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Solving the linearized Euler equations in the harmonic frequency domain amounts to solving a large linear system. Doing so repetitively can be costly, especially when some parameters need to be varied (e.g., the acoustic impedance of a liner), such as in optimization and impedance eduction problems. To accelerate the calculations, the equations can first be projected onto a basis of reduced dimension, only requiring a limited number of full solutions called snapshots, calculated at different impedance values. This paper is concerned with finding an optimal set of impedances allowing the greedy creation of a reduced basis that leads to the most accurate surrogate modeling in the least number of calls to the direct solver. The optimal set of impedance values is first obtained on a 2D duct configuration, and verification tests are performed on a 3D engine nacelle.

I. Introduction

Acoustic liners are passive sound absorption devices mounted within the walls of complex systems such as engine nacelles or jet pumps. These acoustic liners are oftentimes made of a perforated face-sheet placed over a rigidly backed cavity. Due to the small scale of the perforations in acoustic liners, a complete direct numerical investigation of the liner's efficiency would be too computationally expensive for industrial applications. A different approach consists in representing acoustic liners as a boundary condition (BC), using the concept of surface impedance. Assuming that the liner can be treated macroscopically and that it is locally reacting (i.e., no acoustic wave propagation in the transverse direction), the surface impedance is defined in the frequency domain at each angular frequency ω as the ratio of the acoustic pressure p and the normal acoustic particle velocity ṽn at a liner interface, as

Z (ω) = p (ω) Z f ṽn (ω) , (1) 
with Z f the characteristic impedance of air used as a normalization factor. The real part of the impedance is called resistance, while the imaginary part is called reactance. The impedance operator Z, defined in the frequency domain as a function of the liner's geometric properties [START_REF] Dah-You | Theory and design of microperforated panel sound-absorbing constructions[END_REF][START_REF] Atalla | Modeling of perforated plates and screens using rigid frame porous models[END_REF], fully characterizes the acoustic behavior of the liner. Throughout the text, the tilda mark • denotes a frequency dependent quantity.

For the acoustic liner designer, the first task is to select the geometrical properties of the liner that best meet the noise cancellation requirements (i.e., target noise reduction for a given frequency range at a certain flight condition). To do so, the system (i.e., engine nacelle, duct) can first be characterized numerically at all frequencies of interest, for a large range of impedance values that potential liner candidates could attain. Following this large series of direct calculations, acoustic quantities of interest can be mapped onto the impedance real and imaginary parts. One can then test different liner models, changing their geometric properties to evaluate their impedance, and use the impedance map to evaluate acoustic quantities. For large systems, where the cost of a high-fidelity calculation is important, the creation of such impedance maps can become intractable.

The second task that arises is that of impedance eduction: using experimental data retrieved in an aeroacoustic duct, one can indirectly measure the liner's impedance via its influence on the acoustic field [START_REF] Watson | Validation of an impedance eduction method in flow[END_REF][START_REF] Jones | Benchmark data for evaluation of aeroacoustic propagation codes with grazing flow[END_REF][START_REF] Eversman | Impedance eduction with an extended search procedure[END_REF][START_REF] Busse-Gerstengarbe | Impedance eduction based on microphone measurements of liners under grazing flow conditions[END_REF][START_REF] Primus | An adjoint-based method for liner impedance eduction: Validation and numerical investigation[END_REF][START_REF] Zhou | A systematic uncertainty analysis for liner impedance eduction technology[END_REF][START_REF] Roncen | Statistical Inference Method for Liner Impedance Eduction with a Shear Grazing Flow[END_REF][START_REF] Lafont | Liner Impedance Eduction Under Shear Grazing Flow at a High Sound Pressure Level[END_REF]. This process often requires an accurate numerical model, and many solver evaluations.

