lastly, the temporary constraint is reset to fix only the newly generated
configuration, and the permanent constraint updated to exclude the new path. This opera-
tion is assumed to be the first in any iteration session, so that the temporary constraint is
properly initialized with the configuration of the first found solution (initially the temporary
restriction is ⊥, which will enable any configuration to be generated).

The second operation, solveTRLP, keeps the current configuration but forces a change
in the path, and is specified by equation

solveTRLP(A D φ | ψ) = (A D φ ′ | ψ ′,π)
where π = solveTRL(A D (φ and ψ))

φ ′ = φ and not ⟪π⟫A

ψ ′ = ψ .

Here, to calculate the new solution π the temporary constraint is considered positively so that
the current configuration is kept. The permanent constraint – where all previously seen paths
are already excluded – is updated with the negation of the new path, while the temporary
constraint is preserved, fixing the same configuration.

It remains to formalize function ⟪·⟫, which must take into consideration the notion of
isomorphic instances defined above. Besides atom permutations as in Kodkod, here we
must also forbid solutions that represent the same path, either by having a different number

22 Nuno Macedo et al.

{}
{}

(a) A possible (0,0)-loop path returned by an initial solveTRLC

{(A)}
{(A)}

{(A)}
{}

(b) A possible (1,0)-loop path returned by solveTRLC on Fig. 18a

{(A)}
{}

{(A)}
{(A)}

(c) A possible (1,0)-loop path returned by solveTRLP on Fig. 18b

{(A)}
{}

{(A)}
{}

{(A)}
{(A)}

(d) A possible (2,1)-loop path returned by solveTRLP on Fig. 18b

{(A)}
{}

{(A)}
{(A)}

{(A)}
{}

(e) A (2,1)-loop path symmetric to Fig. 18c, not returned by solveTRLP

{(A)}
{}

{(A)}
{(A)}

{(A)}
{}

{(A)}
{(A)}

(f) Two 3-loop paths symmetric to Fig. 18c, not returned by solveTRLP

Fig. 18: An iteration session example

of unrollings of the looping segment, or that loop back to a different state, but that actually
represent the same looping behaviour. For a (k, l)-loop path π , ⟪π⟫ can be defined as

⟪π⟫=
∧

0≤i≤k

afteri ⟪πi⟫ and

afterl always
∧

l≤i≤k

(⟪πi⟫ implies afterk−l+1 ⟪πi⟫) ,

where afteri denotes the nesting of i after operators. The first component of this formula
fixes the prefix of the path, yielding a formula for each state π0, . . . ,πk with the appropriate
temporal offset. The second component addresses the looping segment πl , . . . ,πk, forcing
these states to repeat every k− l− 1 steps. This encoding can be simplified for relations
declared as immutable since their state does not change. In this case their restriction can be
moved to outside the temporal quantifications. The full formula ⟪π⟫A is then computed by
existentially quantifying over all atoms of A and fixing univ, as in the Kodkod case.

As an example, let us consider a very simple Pardinus problem with two relations
r :1 {} {(A)} and var s :1 {} {(A)} and constraint always s in r, a solution for
which is the (0,0)-loop depicted in Fig. 18a (relation r on the top and s on the bottom).
Applying solveTRLC and solving the resulting problem could result, for example, in the

Pardinus: A temporal relational model finder 23

path from Fig. 18b, where the configuration was forced to change due to the negation of
⟪π|S⟫{A}, which, considering some simplifications, is equivalent to

all A : univ |
univ != A or some r ,

a formula that forces the value of at least one of the immutable relations, in this case univ
and r, to be different than in Fig. 18a. Since univ cannot change, r will be forced to change.

Searching for alternative paths on the new configuration using solveTRLP would fix the
value of the immutable relations and force a path change with the negatation of ⟪π⟫{A}, a
formula equivalent to

some A : univ |
univ = A and r = A

all A : univ |
univ != A or r != A or
s != A or (after some s) or
eventually ((s = A and after after s != A) or

(no s and after after some s))

which forces either the valuations of s in the prefix or the looping behaviour to change from
that of Fig. 18b, while preserving the value of the immutable relations. Solving the new
extended problem could result in paths such as those in Figs. 18c and 18d. If we repeat the
process for the path in Fig. 18c, the formula generated by ⟪π⟫{A} would hold not only for
that (1,0)-loop, but also for any other (k, l)-loop encoding the same infinite path, such as, for
example, the (2,1)-loop in Fig. 18e or the (3,0)- and (3,2)-loops in Fig. 18f. Thus, adding
its negation to a problem guarantees that the next solution is not one of those. Note that when
alternating between these operations solutions are no longer guaranteed to be returned with
increasing prefix length, since calling solveTRLC after calls to solveTRLP may find a new
configuration for which there are shorter paths. Moreover, if solveTRLC is only called after
exhausting all calls to solveTRLP, the process is complete, iterating over all valid solutions.

Some of these operations can be efficiently implemented by exploiting the incremental
features of solvers, as will be presented in the next section. Iteration with non-incremental
solvers (such as SMV model checkers) or ones whose semantics always requires backtrack-
ing (such as those from [6]) can always be implemented by restarting the solver, but this will
lead to poor efficiency in iteration and are thus outside the scope of this paper.

4.3 Pardinus SAT iteration

Similarly to Kodkod, the iteration operations are implemented directly at the propositional
logic level in Pardinus’ SAT backend: a SAT solver is kept alive between enumeration steps
so that incremental solving capabilities can be exploited. However, since the constraints
introduced by iteration are not always cumulative we cannot rely uniquely on incremental
SAT solving – in particular, since solveTRLC discards temporary configuration constraints
ψ , its application following a solveTRLP step must restart the SAT solver. For solveTRLP
steps, and for consecutive solveTRLC steps, solving is always performed incrementally.

The solving procedure is iterative on the prefix length i, and thus at each step we may
need to exclude from the search space previously found (k, l)-loops with k ≤ i (notice that
within an iteration session the prefix length is never reduced). The key challenge is thus,
for any path π represented as a (k, l)-loop, to implement the translation of ⟪π⟫A formulas
into propositional logic under arbitrary i ≥ k prefix lengths, particularly when addressing

24 Nuno Macedo et al.

looping behaviour. A particular (k, l)-loop is fully described at the SAT level by the value of
the Boolean variables that define the free relations (one set of variables for the immutable
relations and k+ 1 sets for the mutable ones), plus Boolean variables defining the value of
the loop relation (to simplify the presentation let us assume that no past operators occur
in the problem, and thus loops need not be unrolled). For instance, for our trivial problem
r :1 {} {(A)} and var s :1 {} {(A)} with k = 2, we create a single variable r(A), de-
noting whether A belongs to the configuration, 3 variables s(A),i, denoting whether A belongs
to s in each state, and 3 variables loopi for the loop relation.

Iterating over a (k, l)-loop with solveTRLC relies on not ⟪π|S⟫A formulas to remove
the valuation of immutable relations. For this, it suffices to require a different value for at
least one of the variables corresponding to immutable relations. For instance, for the (0,0)-
loop from Fig. 18a, not ⟪π|S⟫A for any i prefix length would be encoded simply as formula
r(A), forcing the value of the configuration to change by adding A to relation r.

Iterating over a (k, l)-loop with solveTRLP for a prefix length i requires fixing a config-
uration with ⟪π|S⟫A and removing the previous infinite looping behaviour with not ⟪π⟫A .
The former is straightforward by fixing the Boolean variables that represent the immutable
relations. For the latter we must either force a change of the value of prefix states or a
change in the looping behaviour. To impose a change on the relations in the prefix, it suf-
fices to negate the valuation of the Boolean variables corresponding to the declared relations
for segment π0 . . .πi, possibly unrolling the looping states from the (k, l)-loop if i > k. To
change the looping behaviour, all identical loops that might have arisen from unrolling the
(k, l)-loop up to i must be removed from the search space. These are any states j after the
non-looping prefix, i.e., j≥ l, whose distance from the last state i is a multiple of the looping
segment length k− l+1, i.e., (i− j+1) mod (k− l+1) = 0. Due to the path formalization
at least one looping state must exist (Fig. 10), so it suffices to add a constraint stating that at
least one of the Boolean variables representing the non-identical loops must be true.

