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EXISTENCE AND CLASSIFICATION OF b-CONTACT STRUCTURES

A b-contact structure on a b-manifold (M, Z) is a singular Jacobi structure on M satisfying a transversality condition along the hypersurface Z. We show that, in three dimensions, b-contact structures with overtwisted three-dimensional leaves satisfy an existence h-principle that allows prescribing the induced singular foliation. The existence of b-contact structures with tight leaves of maximal dimension is also established. We give a method to classify b-contact structures on a given b-manifold and use it to give a classification on S 3 with either a two-sphere or an unknotted torus as the critical surface. We also discuss generalizations to higher dimensions.

Introduction

Rather new on the mathematical landscape of geometrical structures are the so called b-contact structures, introduced in [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF]. Those structures are the odd-dimensional counterpart to b-symplectic structures, which are a class of nonregular Poisson manifolds. The associated Poisson structure of a b-symplectic structure is non-degenerate (and thus symplectic) away from a given hypersurface, called critical hypersurface, and degenerates in a transverse manner on this hypersurface. The induced Poisson structure on the hypersurface yields a codimension one symplectic foliation. The language of differential forms over the b-tangent bundle (first introduced by Melrose [M] and considered in a symplectic setting in [NT]) is suitable for the description and study of those Poisson structures, called b-Poisson structures, as shown by the seminal work of Guillemin-Miranda-Pires [GMP]. With this formalism come many advantages, as for instance Moser's path method, which still holds for b-symplectic forms. Since then, b-symplectic geometry has become an active field of research. The topology of b-symplectic manifolds, also called log-symplectic manifolds, has been studied by several authors [START_REF] Cavalcanti | Examples and counter-examples of log-symplectic manifolds[END_REF][START_REF] Guillemin | Desingularizing b m -symplectic structures[END_REF][START_REF] Frejlich | A note on symplectic topology of b-symplectic manifolds[END_REF][START_REF] Marcut | On cohomological obstructions for the existence of logsymplectic structures[END_REF]. In [FMM] the existence problem on open manifolds is addressed using the h-principle. Another related class of singular symplectic structures are folded symplectic structures [CGW], whose existence, even on closed manifolds, can be established using the h-principle [C1].

On the contact side of this story, the study of the topological features of bcontact structures was initiated in [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF], followed by an analysis of their associated Reeb dynamics [START_REF] Miranda | The singular Weinstein conjecture[END_REF][START_REF] Miranda | On the singular Weinstein conjecture and the existence of escape orbits for b-Beltrami fields[END_REF]. Once more, b-contact structures on a b-manifold (M, Z) are contact away from the hypersurface Z, and the contact condition degenerates on the critical hypersurface. A natural way to express this degeneracy is by viewing them as Jacobi structures, which were introduced by Lichnerowicz [Li] and Kirillov [K] as generalizations of symplectic, Poisson, and contact structures. In the case of a b-contact form, the maximum wedge of the associated Jacobi structure cuts the zero-section transversally along Z. The associated singular foliation yields leaves of maximal dimension away from the hypersurface where the induced structure is contact. On the critical hypersurface, an intricate interplay takes place between codimension one locally conformally symplectic leaves and codimension two contact leaves. As it happens with regular symplectic and contact manifolds, b-contact structures are induced on certain hypersurfaces of b-symplectic manifolds.

In this article, we study the existence and classification of b-contact structures on closed orientable three-manifolds. First, we prove two existence theorems for b-contact structures on a fixed b-manifold, which means that the critical surface is prescribed. This is stronger than the existence results in [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF], where it is shown that given a closed orientable surface in M a closed 3-manifold, there exists a bcontact structure having a critical surface given by the union of two diffeomorphic copies of the surface. The second main contribution of this article is that we give a recipe that reduces the classification of b-contact structures on any b-manifold to ingredients from topology and contact topology. We apply it to classify b-contact structures in the three-sphere with either a sphere or an unknotted torus as the critical surface. Our classification results for singular geometric structures can be compared with the seminal work of Radko [R], where a classification of b-Poisson structures on closed surfaces was obtained.

Recall that contact structures in dimension three fall into two different classes: overtwisted and tight. The study of the overtwisted ones is well understood. By the classical flexibility result proved by Eliashberg [E2], overtwisted contact structures can be understood purely by the homotopy theory of plane fields. In particular, this yields existence and classification results of those structures on closed 3-manifolds. Tight contact structures lie on the other side of the spectrum: their study turns out to be way more intricate as they reflect the topology of the underlying manifold. They do not satisfy the h-principle and there are examples of 3-manifolds that don't admit tight contact structures [EH]. The list of manifolds where tight contact structures are classified is short (among others S 3 , R 3 , S 1 ×S 2 [E3]). The classification of tight contact structures in manifolds with boundary is for instance settled in the case of the 3-disk [E3] or the solid torus [START_REF] Honda | On the classification of tight contact structures[END_REF][START_REF] Li | Classification of tight contact structures on a solid torus[END_REF].

A b-contact structure on a manifold M with an orientable critical surface Z is called fully overtwisted if each connected leaf of maximal dimension of the associated Jacobi structure is overtwisted. We prove that an existence h-principle holds for fully overtwisted b-contact structures on any fixed orientable b-manifold (M, Z). Given a set of cooriented separating curves Γ in an oriented surface Z, we denote by Z + and Z -the two surfaces with boundary (possibly disconnected) obtained by cutting open Z along Γ. The sign is induced by the coorientation of Γ. Given a rank two vector bundle η over a three-manifold, we denote by e(η) ∈ H 2 (M, Z) the Euler class of η.

Theorem A (Theorem 4.5). Let (M, Z) be a closed oriented b-manifold of dimension three and let η be a b-plane field. Then η is homotopic through b-plane fields to a fully-overtwisted b-contact structure whose set of one-dimensional leaves is any collection of cooriented separating curves Γ in Z such that χ(Z + ) -χ(Z -) = ⟨e(η), Z⟩. Furthermore, if two fully-overtwisted b-contact structures have isotopic one-dimensional leaves and are homotopic relative to Z, then they are b-isotopic.

A b-isotopy is just an isotopy that preserves Z, the natural isotopies on bmanifolds, and χ denotes the Euler characteristic. The theorem above admits an interpretation in terms of Jacobi geometry: On a three-manifold M with a given separating hypersurface Z, any formal b-Jacobi structure (see Definition 4.2) is homotopic to a genuine Jacobi structure (Λ, R) such that Λ ∧ R ⋔ 0, vanishing exactly along Z, with prescribed singular foliation. Indeed, as we will see, the condition on the set of one-dimensional leaves is necessary for the existence of a b-contact sructure homotopic to η. Based on recent advances in the theory of high dimensional convex hypersurfaces, we prove a higher dimensional version of this statement (Theorem 7.1). In this case, the "formal" initial data is not just a b-hyperplane field, but what we call a formal b-contact structure. This formal structure exists on an odd-dimensional b-manifold with a separating hypersurface if and only if the manifold is stable almost complex. This implies that any stable almost complex manifold admits a b-Jacobi structure with any critical separating hypersurface Z.

The proof is based on using the framework of b-geometry to apply techniques from contact topology, starting with a semi-local study around the critical surface of the b-manifold and an application of Eliashbergs relative h-principle for contact structures. Note that since the b-manifold is fixed, the singular locus of the bcontact structure (and of the associated Jacobi structure) is fixed as well (this is not the case, for example, in the h-principle for b-symplectic forms in open manifolds proved in [FMM]).

To the authors' knowledge, this is the first h-principle type existence result for Jacobi structures in dimension three that are not transitive (i.e. different from contact structures). For regular Jacobi structures, the simplest ones are contact structures and conformally symplectic structures, both of which satisfy an existence h-principle [BEM, BM]. In general, regular Jacobi structures can be interpreted as foliations of constant rank with contact or conformally symplectic leaves. Their flexible behavior has been recently studied by several authors, both in open manifolds [DM, FF] and in closed ones [CPP, BEM, GT].

Based on different techniques, we give a weaker existence theorem for b-contact structures whose leaves of maximal dimension can be tight in Theorem 5.1: given an orientable 3-manifold M and a separating surface Z, there always exists at least one b-contact structure realizing Z as critical set such that M \ Z is tight or overtwisted in each connected component. The techniques of this theorem are based on the existence of so-called Z-immersions, as studied by Eliashberg [E1].

As the previous results answer the existence problem for b-contact structures, we continue by studying the classification of b-contact structures for two concrete three-dimensional b-manifolds. This means that we classify the singular foliations associated to a b-Jacobi structure, and for each foliation we are able to determine the b-isotopy classes of b-contact structures. In the paradigmatic case of S 3 with a two-sphere as singular hypersurface, we obtain the following classification result up to b-isotopy.

Theorem B (Theorem 6.6). The classification of positive b-contact structures in (S 3 , S 2 ), endowed with some orientation, up to b-isotopy is the following.

• There exists only one tight b-contact structure on (S 3 , S 2 ). on the critical surface there is a single one-dimensional leaf. • b-contact structures that are overtwisted in one connected component of S 3 \ S 2 but tight in the other one are determined by a sign and an element in Z. on the critical surface there is a single one-dimensional leaf. • For each Γ isotopy class of cooriented separating closed curves in S 2 satisfying χ(S 2 + ) = χ(S 2 -), fully overtwisted b-contact structures inducing Γ as the set of one-dimensional leaves are parametrized by Z ⊕ Z.

It is implied in the statement that only those isotopy classes of cooriented curves satisfying χ(S 2 + ) = χ(S 2 -) can arise as the set of one-dimensional leaves of a b-contact structure on (S 3 , S 2 ), and can easily be characterized combinatorically (cf. Lemma 6.4). A classification as above can be carried out as well when the singular locus in S 3 is given by an unknotted 2-torus, see Theorem 6.9.