Reduced order models (ROM) are thus necessary for problems of practical interest, where the system complexity has to be reduced. In the context of noise cancellation in large systems, one could benefit from such a model reduction when performing the optimization of the properties of an acoustic liner, for instance. The approach followed in this work to reduce the computational effort is the reduced basis method [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF], which was first used for impedance eduction in Ref. [START_REF] Roncen | Statistical Inference Method for Liner Impedance Eduction with a Shear Grazing Flow[END_REF], to project the linearized Euler equations (LEE) onto a reduced basis (RB). This allowed the fast sampling of a Markov Chain Monte Carlo method for the Bayesian inference of the impedance parameter, in a statistical eduction method. The speed-up factor was of the order of 10 3 . The main novelty of the present work, compared with that of Ref. [START_REF] Roncen | Statistical Inference Method for Liner Impedance Eduction with a Shear Grazing Flow[END_REF], is the use of a greedy sampling strategy in order to minimize the number of calls to the direct solver [START_REF] Binev | Convergence rates for greedy algorithms in reduced basis methods[END_REF][START_REF] Buffa | A priori convergence of the greedy algorithm for the parametrized reduced basis method[END_REF]. The high fidelity (and costly) solutions, called snapshots, are used in order to build a RB onto which the set of equations -here the LEE-are projected. One obtains a system whose size is drastically reduced, which can be solved at a fraction of the initial cost while recovering highly accurate acoustic fields.

In this work, we address the critical question of the selection of snapshots, i.e., how to choose the impedance values at which the direct solver needs to be evaluated? A numerical investigation is set up to show the benefits of the residual-driven greedy approach, which uses the residual norm as error indicator to iteratively select the best impedance values.

The acoustic problem is first recalled in Sec. II, and a Discontinuous-Galerkin (DG) harmonic solver is presented to solve the LEE with an impedance BC in the frequency domain. In Sec. III, the RB technique is detailed. The crux of the problem is addressed in Sec. III.A, where the residual-driven greedy approach is detailed. In Sec. IV, the technique is first applied on a 2D duct configuration to obtain an optimal set of impedance values. This optimal set is then tested in a fully 3D configuration of an engine nacelle. Conclusions are drawn in Sec. V.

II. High-fidelity solver

The direct problem consists in numerically calculating the acoustic fields (pressure and velocity) in a grazing flow duct, in the presence of a liner. A locally reacting liner is classically represented by an impedance BC. The 2D LEE are solved using a harmonic DG scheme [START_REF] Primus | An adjoint-based method for liner impedance eduction: Validation and numerical investigation[END_REF][START_REF] Roncen | Statistical Inference Method for Liner Impedance Eduction with a Shear Grazing Flow[END_REF], succinctly recalled here for completeness.

A small scale aeroacoustic bench is considered for the present numerical investigations. A schematics of ONERA's B2A bench is shown in Fig. 1, along with the area where measurements can be performed (microphone measurements on the wall opposite the liner). An example of the 2D numerical mesh is also given (done in Gmsh [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF]). The liner is located at the bottom wall (y = 0) and is 150 mm long. The duct cross-section is square with a size H = 50 mm. The method description presented in this section is mostly inherited from previous work in Ref. [START_REF] Roncen | Statistical Inference Method for Liner Impedance Eduction with a Shear Grazing Flow[END_REF]II.B]. The 2D simulations are carried out in the (x, y) plane at the center of the duct span (see Fig. 1).

The LEE, written in non-conservative form with an e jωt time dependence (ω = 2π f , with f the frequency in Hz) are given by jω φ

+ A x ∂ x φ + A y ∂ y φ + B φ = S, (2) 
where j is the complex unit, A x , A y are flux matrices of size R 3×3 . If a homentropic flow is assumed,