Getting back to our example and the (1,0)-loop from Fig. 18c, whose looping segment
has size 2, the following conjunct would be added under i = 1

r(A)∧ (s(A),0∨¬s(A),1∨loop1) ,

that is, i) fix the valuation of the configuration (A must belong to r) and either change ii)
the value of the mutable relations (either add A to s in state 0 or remove it from state 1) or
iii) the looping behaviour (state 0 is excluded as a valid loop). With i = 2 a state would be
unrolled, but still only state 1 excluded as an acceptable looping state, since this is the single
looping segment with size multiple of 2 that fits i = 2, resulting in formula

r(A)∧ (s(A),0∨¬s(A),1∨s(A),2∨loop0∨loop2) ,

excluding the solution from Fig. 18e, as expected. Under i = 3 there are now two looping
states with size multiple of 2 that represent the same path, states 0 and 2, resulting in formula

r(A)∧ (s(A),0∨¬s(A),1∨s(A),2∨¬s(A),3∨loop1∨loop3)

which excludes both paths from Fig. 18f, as expected.
This process removes all representations of a path π resulting from the unrolling of the

provided (k, l)-loop, but one may wonder whether there are alternative (k, l′)-loops for π that
may not be removed by this translation (note that to be efficient, this process is performed
without inspecting the concrete states, considering only the k and l values). For instance,
consider the path depicted in Fig. 19. Changing the looping state to 0 would actually rep-
resent the same path, and our SAT encoding would not exclude it from the search space.

Pardinus: A temporal relational model finder 25

{}
{}

{}
{}

Fig. 19: A non-canonical (1,0)-loop path

{(A0),(A1)}
{(A1)}

{(A1)}
{}

(a) A 2-loop path

{(A0),(A1)}
{(A0)}

{(A0)}
{}

(b) A solution symmetric to Fig. 20a, excluded

{(A0),(A1)}
{(A1)}

{(A0)}
{}

(c) A solution non-symmetric to Fig. 20a, returned

{(A0),(A1)}
{(A0)}

{(A1)}
{}

(d) A solution symmetric to Fig. 20c, excluded

Fig. 20: Symmetric paths for var a = {} {(A0),(A1)} and var b = {} {(A0),(A1)}

However, our solving procedure naturally guarantees that such non-canonical paths – in the
sense that changing the looping state l results in the same path – are never returned in the
first place. Due to the iterative nature on k of the solving process, we are guaranteed to pre-
viously have seen the (k, l)-loop representation of a path π with a minimal k – for Fig. 19,
it would have been the one in Fig. 18a – and it can be shown that in that case no alterna-
tive looping states l would represent the same path. If a path with prefix length k can be
described by two looping segments of different sizes l1 and l2, then it is guaranteed that that
same path had been found before for a smaller k with a looping segment of size gcd(l1, l2),
a result that easily follows from Bézout’s lemma. In fact, while iterating with i = k (i.e.,
before exhausting the solution space at prefix length i and having to increase it) there is no
need to check additional unrollings and we can simply negate the loopl Boolean variable.

Lastly, the symmetry breaking mechanism of Kodkod must also be adapted to the tem-
poral context of Pardinus. Let us consider another concrete example, a problem with two
mutable relations declared, var a :1 {} {(A0),(A1)} and var b :1 {} {(A0),(A1)}
for which SD will return P = A0 7→ A1. Let a Boolean variable rt,s determine the presence of

26 Nuno Macedo et al.

tuple t in relation r at state s. Symmetry breaking in traces should act state-wise, meaning
that an atom is symmetric to another if it has been so in all preceding states, and stops being
so once a relation in a state breaks that symmetry. This could be achieved by adapting SP to
generate a symmetry breaking propositional formula such as the following for the example

[a(A0),0,b(A0),0,a(A0),1,b(A0),1]≤ [a(A1),0,b(A1),0,a(A1),1,b(A1),1] .

If there were immutable relations in the problem, they would be given the higher priority
when ordering the relations, since immutable relations establish the configuration on which
behaviours will act. A possible solution is depicted in Fig. 20a, with the value of a in the top
and b in the bottom. The solution depicted in Fig. 20b is isomorphic to this one and would
be excluded from the search space. Solutions from Fig. 20c and Fig. 20d are isomorphic to
each other, but not isomorphic to Fig. 20a, so when iterating after this path only one of them
will be returned. With the symmetry breaking predicate defined above, Fig. 20c is selected,
prioritizing changes as late as possible in the trace, and thus not requiring the user to fully
reinterpret the new trace starting from the initial state.

It should be noticed that such predicate does not need to take into consideration loops.
For a prefix length k, after state k the path inevitably loops back into a previous state. Thus,
if the symmetry was preserved in all states up to k, it will continue to be preserved once path
loops back to a previous state without any additional constraint.

5 Parallel decomposed analysis

Configurations, determined by the immutable relations, are initially arbitrary, but remain
constant as the system evolves. This enables a decomposed analysis of Pardinus problems
that first solves for configurations and afterwards, for each configuration, solves for possible
behaviours. Depending on the analysis and number of configurations, this decomposition
can yield substantial performance benefits. Such decomposed analysis is also amenable for
parallelisation using commodity hardware, since different configurations can be solved in-
dependently in different cores. Moreover, since commonly the values of mutable relations
depend on those of immutable ones, if these dependencies were explicit, the configurations
could be used as partial instances for the succeeding stage, further speeding up analysis. For
that purpose, Pardinus allows users to declare symbolic bounds for mutable relations, so that
dependencies on the immutable relations can be made explicit. This strategy was initially
proposed by us [33] for Kodkod; here we extend it to the temporal context, providing an
automatic decomposition criterion on the immutable/mutable relations of the problem. This
criterion has two main advantages: it enables the deployment of the best-suited solvers for
each stage – Kodkod for the configuration and alternative temporal backends for the remain-
ing – and is compatible with the iteration operations proposed in the previous section.

Symbolic bounds are essentially non-temporal relational expressions where only im-
mutable relations can appear as free variables. Thus, arbitrary expressions without primed
expressions and relations by comprehension can be used in symbolic bounds7. Symbolic
bounds could be introduced in our running example from Fig. 3 to impose the type of muta-
ble relations outbox and Elected, by replacing their declaration with

var outbox :2 {} {Process → Id}
var Elected :1 {} {Process} .

7 Although omitted for simplicity, bounding expressions may also refer to concrete atoms as regular con-
stant bounds. These are ignored during symmetry breaking.

Pardinus: A temporal relational model finder 27

symbolic

Kodkod binding ⊕ symbolic Pardinus

Kodkod binding ⊕ symbolic Pardinus

path

...

config

solveRL resolve

solveTRLC

config

solveRL resolve

solveTRLC

solveTRLD

Fig. 21: Complete model finding with the decomposed strategy

Input: A Pardinus problem A D φ .
Output: A new solution or ⊥
A D ′ ρ ← config(A D φ);
π ←⊥;
repeat

(A D ′ ρ,s)← solveRL(A D ′ ρ);
if s 6=⊥ then

A D φ ←A D (φ ⊕ s);
π ← solveTRL(resolve(A D φ));

until π 6=⊥∨ s =⊥;
return π;

Algorithm 1: Abstract solveTRLD sequential procedure

Likewise constant bounds, symbolic bounds allow users to provide additional partial knowl-
edge about a problem in order to further improve the performance of the solving procedures.