The proof of Theorem B is obtained by reducing the classification of b-contact structures on a given b-manifold to algebraic topology and known results in contact topology. Indeed, the recipe of our proof holds for any b-manifold (M, Z). The required ingredients to classify b-contact structures on a given b-manifold are: a classification of the admissible sets of one-dimensional leaves, the classification of relative homotopy classes of plane fields of the connected components of M \ Z, and the classification of tight contact structures with convex boundary on the the connected components of M \ Z (viewed as contact manifolds with boundary).

In both cases that we study, the classification of tight contact structures of the completion of the connected components of M \ Z is available in the literature (see [START_REF] Eliashberg | Contact 3-manifolds twenty years since J. Martinet's work[END_REF][START_REF] Honda | On the classification of tight contact structures[END_REF][START_REF] Li | Classification of tight contact structures on a solid torus[END_REF]).

Last but no least, our study of the singular hypersurface of a b-contact manifold of any odd dimension shows that it always admits a codimension two family of contact submanifolds. This is interesting in its own, since we show that the Reeb vector field associated to any fixed b-contact form restricts to a contact Reeb vector field in this family. As a corollary, we show that the Weinstein conjecture on the existence of periodic Reeb orbits holds for compact b-contact manifolds in dimension 5 along the critical hypersurface. This generalizes a three-dimensional result proved in [START_REF] Miranda | The singular Weinstein conjecture[END_REF] and can potentially give rise to new periodic orbits in problems in celestial mechanics.

Organization of the article. We start in Section 2 by giving necessary background information on contact geometry, an introduction to the b-tangent bundle and b-contact geometry, and Z-immersions. In Section 3, we study convexity on b-contact structures in greater detail and prove that any b-contact structure is convex. Section 4 and Section 5 contain respectively the proofs of Theorem A and of the existence of b-contact structures with prescribed tight leaves. The classification of b-contact structures is carried out in Section 6. We finish the article by studying higher dimensional b-contact manifolds in Section 7. We give a weaker existence theorem of fully overtwisted b-contact structures in higher dimensions and analyze the existence of periodic Reeb orbits on the critical set.

Acknowledgments. The authors warmly thank Eva Miranda for proposing the study of the h-principle for b-contact structures.

Preliminaries

2.1. Contact topology. A contact structure ξ on an orientable manifold M of dimension 2n + 1 is a nowhere integrable hyperplane field. We assume that the hyperplane field is cooriented, so that ξ can be expressed as the kernel of some global one form α ∈ Ω 1 (M ). The non-integrability condition is equivalent to α ∧ (dα) n ̸ = 0. In three dimensions, an overtwisted disk is a disk embedded in a contact manifold (M, ξ) such that ξ is tangent to the boundary of the disk. A contact manifold containing an overtwisted disk is called overtwisted, and if such a disk does not exist we say that the contact structure is tight. The dichotomy between overtwisted and tight contact structures has been an important landmark in the field of contact topology. It is known that in all odd dimensions, the high dimensional generalization of overtwisted contact structures satisfy a full h-principle [START_REF] Eliashberg | Classification of overtwisted contact structures on 3-manifolds[END_REF][START_REF] Borman | Existence and classification of overtwisted contact structures in all dimensions[END_REF].

Given a hypersurface Σ embedded in a contact manifold (M, ξ), the contact structure induces a singular 1-dimensional foliation on Σ, called the characteristic foliation and denoted Σ ξ . In three dimensions, it is defined as ξ ∩ T Σ, and the singular points of the foliation are exactly those points x ∈ Σ where ξ is tangent to T Σ. Convex surfaces are a powerful tool to study 3-dimensional contact manifolds and were introduced in [START_REF] Giroux | Convexity in contact topology[END_REF]. The higher dimensional equivalent has been initiated by the work of [HH], see also [EP].

An embedded hypersurface Σ ⊂ (M, ξ) in a contact manifold is convex if there exists a contact vector field (that is a vector field that preserves the contact structure) that is transverse to Σ. An equivalent characterization is that there is a neighborhood U ∼ = Σ × (-ε, ε) of Σ where ξ is defined by a contact form that is invariant with respect to a coordinate in (-ε, ε). Such a neighborhood is called R-invariant neighborhood. In dimension 3, convex surfaces are C ∞ -generic, as shown by Giroux [Gi1].

Theorem 2.1. Let Σ ⊂ (M, ξ) be a surface. Then there exists an C ∞ -small isotopy that makes Σ convex.

The set Γ ⊂ Σ defined by Γ := {x ∈ Σ | X x ∈ ξ} is called the dividing set of the convex contact surface. It follows from the contact condition that Γ is embedded and that Σ \ Γ is equipped with an exact symplectic form. The dividing set contains the contact topology in a neighborhood around the convex hypersurface.

2.2. Z-immersions. We introduce in this section another successful application of the h-principle, namely for Z-immersions as introduced by Eliashberg in [E1].

Definition 2.2. Let Z ⊂ M be a hypersurface. A map f : M → N is called a Z-immersion if f | M \Z and f | Z are immersions and there exists a tubular neighborhood N (Z) of Z and an involution τ :

N (Z) → N (Z) such that f | N (Z) • τ = f | N (Z) .
Let f : M → N be a Z-immersion. In a neighborhood around a point p ∈ Z, there exists coordinates around p and around f (p) such that f (x 1 , x 2 , . . . , x n ) = (x 2 1 , x 2 , . . . , x n ). If Z is closed and orientable, there exists a semi-local neighborhood N (Z) around Z with a normal coordinate t such that that f writes down in N (Z)

f (t, z) = (t 2 , z).
The concept of separating hypersurface will play a role in the existence theorem proven by Eliashberg.

Definition 2.3. We call a hypersurface Z that splits M in two (possibly disconnected) manifolds with common boundary Z a separating hypersurface.

Finally, we state the main result on Z-immersions that we will use in this work, which is just a particular case of a more general statement [START_REF] Eliashberg | On singularities of folding type[END_REF]Theorem B]. E1]). Let M be a three-dimensional closed manifold and Z a closed separating hypersurface. Then there exists a Z-immersion M → R 3 .

Theorem 2.4 ([

b-geometry.

The language of b-differential forms was initiated by Melrose [M] in his famous work on the Atiyah-Patodi-Singer index theorem, and was later on used in the realm of Poisson geometry by Guillemin-Miranda-Pires [GMP]. We give here a brief outline of the language of b-geometry, for more details see [M, GMP]. Given an orientable hypersurface Z on a manifold M (not necessarily separating), a b-vector field is a vector field on M tangent to Z. The hypersurface is called the critical hypersurface, or also sometimes the singular locus. The space of b-vector fields corresponds to the space of sections of a vector bundle on We point out that if β does depend on the z coordinate, the exterior derivative of β splits again as dβ = d Z β + z • β ∧ dz z , where β denotes the derivative of β with respect to z and d Z β the derivative in the directions tangent to Z.

Given a separating critical hypersurface on an orientable manifold, there exists a non-vanishing b-form of maximal degree, a b-volume form. We say that a manifold admitting a b-volume form is an orientable b-manifold. Having fixed an orientation of T M , in each component of M \Z (where b T M coincides with T M ), the b-volume form induces either the same or the reverse orientation than the one chosen in T M . Hence a way to think of an orientation induced by the b-volume form of (M, Z) is a sign on each component of M \ Z, and every two components that share a common connected component of Z are necessarily of different sign. Furthermore, we adopt the convention that the orientation on the separating hypersurface Z induced by the b-volume form is given by the smooth area form Ω Z such that dz z ∧ Ω Z induces the given orientation on the b-manifold.

In general, for Z separating, we have a stable isomorphism between b T M and T M , see e.g. [C1, Lemma 2.1], which is furthermore canonical up to homotopy [CGW].

Lemma 2.5. Let M be a m-dimensional manifold with separating hypersurface Z. Then there is an isomorphism, canonical up to homotopy, of real vector bundles

T M ⊕ R ∼ = b T M ⊕ R
We will be interested in plane fields in the b-tangent bundle of b T M .

Definition 2.6. A b-plane field on a 3-dimensional b-manifold is a rank two subbundle of the b-tangent bundle.

In the 3-dimensional set-up, when the critical hypersurface Z ⊂ M is separating, the previous lemma implies that there always exists b-plane fields on M .

Proposition 2.7. Let Z ⊂ M 3 be a separating surface. Then

(1) b T M is isomorphic to T M , (2) there exists a non-vanishing section of b T M and therefore also a b-plane field on M .

In particular, in dimension 3, b T M is parallelizable when Z is separating. In dimension 3, by Proposition 2.7, if Z is separating surface then there exists cooriented b-plane fields. However, this is not a necessary condition.

Proof. As Z is separating, b T M is stably isomorphic to T M by Lemma 2.5. Thus by Lemma 3.7 in [E1], b T M is isomorphic to T M . As M is of dimension 3, χ ( 
Example 2.8. Consider T 3 with Z being a 2-torus {T 2 } × {0}. This is not separating but clearly admits a b-plane field by just taking the plane field given by the tangent space to each torus T 2 × {p} with p ∈ S 1 . 2.4. Contact geometry on the b-tangent bundle. Contact geometry on bmanifolds was introduced in [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF], motivated by the symplectic geometry approach to b-Poisson structures initiated in [GMP].

Definition 2.9. A b-contact form on (M 2n+1 , Z) is a one b-form α ∈ b Ω 1 (M ) such that α ∧ (dα) n ̸ = 0. A b-contact structure is defined as the kernel of b-contact form.
A b-contact structure is thus a particular case of a b-plane field. If we have fixed an orientation of (M, Z), the b-contact structure is said to be positive if α ∧ (dα) n that given orientation. In what follows, we will only consider positive b-contact structures. Negative b-contact structures could be considered in the same way.