A x = U 0 0 c 0 0 U 0 0 c 0 0 U 0 , A y = V 0 0 0 0 V 0 c 0 0 c 0 V 0 , B = ∂ x U 0 ∂ y U 0 ∂ x c 0 ∂ x V 0 ∂ y V 0 ∂ y c 0 c 0 ρ 0 ∂ x ρ 0 c 0 ρ 0 ∂ y ρ 0 γ-1 2 ∂ x U 0 + ∂ y V 0 , (3) 
and S is a source vector injecting waves in the domain. In Eq. 3, U 0 and V 0 are the x and y components of the mean flow velocity, ρ 0 is the ambient fluid density, and c 0 the ambient fluid speed of sound. Throughout the text, the 0 subscript denotes a mean flow quantity. Components of the state vector φ = ũ, ṽ, p ρ 0 c 0 , represent the acoustic perturbations around the mean flow, with ũ, ṽ the x and y acoustic velocities, and p the acoustic pressure. When a mean flow (U 0 , V 0 ) is taken into account, M a = 1 H c 0 ´y=H y=0 U 0 (y)dy is the average (bulk) Mach number. The present study is restricted to an incompressible mean flow. Due to the homentropy condition, the energy equation is replaced by the state equation p = c 2 0 ρ, with ρ the density perturbation around the mean flow density ρ 0 .

A shear mean flow profile with a null mean flow velocity at the walls is considered, so the impedance BC writes

p = ρ 0 c 0 Z ṽn , ( 4 
)
where ṽn is the normal component of the acoustic velocity (pointing into the liner, thus equal to -ṽ| y=0 in the present case). The impedance Z is normalized by Z f = ρ 0 c 0 in this work. It is unpractical to work directly with the impedance, since the quantity is unbounded, (r ∈ R + , χ ∈ R). In Refs. [START_REF] Monteghetti | Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models[END_REF][START_REF] Fiévet | Strong compact formalism for characteristic boundary conditions with discontinuous spectral methods[END_REF], it was shown to be more efficient to consider instead the reflection coefficient operator R, defined by

R = Z -1 Z + 1 , R ∈ C, R ≤ 1. (5) 
In the remainder of this study, the reflection coefficient is used to represent an impedance BC.

A DG scheme is chosen to solve Eq. 2 and the associated BCs. Discontinuities are allowed at the interface between two elements, and the communication between elements is enforced via a numerical flux. Let us denote N the number of degrees of freedom which depends on the number of mesh elements (in the 2D case, ∼ 10 3 -10 4 ) and the DG order (here p = 2). In this situation, the discretization of Eq. 2 is

L R φ R = S, (6) 
where L R is a complex, non-hermitian and R-dependent N × N matrix , and φ R ∈ C N denotes the R-dependent numerical approximation of acoustic pressure and velocity fields. Note that the source represented by S ∈ C N does not depend on the reflexion coefficient. It is to be noted that the matrix L R has an explicit dependency in R , since one

can write L R = L1 + R L2
, where L1 and L2 are two complex R-independent N × N matrices. An example of how such a method can handle discontinuities at hard-soft wall interfaces is found in Refs. [START_REF] Primus | An adjoint-based method for liner impedance eduction: Validation and numerical investigation[END_REF][START_REF] Pascal | Discontinuous Galerkin method for the computation of acoustic modes in lined flow ducts with rigid splices[END_REF]. A flux vector splitting method is used to ensure the connection between interior cells, while a centered flux is chosen at the boundaries [START_REF] Primus | An adjoint-based method for liner impedance eduction: Validation and numerical investigation[END_REF][START_REF] Piot | Liner impedance eduction technique based on velocity fields[END_REF]. To avoid aliasing errors that could cause instabilities when a shear grazing flow is present, high order quadrature rules are used (see e.g., Ref. [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF]Sec. 5.3]).