Figure 21 presents an overview of the decomposed analysis procedure for complete
model finding, which we denote by solveTRLD (the bounded version solveTRLn

D is ob-
tained by just replacing the calls to solveTRL for solveTRLn). It relies on three new proce-
dures: config, that extracts the configuration specification of a Pardinus problem; ⊕, that
integrates a binding in a Pardinus problem by restricting the original bounds; and resolve,
that resolves the symbolic bounds with constant tuple sets. Algorithm 1 presents an abstract
view of this solving process.

The first step is to extract the configuration problem of a Pardinus problem with sym-
bolic bounds using config, which will include the declarations of immutable relations and
the top level conjuncts of the formula that do not refer mutable relations (nor contain tem-
poral operators). This results in a normal Kodkod problem that can be solved by solveRL.
Solving the configuration problem will yield a binding s that assigns a concrete value to all
immutable relations. Procedure ⊕ will then integrate this binding into the original problem,
that is, replace the lower- and upper-bounds of each immutable relation r by s(r) (and also
remove the top-level conjuncts that were extracted by config). The result of this step is a
new Pardinus problem with symbolic bounds that specifies the behaviour of a system for
one concrete configuration. In the last step, the symbolic bounds of the integrated prob-
lem are resolved, so that it can be analysed with any of the Pardinus engines (complete or
bounded) described in Section 3. To resolve symbolic bounds one essentially replaces every
declaration in the problem by one where the symbolic lower- and upper-bounds are replaced

28 Nuno Macedo et al.

1 {I0 ,I1 ,I2,I3,P0,P1,P2,P3}
2

3 Id :1 {(I0),(I1),(I2),(I3)} {(I0),(I1),(I2),(I3)}
4 next :2 {(I0 ,I1),(I1 ,I2),(I2 ,I3)} {(I0 ,I1),(I1 ,I2),(I2 ,I3)}
5 Process :1 {(P0),(P1),(P2)} {(P0),(P1),(P2)}
6 id :2 {(P0 ,I2),(P1 ,I1),(P2 ,I3)} {(P0 ,I2),(P1 ,I1),(P2 ,I3)}
7 succ :2 {(P0 ,P1),(P1 ,P2),(P2 ,P0)} {(P0 ,P1),(P1 ,P2),(P2 ,P0)}
8 var outbox :2 {} {(P0 ,I0),(P0 ,I1),(P0 ,I2),(P0 ,I3),. . .,
9 (P2 ,I0),(P2,I1),(P2,I2),(P2,I3)}

10 var Elected :1 {} {(P0),(P1),(P2)}
11

12 outbox = id and
13 always some p : Process , i : (succ � p) � outbox | outbox ’ =
14 outbox − succ � p → i + p → (i − ^next � (p � id)) and
15

16 always Elected = {p : Process | once (p � id in p � outbox and
17 before not (p � id in p � outbox))}

Fig. 22: Result of integrating and resolving the configuration of Fig. 17a

by their constant lower- and upper-bounds. These can be computed using the T·Uσ and V·Wσ
operations (presented in Section 3.2) with an empty context σ , that is

resolve(r:a c c) = r:a c c
resolve(var r:a Γ ∆) = var r:a TΓU /0 V∆W /0

We assume that this procedure is only called once the static portion has been solved, and
immutable relations already have exact bounds assigned. Notice that this process is efficient
as it simply evaluates symbolic expressions that ultimately depend on constant expressions.
This typically results on tighter bounds for the mutable relations. Note that not all configu-
rations may be extended into a full path solution, so this process may explore several con-
figurations before returning a solution (or exhausting the configurations). A consequence of
this process is that solutions are no longer guaranteed to have minimal prefix length, since
each independently analysed configuration may have minimal paths of different length.

The configuration problem extracted from our running example is similar to the im-
mutable portion already presented in Fig. 16. Let us assume that the configuration of Fig. 17a
is returned when solving this problem. Then result of integrating it in the Pardinus prob-
lem with symbolic bounds and resolving is shown in Fig. 22. Notice that relations outbox
and Elected now have smaller upper-bounds, resulting from the resolution of its symbolic
bounds for the concrete configuration.

Although the presented algorithm is sequential, in practice these integrated problems are
analysed in parallel, according to a (configurable) limit imposed on the number of analysis
threads running concurrently, since the number of configurations can be quite high. Once
one of these threads returns a satisfying path, it is pushed into a blocking queue that the user
can inspect. Other integrated problems keep being analysed and launched in the background
until the blocking queue fills up, providing a buffer of full solutions. However, this proce-
dure can perform poorly if there is an overwhelming number of configurations that needs to
be explored before finding one that has a solution (or the problem is unsatisfiable, a result
that requires the analysis of all configurations). In such situations, the analysis of the orig-
inal Pardinus problem, where all configurations are amalgamated and explored in a single
solver run, can be more efficient. To address this issue, Pardinus supports a hybrid analysis

Pardinus: A temporal relational model finder 29

strategy, where the parallel decomposed analysis is run concurrently with a thread solving
the full amalgamated problem. This strategy resembles portfolio parallel SAT solving [23],
where identical solvers with different parameters competitively solve the same problem.
Note that it is not the case that the hybrid approach will, in the worst case, run at least as
fast as the sequential (isolated) analysis of the original, since it is expected to have slightly
deteriorated performance due to cache interference.

As in the amalgamated procedures, to support iteration an updated problem is also re-
turned by solveTRLD. In the decomposed context this will include both the state of the
configuration problem – encoding which configurations have been explored – and the cur-
rent integrated problem prior to bound resolution – encoding the current configuration and
whose behaviours have been explored. The iteration operations previously presented are
still available under the decomposed strategy and exploit this problem division. solveTRPC
discards the current integrated problem and searches for a new configuration that can be ex-
tended into a path solution; solveTRLP is directly applied to the current integrated problem
following the procedure presented in Section 4.3. As expected, in practice these procedures
act at the propositional logic level and take advantage of incremental SAT solving. However,
unlike the incremental implementations proposed in Section 4.3, solveTRPC can actually be
supported by SMV backends: the iteration of configurations is performed by Kodkod, which
are then integrated into the full problem and solved with plain solveTRL procedures.

The set of solutions returned by the decomposed strategy must be identical to the one
returned by amalgamated solving, thus symmetries must be calculated and applied accord-
ingly. However, there are some issues that must be addressed in this scenario. First, since
configurations are solved before behaviours, the order of relations considered in the symme-
try breaking predicate must respect this; luckily, this is consistent with the order imposed in
Section 4.3 for amalgamated analysis. Second, the declarations of the mutable relations may
break symmetries which may affect the configuration problem; thus, procedure SD of the
configuration problem must consider all relation declarations rather than just the immutable
ones. Lastly, the integrated problems must consider the symmetries broken by the concrete
configuration under analysis; since configurations are integrated by fixing the lower- and
upper-bounds of the immutable relations, these will be naturally detected by SD.

6 Evaluation

To be useful, the proposed solving and iteration procedures must scale with the size of the
problem and the maximum prefix length. This section discusses their performance for a set
of example problems, aiming to answer the following research questions.

RQ1 How does bounded temporal model finding with past scale?
RQ2 How does complete temporal model finding with past scale?
RQ3 What are the gains of the decomposed strategies?
RQ4 How do the bounded iteration operations scale?