2.4.1. Convexity of b-contact structures. Inspired by the definition of convex contact structures, convexity in the b-setting can be defined as follows.

Definition 2.10. A b-contact structure is convex if semi-locally around the critical set it is defined by the kernel of an R-invariant b-contact form α, that is

α = u dz z + β, where u ∈ C ∞ (Z) and β ∈ Ω 1 (Z).
This is equivalent to the existence, near Z, of a b-vector field that preserves the b-contact structure and that is transverse (as a section of b T M ) to Z.

Definition 2.11. The dividing set Γ ⊂ Z of a convex b-contact form is defined by the set {x ∈ Z | u(x) = 0}.
It follows from the b-contact condition that the dividing set Γ is a codimension 1 embedded submanifold in Z. As we will see, b-contact structures can be seen as particular Jacobi structures. In this formulation, the dividing set coincides with the one-dimensional leaves of the singular foliation of the associated Jacobi structure and therefore, we will call these leaves the dividing set (by analogy with convex surfaces in contact geometry). Overtwistedness can as well be defined for b-contact structures, by looking at each leaf of maximal dimension.

Definition 2.12. A b-contact structure is overtwisted along a connected component of M \ Z if there exists an overtwisted disk embedded in that component. A b-contact structure that does not admit any overtwisted disk in M \ Z is called tight.

2.4.2. Relation to folded contact structures and desingularization. b-contact forms are narrowly related to smooth differential forms where the maximum wedge cuts the zero-section transversally. Those are called folded contact forms and are the odd-dimensional counterpart of folded symplectic forms as studied in [START_REF] Da | Fold-forms for four-folds[END_REF][START_REF] Cannas Da Silva | On the unfolding of folded symplectic structures[END_REF].

Definition 2.13. A 1-form α ∈ Ω 1 (M ) on M 2n+1 is folded contact if α∧(dα) n ⋔ 0. The hypersurface Z := {x ∈ M | (α ∧ (dα) n ) x = 0} is called the folding surface.
A folded contact form is said to be convex around Z if there exists a defining function z for the folding hypersurface Z, that is Z = {z = 0} such that α = uzdz + β where u ∈ C ∞ (Z) and β ∈ Ω 1 (Z).

By the techniques utilized in [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF], one can prove that convex folded contact forms can be singularized to b-contact forms.

Proposition 2.14 (Singularization of convex folded contact forms, [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF]). Let (M, α) be a vertically invariant folded-contact from. Then there exists a b-contact form whose critical set is given by Z and that agrees outside a tubular neighborhood of Z with α.

Proof. In a tubular neighborhood

U = Z × (-ϵ, ϵ), α = uzdz + β. We define in U the b-form α ϵ = uds ϵ + β, where s ϵ : (-ϵ, ϵ) \ {0} → R \ {0} is a smooth function such that          s ϵ (z) = log |z| for z ∈ (0, δ) s ϵ (z) = 1 2 z 2 for z ∈ (ϵ -δ, ϵ) s ′ ϵ (z) ̸ = 0 for z ∈ (-ϵ, ϵ) s ϵ (-z) = f ϵ (z) for all z > 0.
By the definition of s ϵ , α ϵ is a b-form of degree 1 that agrees with α outside an ϵ-neighborhood of Z. As the derivative of s ϵ is nowhere vanishing and by the convexity condition on α, it follows that

α ϵ ∧ dα ϵ = ds ϵ ∧ ((dβ) n + nβ ∧ du ∧ (dβ) n-1 ) ̸ = 0, so α ϵ is a b-contact form.
□

The b-contact form α ϵ is called the s ϵ -singularization. Based on techniques introduced in [GMW], one can define an operation associating a folded contact form to a b-contact form. This is called the desingularization, see [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF].

2.5. Jacobi structures. A Jacobi structure is a generalization of a Poisson structure and is defined as follows.

Definition 2.15. A Jacobi structure on a manifold M is given by a bivector field Λ ∈ X 2 (M ) and a vector field R ∈ X(M ) that satisfy

[Λ, Λ] = 2Λ ∧ R L R Λ = 0.
As is shown in [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF], b-contact forms can be seen as a particular case of Jacobi structures, where Λ n ∧R ⋔ 0 (here (2n+1) is the dimension of the manifold). Such a Jacobi structure satisfying that Λ n ∧ R ⋔ 0 is called a b-Jacobi structure. The following proposition is a global version of [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF]Proposition 6.4]. Both results combined yield a global one-to-one correspondence between b-Jacobi structures whose singular hypersurface is Z, and b-contact forms on (M, Z).

Proposition 2.16. Let Λ, R define a b-Jacobi structure, and denote by

Z = (Λ n ∧ R) -1 (0) the critical hypersurface. Then (Λ, R) is induced by a b-contact form defined on the b-manifold (M, Z).
Proof. By definition, the bi-vector field Λ and the vector field R are tangent to the characteristic leaves of the Jacobi structure that they define. In particular they are both sections of * b T M , such that Λ n ∧ R ̸ = 0 as sections of the b-tangent bundle. The equations

α(R) = 1, Λ(α, •) = 0, uniquely determines a section of b T * M , i.e. a one b-form. A classical fact in Jacobi geometry [V] is that in W = M \ Z, where b T M | M \Z ∼ = T W , the following relations hold: ι R dα = 0, β = β(R)α -dα(Λ(β, •), •) for any β ∈ T * W.
In particular, given any γ ∈ b T M such that γ(R) = 0 we have

γ = dα(Λ(γ, •), •)
at every point p away from Z. By smoothness, this holds along Z, which shows that α is a b-contact form in (M, Z). One easily checks that the Jacobi structure induced by α (see [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF]Proposition 6.4]) corresponds to (Λ, R). □

As shown in [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF], a b-Jacobi structure induces on Z a foliation by codimension one conformally symplectic leaves and codimension two contact leaves. In the three-dimensional case, the critical surface of the b-Jacobi structure is a b-Poisson structure (structures first studied in surfaces by Radko [R]). Indeed, the restriction Λ Z of Λ to Z (which is well defined because Λ is tangent to Z) satisfies [Λ Z , Λ Z ] = 0 for dimensional reasons, so it is Poisson and furthermore Λ Z ⋔ 0, so it is b-Poisson.

Revisiting convexity in b-contact manifolds

In this section, we restate some results on contact convex surfaces in the context of the critical set of a b-contact structure. The observation that is fundamental for the rest of the work is that any b-contact structure is convex as in Definition 2.10. The projection π : b T M → T Z restricted to T Z is just an isomorphism, hence Z ξ is just a singular 1-foliation in T Z (i.e. a section of the smooth tangent bundle of Z). Alternatively, it can be defined using the semi-local expression of a b-contact form defining ξ as follows. In N (Z), let α = u dz z + β, where u ∈ C ∞ (N (Z)) and β ∈ Ω 1 (N (Z)) such that ker α = ξ. The characteristic foliation Z ξ is given by ker β ∩ T Z.

Last but not least, given a volume form Ω on Z, the characteristic foliation Z ξ is defined by the vector field X on Z that satisfy ι X Ω = β ∧ (dβ) n-1 . The proof is as in [START_REF] Geiges | An Introduction to Contact Topology[END_REF]Lemma 2.5.20].

Proposition 3.2. Assume there are two b-contact structures ξ 0 = ker α 0 and ξ 1 = ker α 1 defined near a closed critical hypersurface Z, and a diffeomorphism ϕ : Z → Z such that ϕ * Z ξ 1 = Z ξ 0 as oriented characteristic foliations. Then there is a b-contactomorphism ψ : N (Z) → N (Z) of neighborhoods N (Z) of Z with ψ(Z) = Z and such that ψ| Z is isotopic to ϕ via an isotopy preserving the characteristic foliation. Furthermore, we can assume that ψ satisfies ψ| Z = ϕ.

Proof. The proof is yet another application of Moser's path method for b-forms and follows the same lines of Giroux's proof for standard contact forms (see [START_REF] Geiges | An Introduction to Contact Topology[END_REF]Theorem 2.5.22]), using Gray's stability for b-contact structures [MO1, Theorem 5.13]. □ 3.2. Singularization of overtwisted/tight contact structures. It follows immediately from the singularization construction, (Proposition 2.14) that the characteristic foliation remains unchanged for the copies of Z contained in the tubular neighborhood. Given two b-contact structures having the same characteristic foliation, we can apply Moser's path method to prove that they are contactomorphic in a tubular neighborhood of the critical set not containing it.

Corollary 3.3. Consider a vertically invariant folded contact form α. Then the contact structure defined in M \ {z ≥ δ} by f ϵ -singularization α ϵ (as obtained in Proposition 2.14) is contactomorphic to the contact structure defined by α for any δ > 0.

The same holds for M \ Z if we think of each component as an open contact manifold with a convex cylindrical ending. This corollary implies that if there exists no overtwisted disk away from the folding surface, then there does not exist any overtwisted disk away from the critical set of the b-contact structure, obtained by singularization.

Proof. The original contact structure on z > 0 is given by the form

α = uzdz + β,
where u and β are z-invariant. Similarly, the singularized contact form is in

z ∈ [0, ε] of the form α = uf ′ (z)dz + β,
for some function f of positive derivative, such that f (z) = z near z = ε. Consider the path of contact forms

α t = u((1 -t)z + tf ′ (z))dz + β.
Observe that α t induces the same form β for all t in each surface S z = Z × {z}.

We apply Moser's path method and consider a flow X t ∈ ker α t such that αt + ι Xt dα t = µ t α t .