III. Reduced basis approach

Solving the PDEs described by Eq. 2 repetitively would be prohibitively long, especially when a large number of frequencies and different Mach numbers are considered to design a liner that is optimal in a wide range of conditions. Without any acceleration, a single evaluation of the quantity of interest Ψ R on the PDEs takes about a second in a simple 2D configuration, at one frequency/flow profile. This quantity Ψ is derived from the knowledge of the acoustic fields, and could be for example the transmission loss of the system (in dB) to be optimized. While it may seem fast, doing N eval function evaluations could still easily require over an hour without acceleration, for each frequency/Mach number. In an optimization problem, the number of required evaluation depends on the complexity of the liner geometry, represented by its parameter space Θ. Instead of performing an optimization directly from Θ to Ψ, i.e., optimizing Ψ R (Θ) , it is much more efficient to split the problem into two sub-problems, due to the time-scale disparity between the calculations of R (Θ) and Ψ R . As discussed in the introduction, impedance maps of acoustic quantities need only be created once (or rather, reflection coefficient maps), i.e., the calculation of Ψ R can be done offline to cover a large number of reflection coefficient values in the unit complex circle. Then, an interpolation tool can be used to return Ψ R for all possible values of R, at minimal cost. This map-building step is the numerically intensive operation dominating the cost of the optimization, since calculating R (Θ) is usually instantaneous on current machines. Another advantage of this problem splitting approach is that one does not have to restart the problem from scratch when attempting the optimization of another type of liner, since the reflection coefficient maps of the observation operator can be reused.

To shorten the time-intensive operations described above, an efficient representation of the discretized state of the system φ is obtained at a lower cost by first building a reduced basis using the method of snapshots, as explained in Pinnau [START_REF] Pinnau | Model reduction via Proper Orthogonal Decomposition[END_REF] and used for Bayesian inference in the context of liner impedance eduction in Ref. [START_REF] Roncen | Statistical Inference Method for Liner Impedance Eduction with a Shear Grazing Flow[END_REF]. The approach is summarized again here for completeness.

The full discretized DG system 6 is parameterized by the unknown parameters, here the reflection coefficient R. A set of n parameter samples R(1) , . . . , R(n) is generated (i.e., n different complex values of the reflection coefficient are picked), yielding the associated system states, or snapshots: φ(1) , . . . , φ(n) . Following standard POD practice [START_REF] Pinnau | Model reduction via Proper Orthogonal Decomposition[END_REF], a singular value analysis is performed to extract the m < n dominant modes ξ (1) , . . . , ξ (n) and a reduced basis is defined

as V m = ξ (1) |• • • | ξ (m) ∈ C N ×m . Approximating Eq. 2 by a Galerkin projection yields V m * L R V m φm R = V m * S, (7) 
where * stands for the conjugate transpose. The solution of Eq. 7 is obtained via the inversion of a linear system of size m × m. This allows the approximation of the state φ by a linear combination of vector elements of

V m as φ R ≈ V m φm R . (8) 
When the decay of the singular values is fast, one may retain only a small number m of POD modes, which enables m N and so the reduced system represented by Eq. 7 is much faster to solve than the full system, while maintaining at a high level of accuracy.

The main issue with POD is that the set R(1) , . . . , R(n) must be sufficiently large for φ(1) , . . . , φ(n) , the n snapshot solutions, to adequately account for the parametric variations. In practice, this amounts to computing a large number n of high-fidelity solutions, when at the end, only a small number m < n of modes are retained for the reduced basis. The greedy reduced basis method, presented in Section III.A, circumvents this issue by iteratively selecting the reflection coefficient values R(1) , . . . , R(n) at which high-fidelity solves are required, maintaining the overall number of solves n optimally low, thus allowing all computed snapshot solutions φ(1) , . . . , φ(n) to be kept in the reduced basis (note that this corresponds to m = n and so the process does not require singular value analysis).

A. Residual-driven greedy selection

Let us define the RB residual r, given a RB space V m of size m, as r = L R V m φm R -S, where φm solves Eq. 2.