We considered 6 Pardinus problems with varying size m for this analysis, with satisfi-
able and unsatisfiable variants:

Leader the ring leader election protocol, being used as a running example; m denotes the
number of identifiers and nodes; there are four variants, one satisfiable searching for
a scenario (Scenario), one unsatisfiable checking the safety property (Safety), one
satisfiable checking the liveness property in the bugged version (LivenessBug), and
one unsatisfiable checking the liveness property after fixing the model (LivenessFix);

30 Nuno Macedo et al.

n maximum trace length
m model size
#T total number of configurations
#S total number of configurations

expandable into a valid path
#C number of iterated configura-

tions, up to 100
#P number of iterated paths for the

1st configuration, up to 100

AG time for amalgamated analysis with Glucose
AX time for amalgamated analysis with bounded nuXmv
AC time for amalgamated analysis with complete nuXmv
PG time for parallel analysis with Glucose
PX time for parallel analysis with bounded nuXmv
PC time for parallel analysis with complete nuXmv
HG time for hybrid analysis with Glucose
HX time for hybrid analysis with bounded nuXmv
HC time for hybrid analysis with complete nuXmv
C#S time to iterate all configurations
C100 time to iterate the first 100 configurations
P100 time to iterate the first 100 paths of the 1st configuration

All times in milliseconds. An italic hybrid result means the integrated problems finished first.

Fig. 23: Key for the benchmark results

Hotel the hotel room locking system used in [25] and packaged with the Alloy Analyzer;
in a problem with size m there are at most m guests and rooms and exactly m+ 1 keys
available; the two variants check a safety property, one satisfiable that finds a counter-
example (Intervenes) and another unsatisfiable where the property holds (NoIntervenes);

Mutex specifies Dijkstra’s mutex ordering criterion, also packaged with the Alloy Analyzer;
the model size m denotes the maximum number of processes and mutexes available; one
version is satisfiable and searches for a scenario (Show), and the other checks a safety
property that holds for the protocol (Deadlocks).

Paxos an abstract version of the Paxos consensus algorithms; in a model with size m there
are at most m acceptors and m/2 quorums and ballots; there is a single unsatisfiable
safety property that checks whether there is always a consensus (Consensus);

Echo a version of the Echo algorithm to form a spanning trees in a network; model size
m determines the maximum number of nodes in the graph; one version checks a safety
property (SpanTree) and another a liveness property (Finish), both unsatisfiable;

SelfStable Dijkstra’s self-stabilizing algorithm; model size m determines the maximum
number of nodes in the network; two versions check a safety property, one satisfiable
which exhibits a bug (BugStable) and another unsatisfiable where the bug is fixed
(StaysStable), and an unsatisfiable version that checks liveness (WillStable).

To evaluate solving, commands were executed with different solvers, solving strategies,
model sizes and maximum prefix lengths. To evaluate the SAT-based implementation of the
iteration operations, the amalgamated and parallel strategies were used (in hybrid mode, it-
eration mode depends on whether the amalgamated or the integrated problems finishes first).
For solveTRPC we iterated over all configurations (resulting in as many executions, since
the first configuration is returned by the solving procedure, but an additional operation must
be performed to identify that there are no more configurations available). For solveTRPP we
executed up to 100 operations to the first solution returned. The key for the results is shown
in Fig. 23. All tests were run in a 2.3 GHz Intel Core i5 with 16 GB RAM using the latest
version of Pardinus, version 1.2, using in the backend MiniSAT 2.2, Glucose 2.1, NuSMV
2.6 and nuXmv 2.0. The timeout was set to 1000s8. Table 1 presents an excerpt of the results
for solving, detailed in Figs. 24 and 25 for the Leader problem, for increasing model size
and maximum prefix length, respectively. Table 2 depicts an excerpt of the results for itera-
tion over the satisfiable problems, detailed in Figs. 26 and 27 for the Intervenes problem,

8 The complete results are available online at https://bit.ly/2YF6hWL, and scripts to reproduce the
results available at the Pardinus repository.

https://bit.ly/2YF6hWL

Pardinus: A temporal relational model finder 31

problem n m #T #S AG AX AC PG PX PC HG HX HC

Scenario 12 6 416 409 0.6 1.4 10.2 2.3 0.5 0.7 0.8 0.6 0.9
Scenario 12 7 2373 1645 1.2 3.4 19.6 2.3 0.5 0.9 1.8 0.6 1.0
Scenario 12 8 16073 5264 1.5 6.7 45.0 3.8 0.6 0.9 2.5 0.6 0.9
Safety 12 5 90 0 7.3 2.3 9.3 47.6 8.7 9.5 10.0 2.6 10.9
Safety 12 6 416 0 17.2 5.5 49.0 305.2 50.2 77.0 22.9 6.4 56.9
Safety 12 7 2373 0 51.2 22.8 227.1 > 999 375.5 814.0 62.2 26.8 268.8

LivenessBug 12 6 416 6 0.2 1.3 7.8 0.2 0.3 0.4 0.2 0.3 0.4
LivenessBug 12 7 2373 7 0.2 2.7 13.0 0.2 0.4 0.4 0.2 0.3 0.5
LivenessBug 12 8 16073 8 0.2 5.4 24.4 0.2 0.4 0.4 0.2 0.3 0.5
LivenessFix 12 4 25 0 5.7 1.4 6.7 11.3 2.1 2.1 8.5 1.6 2.4
LivenessFix 12 5 90 0 23.4 5.1 264.9 56.7 10.7 11.6 31.0 6.1 14.9
LivenessFix 12 6 416 0 100.9 33.2 > 999 461.0 64.8 85.2 131.1 39.7 106.5
Intervenes 10 4 255 78 0.8 2.1 45.9 0.3 0.4 1.8 0.3 0.4 1.9
Intervenes 10 5 1212 508 4.0 7.9 387.6 0.3 0.4 2.5 0.3 0.5 2.7
Intervenes 10 6 6132 3225 6.5 29.5 > 999 0.3 0.5 3.6 0.3 0.6 3.7
NoIntervenes 10 2 12 0 0.5 0.6 1.9 0.9 0.8 1.4 0.7 0.7 1.7
NoIntervenes 10 3 56 0 2.5 6.5 57.2 4.9 7.2 19.6 4.0 8.2 72.7
NoIntervenes 10 4 255 0 55.3 473.6 > 999 30.1 84.7 437.4 38.9 131.2 > 999

Show 15 9 9 8 1.0 2.0 13.2 0.5 0.4 2.4 0.5 0.5 2.7
Show 15 10 10 9 1.3 2.9 16.5 0.5 0.5 2.7 0.5 0.5 3.0
Show 15 11 11 10 1.8 4.1 27.8 0.6 0.5 3.5 0.5 0.5 3.8

Deadlocks 15 9 9 0 5.2 2.3 6.2 8.8 3.2 11.8 9.2 3.1 8.3
Deadlocks 15 10 10 0 6.6 3.2 7.2 11.9 5.0 15.7 10.9 4.3 9.6
Deadlocks 15 11 11 0 8.8 4.6 9.8 15.7 7.4 20.8 13.8 5.8 12.7
StaysStable 12 4 20 0 19.0 9.6 3.5 10.1 2.8 0.9 10.5 2.9 1.1
StaysStable 12 5 42 0 128.6 632.7 > 999 76.6 36.7 2.8 88.4 42.7 4.0
StaysStable 12 6 90 0 665.0 > 999 > 999 537.2 336.3 11.8 676.2 435.4 21.6
BugStable 12 5 42 3 4.8 3.1 > 999 13.0 4.3 474.4 7.5 4.4 678.8
BugStable 12 6 90 6 9.0 10.5 > 999 19.2 5.9 > 999 13.8 9.6 > 999
BugStable 12 7 240 6 27.2 48.5 > 999 68.6 22.8 > 999 40.5 36.2 > 999
WillStable 12 4 14 0 3.2 2.2 47.0 3.1 1.0 10.1 3.7 1.2 10.4
WillStable 12 5 28 0 10.7 12.1 > 999 9.4 3.2 > 999 12.2 4.7 > 999
WillStable 12 6 61 0 31.5 85.7 > 999 37.2 13.2 > 999 40.5 18.4 > 999
SpanTree 16 3 4 0 8.0 2.9 2.1 5.7 2.0 1.3 6.4 2.3 1.4
SpanTree 16 4 15 0 116.0 83.6 17.1 89.8 38.3 19.5 114.8 49.5 20.9
SpanTree 16 5 73 0 > 999 > 999 219.5 > 999 > 999 433.6 > 999 > 999 269.3
Finish 16 3 4 0 13.2 3.4 3.7 12.6 2.9 2.8 13.9 3.2 3.3
Finish 16 4 15 0 101.3 118.2 > 999 130.5 97.8 > 999 157.8 115.4 > 999
Finish 16 5 73 0 474.0 > 999 > 999 > 999 > 999 > 999 725.2 > 999 > 999
Consensus 12 3 21 0 2.2 1.0 3.2 5.9 2.0 3.2 3.0 1.4 1.4
Consensus 12 4 40 0 2.8 1.6 4.5 13.8 4.3 9.4 4.1 2.5 2.5
Consensus 12 5 294 0 33.1 36.0 493.4 587.5 202.0 > 999 44.4 51.7 51.7