Arguing as in [G, page 80] it follows that the vector field X t preserves each surface S z . Indeed at any point where ξ ∩ S z is non-singular, we use that α| T Sz = 0 and contract the previous equation with a vector field v z generating the characteristic foliation along S z (which is the same for each contact form of the family α t ), deducing that dα t (v z , X t ) = 0 and so that X t is parallel to v z . At singular points of v z , we have dα t (u, X t ) = 0 for any u tangent to S z and hence X t = 0 at those points. Since each of the surfaces S z is closed, the flow of X t integrates up to t = 1 in all z ∈ [δ, ε], and in fact X t | z=ε = 0 since there the homotopy of contact forms is constant. □ 

α ∧ (dα) n = dz z ∧ (u(dβ) n + nβ ∧ du ∧ (dβ) n-1 + zγ) ̸ = 0, (3.5)
where γ ∈ Ω 2n+1 (N (Z)). We deduce that i * (u(dβ) n + β ∧ du ∧ (dβ) n-1 ) defines a volume form in Z, where i :

Z → N (Z) is the inclusion of Z in its neighborhood. We define the b-form α ∈ b Ω 1 (N (Z)) as α = i * u dz z + i * β.
It is of b-contact type by the previous discussion, and R-invariant by construction.

Consider the family of b-forms

α t = (1 -t)α + tα, t ∈ [0, 1].
Since α and α coincide along Z, and the b-contact condition forgets about the zdependence there, the b-form α t is contact for all t at least in a small neighborhood of Z. We can now apply Moser's path method as we have done before (for instance in the proof of Proposition 3.2) to find an isotopy φ t : N ′ (Z) -→ N ′ (Z) of a perhaps smaller neighborhood of Z such that φ * 1 ξ = ker α, proving the proposition. □ Remark 3.6. This proposition is of course not true for an arbitrary hypersurface on a smooth contact manifold, since there exist non-convex hypersurfaces. The difference comes from Equation (3.5): the derivation of b-forms imposes that some terms vanish along Z, something that does not happen with the usual contact condition near an embedded hypersurface [START_REF] Geiges | An Introduction to Contact Topology[END_REF]Section 2.5.4].

The next lemma shows that in a neighborhood of the critical set, a convex b-contact structure can be viewed as a contact structure. This lemma has been previously used in [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF] for the singularization of convex contact structures and desingularization of b-contact structures. Recall that a b-isotopy of (M, Z) is an isotopy of M preserving Z.

Lemma 3.7. In a local neighborhood around Z ⊂ M , there is a one-to-one correspondence between b-contact structures, up to b-isotopy, and contact structures with Z a convex hypersurface, up to isotopy. Furthermore, both the characteristic foliation and the dividing set remain unchanged.

Proof. By Proposition 3.4, in a neighborhood around Z, the b-contact structure is given by the kernel of α = u dz z + β, where u ∈ C ∞ (Z) and β ∈ Ω 1 (Z) are smooth. We define the smooth 1-form α = udz +β, which is an R-invariant contact form as udβ + β ∧ du ̸ = 0. The associated contact structure is defined by the kernel of α. The correspondence is hence given by the identification dz -→ dz z , or alternatively, by the singularization and desingularization as defined in the previous section. □ Intuitively, the lemma asserts that results known for convex contact surfaces can be translated to b-contact structures. While the proof of this lemma is straightforward, the following corollaries will be of interest for the classification of b-contact structures.

The first corollary is the well-known Giroux criteria for contact structures adapted to b-contact structures.

Corollary 3.8 (Giroux criteria for b-contact structures). Let ξ be a convex b- contact structure on (M, Z). If the dividing set Γ on a connected component Z ′ of Z contains a circle γ contractible in Z ′ , then in a neighborhood U of Z ′ , each contact leaf in U \ Z ′ contains an overtwisted disk compactly supported in U \ Z ′ , unless Z ′ = S 2 and Γ is connected.
Proof. Let t denote the coordinate in a tubular neighborhood around Z ′ for which the b-contact structure is defined by a b-form α that is convex in Z ′ ×(-ε, ε). Any surface t = δ (or t = -δ) for δ sufficiently small is a convex surface in the contact leaf of M \ Z ′ intersecting t > 0 and t < 0 respectively. Since the characteristic foliation is t-invariant, the dividing set of the convex surface t = δ or t = -δ is given by Γ as well, hence we apply the Giroux criteria for convex surfaces in a small neighborhood of t = ±δ contained in U \ Z ′ . □

The second corollary asserts that the dividing set of the b-contact structure determines the contact structure in a neighborhood around the critical set Z.

Corollary 3.9. Let (M, ξ) be a convex b-contact manifold with critical set Z and whose dividing set is Γ. Let ξ 1 be another b-contact structure whose singular 1dimensional foliation on Z is divided by Γ. Then there is an b-isotopy ψ

t : M → M , t ∈ [0, 1], such that ψ 1 (ξ 0 ) = ξ 1 .
Proof. The proof of the classical result in convex surface theory that shows that the dividing set determines the contact structure in a neighborhood around the convex surface Z ( [START_REF] Geiges | An Introduction to Contact Topology[END_REF]Theorem 4.8.11]) applies in this context using a b-Moser path method as in Proposition 3.4. □ Remark 3.10. As a corollary of Lemma 3.7, we can give another alternative definition of the characteristic foliation of the critical set. By Proposition 3.4, let α be the convex b-contact form such that ξ = ker α and we write α = u dz z + β where u ∈ C ∞ (Z) and β ∈ Ω 1 (Z). In a tubular neighborhood of Z, we can define the contact structure defined by the kernel of α = udz + β. The characteristic foliation of Z (in the b-contact sense) is given by the characteristic foliation (in the usual sense) of ker α.

Fully overtwisted b-contact structures

In this section, we will adapt the h-principle for overtwisted contact structures [E2] to a class of b-contact structures.

4.1. Formal b-contact and b-Jacobi structures. In order to prove an hprinciple for b-contact structures, we first define the formal counterpart of bcontact structures, and its interpretation in terms of Jacobi geometry.

Definition 4.1. Let (M, Z) be a b-manifold of dimension 2n + 1. A pair (α, ω) of b-forms α ∈ b Ω 1 (M ) and ω ∈ b Ω 2 (M ) is called an almost b-contact structure if α ∧ ω n > 0.
An almost b-contact structure is hence equivalent to a corank 1 subbundle in b T M equipped with a symplectic bundle structure. When the ambient manifold is three-dimensional, an almost b-contact structure is simply a coorientable b-plane field, since any rank two vector bundle admits a homotopically unique fiber-wise symplectic structure (or equivalently a fiber-wise complex structure). By duality, there is also a formal notion of b-Jacobi structure in terms of multivector fields.

Definition 4.2. A formal b-Jacobi structure on a b-manifold (M, Z) of dimension (2n + 1) is a couple (Λ, E) where Λ is a b-bivector field and E is a b-vector field such that Λ n ∧ E ̸ = 0.
Since the b-tangent bundle projects to the tangent bundle, one can look at a formal b-Jacobi structure directly in the smooth tangent bundle. In this case, it corresponds to a vector field E ′ and bivector field Λ ′ of the tangent bundle that are tangent along Z (and hence define sections of the b-tangent bundle) and satisfy

E ′ ∧ (Λ ′ ) n ⋔ 0 and (E ′ ∧ (Λ ′ ) n ) -1 (0) = Z.
We point out that requiring only this transversality condition does not imply that E ′ and Λ ′ define sections of the b-tangent bundle, so this condition needs to be imposed. This condition is not new, it is already required for the same reasons when considering formal b-Poisson structures, as in [START_REF] Frejlich | A note on symplectic topology of b-symplectic manifolds[END_REF]Section 3]. In the following lemma, we show that the two definitions are equivalent. Proof. The correspondence between formal b-Jacobi structures and formal b-contact structures is given by duality on the b-tangent bundle, similarly to Proposition 2.16 and [START_REF] Miranda | The geometry and topology of contact structures with singularities[END_REF]Proposition 6.4]. Indeed, let (α, ω) be a formal b-contact structure in (M, Z). Define E as the vector field satisfying α(E) = 1 and ι E ω = 0. The b-multivector field Λ is determined by Λ(df, dg) = ω(X f , X g ), where given a function h the vector field X h is determined by the equations We can now settle the existence of a formal b-contact structure, which only depends on the topology of the ambient manifold.

α(X h ) = h ι X h ω = dh(E)α -dh
Proposition 4.4. M admits a formal b-Jacobi structure on (M, Z), where Z is a separating hypersurface, if and only if M is stable almost complex.

Proof. First, it is easy to argue that M is stable almost complex if and only if M × R admits an almost complex structure. Indeed, let 2m -1 be the dimension of M . An almost complex structure in T M × R × C is the same as the existence of a trivial section of the associated SO(2m + 2)/U (m + 1) bundle. Here we look at the bundle over M , but it is equivalent to look at it as a bundle over M × R since this space retracts to M . The obstruction to finding such a section lies in π q (SO(2m + 2)/U (m + 1) for q up to 2m -2 (one less of the dimension of M ). However, in the stable range of the gamma groups SO/U we have that for a fixed q and variable n, the groups π q (SO(2n)/U (n) are all isomorphic for all n as long as q < 2n-1. In particular, we have π q (SO(2m+2)/U (m+1)) ∼ = π q (SO(2m)/U (m)) for each q = 0, ..., 2m -2. So the obstructions vanish either for both bundles or for none of them, so there exists an almost complex structure in T M × R × C if and only if there exists one in T M × R. We conclude applying this observation inductively to 

T M ⊕ R ⊕ C k . Now, assume that M admits a formal b-Jacobi structure (R, Λ). Consider the b-manifold (M × R, Z ×
T (M × R) ∼ = b T M ⊕ R ∼ = T M ⊕ R.
We deduce that the latter admits an almost complex structure.