Similar to the state variable, which has three components φ = ũ, ṽ, p ρ 0 c 0 ∈ C N , we denote r = ru , rv , rp ∈ C N . In this numerical investigation, the focus is placed on the pressure component rp of the residual, which in fact depends on both the reflection coefficient value R and the RB space V m , i.e., rp = rp R, V m . The reflection coefficient R takes values in some compact set D ⊂ C. It is proposed to measure the quality ∆ of a given RB space V m in terms of the maximum pressure residual over the compact set D ⊂ C, that is

∆ V m = max R ∈Ξ rp R, V m 2 , (9) 
with a low value of ∆ indicating a high quality of the approximation. Note that, in practice, the maximization in Eq. 9 can be performed by enumeration on a fine discrete set Ξ ⊂ D. Indeed, the residual norm for any reflection coefficient value is inexpensive to compute, owing to the affine property satisfied by the operator L, allowing the efficient offline/online decoupling of the computational effort in the RB method [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF].

There are three selection strategies that were explored to select the snapshots: £ uniform "fixed" selection based on user choice, followed by POD, £ random selection of the reflection coefficients, followed by POD, £ residual-driven greedy selection [START_REF] Binev | Convergence rates for greedy algorithms in reduced basis methods[END_REF][START_REF] Buffa | A priori convergence of the greedy algorithm for the parametrized reduced basis method[END_REF]. This last strategy consists in the following. First, the high-fidelity solution ϕ (1) at some initial reflection coefficient value R(1) ∈ D is computed and the RB is initialized to V 1 = ϕ (1) . Due to the relative importance of the value R = 0 (which corresponds to Z = 1, leading to a total absorption at normal incidence of a wave), this value is selected for the initialization in all cases.

Then, for n 2, the algorithm is updated by finding

R(n) = argmax R ∈ D rp R, V n-1 2 , (10) 
computing the high-fidelity solution φ(n) at this reflection coefficient value, and then updating the RB space as

V n = V n-1 ⊕ φ(n) . (11) 
The iterations may be stopped once the quality indicator ∆ V n has reached a prescribed tolerance. Notice that the RB is successively enriched with solutions at reflection coefficient values leading to the worst approximation properties.

IV. Examples

A. The 2D duct

To illustrate the interest of the greedy selection algorithm, we first consider the simple 2D duct geometry defined in Sec. II. A plane wave is considered at a frequency set to 500 Hz. The mean velocity profile is taken constant and equal to 0 everywhere. The 3 snapshot selection strategies are tested, namely "fixed", "random" and "greedy" (or optimized).

A user might not always be interested in the full solution of the problem. In practice, the solution sometimes only needs to be accurate at the microphone locations where the experimental data is obtained (i.e., where the quantity of interest Ψ is defined). As such, two different residuals can be considered: one where the full pressure field is used to calculate the maximum residual (one could also consider the velocity fields), and one where only the pressure on the wall opposite the liner is used. Since the results were similar in both cases (the main difference is that the residual is lower when only the opposite wall is considered, as expected since it represents a subset of the total solution), the analysis is only performed on the latter case (residual calculated on the opposite wall pressure). The convergence analyses of the maximum residual over the domain D = R ∈ C, R ≤ 1 for the three snapshot-selection strategies are displayed in Fig. 2, along with the location of said snapshots.

The residual-driven greedy selection leads to an improved reduced basis. As stated previously, when only the upper wall pressure is considered, the maximum residual is lower than when the entire pressure field is considered (results, which are not shown for conciseness, gave very similar trends in both the locations of the snapshot and the residuals). This is caused by a high residual located near the impedance discontinuity (far from the upper wall). Indeed, near the impedance discontinuity, a strong variation of the velocity fields (and, to a lower extent, the pressure field), is observed. This local "feature" seems difficult to encompass in the projection strategy of the snapshot approach, thus leading to a high residual. Interestingly, the snapshot locations (i.e., the reflection coefficients used to create the snapshots) tend to cluster near R = -1. This corresponds to impedance values close to Z = 0, associated with the largest possible impedance discontinuity. In the following, an attempt is made at determining a set of reflection coefficient values that are optimal for a subset of problems, where the impedance is known in advance to be larger than 0.