Table 1: Solving performance results for the selected Pardinus problems

which has a richer variety of counter-examples. The number of configurations and the num-
ber of such configurations that can be extended into a valid path solution (0 if unsatisfiable)
are shown to provide an idea of the complexity of each problem.

RQ1 Our experiments showed that Glucose consistently outperforms MiniSAT in non-
trivial problems (i.e., that take more than 1s to solve), so the presented results focus on
the former. For example, for n = 12, in unsatisfiable LivenessFix at m = 3 both Glucose
and MiniSAT take less than 2s, but by m = 6 MiniSAT already takes 200s while Glucose
only 101s. In the bounded context, NuSMV and nuXmv have similar performance (as ex-
pected, since they implement the same algorithm). For instance, for LivenessFix at n = 12
and m = 6, NuSMV takes 35s and nuXmv 33s, while for Safety for the same parameters
both around 6s. However, as we shall soon show, nuXmv largely outperforms NuSMV in
complete mode, so the bounded SMV results presented also focus on the former.

It is clear that for satisfiable problems both bounded backends can scale to considerable
model sizes, although in comparison the SMV backend seems to scale slighltly worse (e.g.,

32 Nuno Macedo et al.

(a) Scenario problem for the Leader example

(b) LivenessBug problem for the Leader example

(c) Safety problem for the Leader example

(d) LivenessFix problem for the Leader example

Fig. 24: Solving times for Leader variants, n = 12 and increasing model size m

Pardinus: A temporal relational model finder 33

(a) LivenessBug problem for the Leader example

(b) LivenessFix problem for the Leader example

Fig. 25: Solving times for Leader variants, m = 6 and increasing maximum trace length n

amalgamated parallel
problem n m #T #S AG C100 C#S #P P100 PG C100 C#S #P P100

Scenario 12 5 90 84 0.4 7.7 7.7 11 2.3 2.2 18.6 18.6 11 2.2
Scenario 12 6 416 409 0.6 9.0 34.9 11 3.0 2.3 31.8 236.5 11 2.1
Scenario 12 7 2373 1645 1.2 24.8 158.8 11 3.8 2.3 170.4 > 999 11 2.4
LivenessBug 12 5 90 5 0.2 21.2 21.2 1 2.4 0.2 53.7 53.7 1 2.2
LivenessBug 12 6 416 6 0.2 96.6 96.6 1 3.1 0.2 446.9 446.9 1 2.2
LivenessBug 12 7 2373 7 0.2 429.3 429.3 1 4.2 0.2 > 999 > 999 1 2.2
Intervenes 10 4 255 78 0.8 25.4 25.4 > 100 0.5 0.3 16.5 16.5 > 100 0.6
Intervenes 10 5 1212 508 4.0 2.5 786.0 > 100 1.0 0.3 45.0 120.5 > 100 0.5
Intervenes 10 6 6132 3225 6.5 2.2 > 999 > 100 1.1 0.3 53.7 > 999 > 100 0.5
Show 15 6 6 5 0.5 9.0 9.0 > 100 0.4 0.4 18.5 18.5 > 100 0.5
Show 15 7 7 6 0.7 109.6 109.6 > 100 0.4 0.4 185.3 185.3 > 100 0.5
Show 15 8 8 7 0.9 977.2 977.2 > 100 0.3 0.4 > 999 > 999 > 100 0.4

BugStable 12 5 42 3 4.8 9.4 9.4 > 100 0.7 13.0 3.4 3.4 > 100 0.5
BugStable 12 6 90 6 9.0 38.0 38.0 > 100 1.1 19.2 33.3 33.3 > 100 0.5
BugStable 12 7 240 6 27.2 183.1 183.1 > 100 1.5 68.6 178.7 178.7 > 100 0.2

Table 2: Iteration performance results for the selected Pardinus problems

LivenessBug and Intervenes). Notice also that for satisfiable problems, once a solution
is found increasing the prefix length does not affect performance, as expected from the it-
erative nature of the procedures (e.g., LivenessBug). Considering unsatisfiable problems,
scalability deteriorates with the model size, as expected. The SMV backend often outper-
forms the SAT one for smaller model sizes, but is eventually outperformed as m increases
(e.g., Safety), although for some examples the SAT backend outperforms the SMV one

34 Nuno Macedo et al.

(a) Amalgamated iteration

(b) Parallel iteration

Fig. 26: Iteration times for Intervenes, n = 10 and increasing model size m

even for small m values (e.g., NoIntervenes). No consistent pattern could be identified
for increasing n values: e.g., the SMV backend scales better in LivenessFix, Safety and
Deadlocks, but considerably worse in NoIntervenes and StaysStable.

RQ2 Our experiments showed nuXmv to almost always outperform NuSMV, so the pre-
sented data focuses on the former. For instance, for satisfiable Scenario and LivenessBug
NuSMV in complete mode times out at m = 4, while nuXmv only at m = 10, and for un-
satisfiable Safety and LivenessFix NuSMV times out at m = 5 and nuXmv at m = 8 and
m = 6, respectively. Recall that maximum length n is irrelevant in the complete context.

As expected, for small m values the scalability of the complete backend is worse than
that of the bounded ones. Like the SMV backend in bounded mode, the fact that the prob-
lem is satisfiable does not seem to greatly improve performance. Recall however that the
complete backend is most useful to verify desirable properties once the bounded proce-
dures have produced enough confidence, so they are expected to be run less often (and not
for knowingly satisfiable problems). Nonetheless, as the maximum prefix length n for the
bounded backends increases, the performance of the complete backend closes on that of the
bounded backends, occasionally actually outperforming them (e.g., SpanTree). Thus, when
searching for solutions with long prefixes, it may pay off to switch to a complete backend.

Pardinus: A temporal relational model finder 35

(a) Amalgamated iteration

(b) Parallel iteration

Fig. 27: Iteration times for Intervenes, m = 6 and increasing prefix length n

RQ3 For the decomposed strategies, Glucose was used for the static configuration prob-
lem. The problems were also solved without symbolic bounds to measure the impact of this
feature (not shown in the table). Results show that the gains improve with model size, partic-
ularly for satisfiable problems. For instance, for satisfiable Scenario for n = 12 and m = 12
symbolic bounds have gains of 1.8x for the SAT and 2.2x for the bounded SMV backends,
while for unsatisfiable NoIntervenes for n = 10 and m = 4 the gains are 1.1x for both.