For the other implication, if T M × R admits an almost complex structure then so does b T M × R, where b T M denotes the b-tangent bundle of the b-manifold [GZ] for more information on b-submanifolds). The inclusion i : The idea of the proof is to construct a homotopy of b-plane fields in a neighborhood of Z that turns η into b-contact structure whose dividing set is prescribed and satisfies the condition that χ(Z + ) -χ(Z -) = ⟨e Z (η), Z⟩. We point out that this condition is necessary, as we will see in Remark 4.8. Once this homotopy is done, the result follows from Eliashberg's relative h-principle. In particular, there are overtwisted disks contained in each connected component of M \ Z. We call such a b-contact structure fully overtwisted. Definition 4.6. A b-contact structure is fully overtwisted if there exists an overtwisted disk contained in the interior of each connected component of M \ Z.

(M × R, Z × R). This is equivalent to having a non-degenerate two b-form ω. Then (M × {0}, Z × {0}) is a b-submanifold of (M × R, Z × R) (we refer to
M × {0} → M × R induces a canonical map b i : b T M -→ b T (M × R),
We will now prove Theorem 4.5.

Proof. As η is a cooriented b-plane field, we can write η = ker α, where α ∈ b Ω 1 (M ) is non-vanishing. Let z be a local defining function for Z and T be a tubular neighborhood around Z. Then α = u dz z +β, where u ∈ C ∞ (T ), β ∈ Ω 1 (T ) and ι ∂ ∂z β = 0. Lemma 4.7. Let U = Z × (-ε, ε) be a small enough neighborhood of a surface Z and (u, β) a function and a one-form in Ω 1 (U ) such that {u = 0} ∩ {β = 0} = ∅. Then there is a smooth family

(u s , β s ) ∈ C ∞ (T ) × Ω 1 (T ) with s ∈ I = [0, 1],
for each s we have ι ∂ ∂z β s = 0, and such that

• (u 0 , β 0 ) = (u, β), • {u s = 0} ∩ {β s = 0} = ∅ for each s ∈ I, • (u 1 , β 1 ) are such that u 1 ∈ C ∞ (Z), β 1 ∈ Ω 1 (Z), • du 1 ∧ β 1 + u 1 dβ 1 ̸ = 0.
We can further impose that the zero set of u 1 is any collection of cooriented separating curves Γ in Z such that χ(Z + ) -χ(Z -) = ⟨e Z (η), Z⟩, where Z ± are as in the above theorem.

Proof. The key idea is just to notice that near Z, smooth plane fields and b-plane fields are in correspondence, and that the contact and b-contact condition coincide for R-invariant structures. We think of the pair (u, β) as a one form α = udz + β such that α ̸ = 0 defined on a neighborhood U ∼ = Z × (-ε, ε) of Z, where z is as before a coordinate in the second component of U . The one form defined a plane field since η was a b-plane field and so {x ∈ T | u x = 0 and β x = 0} = ∅.

Given any set of cooriented curves Γ in Z such that χ(Z + ) -χ(Z -) = ⟨e Z (η), Z⟩, there exist a R-invariant contact form α 1 = u 1 dz + β 1 such that u 1 (0) = Γ (and u is positive or negative respectively in Z + and Z -). This follows e.g. from [START_REF] Cardona | Morse functions and convex contact surfaces[END_REF]Theorem 1.1]. Furthermore, the Euler class of this contact structure evaluated at [Z] is given by χ(Z + ) -χ(Z -) as per [START_REF] Honda | Contact geometry[END_REF]Lemma 9.2] (or [START_REF] Cardona | Morse functions and convex contact surfaces[END_REF]Lemma 4.1]). The homotopy class of a plane field defined near Z is determined by its Euler class, so there is a homotopy of plane fields η s such that η 0 = ker α and η 1 = ker α 1 . This homotopy is generated by a smooth homotopy of defining one-forms λ s , and we can easily assume that λ 0 = α and λ 1 = α 1 . Write λ s as u s dz + β s , the family (u s , β s ) satisfies the conclusions of the statement. □

Given a set of cooriented separating curves in Z, we define the family of b-plane fields in T given by the kernel of the b-forms

α τ = u τ •φ(z) dz z + β τ •φ(z) , τ ∈ [0, 1]
where u s and β s are the families obtained in Lemma 4.7, and φ : (-ϵ, ϵ) → [0, 1] is a smooth bump function such that

     φ(z) = 0 for z ∈ [ϵ -δ, ϵ), φ(z) = 1 for z ∈ (0, δ), φ(z) = φ(-z),
for δ ∈ (0, ϵ) small. The kernel of α τ is clearly a b-plane field because {x ∈ M | (u s ) x = 0 and (β s ) x = 0} = ∅ for all s ∈ [0, 1], so the same holds for u τ φ(z) , β τ φ(z) if we choose ϵ small enough.

On the other hand α 1 is b-contact in T = Z × (-δ, δ). Indeed, we have

α 1 ∧ dα 1 = dz z ∧ (du 1 ∧ β 1 + u 1 dβ 1 ),
which is non-vanishing in T by construction. Furthermore, the b one-form α 1 agrees with α in T \ T . Hence ker α 1 extends to M as ker α, is homotopic to ker α and is of b-contact type near Z. To conclude the proof of the theorem, we apply the relative h-principle for overtwisted contact structures [?] to homotope the plane field given by the restriction of ker α to M \ T to a contact structure that agrees with ker alpha near T . We hence obtain a global b-contact structure on M that is homotopic to η and induces Γ as dividing set on Z. This proves the first part of the theorem.

For the second part, we will use that the h-principle for overtwisted contact structures is parametric. Let ξ 1 , ξ 2 be two b-contact structures on a closed bmanifold of dimension three (M, Z), and assume they have isotopic dividing sets. By Corollary 3.9, the b-contact structures are b-isotopic on an neighborhood U ∼ = Z × (-ε, ε) of the critical set Z. So, up to b-isotopy, we can assume that ξ 1 and ξ 2 are the same near Z. In each component of M \U , the b-contact structures induce two contact structures with the same convex boundary, both overtwisted, and both homotopic through formal contact structures. Applying the relative version of the h-principle for overtwisted contact structures, and Gray's stability, we deduce that there is a compactly supported isotopy of contact structures sending one to the other. We obtain a global b-isotopy φ t : (M, Z) -→ (M, Z) such that (φ 1 ) * (ξ 0 ) = ξ 1 , as claimed. □

Remark 4.8. It follows from the discussion in the proof of Lemma 4.7 that if there is b-contact structure ξ on (M, Z) inducing a dividing set Γ, then χ(Z + )-χ(Z -) = ⟨e Z (η), Z⟩. Indeed, the nearby parallel copies of Z are convex surfaces in the usual sense of contact geometry and have the same dividing set as Z. Then the equality above follows from the homotopical classification of convex surfaces in terms of its dividing set [START_REF] Honda | Contact geometry[END_REF][START_REF] Cardona | Morse functions and convex contact surfaces[END_REF].

Tight b-contact structures on three-dimensional b-manifolds

In this section, we establish the existence of tight b-contact structures on any given closed orientable three-dimensional b-manifold (M, Z).

Theorem 5.1. Let (M, Z) be a closed oriented three-dimensional b-manifold. There exists a positive b-contact structure that is tight in each connect component.

Remark 5.2. To obtain a b-contact structure that is overtwisted in a prescribed set of connected components of M \ Z, it suffices to do a full Lutz twist along transverses knot in each of those components (cf. [START_REF] Geiges | An Introduction to Contact Topology[END_REF]Section 4.3] and [L]) Before turning to the proof of Theorem 5.1, let us first prove the existence of folded contact forms under the same hypothesis.

Lemma 5.3. Let M be an orientable closed manifold of dimension 3 and let Z be a dividing hypersurface. Then there exists a folded contact form whose singular surface is Z.

Proof. This is a direct corollary of the existence of Z-immersions given by Theorem 2.4: as M is of dimension 3, there exists a Z-immersion ϕ : M → R 3 . The pull-back of the standard contact form on R 3 under ϕ yields a folded contact form on M with critical set Z. This follows from considering the pullback of the volume form α std ∧ dα std , which is clearly a folded volume form (as in [CM]), i.e. a top degree form vanishing transversely, by the local expression of ϕ near Z.

□

We now turn to the proof of Theorem 5.1.

Proof of Theorem 5.1. The first part is an adaptation of Lemma 5.3, but we need to be able to obtain a folded contact form that is R-invariant near Z. Applying Theorem 2.4, there exists a Z-immersion f : M → R. There exists neighborhoods of Z and f (Z) such that the map f is given by

f : Z × (-ε, ε) -→ Z × (-ε, ε) ∼ = U (f (Z)) (p, t) -→ (p, t 2 ).
(5.4)

Denote by τ the coordinate of the second factor in U (f (Z)), and ∂ ∂τ spans the fibers of a normal bundle of f (Z). By Theorem 2.1, there is a C ∞ -small isotopy φ s such that φ 1 (f (Z)) = Z is a convex surface in (R 3 , ξ std ). This implies that there is a neighborhood U ′ of Z, a coordinate z defining a normal direction of Z and a defining contact form α such that

α = udz + β,
where u ∈ C ∞ ( Z) and β ∈ Ω 1 ( Z). The vector field ∂ ∂z is the contact vector field transverse to Z.

We will now prove that there is an isotopy that makes the flow of the transverse vector field coincide with the folding direction.