B. Constrained greedy selection of the snapshots

In aeroacoustic problems, the acoustic liner is subject to a shear grazing flow, which in turns changes the impedance value. In most models [START_REF] Guess | Calculation of perforated plate liner parameters from specified acoustic resistance and reactance[END_REF][START_REF] Kirby | The impedance of perforated plates subjected to grazing gas flow and backed by porous media[END_REF][START_REF] Chen | Acoustic impedance of perforated plates in the presence of fully developed grazing flow[END_REF], this change is mostly reflected on the real part of the impedance (called resistance), where an increase is observed. In the presence of a high sound pressure level, models also tend to yield an increase in the resistance [START_REF] Guess | Calculation of perforated plate liner parameters from specified acoustic resistance and reactance[END_REF][START_REF] Melling | The acoustic impendance of perforates at medium and high sound pressure levels[END_REF][START_REF] Temiz | Non-linear acoustic transfer impedance of micro-perforated plates with circular orifices[END_REF]. As a result, the liner designer might know in advance, for a given application (engine nacelle, jet pump), the minimal value of the resistance. The greedy strategy for snapshot selection is thus re-used, but only on the subset of reflection coefficient values corresponding to a given minimal resistance value. Different minimal values are considered. The frequency of the input plane wave is set once again to 500 Hz, and a null mean flow is considered. The corresponding optimal reflection coefficient and impedance values (in the sense of the greedy algorithm) are displayed in Fig. 3, and the corresponding decrease of the residual is shown in Fig. 4.

Note that in Fig. 3, the reflection coefficient values that do not further improve the residue are not displayed, for improved readability. When the minimum of resistance is only 0.01, all values are displayed because no convergence was observed within 25 iterations of the greedy selection algorithm. As the minimum of resistance re Z is increased, the convergence of the maximum residual value is faster (only 7 iterations of the greedy selection are necessary when re Z > 1). This was expected, since the impedance discontinuity is not as marked when re Z > 1, meaning the pressure field features are smoother and thus easier to be projected onto a linear basis. In all cases, the greedy algorithm seems to converge close to the imposed constraint on the resistance value. Table 1 regroups the different values of reflection coefficient and impedance, in "chronological" order, in terms of building the reduced basis. The following section uses these same values on a more complex 3D case, to test the robustness of the selected 

C. 3D nacelle engine

The results of the previous sections are now used for the exploration of the impedance space associated with a 3D engine nacelle configuration. The mesh considered in this work is displayed in Fig. 5a and a schematics is presented in Fig. 5b, where the different boundary conditions are made explicit. Using previous knowledge on acoustic liners placed in aero-engines, the minimum value of resistance is fixed to 0.5 in the greedy selection algorithm (allowing the use of the corresponding column in Table 1). This choice is motivated by the presence of a strong shear grazing flow and SPL in such nacelles, which results in an increase in the resistance. Note that the previous hypothesis does not necessarily preclude precise solutions to be reached for re Z < 0.5. Here, for simplicity, the mean flow is taken null everywhere in the simulation.

Only a single frequency is considered ( = 587 Hz), and the inlet condition consists in a high order acoustic mode (radial order 0, azimuthal order 4). Once the reduced order model is built, the quantity of interest can be evaluated at all impedance values of interest, thus generating a map. Here, the observed acoustic quantity is an attenuation coefficient α (in dB), defined using the acoustic intensity at surfaces before and after the liner, respectively S 1 and S 2 in Fig. 5b, as

α = 10 log 10 ¸S2 i • dS ¸S1 i • dS . (12) 
In the absence of flow, the intensity i is defined as

i = p       ũ ṽ       . ( 13 
)
Full calculations at different impedance values were conducted to validate the precision of the reduced basis, showing an excellent agreement. However, due to the numerical budget required for each full calculation, the total attenuation coefficient map was not evaluated. In this 3D configuration, N ≈ 10 6 and the high-fidelity solver is run on 1024 processors in ≈ 3 min.

