Scalable Hybrid Deep Neural Networks/Polarizable Potentials Biomolecular Simulations including Long-range Effects
Résumé
Deep-HP is a scalable extension of the Tinker-HP multi-GPUs molecular dynamics (MD) package enabling the use of Pytorch/TensorFlow Deep Neural Networks (DNNs) models. Deep-HP increases DNNs MD capabilities by orders of magnitude offering access to ns simulations for 100k-atom biosystems while offering the possibility of coupling DNNs to any classical (FFs) and many-body polarizable (PFFs) force fields. It allows therefore to introduce the ANI-2X/AMOEBA hybrid polarizable potential designed for ligand binding studies where solvent-solvent and solvent-solute interactions are computed with the AMOEBA PFF while solute-solute ones are computed by the ANI-2x DNN. ANI-2X/AMOEBA explicitly includes AMOEBA's physical long-range interactions via an efficient Particle Mesh Ewald implementation while preserving ANI-2X's solute short-range quantum mechanical accuracy. The DNNs/PFFs partition can be user-defined allowing for hybrid simulations to include biosimulation key ingredients such as polarizable solvents, polarizable counter ions, etc... ANI-2X/AMOEBA is accelerated using a multiple-timestep strategy focusing on the models contributions to low-frequency modes of nuclear forces. It primarily evaluates AMOEBA forces while including ANI-2x ones only via correction-steps resulting in an order of magnitude acceleration over standard Velocity Verlet integration. Simulating more than 10 μs, we compute charged/uncharged ligands solvation free energies in 4 solvents, and absolute binding free energies of host-guest complexes from SAMPL challenges. ANI-2X/AMOEBA average errors are within chemical accuracy opening the path towards large-scale hybrid DNNs simulations, at force-field cost, in biophysics and drug discovery.
Mots clés
Molecular dynamics
Molecular dynamics simulations
AMOEBA polarizable force field
ANI neural network
Neural network
Neural network models
Binding free energy
Binding free energy prediction
Solvation free energy
Multiple time stepping
Quantum chemistry
Force field molecular dynamics
Machine learning applications
Machine learning and deep learning
Long-range Interactions
Tinker-HP
Deep-HP
Machine learning
Force field
Origine | Publication financée par une institution |
---|