Lemma 5.5. There exists a compactly supported ambient isotopy ϕ s of R 3 and a sufficiently small neighborhood Ũ of f (Z) such that

• ϕ s | f (Z) = φ s | f (Z) ,
• ϕ 1 ( Ũ ) ⊂ U ′ and ϕ * 1 z| Ũ = τ . Proof. The isotopy φ s : f (Z) → R 3 can be extended to a compactly supported ambient isotopy G s : R 3 → R 3 . For c > 0 small enough, G 1 ({τ ∈ (-c, c)}) ⊂ U ′ and ∂ ∂z is transverse to the level sets of the function z := (G -1 1 ) * τ . Furthermore, z coincides with z along Z since the isotopy extends φ s . Hence the function z near Z is of the form z = g • z with g ∈ C ∞ (U ′ ), a positive function such that g| z=0 = 1. We may now consider an ambient isotopy H s which chart by chart in

U ′ is of the form H s (x, y, z) = (x, y, (1 -s + s • g)z),
where x, y are coordinates in the base space of U ′ ∼ = Z × (-ε, ε). This isotopy is the identity along Z. Then H * 1 z = gz = z. The ambient isotopy ϕ s obtained by applying

G s then H s , satisfies ϕ * 1 z = G * 1 H * 1 z = G * 1 z = τ as claimed. □
The contact form α is a priori only defined in U ′ . Let α std be the standard contact form defining ξ std in R 3 . In U ′ , this means that there is a positive function h ∈ C ∞ (U ′ ) such that α = hα std . Up to considering a smaller neighborhood U ′′ ⊂ U ′ , we can extend h as a function in all M such that h ≡ 1 in M \ U ′ . This extends α to a global contact form in R 3 .

Consider the contact form

γ = ϕ * 1 α
where ϕ 1 is given by the isotopy as in Lemma 5.5. The contact structure ker γ is contact isotopic to ξ std . By construction, the contact form γ is invariant with respect to the τ coordinate in U . Indeed, since u and β depend only on the base coordinates and ϕ * 1 z = τ , we have that ũ = ϕ * 1 u and β = ϕ * 1 β depend only on the base coordinates in f (Z) × (-ε, ε) (where we chose a small enough ε). We deduce that γ| U = ũdτ + β, where ũ ∈ C ∞ (Z) and β ∈ Ω 1 (Z). The Z-immersion is written near Z and f (Z) as in Equation (5.4), hence the folded contact form α f = f * γ defined on M has near Z the expression

α f = ũtdt + β.
The singularization of the folded contact form as in Proposition 2.14 is given by

α b = ũds ε + β.
We obtain a b-contact structure in M which has no overtwisted components due to Corollary 3.3. □ Remark 5.6. Theorem 5.1 implies that there do not exist any b-manifolds (with separating Z) that do not admit any tight b-contact structure. This contrasts with the result, obtained by Etnyre-Honda [EH], that the Poincaré homology sphere does not admit any tight contact structure. In a way, tight b-contact structures only reflect the underlying topology of the connected components of M \ Z, and perhaps less the topology of the whole manifold M .

Classifications up to b-isotopy

Having dealt with the existence results for b-contact structures in the last sections, we now turn the attention to the classification of b-contact structures. More precisely, given a b-manifold (M, Z), we study how many b-contact structures there are equivalent up to b-isotopy. As M \ N (Z) consists of a union of contact manifolds with boundary, the existing classification results for tight contact manifolds with boundary are relevant for the classification. The most well-known result is the following: Theorem 6.1 (Theorem 2.1.3 in [E3]). Two tight contact structures on the 3-ball that coincide at the boundary are isotopic (relative to the boundary).

A more recent result was obtained for the solid torus, building on previous results [H1]. A dividing set in the boundary of tight solid torus is parametrized by (n, -p, q), where 0 < q ≤ p and gcd(p, q) = 1. It means that having fixed a longitude and a meridian of the boundary of the solid torus, the dividing set is given by 2n curves whose homology class is given by p times the longitude S 1 ×{0} of the solid torus and q times the meridian {0} × ∂D 2 of the solid torus. Define the integer numbers r, s to be equal to 1 if (p, q) = 1, and otherwise they depend on the continued fraction expansion of -p/q as follows. Let r 0 , r 1 , ..., r k denote are the coefficients of the (negative) continued fraction expansion of -p/q, then

r = |(r 0 + 1)(r 1 + 1)...(r k-1 + 1)r k |, s = |(r 0 + 1)(r 1 + 1)...(r k-1 + 1)(r k + 1)|.
Then the first classification in [H1] can be improved to an enumeration of the isotopy classes. Theorem 6.2 ( [LZ]). Let M = S 1 × D 2 be a solid torus. Let Γ be a dividing set on ∂M parametrized by (n, -p, q), where 0 < q ≤ p and gcd(p, q) = 1. Let the pair of integers (r, s) be defined as above. Then the number of isotopy classes of tight contact structures on M with dividing set Γ = (n, -p, q) is precisely

N (n, -p, q) = C n ((r -s)n + s),
where C n is the n-th Catalan number 1 n+1 2n n . 6.1. The case of (S 3 , S 2 ). We will start by classifying b-contact structures in the prototypical example of three-dimensional b-manifold: the three-sphere with critical set a two-sphere (say, the equator). We assume that the b-manifold (S 3 , S 2 ) is endowed with an orientation, hence there is a positive and a negative hemisphere. Let us give an example of a tight b-contact structure on (S 3 , S 2 ).

Example 6.3. Let (S 3 , S 2 ) be the b-manifold described above. Choose a neighborhood U = S 2 × (-ε, ε) of the critical set of the b-manifold, and denote by z the coordinate in the second factor. Consider udz + β, where u, β ∈ Ω * (S 2 ), be a R-invariant contact form whose diving set along S 2 is just a circle (an equator). Such form exists, just consider a convex neighborhood of an embedded sphere in any contact manifold. By Giroux criteria, it will have a connected dividing set.

We can endow U with the b-contact form α = u dz z + β. Given some positive δ < ε, the complement of S 2 × (-δ, δ) is given by two disks D + , D -. In D + , the orientation induced by the b-contact volume form defined by α near the boundary of D + induces the standard orientation of S 3 . We can fill D + with the standard contact structure in the disk with convex boundary. In D -, the b-contact volume form defined by α induces the reverse orientation. We can fill D -with the (negative) standard contact structure in the disk with convex boundary. This globally defines a tight b-contact structure in (S 3 , S 2 ). As we will see in this section, it is the unique (up to b-isotopy) positive tight b-contact structure in this b-manifold. In particular, it is b-isotopic to any tight b-contact structure obtained in (S 3 , S 2 ) via Theorem 5.1. As a b-Jacobi structure, the singular foliation has two threedimensional leaves (the upper and lower hemisphere of S 3 ), two two-dimensional leaves (the two hemispheres on the critical set S 2 ) and a single one-dimensional leaf (the connected dividing set given by the equator on the critical set S 2 ).

As an intermediate step, we characterize the isotopy classes of curves in S 2 that can arise as dividing sets of b-contact structures in (S 3 , S 2 ). Recall that given a set of cooriented separating closed curves in a surface Z, we denote by Z + , Z - the (possibly disconnected) surfaces with boundary obtained by cutting open Z along the curves. Lemma 6.4. Isotopy classes of cooriented closed curves that are the dividing set of some b-contact structure in (S 3 , S 2 ) satisfy χ(Z + ) = χ(Z-) and are in one-toone correspondence with two-equicolored trees with even number of vertices.

Proof. Given a set of curves Γ that arise as the dividing set of a b-contact structure in (S 3 , S 2 ), the associated tree is defined as follows: each connected component of S 2 \ Γ defines a vertex and two vertices are related by an edge if they share a connected component of Γ as their boundary. The resulting graph is a tree as χ(S 2 ) = 0. Recall that to each connected component of S 2 \ Γ, there is an associated sign, and thus the tree is two-colorable. We denote the set of points of S 2 \ Γ where the attributed sign is positive by S 2 + and S 2 -whenever the sign is negative. The b-plane field defined by the b-contact structure ξ defines a plane field given by a convex contact structure ξ in a neighborhood around Z as in Lemma 4.7. The contact structure defined in the neighborhood around S 2 can be extended to each side of the three-sphere, which is a disk. This implies that the degree of the Gauss map associated to ξ is zero. By Remark 4.8 and the homotopic classification of convex contact structures (see e.g. [START_REF] Cardona | Morse functions and convex contact surfaces[END_REF]Lemma 4.1]) the degree of ξ is given by 0

= deg f = 1 2 (χ(S 2 + ) -χ(S 2 -))
and therefore χ(S 2 + ) = χ(S 2 -). In the associated tree, this means that there is an equal number of positive and negative vertices and therefore the tree is a twoequicolored tree.

Conversely, given any two-equicolored tree, construct a set of (cooriented) curves Γ in S 2 inducing this tree by the previous construction. Let η be any b-plane field in (S 3 , S 2 ), its Euler class along S 2 is necessarily vanishing since the b-plane field extends to the disk defined by any of the two hemispheres of S 3 . By Theorem 4.5, there exist some b-contact structure whose dividing set is Γ. □ Remark 6.5. For n = 1, 2, 3, 4, 5, the number of two-equicolored trees with 2n vertices is given by 1, 1, 4, 14, 65, see [P].

We proceed now with the classification of b-contact structures in (S 3 , S 2 ).

Theorem 6.6. The classification of positive b-contact structures in (S 3 , S 2 ), endowed with some orientation, up to b-isotopy is the following.

• There exists only one tight b-contact structure on (S 3 , S 2 ). On the critical surface there is a single one-dimensional leaf. • b-contact structures that are overtwisted in one connected component of S 3 \ S 2 but tight in the other one are determined by a sign and an element in Z. On the critical surface there is a single one-dimensional leaf.

• For each Γ isotopy class of cooriented separating closed curves in S 2 satisfying χ(S 2 + ) = χ(S 2 -), fully overtwisted b-contact structures inducing Γ as the set of one-dimensional leaves are parametrized by Z ⊕ Z.