The parallel strategy almost always improves performance considerably for non-trivial
satisfiable problems, particularly for the SMV backend whose amalgamated performance
scales worse for satisfiable problems (e.g., LivenessBug and Intervenes). The same ap-
plies for the complete SMV backend (e.g., LivenessBug). The parallel strategy performs
slightly worse only for Scenario with the SAT backend. The results of the parallel strategy
for unsatisfiable problems are not as consistent, with some problems having speedups (e.g.
NoIntervenes) and others significant slowdowns (e.g. LivenessFix). Again, the SMV
backends seem to benefit more from this strategy, almost always paying off with the com-
plete backend. It should be noted that the performance of this strategy depends on the order
in which the configurations are generated by the configuration problem and on how many
of those can be extended into a path solution. For instance, for the LivenessBug problem,
very few configurations exhibit the problem (those with a single node), but they seem to be
generated within the first 4 configurations. In Scenario there are several configurations that

36 Nuno Macedo et al.

can lead to an elected node, but as the size of the model increases, the n = 12 steps do not
suffice to elect a leader in some configurations, which results in a less regular performance.

The hybrid approach tames the negative outliers while still preserving the gains oth-
erwise. For satisfiable executions, all cases where the parallel execution outperformed the
amalgamated execution continue to do so in hybrid mode, although with a slight deteri-
oration of performance. The same applies to unsatisfiable problems, the exception being
NoIntervenes for the complete backend. For cases where the amalgamated approach out-
performed the parallel one, in hybrid mode the amalgamated process terminates before the
smaller integrated problems, with some deterioration of performance. Nonetheless, in all
problems, in comparison to the amalgamated analysis the hybrid analysis never slowed down
more than 0.5x and had speedups of up to 1317.6x.

RQ4 Both operations have shown to be feasible for interactive sessions with both strategies.
Performance does not seem to be completely dependent on the model size m, as evident from
the spikes in the graphs. For Show, solveTRPC has poorer scalability possibly due to the fact
that it has few alternative configurations (m−1), since performance in Ring is also worse for
LivenessBug than Scenario. solveTRPP seems to scale better in general for both strate-
gies. Considering increasing maximum lengths, solveTRPP seems to be little affected, being
in fact constant for Hotel and Mutex. In the case of solveTRPC, this scalability seems to
be affected by the number of configurations that can lead to complete path, showing the
worse performance for Scenario and Show. Comparing the strategies, for solveTRPC the
amalgamated mode consistently outperforms the parallel strategy, except for the occasional
spike (e.g., in Scenario). In contrast, solveTRPP in parallel mode almost always outper-
forms the amalgamated mode, which is expected since it is iterating over a less complex
problem (an integrated problem whose configuration has already been fixed). The exception
is Show, but running times for 100 paths are below 0.5s thus difference are not significant.
Note, however, that the time taken to initially solve the problem before iteration should also
be considered, and that the parallel approach for satisfiable problems often outperforms the
amalgamated one. Note, however, that the performance of solveTRPP (and even the num-
ber of solutions available) is dependent on the first configuration returned, which may not be
the same for amalgamated and parallel strategies, so no definitive conclusions can be drawn
from this experiment. Calling solveTRPC operations after solveTRPP ones, as explained in
Section 4.3, amounts essentially to solving a new problem as addressed in the previous RQs.

7 Related work

7.1 Model checking and model finding

Complete model checkers for temporal logics are currently robust and well-established tools,
widely used to verify safety properties. They are often divided in two categories, those
that explicitly represent the states of the system during analysis – such as SPIN [24] for
Promela models, TLC [28] for TLA+ models or ProB [29] for B models – and those that
represent states symbolically as a formula, often relying on off-the-shelf solvers – such as
NuSMV [9] or nuXmv [8] for SMV models. Bounded model checking has also been widely
researched, and model checkers such as NuSMV, nuXmv or ProB also support bounded
analyses. Unlike Pardinus, the traditional bounded semantics for temporal logic [3] is also
defined for witnesses without the back loop, representing finite prefixes of (infinite) execu-
tion paths. The main advantage is the possibility of returning shorter counter-examples to

Pardinus: A temporal relational model finder 37

safety properties (or instances of liveness properties). However, such semantics can be con-
fusing. At least three different semantics – weak, strong, neutral – have been proposed [20].
In the (most commonly adopted) strong version, on finite prefixes always φ never holds
and not after φ 6≡ after not φ because after φ is always false in the last known state.
This would rarely be useful in Pardinus anyway: problems almost always include at least
one always formula specifying the behaviour of the system, which rules out finite prefixes.
Lastly, the performance advantage of having shorter counter-examples can still be achieved
by allowing the traces to loop at any state through a stutter event.

Finite model finders for first-order logics have also been proposed, which, besides be-
ing used verification, are also commonly used for the generation of scenarios for valida-
tion. They are often categorized as either implementing specialized search procedures –
such as SEM [56] or Mace4 [34] – or being based on the compilation into off-the-shelf
solvers – such as Paradox [13] or Kodkod [53] (and Alloy, that uses Kodkod at its back-
end). However, support for model checking or model finding for first-order temporal logic
specifications is scarce. Performing behavioural analysis in such model finders is possible
but requires the explicit encoding of traces and temporal properties.

For Alloy specifically, [16] shows how to perform analysis of future-only LTL, and [55]
how to perform complete analysis of CTL if the scope for states covers all reachable states.
Besides being cumbersome and quickly becoming unmanageable, these approaches impair
the application of dedicated analysis procedures, and considerable research has been dedi-
cated to propose Alloy-like languages with native support for behavioural analysis [21,11,
37]. These approaches compromise the flexibility of the language, introducing syntactic ex-
tensions that force users to adhere to specific idioms. DynAlloy [21] resorts to dynamic logic
to specify behaviour, and liveness properties are not expressible. The technique by Near and
Jackson [37] enhances Alloy with imperative constructs, analysable through a translation
into regular Alloy. The one by Chang and Jackson [11] extends the relational logic of Alloy
with CTL temporal logic and proposes a dedicated model checker, but system actions must
be specified with a fixed imperative-flavoured idiom. Moreover, it disregards the rich struc-
tural properties introduced by the signature type system from regular Alloy. In DASH [48]
the system is modelled as a hierarchical state machine over which CTL properties can be
checked through a translation into Alloy. Electrum [30] was proposed by us to address these
issues. It is a conservative extension that provides support for LTL constraints while preserv-
ing the flexibility of the language. It was the analysis of Electrum models that motivated the
development of Pardinus, which is now used as the backend of its Analyzer.

In the context of model checking, as far as we are aware, TLC is the only one that
natively supports a first-order temporal logic, the Temporal Logic of Actions (TLA) [27] at
the core of TLA+. TLA popularised the idea of modelling the system under analysis using
a temporal logic formula with primed variables, instead of using a state-machine DSL as
is usual in model checking. However, TLC only supports the verification of a subset of
the temporal properties allowed in TLA that is less expressive than FOLTL. In particular,
to enable the verification of refinement, specifications in TLA are restricted to be stutter-
invariant: the temporal operator after is not supported and primes can only appear in so-
called action predicates, applied directly to variables and inside a special invariant temporal
operator that necessarily allows stuttering. Pardinus supports formulas that are not stutter-
invariant and primes can be applied to any expression, giving more freedom to the user
when specifying systems. Note also that, unlike in TLA, primes in Pardinus (and FOLTL in
general) do not add expressive power, as they can always be encoded with a combination of
quantification and after (although in a much more verbose manner). This is what enables
the translation to SMV described in Section 3.2. SMV also supports a prime operator, but

38 Nuno Macedo et al.

like in TLA it can only be applied to atomic variables and thus could not be used to directly
encode Pardinus’ prime. Still concerning TLC, it is worth noting that due to the explicit state
nature of its model checking procedure, adding rich first-order structural properties to the
system specification (e.g. constraining the initial state or the non-deterministic outcome of
an event) may also considerably hinder its performance [31]. The B-method also supports
first-order constraints but not temporal logic, so natively only invariants can be checked
by ProB. It has however been extended to support the verification of LTL properties [39]
but such properties are not integrated in the B specification language and must be defined
separately. Moreover, they cannot be used to restrict the model of the system under analysis.