The impedance map of the attenuation coefficient is obtained using the greedy algorithm with m = 10, as per Table 1. Results are displayed in Fig. 6. From this map, one deduces the optimal impedance Zopt ≈ 1.1 + 0.11j. The difference between the acoustic pressure fields of a rigid case (where the impedance is Zrigid = +∞) and the optimal case is displayed in Fig. 7.

In order to test the convergence of the ROM as a function of the available numerical budget, different values of m were selected. Comparisons between the different cases (m ∈ [START_REF] Atalla | Modeling of perforated plates and screens using rigid frame porous models[END_REF][START_REF] Roncen | Statistical Inference Method for Liner Impedance Eduction with a Shear Grazing Flow[END_REF]) are observed in Fig. 8, showing the difference of the impedance maps of the acoustic indicator with respect to the solution for m = 10, i.e., |α

(i) -α (m = 10)| , i ∈ [2, 9].
As expected, the error is concentrated towards the limit re Z = 0.5, where the maximum of impedance discontinuity is realized. However, it is shown that for as little as m = 3, the error made on the map is relatively small (2%) with respect to the maximum of attenuation of 16 dB. The integrated L 2 error made on these maps is given in Fig. 9, showing a quasi exponential convergence of the average error as m is increased.

D. Discussion on the speed-up factors

When using a snapshot based ROM, defining a speed-up factor can be tricky. Clearly, once the ROM is built, assembling the reduced system Eq. 7 at given impedance value takes about O m 2 operations and inverting the system requires about O m 3 operations using a direct solver. Expressing the RB solution in the DG basis using Eq. 8 amounts to O (mN ) operations. Thus, in the limit m N , the cost of the RB solution at a given impedance value requires roughly O (mN ) operations. This is incomparably cheap compared to the high-fidelity solver, which requires not only the assembly of a large-scale N × N sparse linear system, but also its iterative resolution (here, we rely on the FETI-2LM method [START_REF] Farhat | Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems[END_REF]). Here, as in the ROM literature, the speed-up is evaluated as the ratio between the elapsed time for solving the ROM and the elapsed time for solving the high-fidelity problem. This omits the costs associated to the construction of the ROM, which is dominated by the m high-fidelity solves. In the 2D case presented in Sec. IV.A, the speed-up factor was ≈ 10 3 -10 4 depending on the mesh density and on the DG order. In the 3D nacelle case of Sec. IV.C, the speed-up factor reached ≈ 10 6 . Note that in practice, one needs to extract part of the solution in order to evaluate the quantity of interest, and some of the solution needs to be saved on disk. These operations were, in the present case, dominating the numerical cost of the 3D case, bringing back the speed-up factor to ≈ 10 3 .

V. Conclusion

An optimal set of reflection coefficient values (or equivalently, of impedance values) was obtained in order to build a reduced basis. The time-harmonic linearized Euler equations, once projected onto this basis, yield a linear system for the harmonic problem that is orders of magnitude faster to solve, thus enabling the fast exploration of solutions where the impedance is varied. The optimal building of this reduced basis is obtained via a greedy algorithm, based on the residual, and avoids the use of a POD.

The greedy selection technique was first applied on a 2D geometry of a duct, equipped with an acoustic liner, represented by an impedance BC. It was discovered that when the real part of the impedance (the resistance) was known to be above a certain value, the reduced basis would need less elements to represent the system, and thus fewer call to the high-fidelity solver. This lower limit of the resistance is consistent with the impedance models related to the presence of a shear grazing flow or a high SPL. Different sets of reflection coefficient values were given for different minimal values of the resistance, for future users to select with respect to their own liner specifications. To evaluate the robustness of the method, the same set of values were used in a 3D geometry of a nacelle, at a different frequency and with a higher order acoustic mode than for the 2D configuration. It was shown that with as little as 3 full high-fidelity resolutions of the LEE, one was then able to recover a precise mapping of the acoustic indicator, here the attenuation coefficient.