Note that the dividing curves that can be realized in the case where both connected components in S 3 \ S 2 are overtwisted can be combinatorically characterized, see Lemma 6.4. Remark 6.7. By the correspondence between b-Jacobi structures and b-contact forms (Proposition 2.16), Theorem 6.1 can be reinterpreted as the classification of b-Jacobi structures, where the classification is to be understood not only up to b-isotopy, but also up to fixing a defining b-contact form, as the correspondence in Proposition 2.16 is for b-contact forms and not b-contact structures.

Proof. By Proposition 3.4, we can always assume that the b-contact structure is R-invariant close to Z = S 2 . Furthermore, any isotopy class of separating curves that can arise as the set of one-dimensional leaves of a b-contact structure satisfies χ(S 2 + ) = χ(S 2 -) by Lemma 6.4, and uniquely determines the b-contact structure near Z by Corollary 3.9. We will proceed by treating first the case where the b-contact structure is tight, followed by the case where one of the connected components admits an overtwisted disk. Lastly, we consider the case where the structure is fully overtwisted.

Assume first that the b-contact structure is tight. By the Giroux criteria for bcontact structures (Corollary 3.8), the dividing set Γ ⊂ Z = S 2 has one connected component. Let U = Z ×(-ε, ε) be an R-invariant neighborhood of Z. Take δ > 0 smaller than ε, and consider Z δ := Z × (-δ, δ) ⊂ Z × (-ε, ε). Each connected component of M \ Z δ is diffeomorphic to a closed disk endowed with a contact structure and whose boundary is a convex sphere with a connected dividing set. The orientation induced by the contact structure coincides with the orientation of S 3 in one of these components, and with the opposite orientation in the other side. By Eliashberg's theorem (Theorem 6.1), there exists only one tight contact structure in the disk inducing in the boundary the convex surface characterized by a connected dividing set. Hence there is only one tight b-contact structures in (S 3 , S 2 ) up to isotopy: Example 6.3.

Assume now that one of the connected components is tight and the other one if overtwisted. Then by the Giroux criteria, the neighborhood around the critical set is tight. As before, the connected component where the b-contact structure is tight is uniquely determined by Eliashberg's theorem (Theorem 6.1). By the classification of overtwisted contact structures [E2], every homotopy class of plane fields in the other connected component can be homotoped to an overtwisted contact structure (relative to the boundary). Thus, there are Z overtwisted contact structures in that connected component. We can choose which connected component is the tight one, so there exist {+, -} × Z b-contact structures that are tight in one connected component and overtwisted in the other one.

In the last case, when the b-contact structure is fully overtwisted, the dividing set determines the b-contact structure in a neighborhood around the critical set up to b-isotopy (Corollary 3.9). This dividing set is determined by a two-equicolored tree by Lemma 6.4. Each hemisphere can be filled by as many pair-wise distinct overtwisted contact structures as homotopy classes of plane fields (relative to the boundary) by Theorem 4.5. Hence, there are Z ⊕ Z different overtwisted bcontact structures inducing that given dividing set, which concludes the proof of the theorem. □ 6.2. The case of (S 3 , T 2 ). We look at S 3 as the manifold obtained by gluing two solid tori along their boundary, by a diffeomorphism that glues the longitude of one boundary torus to the meridian of the other boundary torus. Let T 2 denote the gluing locus, and we consider the b-manifold (S 3 , T 2 ) endowed with an orientation (i.e. a sign on each solid torus). We can think as well of the critical surface as the boundary of a tubular neighborhood of an unknot on the three-sphere.

Given any b-contact structure on (S 3 , T 2 ), the Euler class of ξ is always zero, since H 2 (S 3 ) = 0. So when evaluated in T 2 , it is also zero. This shows that any dividing set of b-contact structure in (S 3 , T 2 ) is a family of embedded close curves such that χ(T 2 + ) = χ(T 2 -). Arguing as in Lemma 6.4, these families of curves can also be characterized in terms of graphs (and a pair of coprime integers for some of the graphs). Indeed, any set of curves satisfying χ(T 2 + ) = χ(T 2 -) can be identified with a graph that might have a cycle if there are curves with non-trivial homology in the torus. When there is a cycle, the set of separating closed curves is determined by specifying the homology class of these curves. Lemma 6.8. Isotopy classes of cooriented curves that are the dividing set of some b-contact structure in (S 3 , T 2 ) satisfy χ(T 2 + ) = χ(T 2 -) and are in one-to-one correspondence with pairs (G, (p, q)), where G is a two-equicolored graphs with an even number of vertices and at most one cycle, (p, q) = (0, 0) if G has no cycle and (p, q) are two coprime integers such that 0 < q ≤ p if G has a cycle.

We can now state the classification of b-contact structures in (S 3 , T 2 ). Theorem 6.9. The classification of positive b-contact structures in (S 3 , T 2 ), endowed with some orientation, up to b-isotopy is the following.

• For each isotopy class of separating cooriented curves Γ in T 2 such that χ(T 2 + ) = χ(T 2 -), fully overtwisted b-contact structures are parametrized by Z 2 ⊕ Z 2 .

• For each isotopy class as above without contractible closed curves, there are are 2 • N (n, -p, q) tight b-contact structures, where (n, -p, q) parametrizes the dividing set. • For each isotopy class as above without contractible closed curves, b-contact structures that are tight in one component and overtwisted in the other are parametrized by a sign, a number in N (n, -p, q) and an element in Z 2 .

Proof. As before, by Proposition 3.4, we can always assume that any b-contact structure is R-invariant close to Z = T 2 . Let Γ be any isotopy class of separating cooriented curves in T 2 that can realized by a b-contact structure on (S 3 , T 2 ), we know it satisfies χ(T 2 + ) = χ(T 2 -) by Lemma 6.8. It uniquely determines the b-contact structure near Z by Corollary 3.9. Let U = Z × (-ε, ε) be an R-invariant neighborhood of Z. Take δ > 0 smaller than ε, and consider Z δ := Z × (-δ, δ) ⊂ Z × (-ε, ε). By Eliashberg's classification of overtwisted contact structures [E2], there is a unique overtwisted contact structure in each relative homotopy class of plane fields in each component of M \ Z δ whose boundary is a convex surface whose dividing set is Γ. Each component of M \ Z δ is diffeomorphic to a solid torus. The relative homotopy class of a plane field in D 2 × S 1 is determined by two integers, one is the Chern class and the other one is the Hopf invariant. These capture the obstructions for two plane fields to be homotopic relative to the boundary, obstructions which lie respectively in H 2 (S 1 × D 2 , T 2 ; π 2 (S 2 )) ∼ = Z and in H 3 (S 1 × D 2 , T 2 ; π 3 (S 2 )) ∼ = Z. So there are Z 2 ⊕ Z 2 fully overtwisted b-contact structures for each possible dividing set on T 2 .

If the b-contact structure has some tight component, then by Giroux criteria (Corollary 3.8) the dividing set in the boundary of any component of M \ Z δ has no contractible closed curves. Hence, this holds for the set of one-dimensional leaves of the b-contact structure along Z. Each component is a solid torus, so it can be filled with N (n, -p, q) tight contact structures or Z 2 overtwisted contact structures. Hence there are 2 • N (n, -p, q) tight b-contact structures, and a bcontact structure that is overtwisted in one component and tight in the other is determined by choosing which component is tight, a tight structure filling D 2 ×S 1 and a homotopy class of plane fields on the solid torus (which determines a unique overtwisted contact structure). This completes the proof of the theorem. □

The strategy as employed in the proofs of Theorem 6.6 and 6.9 works in other examples as well. As already mentioned, we use the classification of the homotopy class of plane fields on each connected component of M \ Z and the classification of tight contact structures on the connected components of M \ Z (seen as a manifold with boundary), with a convex boundary Z. For example, one can classify following the same scheme of proof b-contact structures in S 3 with Z a finite number of parallel copies of S 2 .

Towards b-contact topology in higher dimensions

In this section, we give an existence theorem for b-contact structures in higher dimensions, and generalize results in [START_REF] Miranda | The singular Weinstein conjecture[END_REF] on Reeb dynamics. 7.1. Existence of fully overtwisted b-contact structures in all dimensions. In Section 4, we gave an existence h-principle for b-contact structures in three dimensions, by further prescribing the singular foliation induced by the b-Jacobi structure. We will make use of the recent advances in higher dimensional convex hypersurface theory [HH, EP] to give a weaker existence theorem in all dimensions. Note that in this case, we cannot prescribe the singular foliation as we did in the three-dimensional case.

Theorem 7.1. Let (M, Z) be a closed oriented b-manifold of dimension 2n + 1 > 3, such that Z is separating. Then any formal b-contact structure is homotopic to a fully overtwisted b-contact structure.