7.2 Scenario exploration

Most model checkers provide an interactive simulation mode that allows users to explore
the state space by choosing transitions. However, these modes ignore temporal properties
that span the complete trace, and thus cannot be used to explore alternative witnesses or
counter-examples for a particular property. Some techniques have been proposed for the
iteration of traces satisfying a given temporal property, the simplest ones simply return-
ing an alternative trace. For instance, SPIN can be instructed to ignore a certain number
of violations when exploring the state space, Kromodimoeljo [26] proposes a technique to
incrementally generate counter-examples, and the first version of the Electrum Analyzer
allowed for the efficient exclusion of a trace through incremental SAT solving. However,
the number of alternative solutions may be too large for this kind of “blind” iteration to be
useful. Some approaches [19,7] for particular modelling languages infer from a counter-
example a formula representing certain equivalence classes that represent similar solutions.
The model checking process can then be restarted with the original problem conjoined with
the negation of such formula, removing similar solutions from the search space. By intro-
ducing symmetry breaking predicates when launching the solving procedure, our approach
guarantees that isomorphic traces are never returned. Nonetheless, since in our approach
the model can be restricted by arbitrary temporal properties, iteration for more complex
equivalence classes (such as all traces following the same control-flow path) could be eas-
ily implemented by directly restricting the problem’s formula and restarting the process.
More advanced approaches may rely on user input to guide the generation of new counter-
examples. KEGVis [12] queries the model checker to provide an explanation to the counter-
example in the shape of a CTL proof that the user can inspect and then ask for alternative
proofs that result in different traces. Recently we have proposed an approach requiring less
knowledge about proof systems, allowing the user to focus on a particular segment of the
trace to change or ask for particular transitions to take place [6]. It has been implemented in
the Electrum Analyzer over Pardinus by restarting the problem with an updated formula.

Iteration on static solutions has received considerable attention, including techniques
aimed at the Alloy/Kodkod ecosystem. As already presented, Kodkod relies on incremental
SAT solving and symmetry breaking predicates to remove isomorphic solutions from the
search-space. Nonetheless, to tackle the possibly overwhelming number of solutions, more
principled iterations have subsequently been proposed, with criteria such as minimality [38,
17,32,47] or coverage [40,46,52,41]. Others have focused on iterating over richer classes
of equivalences, either through abstract views defined by users [51] or graphs derived from
solutions [14]. These approaches are orthogonal to the problem addressed in Section 4, since
path iteration operations can be combined with principled iteration over the individual states

Pardinus: A temporal relational model finder 39

of the trace. Pardinus currently reuses Kodkod’s mechanism, but many of these approaches
act at the SAT-level and could be integrated into our incremental approach.

7.3 Incremental and decomposed analysis

Some work has also been developed to improve the performance of the Alloy/Kodkod toolkit
through incremental analyses. Kato [54], a technique from which we drew inspiration, splits
Alloy models in two pairs of constraints, and solutions to the first are fed as partial informa-
tion to the second. The best partition criteria is chosen by testing candidates at small scopes.
The proposed solving process was purely sequential but already showed performance gains.
Ganov et al. [22] proposed to apply this slicing recursively and performing parallel analysis,
then relying on dedicated solvers for particular classes of constraints. Our technique also
acts in parallel but additionally exploits partial instances to reduce the search space. The
adopted decomposition criterion also allows the deployment the best-suited solvers for each
stage. We also address iteration and symmetry breaking.

The partitioning and parallelisation of Alloy analysis procedures has also been proposed.
In Ranger [44] each parallel problem solves the same constraints but within a restricted
search space, defined by a range of solutions. Ranges are derived from the structure of the
models, disregarding the constraints, resulting in unpredictable complexity. The number of
partitions is equal to the number of available parallel processes, but since partitioning does
not guarantee problems with similar complexity, some process may become idle while oth-
ers are encumbered with more complex tasks. This issue is tamed by allowing the dynamic
partition of problems. In our approach there are usually much more partitions, with reduced
complexity, than available processes, so processes rarely become idle. In general, this ren-
ders their approach more suitable for unsatisfiable problems (where the complete search
space must be searched) and ours for satisfiable problems. In [43] the same authors explore
a technique, which they dub tranScoping, to infer partitions on the SAT propositional vari-
ables from high-level Alloy models with small scopes.

Approaches to incremental solving have also been developed in the context of Alloy
model evolution. In Titanium [1] the solutions of a previous version of a model are used to
tighten the bounds of the analysis of the revised version, while in Platinum [57] the results
of slices of constraints from the analysis of previous versions is stored and reused when
analysing a revised version. However, our proposed decomposed approach does not focus
in the particular context of re-running analysis during model evolution.

Regarding providing Kodkod with additional partial knowledge, Montaghami and Ray-
side [36] proposed a technique to extract finer Kodkod partial solutions from high-level
specifications, still relying on its constant tuple set bounds. They proposed an extension to
Alloy for the specification of solutions, that can be mapped into Kodkod bounds. Our ap-
proach extends the expressiveness of partial solutions at the Kodkod/Pardinus level. Since
Alloy natively supports binding expressions in the declaration of the relations, symbolic
bounds are easily retrieved without any extension to the language.

8 Conclusion

The paper presented Pardinus, a temporal relational model finder backed by bounded and
complete model checking engines, that can be used either by end users to validate designs or
as a backend for techniques requiring automated instance generation. Pardinus extends the

40 Nuno Macedo et al.

Kodkod relational model finder, still providing a simple language built around the notion of
relation, supporting solution iteration operations with symmetry breaking, and enabling the
provision of partial instances. Additionally, a decomposed solving strategy is also supported.
Evaluation shows that the solving engines are scalable, particularly if the decomposed strat-
egy is enabled, as well as the iteration operations.

Future work is planned to empirically evaluate the iteration operations, and possibly ex-
tend its catalogue. Pardinus is used in the backend of the Alloy 6 Analyzer, which provides
a higher-level specification language and a graphical visualizer for solutions that could sup-
port such evaluation with end users. We also to intend to keep exploring alternative backends
solvers, such as the SMT support for model finding [42,35], to improve the performance of
the analysis procedures and, possibly, support more expressive problems.

References

1. Bagheri, H., Malek, S.: Titanium: Efficient analysis of evolving Alloy specifications. In: SIGSOFT FSE,
pp. 27–38. ACM (2016)

2. Benedetti, M., Cimatti, A.: Bounded model checking for past LTL. In: TACAS, LNCS, vol. 2619, pp.
18–33. Springer (2003)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without bdds. In: TACAS,
LNCS, vol. 1579, pp. 193–207. Springer (1999)

4. Bozzano, M., Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S.,
Roveri, M., Tonetta, S.: nuXmv 2.0.0 User Manual. FBK (2019). https://es.fbk.eu/tools/nuxmv/
downloads/nuxmv-user-manual.pdf

5. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: The Electrum Analyzer: Model checking relational
first-order temporal specifications. In: ASE, pp. 884–887. ACM (2018)

6. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: Simulation under arbitrary temporal logic constraints.
In: F-IDE@FM, EPTCS, vol. 310, pp. 63–69 (2019)

7. Castillos, K.C., Waeselynck, H., Wiels, V.: Show me new counterexamples: A path-based approach. In:
ICST, pp. 1–10. IEEE (2015)

8. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri, M.,
Tonetta, S.: The nuXmv symbolic model checker. In: CAV, LNCS, vol. 8559, pp. 334–342. Springer
(2014)

9. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M., Roveri, M., Tchaltsev, A.:
NuSMV 2.6 User Manual. FBK-IRST (2010). http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.
pdf

10. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding in circular configura-
tions of processes. Communications of the ACM 22(5), 281–283 (1979)