The initial speed-up factor for the 3D case was ≈ 10 6 , and was then brought back to ≈ 10 3 due to the evaluation and saving on disk of the quantity of interest. 
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 1 Figure 1 a) Schematics of the B2A aeroacoustic bench; b) Schematics of the mesh used throughout this study.

  (a) Location of the snapshots in the reflection coefficient space. (b) Diminution of the maximum residual as the number m of snapshot increases.

Figure 2

 2 Figure 2 Analysis of the snapshot-RB convergence. Only the pressure field on the wall opposite the liner is used to calculate the maximum residual.

  (a) Location of the snapshots in the reflection coefficient space. (b) Location of the snapshots in the impedance space.
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 3 Figure 3 Location of the optimal snapshots, for different minimal values of the resistance. See Fig. 4 for the legend.

Figure 4

 4 Figure 4 Location of the optimal snapshots in the reflection coefficient space, for different minimal values of the resistance.

  Boundary conditions (not to scale).

Figure 5 3D

 5 Figure 5 3D nacelle configuration.
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 6 Figure 6 Impedance map of the attenuation coefficient.

Figure 7

 7 Figure 7 Real part of the pressure field in the rigid configuration (left) and the optimal impedance configuration (right).

Figure 8

 8 Figure 8 Difference of the impedance map of the attenuation coefficient with respect to the case m = 10.

Figure 9

 9 Figure 9 Average error of the impedance map of the acoustic indicator with respect to the case m = 10.

Table 1 Optimally selected values of the reflection coefficient, for different minimal values of the resistance.

 1 

	min re Z	0.01	0.1	0.2	0.5	1
	m	Ri	Ri	Ri	Ri	Ri
	1	0	0	0	0	0
	2	0.1636+0.9780j	0.9154+0.3813j	0.9561+0.2629j 0.9767 +0.1713j 0.9855+0.1094j
	3	0.1636-0.9780j	-0.4556+0.7260j -0.0446+0.8055j 0.3216 +0.6659j 0.5110+0.4991j
	4	-0.7489-0.6240j	-0.5171-0.6730j	-0.3886-0.6193j	0.0832-0.6163j 0.4775 -0.4968j
	5	-0.9166-0.3318j	-0.7651-0.3046j	-0.6390-0.2088j -0.2914-0.2276j 0.1198-0.3230j
	6	-0.9511-0.2137j	-0.8115-0.0771j	-0.6609+0.0628j -0.2914+0.2276j 0.1198+0.3230j
	7	-0.9357-0.2733j	-0.6867-0.4697j	0.1664-0.8323j	0.6689-0.5754j	0.8720-0.3313j
	8	-0.9704-0.0922j -0.8115+0.07709j -0.5688-0.3890j -0.3301-0.0633j	
	9	-0.9627-0.1533j	-0.7953-0.1787j	-0.6057+0.3105j -0.1909-0.4117j	
	10	-0.9748	0.2098-0.9003j	-0.6586 -0.0836j -0.1909+0.4117j	
	11	-0.9574-0.1836j	-0.8151	-0.6057-0.3105j		
	12	-0.9728-0.0615j -0.7824 +0.2285j -0.6428+0.1659j		
	13	-0.9670-0.1228j	-0.8050-0.1281j	-0.4972-0.5011j		
	14	-0.9728+0.0615j -0.7824 -0.2285j	-0.6625-0.0419j		
	15	-0.9743-0.0308j	-0.8005+0.1535j			
	16	-0.9561+0.0605j	-0.8147-0.0257j			
	17	-0.9621-0.0914j				
	18	-0.9644 -0.0610j				
	19	-0.9587-0.0122j				
	20	-0.9659 -0.0305j				
	21	-0.9664