Proof. The strategy of the proof is similar to that of Theorem 4.5, but a complete homotopical understanding of convex hypersurface theory is not available as in the three-dimensional case. Let (α 0 , ω 0 ) be an almost b-contact structure. We write α 0 and ω 0 on a neighborhood U = Z × (-ε, ε) of Z as

α 0 = u 0 dz z + β 0 , ω 0 = γ 0 ∧ dz z + µ 0 ,
where u 0 ∈ C ∞ (U ), β 0 .γ 0 ∈ Ω 1 (U ) and µ 0 ∈ Ω 2 (U ). We identify sections k b T M with sections of k T M in U via the (non-canonical) identification dz z with dz as at the beginning of the proof of Theorem 5.1. Let (α 0 , ω0 ) be the formal contact structure obtained via this identification. By Gromov's h-principle [Gr], there exists a family of formal contact structures (α t , ωt ) with t ∈ [0, 1] such that for t = 1 it defines a contact structure in U . Now using either [HH] or [EP], the hypersurface Z ⊂ U is isotopic to a C 0 -close convex hypersurface Z. Arguing as in the proof of Theorem 5.1, there is a family of embeddings of φ t : Z × (-δ, δ), contained in U , with δ < ε, such that φ 0 is just the trivial inclusion of Z × (-δ, δ) in U and such that ( α2 , ω2 ) = φ * 1 (α 1 , ω1 ) is an R-invariant contact structure in Z × (-δ, δ) ⊂ U . Hence we obtained in Z × (-δ, δ) a family of almost contact structure ( αt , ωt ) with t ∈ [0, 2] such that for t = 2 we have an R-invariant contact form. Write αt = u t dz + β t and ωt = γ t ∧ dz + µ t . Let (α t , ω t ) with t ∈ [0, 2] be the family of b-forms obtained from (α t , ωt ) by the reidentification dz → dz z . That is

α t = u t dz z + β t , ω t = γ t ∧ dz z + µ t .
We claim that along Z, and hence in a small enough neighborhood of Z, this family is a family of formal b-contact structures. This is easily seen as follows, the formal b-contact condition is ensured by the condition

α t ∧ (ω t ) n | Z > 0, for each t ∈ [0, 2].
This condition holds along Z exactly if αt ∧ (ω t ) n > 0, since at Z we have z = 0 and the equation is the same in the b-tangent bundle and the tangent bundle. Hence in a small enough neighborhood of Z, we have a homotopy of almost bcontact structure. Furthermore, for t = 2 the contact condition and the b-contact condition coincide so (α 2 , ω 2 ) defines a genuine b-contact structure near Z. We use the homotopy extension property and a bump function to extend the homotopy (α t , ω t ) everywhere in M such that it is constant near Z × {±ε} and equal to (α t , ω t ) in a small neighborhood of Z contained in Z × (-δ, δ). We conclude by applying the h-principle for overtwisted contact structures relative to domain [START_REF] Borman | Existence and classification of overtwisted contact structures in all dimensions[END_REF]Theorem 1.1]. □

It follows from our discussion of the existence of formal b-contact structures that (M, Z) admits a b-contact structure if and only if M is stable almost complex.

Corollary 7.2. Let M be a stable almost complex odd-dimensional closed manifold. For any separating hypersurface Z, the b-manifold (M, Z) admits a fully overtwisted b-contact manifold.

7.2. Periodic orbits on the critical set. Using the observation in Proposition 3.4, we can show that there exist always contact leaves on the critical set of a bcontact manifold. Furthermore, the b-Reeb field defined by any b-contact form is always tangent to such submanifolds, where it is parallel to the Reeb field defined by a contact form.

Theorem 7.3. Let ξ be a b-contact structure on (M 2n+1 , Z), and α a b-contact form defining ξ. There exists a one-parametric family of codimension two submanifolds contained in Z where ξ induces a (regular) contact structure. Furthermore, the b-Reeb field of α is tangent to these hypersurfaces, and it coincides there with a reparametrization of the Reeb field defined by a (regular) contact form.

Proof. Write α on a neighborhood U = Z × (-ε, ε) of Z as α = u dz z + β with u ∈ C ∞ (U ) and β ∈ Ω 1 (U ). Even if α is not convex, the b-contact condition still implies that on Z u(dβ) n + nβ ∧ du ∧ (dβ) n-1 ̸ = 0, as can be seen from Equation (3.5). On the set W = {x ∈ Z | u(x) = 0}, this implies that du ̸ = 0 and thus W is a regular hypersurface in Z. Furthermore, this also implies that i * W α = β is a contact form, where i W denotes the inclusion of W in M . The set W is non-empty, since otherwise µ = u(dβ) n + nβ ∧ du ∧ (dβ) n-1 restricted to Z defines an exact volume form. Finally, the level sets W δ = {x ∈ Z | u(x) = δ} are regular as well for every δ positive or negative but small enough, and i W δ α defines a contact form as well since being contact is an open condition.

It remains to show that the b-Reeb field defined by α is tangent to W δ and coincides with the Reeb field defined by the contact form β δ = i * W δ α. To see this, write the Reeb vector field of α in U as R α = g •z ∂ ∂z +X, where g ∈ C ∞ (U ) and X is tangent to the hypersurfaces Z × {z} with z ∈ (-ε, ε). Denote by i : Z -→ U the inclusion of the critical set in U . The equations ι Rα α = 1 and ι Rα dα = 0 evaluated in Z yield

g • u + β(X) = 1 gd Z u + ι X d Z β + ι X du ∧ dz z + z • ι R ([ β + u]
∧ dz z ) = 0, At z = 0, we deduce that ι X du = 0 and that ι X d Z β = -gd Z u. The first equation implies that i * u is a first integral of R α | Z , hence R α is tangent to each W δ .

Finally, the second equation pullbacked to W δ yields ι X i * W δ dβ = 0. Hence R| Z lies in the kernel of β δ = i * W δ β and so is parallel to the Reeb field of β. Indeed, β δ (R α ) = β δ (X) = 1 -g • u, which is close to 1 when u is close to zero. □ Remark 7.4. The contact leaf contained on the critical set of a b-contact manifold obtained in Proposition 7.3 corresponds to an odd-dimensional leaf of the singular foliation of the Jacobi structure associated to the b-contact structure.

The complement in Z, that is Z \ Γ are even-dimensional leaves of the Jacobi structure, with an induced structure that is locally conformally symplectic.

It follows that as long as the Weinstein conjecture holds in dimension dim M -2, any b-Reeb field has infinitely many periodic orbits on Z. Since the Weinstein conjecture is known in dimension three [T], we deduce the following results, which generalizes [MO2, Proposition 6.1] to dimension five.

Corollary 7.5. Let (M, Z) be a five-dimensional b-manifold endowed with a bcontact form α. The b-Reeb field defined by α admits infinitely many periodic orbits on the critical set.

[V] I. Vaisman. Jacobi manifolds. Selected topics in Geometry and Mathematical Physics, Vol. 1, (2002) 

  M called the b-tangent bundle and denoted by b T M . The dual of the b-tangent bundle denoted b T * M is called b-cotangent bundle. Sections of the bundle k b T * M are called b-forms and denoted by b Ω k (M ). Given a local defining function z of the critical set Z, that is a function z : U → R defined in a neighborhood U = Z × (-ε, ε) of Z whose zero level-set is regular and given by Z, a b-form ω ∈ b Ω k (M ) can be written in U as ω = dz z ∧ α + β, where α ∈ Ω k-1 (U ) and β ∈ Ω k (U ) are smooth differential forms. The differential of a b-form extends the usual exterior derivative and is defined in a neighborhood of U by dω := dz z ∧ dα + dβ.

  M ) = 0 and therefore there exists a non-vanishing vector field on M . The line bundle of this yields a trivial line field on b T M . We obtain a b-plane field by taking the orthogonal subbundle of the trivial line field with respect to a b-metric (a bundle metric on b T M ).□

3. 1 .

 1 The critical set and its associated characteristic foliation. Similar to characteristic foliations in contact geometry, the b-contact structure prints a singular foliation on the critical set Z. Definition 3.1. The characteristic foliation Z ξ of a b-contact structure ξ = ker α along Z is given by the fiberwise intersection ξ ∩ T Z in b T M .

  3.3. b-contact structures are convex. In the next proposition, we establish a very important fact about b-contact structures: they are always convex along Z. Proposition 3.4. Let α ∈ b Ω 1 (M ) define a b-contact structure ξ = ker α on a b-manifold (M, Z) of dimension 2n + 1. If Z is compact, then there exists an R-invariant contact form defining ξ near Z. Proof. In a tubular neighborhood N (Z) around Z, the b-contact form decomposes as α = u dz z + β where u ∈ C ∞ (N (Z)) and β ∈ Ω 1 (N (Z)). The key observation is that along Z the b-contact condition only takes into account u and β restricted to Z. The b-contact condition writes

  Lemma 4.3. Formal b-Jacobi structures are in correspondence with formal bcontact structures.

  Conversely, a formal b-Jacobi structure (Λ, E) determines a formal b-contact structure. The one b-form α is determined by α(E) = 1 and Λ(α, •) = 0, and the two b-form is determined by the equations ι E ω = 0 and ω(Λ(γ, •), •) = γ for any γ ∈ b T M such that γ(E) = 1. □

  R), denote by t the R coordinate and by π : M × R -→ M the projection to the first factor. The bivector field Π = π * R ∧ ∂ ∂t + π * Λ is a non-degenerate section of Λ 2 ( b T (M × R)) that induces a fiberwise complex structure on b T (M × R). As vector bundles over M × R or over M , we have b

  and b i * ω defines a b-form of degree 2 of the b-manifold (M, Z) which is of maximal rank in M . In particular, its kernel is a one-dimensional line bundle of b T M . Choosing any one b-form α that is positive along the kernel of b i * ω, we obtain a formal b-contact structure (α, b i * ω) and hence a formal b-Jacobi structure. □ 4.2. Fully overtwisted b-contact manifolds. In this section, we establish an existence and classification theorem for b-contact structures that are overtwisted in each leaf of maximal dimension, on closed b-manifolds of dimension three. Let η be a b-plane in (M, Z). Having fixed an orientation of Z, the Euler class e Z (η) ∈ H 2 (Z, Z) of η along Z is determined by the integer ⟨e Z (η), Z⟩. Given a set of cooriented dividing closed curves on Z, we denote by Z + (respectively Z -) the components of Z \ Γ that have Γ as a positive (respective negative) boundary. Theorem 4.5. Let (M, Z) be an oriented b-manifold of dimension 3 and let η be a b-plane field. Then η is homotopic through b-plane fields to a fully-overtwisted b-contact structure whose dividing set is any collection of cooriented separating curves in Z such that χ(Z + ) -χ(Z -) = ⟨e Z (η), Z⟩. Furthermore, if two fullyovertwisted b-contact structures have isotopic dividing sets and are homotopic relative to Z, then they are contact b-isotopic.
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