11. Chang, F.S., Jackson, D.: Symbolic model checking of declarative relational models. In: ICSE, pp.
312–320. ACM (2006)

12. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and exploration. Int. J. Softw.
Tools Technol. Transf. 9(5-6), 429–445 (2007)

13. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding. In: CADE-
19 Workshop on Model Computation (2003)

14. Clarisó, R., Cabot, J.: Diverse scenario exploration in model finders using graph kernels and clustering.
In: ABZ, LNCS, vol. 12071. Springer (2020)

15. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predicates for search prob-
lems. In: KR, pp. 148–159. Morgan Kaufmann (1996)

16. Cunha, A.: Bounded model checking of temporal formulas with Alloy. In: ABZ, LNCS, vol. 8477, pp.
303–308. Springer (2014)

17. Cunha, A., Macedo, N., Guimarães, T.: Target oriented relational model finding. In: FASE, LNCS, vol.
8411, pp. 17–31. Springer (2014)

18. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science: Finite-State Systems. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press (2016). DOI 10.1017/
CBO9781139236119

19. Dominguez, A.L.J., Day, N.A.: Generating multiple diverse counterexamples for an EFSM. Tech. Rep.
CS-2013-06, University of Waterloo (2013)

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf
https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf

Pardinus: A temporal relational model finder 41

20. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.V.: Reasoning with temporal
logic on truncated paths. In: CAV, LNCS, vol. 2725, pp. 27–39. Springer (2003)

21. Frias, M.F., Galeotti, J.P., Pombo, C.L., Aguirre, N.: DynAlloy: Upgrading Alloy with actions. In: ICSE,
pp. 442–451. ACM (2005)

22. Ganov, S.R., Khurshid, S., Perry, D.E.: Annotations for Alloy: Automated incremental analysis using
domain specific solvers. In: ICFEM, LNCS, vol. 7635, pp. 414–429. Springer (2012)

23. Hölldobler, S., Manthey, N., Nguyen, V.H., Stecklina, J., Steinke, P.: A short overview on modern parallel
SAT-solvers. In: ICACSIS, pp. 201–206. IEEE (2011)

24. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–295 (1997)
25. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. MIT Press (2016)
26. Kromodimoeljo, S.: Controlling the generation of multiple counterexamples in LTL model checking.

Ph.D. thesis, The University of Queensland (2014)
27. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming Languages and Systems

(TOPLAS) 16(3), 872–923 (1994)
28. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.

Addison-Wesley (2002)
29. Leuschel, M., Butler, M.J.: ProB: A model checker for B. In: FME, LNCS, vol. 2805, pp. 855–874.

Springer (2003)
30. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight specification and analysis

of dynamic systems with rich configurations. In: SIGSOFT FSE, pp. 373–383. ACM (2016)
31. Macedo, N., Cunha, A.: Alloy meets TLA+: An exploratory study. CoRR abs/1603.03599 (2016)
32. Macedo, N., Cunha, A., Guimarães, T.: Exploring scenario exploration. In: FASE, LNCS, vol. 9033, pp.

301–315. Springer (2015)
33. Macedo, N., Cunha, A., Pessoa, E.: Exploiting partial knowledge for efficient model analysis. In: ATVA,

LNCS, vol. 10482, pp. 344–362. Springer (2017)
34. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/prover9/
35. Meng, B., Reynolds, A., Tinelli, C., Barrett, C.W.: Relational constraint solving in SMT. In: CADE,

LNCS, vol. 10395, pp. 148–165. Springer (2017)
36. Montaghami, V., Rayside, D.: Extending Alloy with partial instances. In: ABZ, LNCS, vol. 7316, pp.

122–135. Springer (2012)
37. Near, J.P., Jackson, D.: An imperative extension to Alloy. In: ASM, LNCS, vol. 5977, pp. 118–131.

Springer (2010)
38. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum: Principled scenario

exploration through minimality. In: ICSE, pp. 232–241. IEEE (2013)
39. Plagge, D., Leuschel, M.: Seven at one stroke: LTL model checking for high-level specifications in B, Z,

CSP, and more. Int. J. Softw. Tools Technol. Transf. 12(1), 9–21 (2010)
40. Ponzio, P., Aguirre, N., Frias, M.F., Visser, W.: Field-exhaustive testing. In: SIGSOFT FSE, pp. 908–919.

ACM (2016)
41. Porncharoenwase, S., Nelson, T., Krishnamurthi, S.: CompoSAT: Specification-guided coverage for

model finding. In: FM, LNCS, vol. 10951, pp. 568–587. Springer (2018)
42. Reynolds, A., Tinelli, C., Goel, A., Krstic, S.: Finite model finding in SMT. In: CAV, LNCS, vol. 8044,

pp. 640–655. Springer (2013)
43. Rosner, N., Pombo, C.G.L., Aguirre, N., Jaoua, A., Mili, A., Frias, M.F.: Parallel bounded verification

of Alloy models by TranScoping. In: VSTTE, LNCS, vol. 8164, pp. 88–107. Springer (2013)
44. Rosner, N., Siddiqui, J.H., Aguirre, N., Khurshid, S., Frias, M.F.: Ranger: Parallel analysis of Alloy

models by range partitioning. In: ASE, pp. 147–157. IEEE (2013)
45. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. STTT 12(2), 123–137 (2010)
46. Saeki, T., Ishikawa, F., Honiden, S.: Automatic generation of potentially pathological instances for vali-

dating Alloy models. In: ICFEM, LNCS, vol. 10009, pp. 41–56 (2016)
47. Saghafi, S., Danas, R., Dougherty, D.J.: Exploring theories with a model-finding assistant. In: CADE,

LNCS, vol. 9195, pp. 434–449. Springer (2015)
48. Serna, J., Day, N.A., Farheen, S.: DASH: A new language for declarative behavioural requirements with

control state hierarchy. In: RE Workshops, pp. 64–68. IEEE Computer Society (2017)
49. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search problems. Electron. Notes

Discret. Math. 9, 19–35 (2001)
50. Siegel, A., Santomauro, M., Dyer, T., Nelson, T., Krishnamurthi, S.: Prototyping formal methods tools:

A protocol analysis case study. In: Protocols, Logic, and Strands: Essays Dedicated to Joshua Guttman
on the Occasion of his 66.66th Birthday, LNCS. Springer (2021). To appear

51. Sullivan, A., Marinov, D., Khurshid, S.: Solution enumeration abstraction: A modeling idiom to enhance
a lightweight formal method. In: ICFEM, LNCS, vol. 11852, pp. 336–352. Springer (2019)

http://www.cs.unm.edu/~mccune/prover9/

42 Nuno Macedo et al.

52. Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test generation and mutation testing for
Alloy. In: ICST, pp. 264–275. IEEE (2017)

53. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS, LNCS, vol. 4424, pp. 632–647.
Springer (2007)

54. Uzuncaova, E., Khurshid, S.: Constraint prioritization for efficient analysis of declarative models. In:
FM, LNCS, vol. 5014, pp. 310–325. Springer (2008)

55. Vakili, A., Day, N.A.: Temporal logic model checking in Alloy. In: ABZ, LNCS, vol. 7316, pp. 150–163.
Springer (2012)

56. Zhang, J., Zhang, H.: SEM: A system for enumerating models. In: IJCAI, pp. 298–303. Morgan Kauf-
mann (1995)

57. Zheng, G., Bagheri, H., Rothermel, G., Wang, J.: Platinum: Reusing constraint solutions in bounded
analysis of relational logic. In: FASE, LNCS, vol. 12076, pp. 29–52. Springer (2020)

	Introduction
	Pardinus problems
	Temporal relational model finding
	Scenario exploration
	Parallel decomposed analysis
	Evaluation
	Related work
	Conclusion

